THE PENTAGON

A Mathematics Magazine for Students

Volume 82 Number 1
Fall 2022

Contents

Kappa Mu Epsilon National Officers 3
Zeros of Real Random Polynomials Spanned by Bergman Polynomials 4
Jose Cruz-Ramirez, Darius Hammond,
Jayla Maxwell, Andrea Olvera
A Simple Solution for an Interesting Triangle Construction 17
Quang Hung Tran
The Problem Corner 21
Kappa Mu Epsilon News 32
Active Chapters of Kappa Mu Epsilon 41
© 2022 by Kappa Mu Epsilon (http://www.kappamuepsilon.org). All rights reserved. General permission is granted to KME members for noncommercial reproduction in limited quantities of individual articles, in whole or in part, provided complete reference is given as to the source.

Typeset in WinEdt. Printed in the United States of America.

The Pentagon (ISSN 0031-4870) is published semiannually in December and May by Kappa Mu Epsilon. No responsibility is assumed for opinions expressed by individual authors. Papers written by undergraduate mathematics students for undergraduate mathematics students are solicited. Papers written by graduate students or faculty will be considered on a space-available basis. Submissions should be made by means of an attachment to an e-mail sent to the editor. Either a TeX file or Word document is acceptable. An additional copy of the article as a pdf file is desirable. Standard notational conventions should be respected. Graphs, tables, or other materials taken from copyrighted works MUST be accompanied by an appropriate release form the copyright holder permitting their further reproduction. Student authors should include the names and addresses of their faculty advisors. Contributors to The Problem Corner or Kappa Mu Epsilon News are invited to correspond directly with the appropriate Associate Editor.

Editor:

Doug Brown
Department of Mathematics
Catawba College
2300 West Innes Street
Salisbury, NC 28144-2441
dkbrown@catawba.edu

Associate Editors:

The Problem Corner:
Pat Costello
Department of Math. and Statistics
Eastern Kentucky University
521 Lancaster Avenue
Richmond, KY 40475-3102
pat.costello@eku.edu
Kappa Mu Epsilon News:
Mark P. Hughes
Department of Mathematics
Frostburg State University
Frostburg, MD 21532
mhughes@ frostburg.edu

The Pentagon is only available in electronic pdf format. Issues may be viewed and downloaded for free at the official KME website. Go to http://www. pent agon.kappamuepsilon.org/ and follow the links.

Kappa Mu Epsilon National Officers

Department of Natural and Applied Sciences
Evangel University
Springfield, MO 65802
toshd@evangel.edu

Scott Thuong
President-Elect

Department of Mathematics	
Pittsburg State University	
Pittsburg, KS 66762	
Steven Shattuck	sthuong @ pitstate.edu
School of Computer Science and Mathematics	
University of Central Missouri	
Warrensburg, MO 64093	
sshattuck@ucmo.edu	

David Dempsey
Department of Mathematical, Computing, \& Information Sciences
Jacksonville State University
Jacksonville, AL 36265
ddempsey@ @su.edu

Mark P. Hughes Historian
Department of Mathematics
Frostburg State University
Frostburg, MD 21532
mhughes@frostburg.edu
John W. Snow
Webmaster
Department of Mathematics
University of Mary Hardin-Baylor
Belton, TX 76513

KME National Website:
http://www.kappamuepsilon.org/

Zeros of Real Random Polynomials Spanned by Bergman Polynomials

Jose Cruz-Ramirez, student
Darius Hammond, student
Jayla Maxwell, student
Andrea Olvera, student
GA Theta
College of Coastal Georgia
Brunswick, GA 31520

1

Abstract

Let $f_{n}(z)=\sum_{j=0}^{n} \eta_{j} p_{j}(z)$, where $\left\{\eta_{j}\right\}$ are real-valued independent and identically distributed standard normal random variables, and $\left\{p_{j}(z)\right\}$ are Bergman polynomials on the unit disk of the form $p_{j}(z)=\sqrt{(j+1) / \pi} z^{j}, j \in\{0,1, \ldots, n\}$. From well-known formulas for the expected number of real zeros and purely complex zeros of random polynomials, we prove that the expected number of zeros of $f_{n}(z)$ in the unit disk is asymptotic to $2 n / 3$, and of these zeros, asymptotically $\sqrt{2} \log n / \pi$ of them are on $[-1,1]$.

Introduction

The study of the zeros of polynomials of the form

$$
k_{n}(z)=\eta_{n} z^{n}+\eta_{n-1} z^{n-1}+\cdots+\eta_{1} z+\eta_{0},
$$

where $\left\{\eta_{k}\right\}_{k=0}^{n}$ are random variables has a rich history (c.f. the books by BharuchaReid and Sambandham [1] and Farahmand [3] for a great reference and many early results). Let \mathbb{E} denote the expectation, $N_{n}(\Omega), \Omega \subset \mathbb{C}$, denote the number of zeros of k_{n} in Ω. When $\left\{\eta_{k}\right\}_{k=0}^{n}$ are independent and identically distributed (i.i.d.) standard (i.e. with mean zero and variance one) normal random variables, in 1943, Kac [4] gave a formula for the expected number of real zeros $k_{n}(z)$, and proved that

$$
\mathbb{E}\left[N_{n}(\mathbb{R})\right]=\frac{2+o(1)}{\pi} \log n, \quad \text { as } \quad n \rightarrow \infty .
$$

[^0]In the above, we are using the "little o" Landau notation. Which in the above result means that, after distributing $o(1) \log n=o(\log n)$, there is a function $g(n)$ such that $g(n) / \log n \rightarrow 0$ as $n \rightarrow \infty$. We remark that in Kac's work, he showed that the expected number of zeros in $[-1,1]$ is asymptotic to $\log n / \pi$ as $n \rightarrow \infty$.

In what follows, we fix $\left\{\eta_{k}\right\}_{k=0}^{n}$ to be real-valued i.i.d. standard normal random variables. Nearly half a decade after Kac's result, Shepp and Vanderbei [9] gave a formula for the purely complex zeros of $k_{n}(z)$. From their work it follows that

$$
\mathbb{E}\left[N_{n}(\mathbb{D})\right]=(1+o(1)) \frac{n}{2},
$$

where \mathbb{D} denotes the unit disk.
We are interested in what happens when we change the monominal spanning basis, i.e. $\left\{z^{k}\right\}_{k=0}^{n}$, to a different basis. And if we do so, will these mentioned asymptotics change? Before going into our change of spanning basis, we first make light on a property of the monomials that we would like to somewhat preserve. Namely, $\left\{z^{k}\right\}_{k=0}^{n}$ are orthogonal on the unit circle with respect to normalized arc length measure. That is, denoting \mathbb{T} as the unit circle, and $z=e^{i \theta}$ since $z \in \mathbb{T}$, and the "overlined bar" as complex-conjugation, it follows that

$$
\int_{\mathbb{T}} z^{n} \bar{z}^{m} \frac{d z}{2 \pi}=\int_{-\pi}^{\pi} e^{i n \theta} e^{-i m \theta} \frac{d \theta}{2 \pi}= \begin{cases}1, & \text { when } n=m, \\ 0, & \text { when } n \neq m .\end{cases}
$$

Retaining an orthogonality property, we will be taking a spanning basis from a class of functions that are orthogonal on the unit disk with respect to area measure. Specifically, we consider random polynomials of the form

$$
\begin{equation*}
f_{n}(z)=\sum_{j=0}^{n} \eta_{j} p_{j}(z) \tag{1}
\end{equation*}
$$

where $\left\{\eta_{j}\right\}$ are real-valued i.i.d. standard normal, and $p_{j}(z)=\sqrt{(j+1) / \pi} z^{j}$, $j=0,1, \ldots, n$. Note that these spanning p_{j} 's are indeed orthogonal on the unit disk. To see that this is so, observe that

$$
\begin{aligned}
\int_{\mathbb{D}} \sqrt{\frac{n+1}{\pi}} z^{n} & \sqrt{\frac{m+1}{\pi}} z^{m} \\
& =\int_{0}^{1} \int_{0}^{2 \pi} \sqrt{\frac{n+1}{\pi}}\left(r e^{i \theta}\right)^{n} \sqrt{\frac{m+1}{\pi}}\left(r e^{i \theta}\right)^{m}
\end{aligned} d \theta d r .
$$

We remark that the basis functions $\left\{p_{j}(z)\right\}$ are known as Bergman polynomials and are used as basis functions for representing analytic functions in the unit disk [11].

Below are two plots of zeros of the different random polynomials.

Figure 1:In red is the unit circle and in blue are the zeros in $[-1.5,15] \times[-1.5,1.5]$ for 2500 different random polynomials of the form

$$
P_{10}(z)=\sum_{k=0}^{10} \eta_{k} z^{k}
$$

Figure 2: In red is the unit circle and in blue are the zeros in $[-1.5,15] \times[-1.5,1.5]$ for 2500 different random polynomials of the form

$$
P_{10}(z)=\sum_{k=0}^{10} \eta_{k} \sqrt{(k+1) / \pi} z^{k}
$$

From these images, it appears that by switching the basis to the Bergman polynomials, there are more zeros in the unit disk than in the monomial case. Our work will indeed show that this is so. We remark that in both cases, it is known the zeros accumulate near the unit circle (see Pritsker and Yeager [7]). Our approach will be to use known formulas for the expected number of real zeros and the expected number of complex zeros of $f_{n}(z)$, and then to find asymptotics as $n \rightarrow \infty$ for these formulas.

Random polynomials spanned by Bergman polynomials on the unit disk have not been as widely studied as the cases when the spanning functions are orthogonal on the real line or on the unit circle. We also note that recently it was shown that if the random variables $\left\{\eta_{k}\right\}$ are i.i.d. complex-valued standard normal, $f_{n}(z)$ does in fact have more zeros in the unit disk (and actually has the same asymptotic as our results, c.f. [5]). We are motivated by these situations for our research.

Main Results

The formula for the expected number of real zeros given by Edelman and Kostlan [2] (with alternative proofs given by Vanderbei [10] , Pritsker Lubinsky Xie [6], and Yeager [12]) provides an explicit formula for $\mathbb{E}\left[N_{n}(\Omega)\right]$ when $\Omega \subset \mathbb{R}$. Denoting $\rho_{n}(x)$ as the density function (see the Proofs Section for the explicit form), that is

$$
\mathbb{E}\left[N_{n}(\Omega)\right]=\int_{\Omega} \rho_{n}(x) d x,
$$

our first result allows us to simplify $\rho_{n}(x)$ associated to the expected number of real zeros of $f_{n}(z)$.

Lemma 1. The density function for the real zeros for (1) simplifies as

$$
\begin{equation*}
\rho_{n}(x)=\frac{1}{\pi} \sqrt{\frac{2}{\left(1-x^{2}\right)^{2}}-\frac{(n+1)(n+2) x^{2 n}\left(x^{2 n+4}-(n+2) x^{2}+n+1\right)}{\left(1+x^{2 n+2}\left((n+1) x^{2}-(n+2)\right)\right)^{2}}} . \tag{2}
\end{equation*}
$$

From the simplified shape of ρ_{n}, we are able to find the following asymptotic with an explicit upper bound constant.

Theorem 1. The expected number of real zeros of (1) in the line segment $[-1,1]$ satisfies

$$
\begin{equation*}
\mathbb{E}\left[N_{n}([-1,1])\right]=\left(\frac{\sqrt{2}}{\pi}+o(1)\right) \log n, \quad \text { as } \quad n \rightarrow \infty, \tag{3}
\end{equation*}
$$

where in the upper bound of the above we have

$$
C=\frac{1}{\pi}\left(\sqrt{2} \log 2+2 \sqrt{\frac{1}{2}-\frac{e^{2}+1}{\left(e^{2}-3\right)^{2}}}\right)=0.473729 \ldots
$$

For our next result, observe that

$$
\mathbb{E}\left[N_{n}(\mathbb{D})\right]=\mathbb{E}\left[N_{n}(\mathbb{D} \backslash[-1,1])\right]+\mathbb{E}\left[N_{n}([-1,1])\right] .
$$

Taking into account (3) and that $\log n / n \rightarrow 0$ as $n \rightarrow \infty$, we see that

$$
\begin{equation*}
\frac{\mathbb{E}\left[N_{n}(\mathbb{D})\right]}{n}=\frac{\mathbb{E}\left[N_{n}(\mathbb{D} \backslash[-1,1])\right]}{n}+o(1), \quad \text { as } \quad n \rightarrow \infty . \tag{4}
\end{equation*}
$$

Thus to find an asymptotic for the expected number of zeros in the unit disk, it suffices to find one for the purely complex zeros in the unit disk. Using a formula provided by Vanderbei [10] for these purely complex zeros (see Proofs section for this explicit formula), we are obtain the following:

Theorem 2. For random polynomial given in (1), it follows that

$$
\mathbb{E}\left[N_{n}(\mathbb{D})\right]=\left(\frac{2}{3}+o(1)\right) n, \quad \text { as } \quad n \rightarrow \infty .
$$

The Proofs

The mentioned formula for the expected number of real zeros provided by Edelman and Kostlan et. al. is the following

$$
\mathbb{E}\left[N_{n}(\Omega)\right]=\int_{\Omega} \rho_{n}(x) d x
$$

where

$$
\begin{equation*}
\rho_{n}(x)=\frac{1}{\pi} \sqrt{\frac{K_{n}(x, x) K_{n}^{(1,1)}(x, x)-K_{n}^{(1,0)}(x, x)^{2}}{K_{n}(x, x)^{2}}} \tag{5}
\end{equation*}
$$

with

$$
\begin{align*}
K_{n}(z, w) & =\sum_{j=0}^{n} p_{j}(z) \overline{p_{j}(w)} \tag{6}\\
K_{n}^{(1,0)}(z, w) & =\sum_{j=0}^{n} p_{j}^{\prime}(z) \overline{p_{j}(w)} \tag{7}\\
K_{n}^{(1,1)}(z, w) & =\sum_{j=0}^{n} p_{j}^{\prime}(z) \overline{p_{j}^{\prime}(w)} . \tag{8}
\end{align*}
$$

We now show how to simplify $\rho_{n}(x)$.
Proof of Lemma 1. Observe that the kernels are

$$
\begin{align*}
K_{n}(z, w)= & \sum_{k=0}^{n}\left(\frac{k+1}{\pi}\right)(z \bar{w})^{k}=\frac{1+(z \bar{w})^{n+1}((n+1) z \bar{w}-(n+2))}{\pi(1-z \bar{w})^{2}}, \tag{9}\\
K_{n}^{(1,0)}(z, w)= & \sum_{k=0}^{n}\left(\frac{k+1}{\pi}\right) k z^{k-1} \bar{w}^{k}=\frac{2 \bar{w} K_{n}(z, w)}{1-z \bar{w}}-\frac{(n+1)(n+2) z^{n} \bar{w}^{n+1}}{\pi(1-z \bar{w})}, \tag{10}\\
K_{n}^{(1,1)}(z, w)= & \sum_{k=0}^{n}\left(\frac{k+1}{\pi}\right) k^{2} z^{k} \bar{w}^{k}=\frac{2(1+2 z \bar{w}) K_{n}(z, w)}{(1-z \bar{w})^{2}} \\
& -\frac{(n+1)(n+2) z^{n} \bar{w}^{n}(1+2 z \bar{w})}{\pi(1-z \bar{w})^{2}}-\frac{n(n+1)(n+2) z^{n} \bar{w}^{n}}{\pi(1-z \bar{w})} . \tag{11}
\end{align*}
$$

After much algebraic simplification one sees that

$$
\begin{aligned}
& K_{n}(x, x) K_{n}^{(1,1)}(x, x)-\left|K_{n}^{(1,0)}(x, x)\right|^{2}= \\
& \frac{2 K_{n}(x, x)^{2}}{\left(1-x^{2}\right)^{2}}-\frac{n(n+1)(n+2) x^{2 n} K_{n}(x, x)}{\pi\left(1-x^{2}\right)} \\
& \quad-\frac{(n+1)(n+2) x^{2 n}\left(1-2 x^{2}\right) K_{n}(x, x)}{\pi\left(1-x^{2}\right)^{2}} \\
& \quad-\frac{(n+1)^{2}(n+2)^{2} x^{4 n+2}}{\pi^{2}\left(1-x^{2}\right)^{2}} .
\end{aligned}
$$

Using (5) then further simplifying gives

$$
\begin{align*}
\pi \rho_{n}(x) & =\sqrt{\frac{K_{n}(x, x) K_{n}^{(1,1)}(x, x)-\left|K_{n}^{(0,1)}(x, x)\right|^{2}}{K_{n}(x, x)^{2}}} \\
& =\sqrt{\frac{2}{\left(1-x^{2}\right)^{2}}-\frac{(n+1)(n+2) x^{2 n}\left(x^{2 n+4}-(n+2) x^{2}+n+1\right)}{\left(1+x^{2 n+2}\left((n+1) x^{2}-(n+2)\right)\right)^{2}}} \tag{12}
\end{align*}
$$

Proof of Theorem 1. From (12), it is clear that $\rho_{n}(-x)=\rho_{n}(x)$. Thus

$$
\mathbb{E}\left[N_{n}([-1,1])\right]=\int_{-1}^{1} \rho_{n}(x) d x=2 \int_{0}^{1} \rho_{n}(x) d x
$$

Upper Estimate: For our upper estimate, we write

$$
\mathbb{E}\left[N_{n}([-1,1])\right]=2 \int_{0}^{1-1 / n} \rho_{n}(x) d x+2 \int_{1-1 / n}^{1} \rho_{n}(x) d x:=I_{1}+I_{2}
$$

To estimate I_{1} from above, we would like to conclude that for $x \in[0,1-1 / n]$, we have

$$
\begin{align*}
\rho_{n}(x) & =\frac{1}{\pi} \sqrt{\frac{2}{\left(1-x^{2}\right)^{2}}-\frac{(n+1)(n+2) x^{2 n}\left(x^{2 n+4}-(n+2) x^{2}+n+1\right)}{\left(1+x^{2 n+2}\left((n+1) x^{2}-(n+2)\right)\right)^{2}}} \tag{13}\\
& \leq \frac{\sqrt{2}}{\pi} \cdot \frac{1}{1-x^{2}} \tag{14}
\end{align*}
$$

That is, we need to argue that

$$
\begin{equation*}
0 \leq \frac{(n+1)(n+2) x^{2 n}\left(x^{2 n+4}-(n+2) x^{2}+n+1\right)}{\left(1+x^{2 n+2}\left((n+1) x^{2}-(n+2)\right)\right)^{2}} \tag{15}
\end{equation*}
$$

Since the denominator is clearly non-negative, that leaves us to focus on the numerator. As

$$
(n+1)(n+2) x^{2 n} \geq 0
$$

we actually need to show that

$$
x^{2 n+4}-(n+2) x^{2}+n+1 \geq 0
$$

We first make the observation that since $0 \leq x \leq 1-1 / n$, it follows that $x^{2} \leq$ $1-2 / n+1 / n^{2}$. Thus

$$
x^{2 n+4}-(n+2) x^{2}+n+1 \geq-(n+2)\left(1-\frac{2}{n}+\frac{1}{n^{2}}\right)+n+1=\frac{3 n-2}{n^{2}}+1>0,
$$

as desired given that n is a natural number.
Thus (15) holds true, so that we have justified our bound (13). Therefore

$$
\begin{equation*}
I_{1} \leq \frac{2}{\pi} \int_{0}^{1-1 / n} \frac{\sqrt{2}}{1-x^{2}} d x=\frac{\sqrt{2}}{\pi}(\log n+\log (2-1 / n)) \leq \frac{\sqrt{2}}{\pi}(\log n+\log 2) . \tag{11}
\end{equation*}
$$

Turning now to I_{2}, changing the variable $x=1-y / n$ we have

$$
I_{2}=2 \int_{1-1 / n}^{1} \rho_{n}(x) d x=2 \int_{0}^{1} \frac{\rho_{n}(1-y / n)}{n} d y .
$$

As we seek an asymptotic for I_{2}, we will be estimating this integral in the limiting sense. Moreover, we would like to pass the limit as n tends to infinity over the integral. To achieve this goal, as $[0,1]$ is a closed interval, we need to know that the limit would hold uniformly for $y \in[0,1]$ as $n \rightarrow \infty$.

To this end, since it is known that $(1-y / n)^{n}$ converges uniformly to e^{-y} for $y \in[0,1]$ as $n \rightarrow \infty$, using (12) and properties of uniform convergence (e.g. differences, products, quotients, etc.), and finally doing some algebra, we achieve uniformly for $y \in[0,1]$ that

$$
\lim _{n \rightarrow \infty} \frac{\rho_{n}(1-y / n)}{n}=\frac{1}{\pi} \sqrt{\frac{1}{2 y^{2}}+\frac{e^{2 y}(1-2 y)-1}{\left(e^{2 y}-2 y-1\right)^{2}}} .
$$

Hence we indeed have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} I_{2} & =2 \int_{0}^{1} \lim _{n \rightarrow \infty} \frac{\rho_{n}(1-y / n)}{n} d y \\
& =\frac{2}{\pi} \int_{0}^{1} \sqrt{\frac{1}{2 y^{2}}+\frac{e^{2 y}(1-2 y)-1}{\left(e^{2 y}-2 y-1\right)^{2}}} d y \\
& =\int_{0}^{1} t(y) d y .
\end{aligned}
$$

where

$$
t(y):=\frac{2}{\pi} \sqrt{\frac{1}{2 y^{2}}+\frac{e^{2 y}(1-2 y)-1}{\left(e^{2 y}-2 y-1\right)^{2}}} .
$$

While $t(y)$ does appear to have a singular point at $y=0$, this point is removable as

$$
\lim _{y \rightarrow 0} t(y)=\frac{\sqrt{2}}{3 \pi}
$$

Thus $t(y)$ is a continuous function. Since $t(y)$ is a continuous function on $[0,1]$, by the extreme value theorem $t(y)$ attains its maximum over this interval. As the graph below shows that $t(y)$ is increasing on $[0,1]$ (we note that this can also be seen by $t^{\prime}(y)>0$ over $y \in[0,1]$), it must take its largest value at $y=1$.

Figure 3: In blue is the limiting value $t(y)$ of the integrand for I_{2} over its domain of integration $[0,1]$.

Hence we achieve

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I_{2} \leq \frac{2}{\pi} \int_{0}^{1} \max _{0 \leq y \leq 1}\left(\sqrt{\frac{1}{2 y^{2}}+\frac{e^{2 y}(1-2 y)-1}{\left(e^{2 y}-2 y-1\right)^{2}}}\right) d y \leq \frac{2}{\pi} \sqrt{\frac{1}{2}-\frac{e^{2}+1}{\left(e^{2}-3\right)^{2}}} . \tag{17}
\end{equation*}
$$

Combining (16) and (17) we see that

$$
\begin{equation*}
\mathbb{E}\left[N_{n}([-1,1])\right] \leq \frac{\sqrt{2}}{\pi} \log n+C, \quad \text { as } \quad n \rightarrow \infty, \tag{18}
\end{equation*}
$$

where

$$
C=\frac{1}{\pi}\left(\sqrt{2} \log 2+2 \sqrt{\frac{1}{2}-\frac{e^{2}+1}{\left(e^{2}-3\right)^{2}}}\right)=0.473729 \ldots
$$

Lower Estimate: To begin our lower bound, we first write

$$
\begin{aligned}
\rho_{n}(x) & =\frac{1}{\pi} \sqrt{\frac{2}{\left(1-x^{2}\right)^{2}}-\frac{(n+1)(n+2) x^{2 n}\left(x^{2 n+4}-(n+2) x^{2}+n+1\right)}{\left(1+x^{2 n+2}\left((n+1) x^{2}-(n+2)\right)\right)^{2}}} \\
& =\frac{\sqrt{2-h_{n}(x)}}{\pi\left(1-x^{2}\right)}
\end{aligned}
$$

where

$$
h_{n}(x)=\frac{\left(1-x^{2}\right)^{2}(n+1)(n+2) x^{2 n}\left(x^{2 n+4}-(n+2) x^{2}+n+1\right)}{\left(1+x^{2 n+2}\left((n+1) x^{2}-(n+2)\right)\right)^{2}} .
$$

We now let $0<\delta, \varepsilon, \gamma<1$ be arbitrary. Our first estimate is

$$
\begin{align*}
\mathbb{E}\left[N_{n}([-1,1])\right] & =2 \int_{0}^{1} \rho_{n}(x) d x \\
& =\frac{2}{\pi} \int_{0}^{1} \frac{\sqrt{2-h_{n}(x)}}{1-x^{2}} d x \\
& >\frac{2}{\pi} \int_{0}^{1-n^{\delta-1}} \frac{\sqrt{2-h_{n}(x)}}{1-x^{2}} d x . \tag{19}
\end{align*}
$$

We now begin to estimate $h_{n}(x)$. Since $0 \leq x \leq 1-n^{\delta-1}<1$, for the numerator of $h_{n}(x)$ it follows that

$$
\begin{aligned}
&\left(1-x^{2}\right)^{2}(n+1)(n+2) x^{2 n}\left(x^{2 n+4}-(n+2) x^{2}+n+1\right) \\
& \leq 2(n+1)(n+2) x^{2 n}\left(x^{2 n+4}+n+1\right) \\
& \leq 2(n+1)(n+2) x^{2 n}(1+n+1) \\
& \leq 2(n+1)(n+2)^{2}\left(1-n^{\delta-1}\right)^{2 n} .
\end{aligned}
$$

As the product of $\left(1-n^{\delta-1}\right)^{n}$ and any power of n goes to zero as n tends to infinity, the above can be made smaller than ε for large enough n. Thus

$$
\begin{equation*}
\left(1-x^{2}\right)^{2}(n+1)(n+2) x^{2 n}\left(x^{2 n+4}-(n+2) x^{2}+n+1\right) \leq \varepsilon . \tag{20}
\end{equation*}
$$

In a similar fashion, turning to the denominator $h_{n}(x)$, observe that for large enough n we have

$$
1+x^{2 n+2}\left((n+1) x^{2}-(n+2)\right) \geq 1-(n+2)\left(1-n^{\delta-1}\right)^{2 n+2}>1-\gamma,
$$

so that

$$
\begin{equation*}
\frac{1}{\left(1+x^{2 n+2}\left((n+1) x^{2}-(n+2)\right) \geq 1-(n+2)\left(1-n^{\delta-1}\right)^{2 n+2}\right)^{2}} \leq \frac{1}{(1-\gamma)^{2}} \tag{21}
\end{equation*}
$$

Combining (20) and (21) we see that

$$
h_{n}(x) \leq \frac{\varepsilon}{(1-\gamma)^{2}}:=\zeta,
$$

where $\zeta>0$ is arbitrary small for large n.
Therefore (19) is bounded below by

$$
\int_{0}^{1-n^{\delta-1}} \frac{\sqrt{2-\gamma}}{\pi} \cdot \frac{1}{1-x^{2}} d x>\frac{(\sqrt{2-\gamma})(1-\delta)}{2 \pi} \log n
$$

Combining the above with (18) gives the desired result that

$$
\mathbb{E}\left[N_{n}([-1,1])\right]=\left(\frac{\sqrt{2}}{\pi}+o(1)\right) \log n, \quad \text { as } \quad n \rightarrow \infty .
$$

Proof of Theorem 2. From (4), to compute an asymptotic for $\mathbb{E}\left[N_{n}(\mathbb{D})\right] / n$ it suffices to find one for $\mathbb{E}\left[N_{n}(\mathbb{D} \backslash[-1,1])\right) / n$. To this end, using our notation of the kernels given in (9) and (10), applying Proposition 2.1 of [10] it follows that

$$
\begin{equation*}
\frac{\mathbb{E}\left[N_{n}(\mathbb{D} \backslash[-1,1])\right]}{n}=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{F_{n}(z)}{n} d z, \tag{22}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{n}(z)= \\
& \frac{K_{n}^{(1,0)}(z, z) \sqrt{\left(K_{n}(z, z)^{2}-\left|K_{n}(z, \bar{z})\right|^{2}\right.}+K_{n}(z, z) K_{n}^{(1,0)}(z, z)-\overline{K_{n}(z, \bar{z})} K_{n}^{(1,0)}(z, \bar{z})}{K_{n}(z, z) \sqrt{\left(K_{n}(z, z)^{2}-\left|K_{n}(z, \bar{z})\right|^{2}\right.}+\left(K_{n}(z, z)\right)^{2}-\left|K_{n}(z, \bar{z})\right|^{2}}
\end{aligned}
$$

We will be passing the limit as $n \rightarrow \infty$ over the contour integral (22). As noted by Vanderbei (cf. Lemma 2.3 in [10]), $F_{n}(z)$ has a (bounded) jump discontinuity when $K_{n}(z, z)=K_{n}(z, \bar{z})$, which occurs when $z= \pm 1$ (i.e. when $\theta= \pm \pi$). This problem will be handled as follows. Let $\varepsilon>0$. It is clear that

$$
\lim _{\varepsilon \downarrow 0} \int_{-\pi+\varepsilon}^{\pi-\varepsilon} \frac{F_{n}(z)}{n} d z=\int_{-\pi}^{\pi} \frac{F_{n}(z)}{n} d z=\int_{\mathbb{T}} \frac{F_{n}(z)}{n} d z
$$

If we can show that $F_{n}(z) / n$ converges uniformly to some $F(z)$ on $[-\pi+\varepsilon, \pi-\varepsilon]$ (we note which implies that viewing the sequence $\left\{\int F_{n} / n\right\}$ converges uniformly to $\left\{\int F\right\}$ on $[-\pi+\varepsilon, \pi-\varepsilon]$), then appealing to Moore-Osgood Theorem (Rudin Theorem 7.11 [8]), we will have

$$
\begin{align*}
\lim _{n \rightarrow \infty} \lim _{\varepsilon \downarrow 0} \int_{-\pi+\varepsilon}^{\pi-\varepsilon} \frac{F_{n}(z)}{n} d z & =\lim _{\varepsilon \downarrow 0} \lim _{n \rightarrow \infty} \int_{-\pi+\varepsilon}^{\pi-\varepsilon} \frac{F_{n}(z)}{n} d z \\
& =\lim _{\varepsilon \downarrow 0} \int_{-\pi+\varepsilon}^{\pi-\varepsilon} \lim _{n \rightarrow \infty} \frac{F_{n}(z)}{n} d z \\
& =\lim _{\varepsilon \downarrow 0} \int_{-\pi+\varepsilon}^{\pi-\varepsilon} F(z) d z \\
& =\int_{\mathbb{T}} F(z) d z \tag{23}
\end{align*}
$$

We now work to show that $F_{n}(z) / n$ is uniformly convergent on $\mathbb{T} \backslash\{ \pm 1\}$. First, we factor $F_{n}(z)$ the following way

$$
F_{n}(z)=\frac{K_{n}^{(1,0)}(z, z)\left(\sqrt{1-a_{n}(z)}+1-b_{n}(z) c_{n}(z)\right)}{K_{n}(z, z)\left(\sqrt{1-a_{n}(z)}+1-a_{n}(z)\right)}
$$

where

$$
a_{n}(z)=\frac{\left|K_{n}(z, \bar{z})\right|^{2}}{\left(K_{n}(z, z)\right)^{2}}, \quad b_{n}(z)=\frac{\overline{K_{n}(z, \bar{z})}}{K_{n}(z, z)}, \quad c_{n}(z)=\frac{K_{n}^{(1,0)}(z, \bar{z})}{K_{n}^{(1,0)}(z, z)} .
$$

We note that when $z \in \mathbb{T} \backslash\{ \pm 1\}$, we have $z=e^{i \theta}$ and $|z|=1$, so that

$$
\begin{equation*}
K_{n}(z, z)=\sum_{k=0}^{n} \frac{k+1}{\pi}|z|^{2 k}=\sum_{k=0}^{n} \frac{k+1}{\pi}=\frac{(n+1)(n+2)}{2 \pi}, \tag{24}
\end{equation*}
$$

and

$$
\begin{align*}
K_{n}(z, \bar{z}) & =\sum_{k=0}^{n} \frac{k+1}{\pi} z^{2 k} \\
& =\sum_{k=0}^{n} \frac{k+1}{\pi} e^{2 k i \theta}=\frac{1+e^{2 i \theta(n+1)}\left(e^{2 i \theta}(n+1)-(n+2)\right)}{\pi\left(1-e^{2 i \theta}\right)^{2}} . \tag{25}
\end{align*}
$$

As

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{e^{2 i \theta(n+1)}}{n}=0, \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{e^{2 i \theta}(n+1)-(n+2)}{n}=e^{2 i \theta}-1, \tag{26}
\end{equation*}
$$

both hold uniformly for $\theta \in \mathbb{T} \backslash\{ \pm 1\}$, using (24) and (25), it follows that

$$
\lim _{n \rightarrow \infty} \frac{K_{n}(z, \bar{z})}{K_{n}(z, z)}=\lim _{n \rightarrow \infty} \frac{2\left(1+e^{2 i \theta(n+1)}\left(e^{2 i \theta}(n+1)-(n+2)\right)\right)}{(n+1)(n+2)\left(1-e^{2 i \theta}\right)}=0
$$

uniformly for $\theta \in \mathbb{T} \backslash\{ \pm 1\}$. Similarly, we have

$$
\lim _{n \rightarrow \infty} \frac{\overline{K_{n}(z, \bar{z})}}{K_{n}(z, z)}=\lim _{n \rightarrow \infty} \frac{2\left(1+e^{-2 i \theta(n+1)}\left(e^{-2 i \theta}(n+1)-(n+2)\right)\right)}{(n+1)(n+2)\left(1-e^{-2 i \theta}\right)}=0 .
$$

Thus $a_{n}(z) \rightarrow 0$ and $b_{n}(z) \rightarrow 0$ both uniformly for $\theta \in \mathbb{T} \backslash\{ \pm 1\}$ as $n \rightarrow \infty$.
Turning now to $c_{n}(z), z \in \mathbb{T} \backslash\{ \pm 1\}$, we have

$$
\begin{align*}
K_{n}^{(1,0)}(z, z) & =\sum_{k=0}^{n} \frac{k(k+1)}{\pi} z^{k-1} z^{k} \\
& =z^{-1} \sum_{k=0}^{n} \frac{k(k+1)}{\pi}|z|^{2 k} \\
& =e^{-i \theta} \sum_{k=0}^{n} \frac{k(k+1)}{\pi} \\
& =\frac{\bar{z}}{\pi} \cdot \frac{n(n+1)(n+2)}{3} . \tag{27}
\end{align*}
$$

As

$$
K_{n}^{(1,0)}(z, \bar{z})=\sum_{k=0}^{n}\left(\frac{k+1}{\pi}\right) k z^{k-1} z^{k}=\frac{2 z K_{n}(z, \bar{z})}{1-z^{2}}-\frac{(n+1)(n+2) z^{2 n+1}}{\pi\left(1-z^{2}\right)},
$$

replacing $z=e^{i \theta}$, and dividing the above by (27), and appealing to the limits (26), we see that $c_{n}(z) \rightarrow 0$ uniformly for $z \in \mathbb{T} \backslash\{ \pm 1\}$ as $n \rightarrow \infty$.

Therefore we achieve that

$$
\lim _{n \rightarrow \infty} \frac{F_{n}(z)}{K_{n}^{(1,0)}(z, z) / K_{n}(z, z)}=1
$$

uniformly for $z \in \mathbb{T} \backslash\{ \pm 1\}$. Since

$$
\frac{K_{n}^{(1,0)}(z, z)}{K_{n}(z, z)}=\frac{2 n}{3} \bar{z},
$$

our above limit says

$$
\lim _{n \rightarrow \infty} \frac{F_{n}(z)}{n}=\frac{2}{3} \bar{z} .
$$

Appealing now to (22) and (23), we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left[N_{n}(\mathbb{D} \backslash[-1,1])\right]}{n} & =\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{2}{3} \bar{z} d z \\
& =\frac{2}{3 \pi} \int_{\mathbb{D}} \frac{d}{d \bar{z}}(\bar{z}) d A(z) \\
& =\frac{2}{3 \pi} \int_{\mathbb{D}} 1 d A(z) \\
& =\frac{2}{3},
\end{aligned}
$$

where we have applied the Complex Version of Green's Theorem in the second equality above. Thus the expected number of purely complex zeros of (1) is asymptotic to $2 n / 3$. Therefore, by observation (4), we have

$$
\mathbb{E}\left[N_{n}(\mathbb{D})\right]=\left(\frac{2}{3}+o(1)\right) n, \quad \text { as } \quad n \rightarrow \infty .
$$

References

[1] A. T. Bharucha-Reid and M. Sambandham, Random polynomials, Academic Press, Orlando, 1986.
[2] A. Edelman and E. Kostlan, How many zeros of a random polynomial are real?, Bull. Amer. Math. Soc. 32 (1995) 1-37.
[3] K. Farahmand, Topics in random polynomials, Pitman Res. Notes Math. 393 (1998).
[4] M. Kac, On the average number of real roots of a random algebraic equation, Bull. Amer. Math. Soc. 49 (1943) 314-320.
[5] M. Landi, K. Johnson, G. Moseley, and A. Yeager, "Zeros of complex random polynomials spanned by Bergman polynomials," Involve: J. Math. (2021), Vol. 14, no. 2, 271-281.
[6] D. Lubinsky, I. Pritsker, and X. Xie, Expected number of real zeros for random linear combinations of orthogonal polynomials, Proc. Amer. Math. Soc. 144 (2016) 1631-1642.
[7] I. Pritsker and A. Yeager, Zeros of polynomials with random coefficients, J. Approx. Theory 189 (2015), 88-100.
[8] W. Rudin, Principles of Mathematical Analysis, McGraw Hill, New York, Third Ed., 2013.
[9] L. Shepp and R. Vanderbei, The complex zeros of random polynomials, Trans. Amer. Math. Soc. 347 (1995), 4365-4384.
[10] R. Vanderbei, The complex zeros of random sums, arXiv: 1508.05162 v 1 Aug. 21, 2015.
[11] H. Stahl and V. Totik, General Orthogonal Polynomials, Cambridge Univ. Press, New York, 1992.
[12] A. Yeager, Real Zeros of Random Sums with I.I.D. Coefficients, to appear in Colloq. Math. (2019).

Acknowledgments

We would like to thank the Mathematical Association of America for providing the opportunity of the National Research Experience for Undergraduates Program, as well as the National Science Foundation for funding the program. We also show appreciation to our program director, Dr. Aaron Yeager, and codirector, Dr. Syvillia Averett, for all their help with our project. Finally, we would like to extend gratitude to the College of Coastal Georgia for allowing the program to be orchestrated.

A Simple Solution for an Interesting Triangle Construction

Quang Hung Tran
High School for Gifted Students
Hanoi University of Science
Vietnam National University at Hanoi
Hanoi, Vietnam

Abstract

We establish a simple construction of a triangle given an internal angle α, the length t_{A} of the angle bisector of α, and the difference $b-c$ of the lengths b and c of the sides forming α, using a property of harmonic range.

Introduction

In 2016, Paris Pamfilos used the detection of a parabola to give a solution of the following construction problem [3]. Let $A B C$ be a triangle. Denote the lengths of the sides as: $a=|B C|, b=|C A|$, and $c=|A B|$ (see Figure 2). Let $\angle B A C=\alpha$, and $t_{A}=|A D|$, where D is the intersection of side $B C$ and the angle bisector of α. The problem is to construct the triangle $A B C$ given $\alpha, b-c, t_{A}$, with $b>c$.

In 2018, Martina Stepanova gave a shorter solution for this construction [4].
In this paper, we present another simple and new solution for this construction problem using a property of the harmonic range.

Properties of Harmonic Range

First of all, we would like to reiterate the formal definition of harmonic range as follows

Definition. Collinear points A, B, C, D form a harmonic range of points (A, B, C, D) if and only if a direction is established on the line and $\frac{C A}{C B}=-\frac{D A}{D B}$, where it is understand that CA represents the directed distance from C to A, and similarly for the other distances.

In this section, we give a characterization of harmonic range [1, 2] as follows:
Proposition 3. Let (A, P, E, C) be a set of points on a line. Let M and N be midpoints of $\overline{A P}$ and $\overline{E C}$ respectively. Then, (A, P, E, C) is a harmonic range if and only if

$$
4 M N^{2}=A P^{2}+E C^{2}
$$

Figure 1: Proof of Proposition 1

Proof. (See Figure 1). Let the coordinates of points A, P, E, and C on a given axis be a, p, e, and c, respectively. Then (A, P, E, C) is a harmonic range if and only if

$$
\begin{aligned}
\frac{E A}{E P}= & -\frac{C A}{C P} \\
& \Longleftrightarrow \frac{a-e}{p-e}=-\frac{a-c}{p-c} \\
& \Longleftrightarrow(a-c) \cdot(p-e)=-(a-e) \cdot(p-c) \\
& \Longleftrightarrow 2(a p+e c)=(a+p)(e+c) \\
& \Longleftrightarrow-4(a p+e c)=-2(a+p)(e+c) \\
& \Longleftrightarrow\left(a^{2}-2 a p+p^{2}\right)+\left(e^{2}-2 e c+c^{2}\right)= \\
& \left(a^{2}+2 a p+p^{2}\right)+\left(e^{2}+2 e c+c^{2}\right)-2(a+p)(e+c) \\
& \Longleftrightarrow(a-p)^{2}+(e-c)^{2}=(a+p)^{2}+(e+c)^{2}-2(a+p)(e+c) \\
& \Longleftrightarrow(a-p)^{2}+(e-c)^{2}=4\left(\frac{a+p}{2}-\frac{e+c}{2}\right)^{2} \\
& \Longleftrightarrow A P^{2}+E C^{2}=4 M N^{2} .
\end{aligned}
$$

From this, we obtain (A, P, E, C) is the harmonic range if and only if

$$
A P^{2}+E C^{2}=4 M N^{2} .
$$

Suppose for a given triangle $A B C$ that $\overline{A D}$ is the angle bisector of $\angle B A C$, with D in $\overline{B C}$. If we let E be the reflection of B through the line-segment $\overline{A D}$, then $|C E|=b-c$.

Proposition 4. Let P be the point on $\overline{A C}$ of triangle DEC so that $\overline{D P}$ is the angle bisector of $\angle E D C$. Then $\overline{A D} \perp \overline{D P}$, and (A, P, E, C) forms a harmonic range.

Figure 2: Proof of Proposition 4
Proof. (See Figure 2). Notice that E is on the line-segment $\overline{A C}$ since $\overline{A D}$ is an internal angle bisector of $\angle A B C$ and $b>c$. From $\triangle A B D \cong \triangle A E D$, we see that
$\overline{D A}$ is the angle bisector of $\angle B D E$. Therefore two angle bisectors $\overline{D P}$ and $\overline{D A}$ are perpendicular because because $\angle B D E$ and $\angle C D E$ are complementary adjacent angles.

Using properties of angle bisector in triangle with note that $\overline{D P}$ and $\overline{D A}$ are internal and external bisector at vertex D of triangle $D E C$, we have

$$
\frac{P E}{P C}=-\frac{|D E|}{|D C|}=-\frac{A E}{A C}
$$

Thus, (A, P, E, C) forms a harmonic range.

A New Triangle Construction

Suppose a point A is given, along with an angle α at A and length " $b-c$ " $(b>c)$ representing the (positions) difference between the length of the two sides of the angle at A, and the length t_{A} from A to the point D such that $\overline{A D}$ is the angle bisector of α. We need to determine the locations of points B and C so that $\triangle A B C$ can be constructed.

Let E be the reflection point of B through the line-segment $\overline{A D}$. Notice that E is on the line-segment $\overline{A C}$ since $\overline{A D}$ is an internal angle bisector of $\angle B A C$ and $b>c(\triangle A B D \cong \triangle A E D)$. Suppose the perpendicular line to $\overline{A D}$ through D meets $\overline{A C}$ at P. Using Proposition $4,(A, P, E, C)$ is a harmonic range. Let M, N be the midpoints of $\overline{A P}$ and $\overline{E C}$ respectively. By Proposition 3,

$$
A P^{2}+E C^{2}=4 M N^{2}
$$

Now we can deduce the positions of B and C.

Figure 3: New construction of a triangle under the given conditions

So, we use the following steps of constructions (see Figure 3):

1. Draw a line-segment $\overline{A D}$ of length t_{A}.
2. Draw lines m and n through A such that they form angles $\frac{\alpha}{2}$ with $\overline{A D}$.
3. Draw a perpendicular line to $\overline{A D}$ at D, and let this line meet n at P.
4. Draw midpoint M of $\overline{A P}$.
5. Draw point N on ray $\overrightarrow{A P}$ such that $|M N|=\frac{1}{2} \sqrt{A P^{2}+(b-c)^{2}}$, and M is between A and N.
(Note that N is correctly constructed by the observation in Proposition 3)
6. Draw circle ($N, \frac{b-c}{2}$) which meets line n at E and C such that E is inside the segment $\overline{A P}$.
7. Let B be the reflection of E in line-segment $\overline{A D}$.

Since we have located points B and C, we can complete the construction of $\triangle A B C$.

References

[1] E. W. Weisstein, Harmonic Range from MathWorld-A Wolfram Web Resource, http://mathworld.wolfram.com/HarmonicRange.html.
[2] C. V. Durell, Harmonic Ranges and Pencils, Ch. 6 in Modern Geometry: The Straight Line and Circle. London: Macmillan, pp. 65-67, 1928.
[3] P. Pamfilos, The Triangle Construction $\left\{\alpha, b-c, t_{A}\right\}$, Forum Geom., 16 (2016) pp. 115-117.
[4] M. Stepanova, New Constructions of Triangle from $\alpha, b-c, t_{A}$, Forum Geom., 18 (2018) pp. 125-132.

Acknowledgements

The author sincerely thanks the two referees, who read this manuscript extremely carefully and provided the author with important comments and corrections, thereby completing the manuscript.

The Problem Corner

Edited by Pat Costello

The Problem Corner invites questions of interest to undergraduate students. As a rule, the solution should not demand any tools beyond calculus and linear algebra. Although new problems are preferred, old ones of particular interest or charm are welcome, provided the source is given. Solutions should accompany problems submitted for publication. Solutions of the following new problems should be submitted on separate sheets before December 31, 2023. Solutions received after this will be considered up to the time when copy is prepared for publication. The solutions received will be published in the Fall 2023 issue of The Pentagon. Preference will be given to correct student solutions. Affirmation of student status and school should be included with solutions. New problems and solutions to problems in this issue should be sent to Pat Costello, Department of Mathematics and Statistics, Eastern Kentucky University, 521 Lancaster Avenue, Richmond, KY 40475-3102 (e-mail: pat.costello@eku.edu, fax: (859) 622-3051)

NEW PROBLEMS 911-919

Problem 911. Proposed by Daniel Sitaru, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, Romania.
Solve for real numbers:
$\left\{\begin{array}{l}2 \sin x+1=2 \sin y+2 \sin z \\ (\sin x+\sin y-\sin z)^{2}+(\sin x-\sin y+\sin z)^{2}+1=\sin x+\sin y+\sin z .\end{array}\right.$

Problem 912. Proposed by Mihaly Bencze, Brasov, Romania and Neculai Stanciu, "George Emil Palade" School, Buzău, Romania.
Solve in real numbers the following equation:

$$
x^{2}-5 x-2 \sqrt{x-2}+7+\log _{2} \frac{x^{2}-5 x+8}{\sqrt{x-2}}+\log _{3} \frac{x^{2}-5 x+8}{2 \sqrt{x-2}}=0 .
$$

Problem 913. Proposed by D.M. Bătinetu-Giurgiu, "Matei Basarab" National College, Bucharest, Romania and Neculai Stanciu, "George Emil Palade" School, Buzău, Romania.
Find $\lim _{n \rightarrow \infty}\left(\left(\frac{\pi^{2}}{6}-\sum_{k=1}^{n} \frac{1}{k^{2}}\right) * e^{x_{n}}\right)$ where $x_{n}=\sum_{k=1}^{n} \frac{1}{k}$.

Problem 914. Proposed by D.M. Bătinetu-Giurgiu, "Matei Basarab" National College, Bucharest, Romania and Neculai Stanciu, "George Emil Palade" School, Buzău, Romania.
Compute $\lim _{n \rightarrow \infty} n \sqrt[n]{(2 n-1)!!F_{n}} \sin \frac{1}{n^{2}}$ where F_{n} is the $n^{\text {th }}$ Fibonacci number.
Problem 915. Proposed by Toyesh Prakash Sharma (student), Agra College, Agra, India.
Evaluate the following integral:

$$
\int \ln (1+x) \cdot\left(e^{x}+\frac{1}{e^{x}}\right) d x+\int \frac{1}{x+1} \cdot\left(e^{x}-\frac{1}{e^{x}}\right) d x .
$$

Problem 916. Proposed by Raluca Maria Caraion and Foricǎ Anastase, "Alexandru Odobescu" High School, Lehliu-Gară, Călăraşi, Romania.
Find: $\Omega=\lim _{p \rightarrow \infty} \frac{1}{p^{a}} \cdot \sum_{m=1}^{p} \sum_{n=1}^{m} \sum_{k=1}^{n} \frac{k^{2}}{2 k^{2}-2 n k+n^{2}}$.
Problem 917. Proposed by Marian Ursărescu, "Roman Voda" College, Roman, Neamt, Romania, and Florică Anastase, "Alexandru Odobescu" High School, Lehliu-Garǎ, Călăraşi, Romania.
Let $\left(a_{n}\right)_{n \geqslant 1},\left(b_{n}\right)_{n \geqslant 1}$ be two sequences of real numbers defined by

$$
a_{n}=\int_{1}^{n}\left[\frac{n^{2}}{x}\right] d x ; b_{1}>1, b_{n+1}=1+\log \left(b_{n}\right)
$$

where [*] denotes the greatest integer function. Find $L=\lim _{n \rightarrow \infty} \frac{a_{n} \cdot \log \sqrt[n]{b_{n}}}{\log n^{n}}$.
Problem 918. Proposed by Seán Stewart, King Abdullah University of Science and Technology, Saudi Arabia.
If $k>0$, evaluate $\int_{0}^{1} \frac{\log \left(1+x^{k}+x^{2 k}\right)}{x} d x$.
Problem 919. Proposed by the editor
Find the error in the following proof: We want to find $\lim _{n \rightarrow \infty} \frac{4^{n}}{3^{n}}$. This is an $\frac{\infty}{\infty}$ form so we can apply L'Hopital's Rule. Let $L=\lim _{n \rightarrow \infty} \frac{4^{n}}{3^{n}}$. Then

$$
\begin{aligned}
L=\lim _{n \rightarrow \infty} \frac{4^{n}}{3^{n}} & =\lim _{n \rightarrow \infty} \frac{4^{n} \cdot \ln 4}{3^{n} \cdot \ln 3} \quad \text { by L'Hopital's Rule } \\
& =\lim _{n \rightarrow \infty} \frac{4^{n}}{3^{n}} \lim _{n \rightarrow \infty} \frac{\ln 4}{\ln 3}=L \cdot \frac{\ln 4}{\ln 3} .
\end{aligned}
$$

Subtracting L from both sides gives, $0=L \cdot\left(\frac{\ln 4}{\ln 3}-1\right)$ but $\frac{\ln 4}{\ln 3}-1$ is not 0 . Therefore $L=0$.

SOLUTIONS TO PROBLEMS 891-900

Problem 891. Proposed by José Luis Díaz-Barrero, School of Civil Engineering, Barcelona Tech - UPC, Barcelona, Spain.
Let $1 \leq m, n \leq 2022$ be integers such that $\left(n^{2}-m n-m^{2}\right)^{2}=1$. Determine the maximum value of $m^{2}+n^{2}$.

Solution by John Zerger, Catawba College, Salisbury, NC.
The answer is $1597^{2}+987^{2}$.
We first find all solutions (n, m). If $m=n$ then $(1,1)$ is the only solution. Assume without loss of generality that $n>m$. Note first that if (n, m) is a solution then so is $(m+n, n)$ since

$$
(m+n)^{2}-(m+n) n-n^{2}=-\left(n^{2}-m n-m^{2}\right)= \pm 1
$$

This gives us solutions $(2,1),(3,2),(5,3),(8,5),(13,8),(21,13),(34,21)$, $(55,34),(89,55),(144,89),(233,144),(377,233),(610,337),(987,610)$, $(1597,987),(2584,1597), \cdots$
Now we show these are the only solutions. Let (n, m) be a solution with $n>m$. If $m>1$ and $m \leq n-m$ then $2 m \leq n$ which gives $2 m^{2} \leq n m \leq n(n-m)$. Subtracting m^{2} gives $1<m^{2} \leq n^{2}-m n-m^{2}$ which is a contradiction to (n, m) being a solution. Therefore, for solutions with $m>1$ we have $m>n-m$. Hence we consider solutions with $1 \leq n-m<m<n$. Note that if (n, m) is a solution then so is ($m, n-m$) since

$$
m^{2}-m(n-m)-(n-m)^{2}=-\left(n^{2}-m n-m^{2}\right)= \pm 1
$$

Therefore, for any solution (n, m) with $m>1$ we have a smaller solution $(m, n-$ $m)$. Since we are only interested in positive integer solutions, the process will terminate with solution $(2,1)$. Thus, the solution must be in the list obtained above (pairs of consecutive Fibonacci numbers).
The pair maximizing $m^{2}+n^{2}$ is $(1597,987)$.
Also solved by Brian Bradie, Christopher Newport University, Newport News, VA; Kee-Wai Lau, Hong Kong, China; Albert Stadler, Herrliberg, Switzerland; and the proposer.

Problem 892. Proposed by Daniel Sitaru, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, Romania.
Find $\Omega=\int_{15 \cos (20 \arctan 3)}^{20 \sin (\arctan 3)} \frac{\sin ^{3} x+\sin ^{5} x}{1+\cos ^{2} x+\cos ^{4} x} d x$.

Solution by Marian Ursărescu "Roman-Voda" National College, Roman, Romania.

We have $\sin (\arctan x)=\frac{x}{\sqrt{1+x^{2}}}$ and $\cos (\arctan x)=\frac{1}{\sqrt{1+x^{2}}}$ which gives

$$
\begin{aligned}
20 \sin (2 \arctan 3)=20 \cdot 2 \sin (\arctan 3) \cdot \cos (\arctan 3) & =40 \cdot \frac{3}{\sqrt{10}} \cdot \frac{1}{\sqrt{10}} \\
& =12
\end{aligned}
$$

and

$$
\begin{aligned}
15 \cos (2 \arctan 3)=15\left(\cos ^{2}(\arctan 3)-\sin ^{2}(\arctan 3)\right) & =15\left(\frac{1}{10}-\frac{9}{10}\right) \\
& =-12 .
\end{aligned}
$$

So the integral is $\Omega=\int_{-12}^{12} \frac{\sin ^{3} x+\sin ^{5} x}{1+\cos ^{2} x+\cos ^{4} x} d x$. But the function is odd and $\Omega=0$.
Also solved by Radu Diaconu, "Ioan Slavici" High School, Sibiu and Daniel Văcaru, "Maria Teiuleanu" National Economic College, Piteşsti, Romania; KeeWai Lau, Hong Kong, China; Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain; Albert Stadler, Herrliberg, Switzerland; and the proposer.

Problem 893. Proposed by Daniel Sitaru, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, Romania.
Solve for real numbers x, y, z the equations:

$$
\begin{aligned}
\sin x+\sin y & =\sqrt{2+2 \sin z} \\
\sin y+\sin z & =\sqrt{2+2 \sin x} \\
\sin z+\sin x & =\sqrt{2+2 \sin y} .
\end{aligned}
$$

Solution by Daniel Vacaru, "Maria Teiuleanu" National Economic College, Piteşti, Romania.

We have

$$
\begin{aligned}
& (\sin x+\sin y)-(\sin y+\sin z)=\sqrt{2+2 \sin z}-\sqrt{2+2 \sin z} \\
& \Leftrightarrow \sin x-\sin z=\frac{(\sqrt{2+2 \sin z}-\sqrt{2+2 \sin x})}{(\sqrt{2+2 \sin z}+\sqrt{2+2 \sin x}}(\sqrt{2+2 \sin z}+\sqrt{2+2 \sin x}) \\
& \Leftrightarrow \sin x-\sin z=\frac{(\sqrt{2+2 \sin z})^{2}-(\sqrt{2+2 \sin x})^{2}}{(\sqrt{2+2 \sin z}+\sqrt{2+2 \sin x})} \\
& \Leftrightarrow \sin x-\sin z=\frac{\sin z-\sin x}{(\sqrt{2+2 \sin z}+\sqrt{2+2 \sin x})} .
\end{aligned}
$$

It follows that $\sin x=\sin y=\sin z$. We obtain the generic equation $2 \sin x=\sqrt{2+2 \sin x}$ with $\sin x \geq 0$. It follows that

$$
4 \sin ^{2} x=2+2 \sin x \Leftrightarrow 2 \sin ^{2} x-\sin x-1=0 .
$$

We get $\sin x=1$ or $\sin x=-\frac{1}{2}$.
Also solved by Kee-Wai Lau, Hong Kong, China; Albert Stadler, Herrliberg, Switzerland; and the proposer.

Problem 894. Proposed by Albert Natian, Los Angeles Valley College, Valley Glen, CA.
(1) Prove that for any natural number n, the polynomial

$$
f_{n}(x)=[A(x)]^{n}-[B(x)]^{n}-[C(x)]^{n}+[D(x)]^{n}
$$

is divisible by $g(x)=2 x^{2}+x-1$, where:

$$
\begin{aligned}
& A(x)=2 x^{3}+10 x^{2}-11 x+4, \\
& B(x)=x^{2}-2 x+2, \\
& C(x)=-x^{3}+14 x^{2}-3 x+5, \\
& D(x)=7 x 3+8 x 2+4 .
\end{aligned}
$$

(2) Prove that for any natural number n, the quantity

$$
\alpha_{n}=(-292)^{n}-82^{n}-1437^{n}+(-3068)^{n}
$$

is divisible by 119 .
(3) Prove that for any natural number n, the quantity

$$
\beta_{n}=65^{n}-82^{n}-9^{n}+502^{n}
$$

is divisible by 119 .

Solution by Brian Bradie, Christopher Newport University, Newport News, VA.
(1) Note

$$
A(x)-B(x)=2 x^{3}+9 x^{2}-9 x+2=(2 x-1)\left(x^{2}+5 x-2\right)
$$

and

$$
D(x)-C(x)=8 x^{3}-6 x^{2}+3 x-1=(2 x-1)\left(4 x^{2}-x+1\right) .
$$

Therefore $A(x)-B(x)-C(x)+D(x)$ is divisible by $2 x-1$. For any natural number $n>1,[A(x)]^{n}-[B(x)]^{n}$ is divisible by $A(x)-B(x)$ and $-[C(x)]^{n}+[D(x)]^{n}$ is divisible by $D(x)-C(x)$ so

$$
f_{n}(x)=[A(x)]^{n}-[B(x)]^{n}-[C(x)]^{n}+[D(x)]^{n}
$$

is divisible by $2 x-1$ for any natural number n. Next

$$
A(x)-C(x)=3 x^{3}-4 x^{2}-8 x-1=(x+1)\left(3 x^{2}-7 x-1\right)
$$

and

$$
D(x)-B(x)=7 x^{3}+7 x^{2}+2 x+2=(x+1)\left(7 x^{2}+2\right) .
$$

Therefore $A(x)-B(x)-C(x)+D(x)$ is divisible by $x+1$. For any natural number $n>1,[A(x)]^{n}-[C(x)]^{n}$ is divisible by $A(x)-C(x)$ and $-[B(x)]^{n}+[D(x)]^{n}$ is divisible by $D(x)-B(x)$ so

$$
f_{n}(x)=[A x]^{n}-[B(x)]^{n}-[C(x)]^{n}+[D(x)]^{n}
$$

is divisible by $g(x)=(2 x-1)(x+1)$ for any natural number n.
(2) Substitute $x=-8$ into the result from part (1). Because $A(-8)=-292$, $B(-8)=82, C(-8)=1437, D(-8)=-3068$, and $g(-8)=119$, it follows that $\alpha_{n}=(-292)^{n}-82^{n}-1437^{n}+(-3068)^{n}$ is divisible by 119 for any n.
(3) Because $65=-292+3(119), 9=1437-12(119)$ and $502=-3068+30(119)$, it follows that $65^{n} \equiv(-292)^{n}(\bmod 119), 9^{n} \equiv 1437^{n}(\bmod 119)$, and $502^{n} \equiv(-3068)^{n}(\bmod$ 119). Therefore, $\beta_{n}=65^{n}-82^{n}-9^{n}+502^{n}$ is divisible by 119 for any n.

Also solved by Albert Stadler, Herrliberg, Switzerland; Hyunbin Yoo, South Korea; and the proposer.

Problem 895. Proposed by Vasile Mircea Popa, Lucian Blaga University, Sibiu, Romania.
Calculate the following integral:

$$
\int_{0}^{\infty} \frac{\sqrt{x} \ln x}{x^{4}+x^{2}+1} d x .
$$

Solution by the proposer.
Let us denote $I=\int_{0}^{\infty} \frac{\sqrt{x} \ln x}{x^{4}+x^{2}+1} d x, A=\int_{0}^{1} \frac{\sqrt{x} \ln x}{x^{4}+x^{2}+1} d x$, and $B=\int_{1}^{\infty} \frac{\sqrt{x} \ln x}{x^{4}+x^{2}+1} d x$. We consider
the integral A. We make the variable change $x^{2}=y ; x=\sqrt{y}$. We have successively:

$$
\begin{aligned}
A & =\frac{1}{4} \int_{0}^{1} \frac{(1-y) y^{-1 / 4} \ln y}{1-y^{3}} d y \\
& =\frac{1}{4}\left(\int_{0}^{1} \frac{y^{-1 / 4} \ln y}{1-y^{3}} d y-\int_{0}^{1} \frac{y^{3 / 4} \ln y}{1-y^{3}} d y\right) \\
& =\frac{1}{4}\left(\int_{0}^{1} \sum_{n=0}^{\infty} y^{3 n-1 / 4} \ln y d y-\int_{0}^{1} \sum_{n=0}^{\infty} y^{3 n+3 / 4} \ln y d y\right) \\
& =\frac{1}{4} \sum_{n=0}^{\infty}\left(\int_{0}^{1} y^{3 n-1 / 4} \ln y d y-\int_{0}^{1} y^{3 n+3 / 4} \ln y d y\right) .
\end{aligned}
$$

We will now use the following relationship: $\int_{0}^{1} x^{a} \ln x d x=-\frac{1}{(a+1)^{2}}$ where $a \geq 0$. We obtain:

$$
A=\frac{1}{4} \sum_{n=0}^{\infty}\left[\frac{1}{\left(3 n+\frac{7}{4}\right)^{2}}-\frac{1}{\left(3 n+\frac{3}{4}\right)^{2}}\right]=\frac{1}{4} \sum_{n=0}^{\infty}\left[\frac{\frac{1}{9}}{\left(n+\frac{7}{12}\right)^{2}}-\frac{\frac{1}{9}}{\left(n+\frac{3}{12}\right)^{2}}\right] .
$$

We now use the following relationship: $\Psi_{1}(x)=\sum_{n=0}^{\infty} \frac{1}{(x+n)^{2}}$ where $\Psi_{1}(x)$ is the trigamma function. We obtain the value of the integral A :

$$
A=\frac{1}{36}\left[\Psi_{1}\left(\frac{7}{12}\right)-\Psi_{1}\left(\frac{3}{12}\right)\right] .
$$

We consider the integral B. We make the variable change $x=\frac{1}{y} ; y=\frac{1}{x}$. We obtain: $B=-\int_{0}^{1} \frac{y \sqrt{y} \ln y}{y^{4}+y^{2}+1} d y$. By proceeding similarly to the integral A, we obtain:

$$
B=\frac{1}{36}\left[\Psi_{1}\left(\frac{5}{12}\right)-\Psi_{1}\left(\frac{9}{12}\right)\right] .
$$

Result:

$$
I=A+B=\frac{1}{36}\left[\Psi_{1}\left(\frac{5}{12}\right)+\Psi_{1}\left(\frac{7}{12}\right)-\Psi_{1}\left(\frac{1}{4}\right)-\Psi_{1}\left(\frac{3}{4}\right)\right] .
$$

We use the reflection formula: $\Psi_{1}(x)+\Psi_{1}(1-x)=\frac{\pi^{2}}{\sin ^{2}(\pi x)}$ which gives $\Psi_{1}\left(\frac{5}{12}\right)+$ $\Psi_{1}\left(\frac{7}{12}\right)=4 \pi^{2}(2-\sqrt{3})$. The following special values are known: $\Psi_{1}\left(\frac{1}{4}\right)=\pi^{2}+$ $8 G ; \Psi_{1}\left(\frac{3}{4}\right)=\pi^{2}-8 G$ where G is Catalan's constant. Finally:

$$
I=\frac{1}{18} \pi^{2}(3-2 \sqrt{3}) .
$$

Also solved by Henry Ricardo, Westchester Area Math Circle, New York; and Albert Stadler, Herrliberg, Switzerland.

Problem 896. Proposed by D.M. Bătinetu-Giurgiu, "Matei Basarab" National College, Bucharest, Romania and Neculai Stanciu, "George Emil Palade" School, Buzău, Romania.
If $a, b, c, d, x_{i}, y_{i}>0$, for all $i=1, \ldots, m$ and $x_{m+i}=x_{i}$ with $m \geq 2$, prove that

$$
\sum_{k=1}^{n}\left(\sum_{i=1}^{m} \frac{\left(a x_{i}+b x_{i+1}\right)^{2}}{c x_{i+2}+d y_{k}}\right) \geq \frac{(a+b)^{2} n^{2} X_{m}^{2}}{c n X_{m}+d m Y_{n}}
$$

where $X_{m}=\sum_{i=1}^{m} x_{i}$ and $Y_{n}=\sum_{k=1}^{n} y_{k}$.
Solution by Albert Stadler, Herrliberg, Switzerland.
By the Cauchy-Schwarz inequality,

$$
\sum_{i=1}^{m} \frac{\left(a x_{i}+b x_{i+1}\right)^{2}}{c x_{i+2}+d y_{k}} \sum_{i=1}^{m}\left(c x_{i+2}+d y_{k}\right) \geq\left(\sum_{i=1}^{m}\left(a x_{i}+b x_{i+1}\right)\right)^{2}
$$

hence

$$
\sum_{i=1}^{m} \frac{\left(a x_{i}+b x_{i+1}\right)^{2}}{c x_{i+2}+d y_{k}} \geq \frac{(a+b)^{2} X_{m}^{2}}{c X_{m}+d m y_{k}} .
$$

The function $y \rightarrow \frac{u}{v+w y}$ with $u, v, w>0$ is convex in $\{y \mid y \geq 0\}$. So, by Jensen's inequality,

$$
\frac{1}{n} \sum_{k=1}^{n} \frac{(a+b)^{2} X_{m}^{2}}{c X_{m}+d m y_{k}} \geq \frac{(a+b)^{2} X_{m}^{2}}{c X_{m}+d m \frac{1}{n} \sum_{k=1}^{n} y_{k}}=\frac{(a+b)^{2} n X_{m}^{2}}{c n X_{m}+d m Y_{n}}
$$

Hence,

$$
\sum_{k=1}^{n}\left(\sum_{i=1}^{m} \frac{\left(a x_{i}+b x_{i+1}\right)^{2}}{c x_{i+2}+d y_{k}}\right) \geq \sum_{k=1}^{n} \frac{(a+b)^{2} X_{m}^{2}}{c X_{m}+d m y_{k}} \geq \frac{(a+b)^{2} n^{2} X_{m}^{2}}{c n X_{m}+d m Y_{n}} .
$$

Also solved by Henry Ricardo, Westchester Area Math Circle, New York; Daniel Vacaru, "Maria Teiuleanu" National Economic College, Piteşti, Romania; and the proposer.

Problem 897. Proposed by Toyesh Prakash Sharma (student), Agra College, Agra, India.
With F_{n} and L_{n} being the Fibonacci and Lucas numbers, show that when $n>0$

$$
\frac{F_{n}{ }^{F_{n}}+F_{n+1} F_{n+1}+L_{n}^{L_{n}}+L_{n+1}{ }^{L_{n+1}}}{4} \geq\left(\frac{F_{n+3}}{2}\right)^{\frac{F_{n+3}}{2}} .
$$

Solution by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.
The inequality follows by Jensen's Inequality. Consider the function $f(x)=x^{x}$ defined for positive real numbers. Since $f(x)$ is convex, by Jensen's Inequality

$$
\begin{aligned}
\frac{F_{n}^{F_{n}}+F_{n+1} F_{n+1}+L_{n}^{L_{n}}+L_{n+1}^{L_{n+1}}}{4} & \geq\left(\frac{F_{n+2}+L_{n+2}}{4}\right)^{\frac{F_{n+2}+L_{n+2}}{4}} \\
& =\left(\frac{F_{n+3}}{2}\right)^{\frac{F_{n+3}}{2}}
\end{aligned}
$$

because $F_{n}+F_{n+1}=F_{n+2}, L_{n}+L_{n+1}=L_{n+2}, F_{n+2}+L_{n+2}=2 F_{n+3}$.
Also solved by Albert Stadler, Herrliberg, Switzerland; and the proposer.
Problem 898. Proposed by Florică Anastase, "Alexandru Odobescu" High School, Lehliu-Gară, Călăraşi, Romania.
Let $\left(b_{n}\right)$ be defined by $b_{n}=\frac{(n+1)^{2}}{\sqrt[n+1]{(n+1)!}}-\frac{n^{2}}{\sqrt[n]{n!}}$ (Bǎtineţu's sequence). Find

$$
L=\lim _{n \rightarrow \infty}\left(1+\frac{b_{n}}{n}\right)^{\frac{1}{n^{n-2}} \sum_{k=0}^{n} \frac{n^{k}}{k+1}\left(\frac{n}{k}\right)} .
$$

Solution by Henry Ricardo, Westchester Area Math Circle, New York.
Page 22 of the Spring 2014 issue of The Pentagon contains a proof that $b_{n} \rightarrow e$ as $n \rightarrow \infty$. Setting $f(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}=(1+x)^{n}$, it follows that $\sum_{k=0}^{n} \frac{n^{k}}{k+1}\binom{n}{k}=$ $\frac{1}{n} \int_{0}^{n} f(x) d x=\frac{(1+n)^{n+1}-1}{n(n+1)}$. Then

$$
x_{n}=\frac{1}{n^{n-1}} \sum_{k=0}^{n} \frac{n^{k}}{k+1}\binom{n}{k}=\frac{(1+n)^{n+1}-1}{n^{n}(n+1)}=\left(1+\frac{1}{n}\right)^{n}-\frac{1}{n^{n}(n+1)} \rightarrow e
$$

as $n \rightarrow \infty$. Finally, using the known result that $z_{n} \rightarrow z$ implies $\left(1+\frac{z_{n}}{n}\right)^{n} \rightarrow e^{z}$, we have

$$
\begin{aligned}
L=\lim _{n \rightarrow \infty}\left(1+\frac{b_{n}}{n}\right)^{\frac{1}{n^{n-2}} \sum_{k=0}^{n} \frac{n^{k}}{k+1}}\binom{n}{k} & =\lim _{n \rightarrow \infty}\left(1+\frac{b_{n}}{n}\right)^{n x_{n}} \\
& =\lim _{n \rightarrow \infty}\left[\left(1+\frac{b_{n}}{n}\right)^{n}\right]^{x_{n}} \\
& =\left[e^{e}\right]^{e}=e^{e^{2}} .
\end{aligned}
$$

Also solved by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain; Albert Stadler, Herrliberg, Switzerland; Daniel Vacaru, "Maria Teiuleanu" National Economic College, Pitessti, Romania; and the proposer.

Problem 899. Proposed by Mihaly Bencze, Brasov, Romania and Neculai Stanciu, "George Emil Palade" School, Buzău, Romania.
Solve in the set of real numbers the following equation:

$$
8 x^{3}+17 x+\frac{4}{x}+\log _{2}^{2}\left(x+\frac{4}{x}\right)=x^{4}+20 x^{2}+4+2^{-x^{2}+4 x-2} .
$$

Solution by the proposers.
Rewritten the equation to solve is:

$$
\log _{2}^{2}\left(x+\frac{4}{x}\right)+x+\frac{4}{x}=\left(-x^{2}+4 x-2\right)^{2}+2^{-x^{2}+4 x-2} .
$$

Using the injectivity of the function $f(t)=2^{t}+t^{2}, t>0$, we obtain

$$
\log _{2}\left(x+\frac{4}{x}\right)=-x^{2}+4 x-2 .
$$

Since we have $x+\frac{4}{x} \geq 4$ and $-x^{2}+4 x-2 \leq 2 \Leftrightarrow(x-2)^{2} \geq 0$, we have only one solution, $x=2$.

Also solved by Albert Stadler, Herrliberg, Switzerland.
Problem 900. Proposed by Neculai Stanciu, "George Emil Palade" School, Buzău, Romania.
Prove that in any triangle $A B C$, the following inequality holds:

$$
\frac{2 r}{R}+\sum \frac{a^{2}}{b c} \geq 4
$$

Solution by Kee-Wai Lau, Hong Kong, China.
Let s be the semiperimeter of the triangle. It is well known that $A B C=4 s R r$ and $\sum a^{3}=2 s\left(s^{2}-6 R r-3 r^{2}\right)$. It is also known that $R \geq 2 r$ (entry 5.1 on page 48 of [1]) and $s^{2} \geq 16 R r-5 r^{2}$ (entry 5.8 on page 50 of [1]). Hence

$$
\frac{2 r}{R}+\sum \frac{a^{2}}{b c}=\frac{s^{2}-6 R r+r^{2}}{2 R r}=\frac{\left(s^{2}-16 R r+5 r^{2}\right)+2 r(R-2 r)}{2 R r}+4 \geqslant 4 .
$$

Reference: [1] O.Bottema, R.R, Janić, D.S. Mitrinović, P.M. Vasić, Geometric Inequalities, Groningen, 1969.

Also solved by Albert Stadler, Herrliberg, Switzerland; Daniel Vacaru, "Maria Teiuleanu" National Economic College, Piteşti, Romania; and the proposer.

Kappa Mu Epsilon News

Edited by Mark Hughes, Historian
Updated information as of March 2023

News of chapter activities and other noteworthy KME events should be sent to

Mark Hughes, KME Historian
Frostburg State University
Department of Mathematics
Frostburg, MD 21532
or to
mhughes@frostburg.edu

KAPPA MU EPSILON
Installation Report
California Theta, William Jessup University
Rocklin, California

The installation of the California Theta Chapter of Kappa Mu Epsilon was held in the Commons on William Jessup University campus on Monday, October 17, 2022, at three o'clock in the afternoon.

KME National President Don Tosh was the installing officer. Faculty member Michelle Clark, already a member of KME, was the main driving force in establishing this chapter of KME and will serve as the chapter's Faculty Sponsor. She served as the conductor during the ceremony. Faculty member Bradley Wagner was initiated during the ceremony and will serve as the Corresponding Secretary. During the ceremony, new members were initiated and officers were installed. Don Tosh declared the organization to be the California Theta Chapter of Kappa Mu Epsilon and presented the chapter's charter and crest to the Corresponding Secretary.

The student charter members of California Theta are: Michael Beishline, HannahJeanne Bethards, Stephen Chau, Mikayla Erickson, Lizzie Salvato, Samuel Smith, and Rachel Weaver. Each initiate was invited to sign the California Theta Chapter Roll and was presented with a membership certificate and a KME pin.

The officers of California Theta installed during the ceremony are: Michelle Clark (Faculty Sponsor), Bradley Wagner (Corresponding Secretary), Lizzie Salvato (President), Stephen Chau (Vice-President), Mikayla Erickson (Secretary), and Samuel Smith (Treasurer). Each officer was charged with the responsibilities of
his/her new office, and each chose to accept those responsibilities.
Dr. John Jackson, William Jessup University President, concluded the ceremony with some closing remarks.

A time of congratulations and fellowship with refreshments was enjoyed by all following the installation ceremony.

California Theta
Back row: Bradley Wagner, Samuel Smith, Stephen Chau, Michael Beishline, Hannah-Jeanne Bethards, Don Tosh
Front row: Michelle Clark, Mikayla Erickson, Lizzie Salvato, Rachel Weaver

Chapter News

AL Gamma - University of Montevallo

Corresponding Secretary and Faculty Sponsor - Dr. George Lytle; 717 Total Members
The Alabama Gamma chapter will hold its annual initiation ceremony in the spring semester. We're still in the process of acquiring officers.

AL Theta - Jacksonville State University (Spring 2022)

Chapter President - Hannah Davis; 324 Total Members; 21 New Members
Other Spring 2022 Officers: Bronte Ray, Vice President; Dakota Heathcock, Secretary; Evan Parton, Treasurer; Dr. David Dempsey, Corresponding Secretary; and Dr. Jason Cleveland, Faculty Sponsor.
The Alabama Theta chapter met at least monthly in person during Spring 2022 and replaced officers who graduated in December. At long last, we held an inperson initiation ceremony on April 8, 2022, for 21 new members. We had a great
road trip with 2 faculty and 3 students to the KME Southeastern Regional Convention on April 22-23.

AL Theta - Jacksonville State University

Chapter President - Dakota Heathcock; 324 Total Members
Other Fall 2022 Officers: Nicholas Covalsen, Vice President; Adam Parton, Secretary; Suneet Sharma, Treasurer; Dr. David Dempsey, Corresponding Secretary; and Dr. Jason Cleveland, Faculty Sponsor.
The Alabama Theta chapter met at least monthly in person during Fall 2022 and elected new officers. One highlight was an outing for bowling and mini-golf (studying the varied trajectories of both large and small spheres!). We look forward to a spring initiation ceremony and travel to the 2023 KME National Convention.

CA Theta - William Jessup University

Chapter President - Elizabeth Salvato; 9 Total Members; 8 New Members
Other Fall 2022 Officers: Stephen Chau, Vice President; Mikayla Erickson, Secretary; Samuel Smith, Treasurer; Bradley Wagner, Corresponding Secretary; and Michelle Clark, Faculty Sponsor.
This past semester our chapter, California Theta, began its existence. In a ceremony on Oct 17, 2022, KME President Dr. Don Tosh came to Jessup to install the California Theta chapter, with 7 charter student members - Michael Beishline, Hannah-Jeanne Bethards, Stephen Chau, Mikayla Erickson, Lizzie Salvato, Samuel Smith, and Rachel Weaver. The chapter was sponsored by Faculty Member Michelle Clark, who herself was a Kappa Mu Epsilon student member as an undergraduate. Dr. Tosh also installed faculty member Bradley Wagner as the Corresponding Secretary.

On Nov 17, 2022, we held a game night open to the University community, as our first event. The event was well-attended, with over 15 attendees participating in math-themed games, ice-breakers and snacks. The game night was a great opportunity for us to promote the interest of mathematics among undergraduate students and to connect with fellow math enthusiasts.

We would like to express our gratitude to Dr. Don Tosh, faculty members Michelle Clark and Bradley Wagner, and all the members who supported us during the semester. We are excited for all the opportunities and challenges that the next semester brings and looking forward to a productive year.

CT Beta - Eastern Connecticut State University

Corresponding Secretary and Faculty Sponsor - Dr. Mehdi Khorami; 547 Total Members

CT Gamma - Central Connecticut State University

Corresponding Secretary - Gurbakhshash Singh; 78 Total Members
Other Fall 2022 Officer: Nelson Castaneda, Faculty Sponsor.

GA Zeta - Georgia Gwinnett College

Chapter President - Hope Doherty; 66 Total Members
Other Fall 2022 Officers: Gabriel Amat, Vice President; William Watts, Secretary; Matt Elenteny, Treasurer; Dr. Jamye Curry Savage, Corresponding Secretary and Faculty Sponsor; and Dr. Livy Uko, Faculty Sponsor.
The members of the GA Zeta Chapter have been working on new ideas/events to incorporate social events, such as math-related games/activities and study sessions with chapter meetings.

GA Theta - College of Coastal Georgia

Chapter President - Marianela Landi; 18 Total Members; 6 New Members
Other Fall 2022 Officers: Monique Deschenes, Vice President; Darius Hammond, Secretary; Kaelyn Tyler, Treasurer; Aaron Yeager, Corresponding Secretary and Faculty Sponsor.
In the Fall 2022 semester we initiated six new members into the Georgia Theta Chapter of KME. Three of the members in the chapter, Garrett Moseley, Darius Hammond, and Madison Ellis, graduated from CCGA in the Fall. Garrett received a Bachelors in Mathematics and is starting graduate school in the spring. Darius and Madison were the first CCGA students to graduate with a Bachelors in Data Science. Darius is starting graduate school in the spring and Madison is starting a job in industry. We held three meetings over the fall semester.

IA Alpha - University of Northern Iowa

Chapter President - Jacob Metzen; 1117 Total Members; 5 New Members Other Fall 2022 Officers: Grace Croat, Vice President; Emily Moore, Secretary; Lydia Butters, Treasurer; and Dr. Mark D. Ecker, Corresponding Secretary and Faculty Sponsor.
Eleven student members of KME and three faculty met face-to-face on Wednesday, December 7, 2022 in Wright Hall for the John Cross Fall KME Banquet. Student member Jacob Metzen presented his senior seminar project entitled "2022 Fantasy Football Quarterback Prices" and five new student members were initiated at the banquet.

IA Gamma - Morningside University

Chapter President - Taylor Pierce; 442 Total Members
Other Fall 2022 Officers: Taylor Pierce, Vice President; Isaiah Hinners, Secretary and Treasurer; and Dr. Eric Canning, Corresponding Secretary and Faculty Sponsor.
There were no new initiates in Fall 2022, as we are having an initiation ceremony this Spring. Our KME math club met 7 different evenings during the Fall semester. At these meetings, 3 times there was a guest speaker, we watched the movie October Sky, had a craft night, and a couple of game and pizza nights.

IL Zeta - Dominican University

Corresponding Secretary and Faculty Sponsor - Mihaela Blanariu; 458 Total Members
We have not initiated any new members in Fall 2022.

IN Beta - Butler University

Chapter President - Kelly Ryan; 444 Total Members
Other Fall 2022 Officers: Nicole Dickson, Vice President; Aaron Marshall, Secretary; Rasitha Jayasekare, Corresponding Secretary and Faculty Sponsor.
Our main fall activity included election of new officers to the chapter. We are hoping to add more activities in the upcoming year.

KS Beta - Emporia State University

Chapter President - Joey Feuerborn; 1539 Total Members; 7 New Members Other Fall 2022 Officers: Jeanna Hill, Vice President; Austin Crabtree, Secretary; Kaley Dembowski, Treasurer; Tom Mahoney, Corresponding Secretary; and Brian Hollenbeck, Faculty Sponsor.
The Kansas Beta chapter enjoyed a very social semester. After the February meeting, we had a bowling night. In March, we initiated seven new members at a Pizza Ranch. In April, students hosted an "art night" of acrylic painting. And in May, we gathered for a Color Run.

KS Delta - Washburn University

Chapter President - Ajar Basnet; 834 Total Members
Other Fall 2022 Officers: Sanskar Neupane, Vice President; Graci Postma, Secretary; Sarah Johnson, Treasurer; and Sarah Cook, Corresponding Secretary and Faculty Sponsor.

MD Delta - Frostburg State University

Chapter President - Adam Sullivan; 543 Total Members
Other Fall 2022 Officers: Kaitlyn Henderson-Adams, Vice President; Faith James Sergent, Secretary; Mark Hughes, Corresponding Secretary and Faculty Sponsor; and Frank Barnet, Faculty Sponsor.
We had three meetings during the semester where we enjoyed puzzles, math videos, and pizza. We also represented the Mathematics Department at our university's annual Majors Fair.

MI Beta - Central Michigan University

Chapter President - Kelsey Knoblock; 1761 Total Members
Other Fall 2022 Officers: Maleia Thompson, Vice President; Jenna Wazny, Secretary; Jeremy Proksch, Treasurer; and Dmitry Zakharov, Corresponding Secretary and Faculty Sponsor.
We had a Bingo and a Jeopardy night. These games have members solving problems from many different math classes to win prizes. We also did a math scav-
enger hunt, which had us working in teams to solve harder problems quickly. One of the favorites for last semester was Dr. Gilsdorf's talk on cultural mathematics.

MO Beta - University of Central Missouri

Chapter President - Haleigh Clark; 1553 Total Members; 4 New Members
Other Fall 2022 Officers: Page Van Barclum, Vice President; Luke Elliott, Secretary and Treasurer; Steven Shattuck, Corresponding Secretary and Faculty Sponsor; and Blaise Heider, Faculty Sponsor.
Missouri Beta had monthly meetings for Fall 2022. At our first meeting, students with REUs and internships shared their experiences and discussed how students could apply for these opportunities. At our second meeting, students played math games. At our third meeting, we had our initiation. At our fourth meeting, we had a pizza party, discussed the national convention and played math games.

MO Theta - Evangel University

Chapter President - Peter Russell; 298 Total Members
Other Fall 2022 Officers: Jack Lin, Vice President; and Dianne Twigger, Corresponding Secretary and Faculty Sponsor.
Missouri Theta held regular, in person meetings for the fall 2022 term. Two KME students, Peter Russell and Hayden Pyle, were invited to present their research at a joint KME meeting with Missouri Alpha at Missouri State University in November. Student engagement appears to be back to pre-Covid levels. Faculty and students are planning on attending the national conference this spring.

MO Iota - Missouri Southern State University (Spring and Fall 2022)

Chapter President - Ashley Stokes; 439 Total Members; 5 New Members
Other Spring 2022 and Fall 2022 Officer: Dr. Amila Appuhamy, Treasurer, Corresponding Secretary and Faculty Sponsor.
We held our initiation ceremony on April 12, 2022, followed by a dinner. A total of five new members were initiated and the total number of participants in the event was twenty.

MO Kappa - Drury University
Chapter President - Julian Fisher; 330 Total Members
Other Fall 2022 Officers: Levi Graham, Vice President; Kelsi Gelle, Secretary and Corresponding Secretary; Brooke Weider, Treasurer; and Colin T. Baker, Faculty Sponsor.
We have begun a weekly meeting to discuss any and all questions that arise from our daily lives and how to apply math(s) to them.

MS Alpha - Mississippi University for Women

Chapter President - Autumn Bigham; 839 Total Members; 2 New Members Other Fall 2022 Officers: Annie Sparks, Vice President; Dr. Joshua Hanes, Secretary and Treasurer; Dr. Joshua Hanes, Corresponding Secretary and Faculty

Sponsor.
In the Fall semester we initiated two new members, Autumn Bigham and Annie Sparks.

NC Zeta - Catawba College

Chapter President - Olek Malul; 92 Total Members; 4 New Members
Other Fall 2022 Officers: Jaxon Wheeler, Vice President; Leon Heiermann, Treasurer; and Dr. Katherine Baker, Corresponding Secretary and Faculty Sponsor.

NE Beta - University of Nebraska Kearney

Corresponding Secretary and Faculty Sponsor - Dr. Katherine Kime; 937 Total Members
We are planning to send out notices for an initiation this spring. KME student member Brooke Carlson is here, finishing her majors in Math and Physics, and is applying to graduate schools in mechanical engineering. She is a player on the women's basketball team and has had an extra year due to the pandemic. Brooke has been a great student and athlete. Dr. Kaye Sorensen, who was an undergraduate at UNK (1980s or earlier) and is a member of KME from that time, has been a senior lecturer in our department and is retiring this spring. In the last few years she has pioneered the position of College of Arts and Sciences Math Specialist, which focusses on students who are retaking General Studies courses. She will be missed by the department.

OK Alpha - Northeastern State University

Chapter President - Cade Clickenbeard; 1875 Total Members; 3 New Members Other Fall 2022 Officers: Parker Childers, Vice President; Mark Buckles, Secretary, Treasurer, Corresponding Secretary, and Faculty Sponsor.
We had an initiation ceremony November 16, 2022 at both our Tahlequah campus and Broken Arrow campus.

PA Theta - Susquehanna University

Corresponding Secretary and Faculty Sponsor - Alathea Jensen; 615 Total Members

PA Iota - Shippensburg University

Chapter President - Luis Melara; 765 Total Members; 4 New Members
Other Fall 2022 Officers: Grant Innerst, Vice President; Dr. Paul Taylor, Corresponding Secretary, and Dr. Ji Young Choi, Faculty Sponsor.
Our activity roster of members was wiped out by student apathy during the ovid19 pandemic. We're trying to rebuild now.

PA Mu - Saint Francis University

Chapter President - Michael Gallagher; 510 Total Members
Other Fall 2022 Officers: Morgan Kiesewelter, Vice President; Regina Edgington,

Secretary; Jared Ohler, Treasurer; Brendon LaBuz, Corresponding Secretary and Faculty Sponsor.
On Wednesday October 26 the Pennsylvania My chapter welcomed KME National Historian Dr. Mark Hughes for a presentation. Dr. Hughes presented on some historical applications of Cavalieri's Principle. In the seventeenth century, Bonaventura Cavalieri developed a way to compute areas and volumes that is reminiscent of modern integral techniques. What makes it so impressive is that he developed these techniques decades before Newton and Leibniz published their treatment of calculus. Dr. Hughes explained how Cavalieri's principle can be used to compute the area under the cycloid and the volume of Gabriel's horn, two geometric figures that are interesting historically and also of interest in modern mathematics.

PA Pi - Slippery Rock University

Chapter President - Spencer Kahley; 145 Total Members
Other Fall 2022 Officers: Boris Brimkov, Corresponding Secretary; and Amanda Goodrick, Faculty Sponsor.
We did not have any activities in Fall 2022 but we will be sending out invitations in the next couple months to start planning the next initiation ceremony.

PA Rho - Thiel College

Chapter President - Hunter Gray; 145 Total Members
Other Fall 2022 Officers: Devin Bossard, Vice President; Cassy Brown, Secretary; Brandon Forrest, Treasurer; Dr. Russell Richins, Corresponding Secretary; and Dr. Jie Wu, Faculty Sponsor.
This fall we had several chapter meetings and our usual Challenge 24 competition as a fundraiser for the local food bank. Over 40 students participated.

PA Sigma - Lycoming College

Chapter President - Jordan Kinley; 156 Total Members
Other Fall 2022 Officers: Haley Seebold, Vice President; Laurel Stoppard, Secretary; Derek Lewis, Treasurer; Dr. Andrew Brandon, Corresponding Secretary and Faculty Sponsor.

RI Beta - Bryant University

Corresponding Secretary - Prof. John Quinn; 200 Total Members
Other Fall 2022 Officer: Prof. Gao Niu, Faculty Sponsor.
We have our KME initiation ceremony every spring semester and we are planning to do the same for spring 2023. We are also planning to have two students attend the KME 44th Biennial Convention to present a paper on building a recommendation system for songs for Spotify using K-Nearest Neighbors clustering method.

TX Lambda - Trinity University
Corresponding Secretary - Dr. Hoa Nguyen; 315 Total Members; 8 New Members

VA Beta - Radford University (Spring 2022)
Chapter President - Lauren Craddock; 594 Total Members; 6 New Members
Other Spring 2022 Officers: Abby Ramos Cortez, Vice President; Charlene Galvez, Secretary; Adam Downs, Treasurer; Eric P. Choate, Corresponding Secretary and Faculty Sponsor.

WV Alpha - Bethany College

Chapter President - Cullen J. Wise; 198 Total Members
Other Fall 2022 Officers: Lauren E. Starr, Vice President; Patrick M. Gleason, Secretary; Ian A. Nelson Treasurer; and Dr. Adam C. Fletcher, Corresponding Secretary and Faculty Sponsor.
West Virginia Alpha, like many other chapters across the country, continues to adjust to push for a return to in-person conferences and professional gatherings. West Virginia Alpha chapter and our local Mathematics and Computer Science Club continue to attend meetings virtually and host small chess and gaming tournaments on campus. They are busily planning the in-person return of the annual Math/Science Day Competition for local high school students. The chapter eagerly awaits the next in-person KME meetings in the spring.

Active Chapters of Kappa Mu Epsilon

Listed by date of installation

Chapter

OK Alpha
A Alpha
KS Alpha
MO Alpha
MS Alpha
NE Alpha
KE Alpha
KS Beta
AL Alpha
NM Alph
IL Beta
AL Beta
AL Gamma
AL Gamma
OH Alpha
OH Alpha
MI Alpha
MO Beta
TX Alpha
KS Gamma
IA Beta
TN Alpha
MI Beta
NJ Beta
IL Delta
KS Delta
MO Gamma
TX Gamma
WI Alpha
OH Gamma
MO Epsilon
MS Gamma
IN Alpha
PA Alpha
IN Beta
KS Epsilon
PA Beta
VA Alpha
IN Gamma
CA Gamma
TN Beta
PA Gamma
VA Beta
NE Beta
NE Beta
IN Delta
OH Epsilon
MO Zeta
MO Zeta
NE Gamma
MD Alpha
CA Delta
PA Delta
PA Epsilon
AL Epsilon
PA Zeta
TN Gamma
IA Gamma
MD Beta
IL Zeta
SC Beta
PA Eta
PA Eta
NY Eta
MA Alph
MO Eta
L Eta
OH Zeta
PA Theta
PA Iota
MS Delta
MO Theta
PA Kappa
CO Beta
KY Alpha
TN Delta
NY Iota
SC Gamma
IA Delta
PA Lambda
OK Gamma

Location

Northeastern State University, Tahlequah
University of Northern Iowa, Cedar Falls
Pittsburg State University, Pittsburg
Missouri State University, Springfield
Mississippi University for Women, Columbus
Wayne State College, Wayne
Emporia State University, Emporia
Athens State University, Athens
University of New Mexico, Albuquerque
Eastern Illinois University, Charleston
University of North Alabama, Florence
University of Montevallo, Montevallo
Bowling Green State University, Bowling Green Albion College, Albion
University of Central Missouri, Warrensburg
Texas Tech University, Lubbock
Benedictine College, Atchison
Drake University, Des Moines
Tennessee Technological University, Cookeville
Central Michigan University, Mount Pleasant
Montclair State University, Upper Montclair
University of St. Francis, Joliet
Washburn University, Topeka
William Jewell College, Liberty
Texas Woman's University, Denton
Mount Mary College, Milwaukee
Baldwin-Wallace College, Berea
Central Methodist College, Fayette
University of Southern Mississippi, Hattiesburg
Manchester College, North Manchester
estminster College, New Wilmington
Butler University, Indianapolis
Fort Hays State University, Hays
LaSalle University, Philadelphia
Virginia State University, Petersburg Anderson University, Anderson
$\begin{array}{cr}\text { Anderson University, Anderson } & 5 \text { Apr } 1957 \\ \text { California Polytechnic State University, San Luis Obispo } & 23 \text { May } 1958\end{array}$
East Tennessee State University, Johnson City
Waynesburg College, Waynesburg
Raynesburg University, Radford
University of Nebraska-Kearney, Kearney
University of Evansville, Evansville Marietta College, Marietta
University of Missouri-Rolla, Rolla Chadron State College, Chadron
College of Notre Dame of Maryland, Baltimore
California State Polytechnic University, Pomona
Marywood University, Scranton
Kutztown University of Pennsylvania, Kutztown
Huntingdon College, Montgomery
Indiana University of Pennsylvania, Indiana Union University, Jackson
Morningside College, Sioux City
McDaniel College, Westminster
South Carolina State College, Orangeburg
Grove City College, Grove City
Niagara University, Niagara University Assumption College, Worcester
Truman State University, Kirksville
Western Illinois University, Macomb
Muskingum College, New Concord
Shippensburg University of Pennsylvania, Shippensburg
William Carey College, Hattiesburg
Evangel University, Springfield
Holy Family College, Philadelphia
Colorado School of Mines, Golden
Eastern Kentucky University, Richmond
Wagner College, Staten Island
Winthrop University, Rock Hill
Wartburg College, Waverly
Bloomsburg University of Pennsylvania, Bloomsburg
Southwestern Oklahoma State University, Weatherford

Installation Date

18 Apr 1931
27 May 1931
30 Jan 1932
20 May 1932
30 May 1932
17 Jan 1933
17 Jan 1933
12 May 1934
12 May 1934
5 Mar 1935
5 Mar 1935
28 Mar 1935
28 Mar 1935
11 Apr 1935
20 May 1935
24 Apr 1937
24 Apr 1937
29 May 1937
10 Jun 1938
10 May 1940
26 May 1940
27 May 1940
5 Jun 1941
25 Apr 1942
21 Apr 1944
21 May 1945
29 Mar 1947
7 May 1947
7 May 1947
7 May 1947
7 May 1947
11 May 1947
11 May 1947
6 Jun 1947
18 May 1949
18 May 1949
21 May 1949
16 May 1950
16 May 1950
17 May 1950
17 May 1950
16 May 1952
6 Dec 1952
19 May 1953
29 Jan 1955

23 May 1959
12 Nov 1959
12 Nov 1959
11 Dec 1959
27 May 1960
27 May 1960
29 Oct 1960
19 May 1961
19 May 1962
22 May 1963
22 May 1963
5 Nov 1964
5 Nov 1964
8 Nov 1964
8 Nov 1964
3 Apr 1965
15 Apr 1965
6 May 1965
24 May 1965
25 May 1965
30 May 1965
26 Feb 1967
6 May 1967
13 May 1967
18 May 1968
18 May 1968
19 Nov 1968
7 Dec 1968
9 May 1969
9 May 1969
17 May 1969
17 May 1969
26 May 1969
26 May 1969
1 Nov 1969
1 Nov 1969
17 Dec 1970
17 Dec 1970
12 Jan 1971
23 Jan 1971
4 Mar 1971
27 Mar 1971
15 May 1971
19 May 1971
3 Nov 1972
6 Apr 1973
6 Apr 1973
1 May 1973
1 May 1973

Pace University, New York	24 Apr 1974
Hardin-Simmons University, Abilene	3 May 1975
Missouri Southern State University, Joplin	8 May 1975
State University of West Georgia, Carrollton	21 May 1975
Bethany College, Bethany	21 May 1975
Florida Southern College, Lakeland	31 Oct 1976
University of Wisconsin-Eau Claire, Eau Claire	4 Feb 1978
Frostburg State University, Frostburg	17 Sep 1978
Benedictine University, Lisle	18 May 1979
St. Francis University, Loretto	14 Sep 1979
Birmingham-Southern College, Birmingham	18 Feb 1981
Eastern Connecticut State University, Willimantic	2 May 1981
C.W. Post Campus of Long Island University, Brookville	2 May 1983
Drury University, Springfield	30 Nov 1984
Fort Lewis College, Durango	29 Mar 1985
Nebraska Wesleyan University, Lincoln	18 Apr 1986
McMurry University, Abilene	25 Apr 1987
Ursinus College, Collegeville	28 Apr 1987
Liberty University, Lynchburg	30 Apr 1987
St. Thomas Aquinas College, Sparkill	14 May 1987
Ohio Northern University, Ada	15 Dec 1987
Oral Roberts University, Tulsa	10 Apr 1990
Mesa State College, Grand Junction	27 Apr 1990
Cedar Crest College, Allentown	30 Oct 1990
Missouri Western State College, St. Joseph	10 Feb 1991
University of Mary Hardin-Baylor, Belton	21 Feb 1991
Erskine College, Due West	28 Apr 1991
Hartwick College, Oneonta	14 May 1992
Keene State College, Keene	16 Feb 1993
Northwestern State University, Natchitoches	24 Mar 1993
Cumberland College, Williamsburg	3 May 1993
Delta State University, Cleveland	19 Nov 1994
University of Pittsburgh at Johnstown, Johnstown	10 Apr 1997
Hillsdale College, Hillsdale	30 Apr 1997
Kettering University, Flint	28 Mar 1998
Harris-Stowe College, St. Louis	25 Apr 1998
Georgia College and State University, Milledgeville	25 Apr 1998
University of West Alabama, Livingston	4 May 1998
Slippery Rock University, Slippery Rock	19 Apr 1999
Trinity University, San Antonio	22 Nov 1999
Piedmont College, Demorest	7 Apr 2000
University of Louisiana, Monroe	11 Feb 2001
Berry College, Mount Berry	21 Apr 2001
Schreiner University, Kerrville	28 Apr 2001
California Baptist University, Riverside	21 Apr 2003
Thiel College, Greenville	13 Feb 2004
Marymount University, Arlington	26 Mar 2004
St. Joseph's College, Patchogue	1 May 2004
Lewis University, Romeoville	26 Feb 2005
Wheeling Jesuit University, Wheeling	11 Mar 2005
Francis Marion University, Florence	18 Mar 2005
Lycoming College, Williamsport	1 Apr 2005
Columbia College, Columbia	29 Apr 2005
Stevenson University, Stevenson	3 Dec 2005
Centenary College, Hackettstown	1 Dec 2006
Mount Saint Mary College, Newburgh	20 Mar 2007
Oklahoma Christian University, Oklahoma City	20 Apr 2007
Hawaii Pacific University, Waipahu	22 Oct 2007
North Carolina Wesleyan College, Rocky Mount	24 Mar 2008
Molloy College, Rockville Center	21 Apr 2009
Catawba College, Salisbury	17 Sep 2009
Roger Williams University, Bristol	13 Nov 2009
New Jersey City University, Jersey City	22 Feb 2010
Johnson C. Smith University, Charlotte	18 Mar 2010
Jacksonville State University, Jacksonville	29 Mar 2010
Wesleyan College, Macon	30 Mar 2010
Southeastern University, Lakeland	31 Mar 2010
Stonehill College, Easton	8 Apr 2011
Henderson State University, Arkadelphia	10 Oct 2011
DeSales University, Center Valley	29 Apr 2012
Lee University, Cleveland	5 Nov 2012
Bryant University, Smithfield	3 Apr 2013
Black Hills State University, Spearfish	20 Sept 2013
Embry-Riddle Aeronautical University, Daytona Beach	22 Apr 2014
Central College, Pella	30 Apr 2014
Fresno Pacific University, Fresno	24 Mar 2015
Capital University, Bexley	24 Apr 2015
Georgia Gwinnett College, Lawrenceville	28 Apr 2015
William Woods University, Fulton	17 Feb 2016
Aurora University, Aurora	3 May 2016
Atlanta Metropolitan University, Atlanta	1 Jan 2017
Central Connecticut University, New Britan	24 Mar 2017
Sterling College, Sterling	30 Nov 2017
College of Mount Saint Vincent, The Bronx	4 Apr 2018
Seton Hill University, Greensburg	5 May 2018

KY Gamma	Bellarmine University, Louisville	23 Apr 2019
MO Omicron	Rockhurst University, Kansas City	13 Nov 2020
AK Gamma	Harding University, Searcy	27 Apr 2021
GA Theta	College of Coastal Georgia, Brunswick	22 Oct 2021
CA Theta	William Jessup University, Rocklin	17 Oct 2022

[^0]: ${ }^{1}$ All of the authors were supported by National Science Foundation Grant DMS1950644 via the Mathematical Association of America for being in the National Research Experience for Undergraduates Program at the College of Coastal Georgia in summer 2021.

