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Abstract

Before computers, military tacticians and government agents had to rely on pencil-
and-paper methods to encrypt information. For modern agents that want to use
low-tech options in order to minimize their digital footprint, non-computerized
ciphers are an essential component of their toolbox. Consider a deck of cards.
There are 52! ≈ 2225.58 ways to mix a deck of cards. If each deck order is a key,
this means that there are 52!≈ 2225.58 different ways to encrypt a given message.
To create some perspective, most computer ciphers feature either 2128 or 2256 dif-
ferent ways of encrypting the same message. Hence, a cipher created from a
deck of cards has the potential to emulate the security of many computer ciphers.
The focus of this paper is the creation of a unique, secure playing card cipher:
VICCard. Its security is rooted in its combination of numerous cryptographic
principles, including a substitution checkerboard, columnar transpositions, lagged
Fibonacci generators, and junk letters. As evidenced by certain randomness tests,
VICCard has the potential to extensively randomize an English plaintext.
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1 Introduction

1.1 Cryptography’s Journey from Painting to PC
Cryptology is the science of safe, secure communication. It examines how

to transform a message (called the plaintext) into an encoded form (called the ci-
phertext). An effective cryptologist must be proficient in two tasks: cryptography
and cryptanalysis. Cryptography is the study of creating effective ciphers. Crypt-
analysis is the study of breaking these ciphers. Cryptography is “code writing”,
and cryptanalysis is “code breaking.” The creator of a secure cipher uses both
of these skills. He first uses cryptography to create his cipher, and he then uses
cryptanalysis to see whether his cipher is as secure as he thinks.

Egyptian hieroglyphics are one of the oldest instances of cryptography. For
example, the tomb of Khnumhotep II featured a myriad of pictures and symbols.
These pictographs told the story of the deceased with a beautiful visual display
[10]. By contrast, cryptography is more frequently used for less aesthetic pur-
poses: war and espionage.

Just as weapons of war have become more refined, cryptography has under-
gone careful attention and development. Humble ciphers such as Julius Caesar’s
cipher and the Vigenere cipher have given way to more advanced creations such
as Rasterschlüssel 44 and VIC. As the ciphers became more complicated, they
became more secure. However, they also became more impractical. As a result,
cryptography’s next step in its evolution was to enlist the help of machines. The
most compelling example of this is the German Enigma machine. In order to break
this cipher, the Allies enlisted cryptographers to fight fire with fire. To break the
Enigma cipher they built an even better machine: a computer. Computer ciphers
have now become the norm, encrypting everything from government secrets to
emails between friends.
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The advantage of computer ciphers is their ability to use formidable n-bit en-
cryption. A cipher with n-bit encryption uses a pool of 2n possible keys, meaning
that there are 2n possible ways of encrypting any given message. Typically, com-
puter ciphers use 128-bit or 256-bit encryption. This prevents the ciphers from
being cracked through brute force attempts that test every possible key.

Although cryptography has become mechanized since WWII, cryptographers
have not discounted the strength and security of ciphers that are executed by hand.
In fact, computerized ciphers can be based on the general cryptographic principles
found in hand ciphers.

1.2 Why Playing Cards?
Here is an important observation. There are 52! ways to permute a deck of

cards. This means that there are 52× 51× 50× 49× ·· · × 3× 2× 1 ways to
arrange a deck of cards. To give you an idea of the scope of this number, consider
the following scenario that was adapted from a quote of Stephen Fry. Imagine a
trillion universes, each of which contains a trillion planets. Each of these planets
contains a trillion people, and each person has a trillion decks of cards. If everyone
can shuffle all of their decks one time per second, it would take over two and a
half trillion years before every possible deck order has been created [4]. Simply
put, Fermilab estimates that there are approximately anywhere from 1049 to 1050

atoms that make up the earth [3]. This means that there are more ways to shuffle
a deck of cards than there are atoms that compose the earth. Since 52!≈ 2225.58, a
deck of cards has the potential to provide 225.58-bit encryption. This is enough to
compete with the security provided by typical computer ciphers. From this arises
the following question: can we use playing cards to create a secure, efficient hand
cipher?

1.3 Existing Playing Card Ciphers
Given that the field of playing card ciphers is remarkably specialized, not a

lot of playing card ciphers have been created. Aaron Toponce has a great website
that lists most if not all of the publicly known playing card ciphers [16]. Before
creating my own cipher, it was important to look at the work that has already been
done. Performing cryptanalysis on existing ciphers can help determine both the
strengths and weaknesses that tend to occur in playing cards ciphers. With this
knowledge, one is better equipped to maximize the former and minimize the latter.
Two playing card ciphers in particular are of interest.

First, Card-Chameleon is a playing card cipher created by Matthew McKague
for his master’s thesis [9]. His intention was to create a hand version of the com-
puter algorithm RC4. At first glance, Card-Chameleon’s straightforward, easy to
remember algorithm makes it attractive. However, scrutiny of this cipher revealed
a fatal weakness. Assuming a random key for each letter, Card-Chameleon en-
crypts any given letter into the exact same letter with probability 1

13 . Here’s why
this is a weakness. For each plaintext letter, the encryption algorithm should be
such that every letter has the same probability of occurring. In other words, a
plaintext letter should have a 1

26 probability of encrypting to any other letter. With
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Card-Chameleon, however, it is disproportionately likely that a letter will encrypt
to itself. Unfortunately, this deviation from the magic 1

26 probability is too sig-
nificant to overlook (for more information, see the paper that Dr. Landquist and I
wrote on this cipher [11]).

Second, Chaocipher is a cryptosystem that was created by John F. Byrne in
1918 [6]. Although Chaocipher has been around for over a century, the dis-
closure of the Chaocipher algorithm occurred as recently as 2010 [13]. As he
was examining previously invented playing card ciphers, Toponce had the idea of
adapting the Chaocipher algorithm to playing cards [15]. Given the respectable
security of Chaocipher, I did not find a weakness that was as severe as that in
Card-Chameleon. The closest thing to a weakness is the existence of plain-
text/ciphertext pairs (or pt/ct pairs). A pt/ct pair is when two identical plaintext
letters encrypt to the same ciphertext characters, such as two a’s encrypting to two
o’s. Greg Mellen noticed that when he divided messages encrypted by Chaoci-
pher into blocks of 13 letters, pt/ct pairs rarely occurred within these blocks [12].
Moshe Rubin hypothesized that pt/ct pairs will only occur if the two plaintext
letters are separated by a distance of eight letters [12]. In order to put a rest to
this question, I wrote a program that took two a’s and tried every 1-letter, 2-letter,
3-letter, 4-letter, and 5-letter combination between these two a’s. After testing all
12,356,630 of these cases, the program did not find any pt/ct pairs. However, it
did find pt/ct pairs with certain 6-letter combinations. As a result, we can say for
certain that at least six letters must be between two plaintext characters for a pt/ct
pair to occur.

1.4 The Current Approach
Analyzing existing ciphers revealed a general trend among them. Most if not

all playing card ciphers are stream ciphers. This means that they encrypt plaintexts
one letter at a time. The typical strategy is to first encrypt a letter and then alter the
deck order before encrypting the next letter. In creating a unique cipher, I used a
different approach. I focused my efforts on creating a block cipher. With a block
cipher, the plaintext is encrypted in blocks of letters. Specifically with our cipher,
we are encrypting the entire message at once in one large block.

2 VICCard

2.1 The Hollow Nickel Case
In 1953, Jimmy Bozart was a young 13-year-old boy living in Brooklyn. He

delivered newspapers for the Brooklyn Eagle. On June 22, he was counting his
tips when he noticed that one of his nickels was lighter than the others. As the
nickel slipped from his fingers, it hit the floor and cracked neatly into two pieces.
Inside, the nickel was completely hollow. Furthermore, it contained a tiny piece
of microfilm with numbers on it [2].

When local police officers heard of this discovery, they scrambled to track
down Jimmy and his nickel. Just in case he carelessly spent his valuable discovery,
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they examined the Bingo money from the church and ice cream money from a
Good Humor vendor. They eventually found Jimmy, who willingly gave them
the nickel. Realizing the potential gravity of what they possessed, the New York
police officers turned the coin over to the FBI [1].

In their research, the FBI investigators looked into whether the coin was sim-
ply a trick nickel meant for gags or magic tricks. This theory failed due to the
imprecision with which the nickel was made. The hollow part was not big enough
to contain much. Being a magician myself, I have handled high-quality hollow
coins. The craftsman has to balance two factors. First, they have to make sure
that the hollow coin is not too big. Otherwise, it will excite suspicion from the
audience. On the other hand, the coin cannot be too small. If it is, anything
that the magician is trying to hide inside the coin can easily get stuck. No feel-
ing is worse than realizing mid-performance that your props are not cooperating.
Jimmy’s hollow nickel was not crafted with this much precision [2].

The FBI had to solve two questions: what was the coin’s purpose, and what
was the meaning of the numbers on the microfilm? In an exceptional stroke of
luck, both questions were answered by Russian spy Reino Häyhänen. Häyhänen
did not begin his espionage career by choice. Because he was fluent in Finnish,
he was drafted as a translator for the Communist secret police during the Finnish-
Soviet war. Upon the end of the war, he remained in Finland in order to report
anti-Soviet individuals. Häyhänen became a member of the Communist party in
1943, and in 1948 the KGB assigned him a new task. Assuming the identity of
Eugene Nicolai Maki, an immigrant from America to Estonia, he was to act as a
Soviet spy in the United States. In 1957, Häyhänen contacted the U.S. embassy in
Paris, desiring to defect to the United States. Following his defection, Häyhänen
gave FBI officials the details of his operations. Most importantly, he revealed how
hollow coins, such as the one found by Jimmy, were used to exchange information.
Soviet agents agreed on inconspicuous locations called “dead drops” in which
they placed secret containers such as hollow coins [2].

The only remaining piece of the puzzle was to decrypt the message that was
inside the coin. Häyhänen thoroughly explained the cipher that was used to en-
crypt the message on the microfilm inside the nickel [2]. It was encrypted using a
Nihilist cipher called VIC [17]. The Nihilists were a Russian group that opposed
the Russian tsar. In the 1880s, the Nihilists used ciphers in order to communi-
cate, which became known as the Nihilist ciphers [5]. In a bizarre twist of fate,
the message in the nickel was actually intended for Häyhänen himself. After he
accidentally spent the nickel, it traveled from person to person until it eventually
landed into Jimmy’s inquisitive hands [1].

The CIA has an excellent description of how VIC works [7]. Häyhänen pre-
sented this description at the 1957 trial of Colonel Rudolf Abel. Since the CIA
states that those attending the trial were either bored or confused by the description
of VIC, I will spare you the details. Instead, I will describe the specific aspects of
VIC that provided the inspiration for VICCard.
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2.2 The First Version of VICCard
To pay homage to the mind-numbing security of VIC, I have decided to entitle

my original cipher VICCard. VICCard is an original playing card cipher that
combines numerous cryptographic strategies together. The basic strategy of VIC
is to use a checkerboard to convert letters to cards and then to perform various
operations on these cards. With VICCard, we are using a similar strategy. There
are four steps to this cipher. First, use a checkerboard to convert the letters of
the message into cards. Second, perform columnar transpositions on these cards.
Third, apply lagged Fibonacci generators to these cards. Finally, use the same
checkerboard to convert the cards back into letters. Although VICCard has gone
through multiple versions, these four steps remained the fundamental structure.
In order to demonstrate each of these steps, we will follow cryptographic tradition
and encrypt the message Attack At Dawn as an example. The following deck
of cards will be our key. In our notation, 9♦ is the top card and A♥ is the bottom
card when the deck is held face up.

[A♥,7♥,K♣,8♥,K♦,J♣,K♠,K♥,4♠,8♦,4♥,7♣,3♣,
10♦,Q♥,10♣,5♦,2♠,J♠,A♣,9♣,4♣,3♦,3♥,8♣,7♦,
5♠,5♥,2♣,A♦,8♠,10♠,6♥,9♠,10♥,6♦,Q♦,6♣,2♦,
J♦,7♠,5♣,4♦,J♥,Q♠,6♠,3♠,Q♣,9♥,2♥,A♠,9♦]

2.3 Step 1: Converting Letters to Cards
We will have cards represent letters according to the following table. Notice

that the lowercase letters are represented by the black cards and that the uppercase
letters are represented by the red cards.

Table 1: Letter encoding for VICCard

In order to convert the letters of the plaintext into cards, we will use a checker-
board. The checkerboard in Table 2 is created by dealing the cards into 4 columns
of 13 cards.
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Table 2: Checkerboard from Deck Order

Suppose that we are encrypting the plaintext Attack At Dawn. We will con-
vert these letters to cards one letter at a time. We will start with the letter A, which
is represented by A♥. First, I find A♥ in the checkerboard. This card is in the A
row and the ♣ column. Hence, A encrypts to A♣. Next, we move onto the let-
ter t, which is represented by 7♣. This card is in the Q row and the ♣ column.
Hence, t encrypts to Q♣. Continuing this pattern, the plaintext Attack At Dawn

is converted to A♣,Q♣,Q♣,Q♦,8♦,6♥,A♣,Q♣,J♣,Q♦,3♥,7♥.

Table 3: Letters Converted to Face Values and Suits

Typically with effective cryptographic checkerboards, each plaintext letter is
represented by 2 or more numbers. Instead of using this string of cards, we will
break up the cards into two rows. The first row is all of the face values of the
cards, and the second row is all of the suits. The face values are represented
with the numbers 0 through 12, and the suits are represented with the numbers 0
through 3.

At this point, it is important to take notice of a security feature of this checker-
board. Notice that every letter is represented by a black card and a red card. The
black card represents the lowercase version, and the red card represents the up-
percase version. In the above example, I used the black cards to represent each
lowercase letter and the red cards to represent each uppercase letter. However, I
did not have to do this. For each plaintext letter, we can either use the black card
or the red card to encrypt it. For example, instead of using A♥ for the letter A, we
can instead use the black card option A♠. This is equivalent to regularly encrypt-
ing the letter a. Similarly, instead of encrypting t as Q♣, we can encrypt it as Q♦.
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This is exactly like regularly encrypting the letter T. In other words, the option of
choosing either the black card or the red card for each letter is equivalent to the
option of changing the case of each letter. For example, based on how we choose
black and red cards, we can encrypt the message Attack At Dawn as aTtacK

AT daWN. When the decoder reverses this process, he will get the latter plaintext
message. The letters are in the wrong cases, but it is still readable. Hence, having
this choice for each letter does not compromise the message.

This feature has great potential for increasing security. Suppose that we have
a plaintext of N letters. Since there are two choices for each letter, a black card or
a red card, the encoder has 2N possible ways of using the same deck to encrypt a
particular message. Recall that there are about 2225.58 possible decks. Combining
these two together, there are 2225.58+N possible ways of encrypting the same mes-
sage. In other words, every letter in the plaintext adds a bit to the pool of possible
keys.

2.4 Step 2: Columnar Transpositions
In Step 1, we performed a substitution: cards were substituted for letters. In

Step 2, we will perform a transposition. Here, none of the numbers are going to
be altered. Instead, they are going to be rearranged via a columnar transposition.
We will use two columnar transpositions: one for the row of face values and one
for the row of suits. Here is how we perform columnar transpositions. First, we
need a key for each transposition. We will use the order of the clubs for the face
values:

[K♣,J♣,7♣,3♣,10♣,A♣,9♣,4♣,8♣,2♣,6♣,5♣,Q♣].
Also, we will use the order of the hearts excluding the king for the suits:

[A♥,7♥,8♥,4♥,Q♥,3♥,5♥,6♥,10♥,J♥,9♥,2♥].
To transpose the face values, we create a grid with the clubs on top. Then, we fill
in the grid from left to right with the face values.

Next, we read the face values out of the grid from top to bottom based on the
numerical order of the clubs. We first read 6 from the A♣ column, 12 from the 2♣
column, 12 from the 3♣ column, and so forth to get the following new row of face
values: (6 12 12 12 7 3 12 11 1 8 12 1). Similarly, to perform the transposition
of the suits we create a grid with the hearts on top. Then, we again fill in the grid
from left to right.

Reading out the suits from the top to bottom based on the numerical order of the
suits, we get the following new row of suits: (0 1 1 3 0 0 0 0 1 0 3 3). In summary,
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performing these columnar transpositions gives us the following two new rows of
face values and suits:

2.5 Step 3: Lagged Fibonacci Generators
The third step of VICCard is to use two lagged Fibonacci generators. Fre-

quently in cryptography, we employ the help of random strings of numbers. How-
ever, the problem with using humongous strings of random numbers is that they
are wildly impractical. Instead, it is more common to use pseudorandom strings
of numbers. These are strings of numbers that appear to be random and have a
lot of the properties of randomness, even though they were not created in a purely
random way.

A lagged Fibonacci generator is one such method of creating a pseudorandom
string of numbers. Instead of sharing the entire string of numbers, the sender and
receiver only share a small string of a few digits. This is called the seed. For
example, suppose that we are using the first five digits of π as the seed: (3 1 4 1
5). Here is the procedure for creating an indefinitely long string of numbers by
using a lagged Fibonacci generator. We begin with the first two numbers: 3 and 1.
We add these together to get 4, and we attach this number to the end of the seed:
(3 1 4 1 5 4). Next, we move onto the next two numbers: 1 and 4. Adding these
together gives us 5, which we attach to the end of the previous string of numbers:
(3 1 4 1 5 4 5). Again, we add the next two numbers (4 and 1) to get 5, which is
again attached to the end: (3 1 4 1 5 4 5 5). Continuing this process indefinitely,
we can create a pseudorandom string of numbers of any desired length. Also, it
is important to note that this addition is performed modulo 10. This means that
if adding two numbers produces a number that is greater than 10, we divide this
number by ten and use the remainder. For example, adding 5 and 7 gives us 12,
which is 2 in modulo 10.

The convenience of a lagged Fibonacci generator is rooted in the fact that the
sender and receiver only need to share the seed. In order to do this with VICCard,
we will encode two seeds in the deck. The seed for the lagged Fibonacci generator
of the face values is encoded in the order of the spades in the deck. The order of
the spades in the current keyed deck is

[K♠,4♠,2♠,J♠,5♠,8♠,10♠,9♠,7♠,Q♠,6♠,3♠,A♠].
The order of the face values of these cards yields the following seed: (13 4 2 11 5
8 10 9 7 12 6 3 1). As one more adjustment, we will represent the 13, which came
from K♠, as 13 mod 13 = 0. Hence, the seed for the lagged Fibonacci generator
of the face values is (0 4 2 11 5 8 10 9 7 12 6 3 1).

Similarly, the seed for the lagged Fibonacci generator of the suits is encoded
in the order of the face values of the diamonds. The order of the diamonds in the
current keyed deck is

[K♦,8♦,10♦,5♦,3♦,7♦,A♦,6♦,Q♦,2♦,J♦,4♦,9♦].
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This gives us the following seed: (13 8 10 5 3 7 1 6 12 2 11 4 9). Since there are
only four suits in a deck, we will express this seed in modulo 4. Hence, the seed
for the lagged Fibonacci generator of the suits is (1 0 2 1 3 3 1 2 0 2 3 0 1).

We will now add these two string of numbers to the rows of face values and
suits using modulo 13 and modulo 4 arithmetic, respectively. In this case, the
plaintext is small enough so that we do not have to generate any more numbers.
If the plaintext were longer, we would use each seed to create new numbers as
detailed above. Adding the numbers from the spade lagged Fibonacci generator
to the row of face values, we get the following:

Adding the numbers from the diamond lagged Fibonacci generator to the row of
suits, we get the following:

This has the effect of continuing to randomize the face values and suits indepen-
dently. In total, this gives us the following two new rows of face values and suits:

2.6 Step 4: Converting Cards Back into Letters
The final step in the VICCard cipher is to convert these two rows of numbers

back into letters. In order to do this, we will use Table 2 and reverse the algorithm
of Step 1. We will start with the first column of numbers, which contains a face
value of 6 and a suit of 1 (♥). This tells us to look at the card in the sixth row
and the ♥’s column of the checkerboard, which is J♠. Since J♠ represents the
letter k, the first letter of the ciphertext is k. Next, the second column of numbers
tells us to look at the card in the third row and the ♥’s column, which is 10♣.
This card represents the letter w, meaning that the next letter of the ciphertext is w.
Continuing this pattern, we get the following ciphertext: kwXUaB qF vFhQ.
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2.7 Summary: The Cards as a Key Container
Something that you might have noticed about VICCard is that playing cards

are technically not needed to perform it. Substitution checkerboards, columnar
transpositions, and lagged Fibonacci generators are not unique to playing cards.
In fact, this cipher can be entirely executed using numbers instead of face values
and suits. However, suppose that we do not use playing cards to execute VICCard.
Here, the one sending the message and the one receiving the message must share
a remarkable amount of information. They must both know the order of letters
in the checkerboard, the keywords used for the transpositions, and the seeds for
the lagged Fibonacci generators. The reason for executing this cipher with playing
cards is because all of this information is compactly contained in 52 playing cards.
This way, the sender and receiver must only share the deck order.

Now that we have used cryptography to create VICCard, the next step is to
use cryptanalysis to analyze its security. We will examine each element of VIC-
Card: the substitution checkerboard, the columnar transpositions, and the lagged
Fibonacci generators.

3 Substitution Checkerboard

Basic cryptographic substitutions can be found in cryptogram puzzle books.
In these books, every English letter is represented by another letter. For exam-
ple, every e is replaced with w and every x is replaced by c. There are 26! ≈
4.03× 1026 possible ways to substitute each English letter for another English
letter. At first glance, it seems that a standard cryptogram is remarkably secure.
However, if that were true, cryptogram books would not be available in giant
puzzle books alongside Sudoku and crosswords. The insecurity of cryptograms
is best exemplified by two common cryptanalysis methods. First, analyzing the
frequency distribution of English letters is a useful technique of decoding a cryp-
togram. For example, e is the most common English letter. Since e encrypts to w

in the above example, it is likely that w will be the most common letter in the ci-
phertext. Hence, a code breaker could deduce from the high frequency of w that it
represents e. A second attack is the use of plaintext cribs. Whereas the first attack
exploits the frequencies of certain letters, cribs are frequently occurring words.
For example, if I see a letter by itself in the ciphertext, it is likely that it represents
the letter a. Similarly, if I see a three letter word in the ciphertext, it is likely that
this is either the word the or a pronoun. Hence, there is a high chance that I can
ascertain the identities of three letters.

Instead of a basic one-to-one substitution, a more secure method is to repre-
sent each plaintext character by two or more characters. This technique is know
as fractionation, and it is present in ciphers such as Bifid, Trifid, and straddling
checkerboard [18]. With Bifid, each English letter is represented by two numbers.
We substitute each letter in the plaintext with two numbers and shuffle these num-
bers around. Then, we substitute each pair of numbers in the final sequence for
their English letter equivalents. Trifid substitutes three numbers for each English
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letter, and a straddling checkerboard encrypts some letters with one number and
some letters with two numbers.

The substitution checkerboard in VICCard follows an approach that is similar
to Bifid. Each letter is substituted for two numbers; one number represents a face
value, and the other number represents a suit. However, an important difference
is the ability of VICCard to perform two different substitutions for each letter. We
can either use the corresponding red uppercase card or the corresponding black
lowercase card. With Bifid and similar substitution checkerboards, we always
encrypt a letter with the same group of numbers. Here, VICCard can encrypt the
exact same letter in two different ways. This is especially useful when messages
use the same letter numerous times throughout the message (such as the a’s in
Attack At Dawn) or when words contain two of the same letter that are next to
each other (such as the two t’s in Attack). In Bifid, a code breaker has a 1

26
probability of correctly guessing the letter represented by the two numbers. In
VICCard, the code breaker has to guess the two cards that represent the same
letter, which he has a 1

26 ×
1
26 = 1

676 probability of doing correctly. This further
complicates the code breaker’s task without severely complicating the encryption
process.

4 Columnar Transpositions

On its own, the double columnar transposition is an alluring cipher: it is easy
to learn, fast to implement, and not so trivial to break. In attempting to success-
fully break this cipher, the first option that comes to mind is simply testing every
possible keyword [8]. For a nine column transposition, there are 9! = 362,880
possible keys. A computer can quickly move through each of these keys, easily
cracking the cipher. This is why columnar transpositions are typically performed
in pairs. There are (9!)2 = 131,681,894,400 possible permutations with a pair
of nine column transpositions. A second possible attack is a dictionary attack
[8]. Here, the code breaker has a database of about 1 million frequently used
keywords, such as names of prominent historical figures. He then tests each key-
word to see whether it successfully decodes the message. Yet a third strategy is
hill climbing [8]. This involves picking a starting keyword and gradually mak-
ing small changes to this keyword, such as swapping letters. If the new keyword
seems to decode the message better, then this keyword replaces the starting one.
With hill climbing, we continue to make these changes until we find the keyword.

A vital feature of all these strategies is that keywords are guessed until the ci-
phertext is undone in such a way that it “makes sense.” This is why transpositions
are frequently combined with substitutions. Consider when the letters in a plain-
text message are substituted in some way for others. After this, the two colum-
nar transpositions are performed. This complicates these common code-breaking
techniques because now it is impossible for any reversal of the transpositions to
“make sense.” This is why VICCard combines substitutions with transpositions.
In fact, VICCard uses three substitutions: initially converting letters to cards, ap-
plying lagged Fibonacci generators, and finally converting cards back into letters.
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Hence, the double columnar transposition in VICCard is valuable in and of itself.
However, it becomes remarkably strong when combined with the other crypto-
graphic techniques.

5 Lagged Fibonacci Generator

In assessing the security of a lagged Fibonacci generator, two features must
be analyzed. First, what is the period? In other words, how many numbers does
the lagged Fibonacci generator create before it starts repeating? In emulating true
randomness, we do not want a string of numbers that repeats. Hence, we desire
a lagged Fibonacci generator with a large period. Specifically, the security of a
lagged Fibonacci generator is maximized when its period is larger than the length
of the plaintext. Second, does the distribution of the numbers closely resemble
the distribution produced by randomness? For example, there are four different
numbers in the lagged Fibonacci generator of the suits. In a truly random string
of 4 different numbers, each number occurs approximately 1

4 of the time. Hence,
this lagged Fibonacci generator resembles a random distribution if the 0’s, 1’s,
2’s, and 3’s all occur approximately 1

4 of the time.

5.1 Modulo 4 Lagged Fibonacci Generator
In analyzing the security of the modulo 4 lagged Fibonacci generator, the

seed of which is the order of the diamonds, I first created all the possible seeds.
These periods each have three 0’s, three 2’s, three 4’s, and four 1’s. Hence, there

are
(

13
3

)(
10
3

)(
7
3

)
= 1,201,200 seeds to consider. As a result, it was

necessary to write a program that created each of these seeds and placed them
into text files. After this, I created a program in order to ascertain the period of
each seed. It did this by reading each seed in from the text files, used each seed
to create a string of about 100,000 numbers, and searched the string of numbers
to see when the string began to repeat. Analyzing all the seeds in this way, it
became clear that there are three possible periods. 23 seeds have a period of 62,
1019 seeds have a period of 510, and the remaining 1,200,158 seeds have a period
of 15,810. Overall, this is very good news: 1,200,158

1,201,200 ≈ 99.9% of the seeds have
a respectable period of 15,810. 15,810 characters can fill almost eight pages of a
Word document in MLA format, assuming that there are no spaces. This is more
than what is needed to send a typical encoded message.

Once I knew the period of each seed, I then determined the distribution of
0’s, 1’s, 2’s, and 3’s produced by each seed. I accomplished this by writing a
program which used each seed to produce a string of numbers until right before
it started repeating. In other words, the program produced strings of 62 numbers
from the seeds that have a period of 62, produced strings of 510 numbers from
the seeds that have a period of 510, and so forth. It then went through each string
of numbers and counted the number of occurrences of 0’s, 1’s, 2’s, and 3’s. On
average, each seed created a distribution that very closely approximated 25% of
0’s, 1’s, 2’s, and 3’s. Table 4 shows the average number of 0’s, 1’s, 2’s, and 3’s for
each period.
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Table 4: Average Distribution for the Modulo 4 lagged Fibonacci generator

Table 5 shows the percent error of each average relative to 25% of the period.
As the period increases, the percent error decreases.

Table 5: Percent Errors of the Distribution for the Modulo 4 lagged Fibonacci
generator

5.2 Modulo 13 Lagged Fibonacci Generator
In order to analyze the security of the modulo 13 lagged Fibonacci gener-

ator, which is encoded in the order of the spades, I followed a similar process.
I first examined the periods and then analyzed the distributions. Before any of
this could be done, however, I had to determine which seeds to test. There are
13! = 6,227,020,800 possible seeds, making it impractical to test all of them.
Instead, I chose a random sampling of seeds to test. Specifically, I analyzed all
the seeds that start with (8 4 12 5), all the seeds that start with (12 6 9 8), all the
seeds that start with (1 9 12 7), all the seeds that start with (3 2 11 7), and all
the seeds that start with (3 1 5 2). There are 9! = 362,880 seeds in each of these
categories, meaning that I analyzed 5× 362,880 = 1,814,400 seeds. Of course,
before testing any of these seeds, I had to create five text files containing each of
these categories of seeds. I did this by creating a program that created every pos-
sible permutation of any number of objects. Since the seed contains 13 numbers,
I used the 13 setting of my program. Furthermore, I filled in the first four num-
bers for each category (like 8 4 12 5). This program then created every possible
permutation of the nine remaining numbers and wrote all the seeds to a text file
with the appropriate label. For example, the program wrote all seeds beginning
with (8 4 12 5) to a file entitled “EightFourTwelveFive.txt.” Once I compiled this
respectable sample size, I began testing each seed.
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Recall that most of the seeds of the modulo 4 lagged Fibonacci generator have
a period of 15,810. We are not as concerned with the exact periods of the modulo
13 seeds. As long as the periods of the latter are larger than those of the former,
then the periods of the modulo 13 seeds are secure for our current purposes. In
order to test this, I created a program that took each seed in the previously cre-
ated files, used each to create a string of slightly more than 15,810 numbers, and
searched the string to see if the pattern repeated. Of all the 1,814,400 seeds that
were tested, none of them repeated within 15,810 numbers. Just out of curiosity,
I took a random seed (8 4 12 5 0 7 9 10 2 3 1 11 6) and tried to determine its
period. After creating a string of 3,000,000 numbers, the pattern of numbers still
did not repeat. As a result, we can conclude that the modulo 13 lagged Fibonacci
generator has a respectable, secure period.

Next, I needed to make sure that the lagged Fibonacci generator produces a
uniform distribution of the numbers 0 through 12. In order to do this, I created
yet another program that used each seed to create a string of 13,000 numbers. It
then counted the number of occurrences of each number in each string. Tables 6
through 11 show the average results for each of the five groups of seeds and the
overall average for all 1,814,400 seeds.

Table 6: Average Distribution for Modulo 13 Lagged Fibonacci Generator (8 4
12 5)
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Table 7: Average Distribution for Modulo 13 Lagged Fibonacci Generator (12 6
9 8)

Table 8: Average Distribution for Modulo 13 Lagged Fibonacci Generator (1 9
12 7)

Table 9: Average Distribution for Modulo 13 Lagged Fibonacci Generator (3 2
11 7)
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Table 10: Average Distribution for Modulo 13 Lagged Fibonacci Generator (3 1
5 2)

Table 11: Average Distribution for Modulo 13 Lagged Fibonacci Generator
Overall

If these strings of 13,000 numbers were truly random, we would expect ap-
proximately 1000 of each number. As demonstrated by these tables, the lagged
Fibonacci generator in question provides an incredible approximation of this dis-
tribution. As a result, we can conclude that the modulo 13 lagged Fibonacci gen-
erator is safe to use.

6 The Updated Version of VICCard

The above description of VICCard is the first version of the cipher that was
used to outline the basic structure. It is composed of the following basic steps:

1. Convert the plaintext letters to cards using the checkerboard.
2. Perform one columnar transposition on both the face value row and the suit

row.
3. Add one pseudorandom string of numbers to both the face value row and

the suit row.
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4. Use the same checkerboard in Step 1 to convert the cards back into letters.
In an attempt to make improvements, VICCard has gone through multiple

versions. This basic four-step structure remains the same throughout each update.
The following details the fifth version of the cipher, VICCard 5.0, which is the
most recent update. This version uses three additional cryptographic strategies.

6.1 Plaintext Preparations
First, I added two small options to prepare the plaintext before encryption.

First, I added the option of placing junk letters at both the beginning and the end
of the message. Second, the encoder can “cut” the message before encrypting it.
This is similar to cutting a deck of cards. In order to mark where he cuts the cards,
he should place a marker, such as xx, where the intelligible words begin. Let’s
apply these two strategies to encrypting Attack At Dawn. First, we add random
characters to the beginning and the end to get

EdfFxxAttackAtDawndsjfSDRmk.
Second, we will “cut” the message at the k in Attack, giving us

kAtDawndsjfSDRmkEdfFxxAttac.
Now, we can move on to the four steps of VICCard 5.0 to encrypt the message.
When the decoder decrypts the ciphertext, he will get

kAtDawndsjfSDRmkEdfFxxAttac

as his message. In order to read it, all he needs to do is “cut” the marker xx to the
end:

AttackAtDawndsjfSDRmkEdfFxx.
Removing the junk letters at the end, he can now read the message:

AttackAtDawn dsjfSDRmkEdfFxx.

6.2 Triangular Columnar Transpositions
In the first version of VICCard, exactly one columnar transposition is per-

formed on the face values and the suits. However, to increase security, columnar
transpositions are typically performed in pairs. Hence, the current version of VIC-
Card applies double columnar transpositions to the face values and to the suits.
This is a total of four columnar transpositions. Thus, we will use the following
four keys. For the face values, the orders of A♣ through 7♣ and of A♥ through
6♥ shall be the keys for the first and second transpositions, respectively. For the
suits, the orders of 7♥ through K♥ and of 8♣ through K♣ shall be the keys for
the first and second transpositions, respectively.

Furthermore, following the pattern of VIC, we shall make the second transpo-
sition a little different. For the second transposition, the VIC cipher reads numbers
out of the grid in exactly the same way: from the top to the bottom based on the
keyword. However, VIC places numbers into the grid differently.

For example, we will use the following order of six hearts to perform a face
value transposition: [5♥,6♥,3♥,A♥,2♥,4♥]. Before filling the transposition
grid, we will use the key to divide the grid into triangular sections. We will
represent these sections by filling them with the letter T. We will start with the
smallest number of the key, which is 1. We section off all cells to the right of and
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including the part of the grid under the 1. We repeat this process on the next row,
starting at the next column over. We continue to section off cells until we run out
of columns, producing a triangular pattern.

We do this for all numbers in the key. The following grid shows the results of
sectioning off cells based on the numbers 1-4.

We will transpose the following sequence of face values: (4 0 8 12 5 1 6 8 9
0 1 9 1 8 7 11 12 8 9 6 3 2 2 12 7 0 12 7). Since there are 28 face values, we
know that we will completely fill four rows and partially fill a fifth row. With this
in mind, we begin by filling in all the cells that have not been sectioned off.

Now, we place the rest of the face values in the sectioned off cells.

Finally, we finish the transposition by reading the numbers out from the grid: (3 6
1 11 6 2 12 9 12 8 1 0 7 9 2 7 0 7 4 12 8 1 12 0 5 9 8 8).

This unique transposition contributed to the remarkable security of VIC. As a
result, it makes sense to apply it to VICCard. With VICCard 5.0, the first trans-
position for the face values and the suits is a normal columnar transposition. By
contrast, the second transposition for the face values and the suits is this special
transposition.
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6.3 Junk Letters and Diffusion
Finally, these last two cryptographic strategies are performed before each

columnar transposition. First, VICCard 5.0 adds random face values and suits
during the columnar transpositions. For example, we will work with the follow-
ing rows of face values and suits:

Consider the face values. We will perform the following columnar transposition
with seven columns:

Notice that the bottom row is partially filled. In the first version of VICCard, we
performed the transposition with this partially filled row. In VICCard 5.0, we fill
this bottom row with junk face values before completing the transposition. If the
bottom row is completely filled, we will add an entire row of junk face values.

Now, we perform the columnar transposition: (12 12 8 7 12 11 12 3 1 9 6 5 1 12).
Next, we will add four random face values to make the total number divisible by
6: (12 12 8 7 12 11 12 3 1 9 6 5 1 12 2 5 6 3). We then execute a special triangular
columnar transposition with six columns:

These two transpositions produce the following string of face values: (7 12 12 1
12 3 11 6 2 12 9 8 12 5 5 3 1 6).

Notice that during the transpositions, the random numbers are spread through-
out the stream of face values. When the decoder is undoing the transpositions, the
random characters are easily eliminated. For example, undoing the above trans-
position produces the following stream of numbers: (12 12 8 7 12 11 12 3 1 9 6
5 1 12 2 5 6 3). Currently, the random characters are at the end of the message.
However, the decoder still needs to determine how many random characters there
are. All they have to do is divide the string of numbers into sections of seven
numbers and eliminate what remains: (12 12 8 7 12 11 12 | 3 1 9 6 5 1 12 | 2 5
6 3). The reason for this is that the first columnar transposition produces a string
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of numbers that is divisible by 7. Since the second columnar transposition adds
anywhere from 1 to 6 more numbers, all the leftover numbers must be junk letters.

Second, the last new security feature is a method of creating diffusion. Dif-
fusion refers to when a given plaintext letter has an effect on how other plaintext
letters are encrypted. Suppose that I am going to perform a seven-column trans-
position with the following string of face values: (12 5 3 7 5 8 9 3 11 10 6 7 4 8
5 3). There are sixteen numbers, which means that we must add 5 more random
numbers. We will do that now before placing the face values into the transposi-
tion grid: (12 5 3 7 5 8 9 3 11 10 6 7 4 8 5 3 2 7 5 4 0). Before performing the
transposition, we will divide this message into groups of seven: (12 5 3 7 5 8 9
| 3 11 10 6 7 4 8 | 5 3 2 7 5 4 0). We will add the numbers of the first group to
those of the second group and add the new numbers of the second group to those
of the third group, using modulo 13 addition. Adding the first group to the second
group gives the following result: (12 5 3 7 5 8 9 | 2 3 0 0 12 12 4 | 5 3 2 7 5 4
0). Adding the second group to the third group gives the following result: (12 5
3 7 5 8 9 | 2 3 0 0 12 12 4 | 7 6 2 7 4 3 4). Now, we place these numbers into
the grid to transpose them. This step is done before each transposition. We divide
the numbers into groups of seven for the seven-column transpositions and groups
of six for the six-column transpositions. Also, we use modulo 13 arithmetic for
the face values and modulo 4 arithmetic for the suits. This increases diffusion
because a change in any number will result in changes of multiple numbers after
it when they are added together.

Full Example of VICCard 5.0
For the last time, we will encrypt our favorite message Attack At Dawn.

With VICCard 5.0, we will perform quite a few modifications to the plaintext be-
fore encryption. First, we will change some of the cases ATTacKaTdaWN. Second,
we will add some random letters to the beginning and the end jWvxxATTacKaTdaWNMvHsi.
Third, we will cut the message at a random point acKaTdaWNMvHsijWvxxATT.
Notice that we purposefully added the two x’s to mark where the message begins.
After all of this prep work, we can begin encryption.

Step 1: For Step 1, we use the substitution checkerboard method that was
described in the first version. Here is the result of using the checkerboard to
convert the plaintext into face values and suits:

Step 2: As usual, we will start with the double columnar transposition of the
face values. The first columnar transposition is nothing special. It is the exact
same type of transposition that we have been doing. After adding six random face
values to the end so the number of face values is divisible by seven (12 8 5 12 0 9
12 1 4 8 8 4 12 8 6 1 8 6 6 1 0 0 3 4 5 3 0 3), we create diffusion based on blocks
of seven (12 8 5 12 0 9 12 0 12 0 7 4 8 7 6 0 8 0 10 9 7 6 3 12 5 0 9 10). Then we
perform a plain columnar transposition based on the order of A♣ through 7♣.
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The result is (5 0 8 12 0 4 10 0 8 12 0 3 12 7 0 5 12 7 7 10 9 8 9 9 12 0 6 6).
The second transposition begins normally. We add two random face values so

the total is divisible by six (5 0 8 12 0 4 10 0 8 12 0 3 12 7 0 5 12 7 7 10 9 8 9 9 12
0 6 6 7 7), and we create diffusion based on blocks of six letters (5 0 8 12 0 4 2 0
3 11 0 7 1 7 3 3 12 1 8 4 12 11 8 10 7 4 5 4 2 4). Before placing the face values in
the grid, however, we need to create triangular sections based on the key, which
is the order of A♥ through 6♥. Since we are only dealing with 30 face values, we
only have to worry about the top five rows.

We first fill in the parts of the grid that are not sectioned off,

and then fill in the triangular sections:

The result is: (0 5 0 12 2 3 12 7 4 4 1 1 11 4 3 7 12 8 0 0 7 8 8 4 11 3 4 10 5 2).
Now we will do the same thing for the suits. We add five random suits so the

total is divisible by seven (3 3 3 3 1 0 3 1 2 0 1 0 2 2 2 1 1 0 0 0 1 1 3 3 2 0 0 2),
create diffusion based on blocks of seven (3 3 3 3 1 0 3 0 1 3 0 1 2 1 2 2 0 0 1 2 2
3 1 3 2 1 2 0), and then transpose the suits based on the order of 7♥ through K♥.
The result is (3 0 2 3 3 1 2 1 3 1 2 0 1 1 1 1 0 2 2 2 3 0 0 2 3 3 0 3).
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In preparation for the second transposition, we add two random suits so the
total is divisible by six (3 0 2 3 3 1 2 1 3 1 2 0 1 1 1 1 0 2 2 2 3 0 0 2 3 3 0 3 1 1),
create diffusion based on blocks of six letters (3 0 2 3 3 1 1 1 1 0 1 1 2 2 2 1 1 3 0
0 1 1 1 1 3 3 1 0 2 2), and create triangular sections in the grid based on the order
of 8♣ through K♣. Since there are 30 suits, we only are concerned with the first
five rows of the grid.

We then fill the grid based on the triangular sections and transpose the suits.

The result is (1 1 3 0 1 3 1 3 1 0 2 1 1 2 0 0 1 1 2 3 1 1 1 2 2 3 3 0 2 1). In
summary, here are the two rows of face values and suits:

Step 3: For Step 3, we add the numbers from the spade lagged Fibonacci
generator to the face values,

and we add the numbers from the diamond lagged Fibonacci generator to the suits,
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which gives us the following face values and suits:

Step 4: Finally, we use the substitution checkerboard from Step 1 to convert
these face values and suits into the ciphertext:

OqLPmYJwConRscJfLchjIXOTgvewvk.

7 Randomness Tests

The fundamental concept of cryptography is randomness. The more unpre-
dictable a cipher is, the harder it usually is to break. For example, recall our
discussion of lagged Fibonacci generators. To ensure that the lagged Fibonacci
generators of VICCard are a reliable option, it was necessary to examine the ran-
domness of the numbers that it created. We did this by focusing on the periods
and the number distributions.

To test the randomness of VICCard 5.0, I encrypted six plaintexts: the Decla-
ration of Independence, “Paul Revere’s Ride” by Henry Wadsworth Longfellow,
the Gettysburg Address, the lyrics to “All I Ask Of You”, the opening to A Tale
of Two Cities, and Psalm 23. After encrypting each plaintext using VICCard 5.0,
I analyzed the letter distributions of the ciphertexts. Since we are using upper-
case and lowercase letters, the ciphertexts are composed of 52 different letters.
In a truly random string of letters, each of the letters will occur about 1

52 of the
time. Hence, if the six ciphertexts have a letter distribution that closely resembles
a random distribution, then we have strong evidence in favor of the randomness
of VICCard 5.0.

7.1 Chi-Square Test on Ciphertexts
At this point, I enlisted the help of the Chi-Square test of fitness. This test tells

us how closely a set of measured data resembles the expected data. In this case,
I used the Chi-Square test to determine how closely the measured distributions of
the six ciphertexts “fit” with truly random texts. Here is how the Chi-Square test
works. First, we calculate the Chi-Square value of a particular ciphertext using
the following formula:
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χ
2 =

n

∑
i=1

(
(Oi−Ei)

2

Ei

)
.

In this formula1, n is the number of possible outcomes, Oi represents the observed
number of occurrences of an outcome, and Ei represents the expected number of
occurrences of an outcome. For example, consider the ciphertext of the Declara-
tion of Independence. Since there are 52 types of letters, n = 52. The ciphertext
has 6600 letters according to the breakdown in Table 12.

Table 12: Letter Distribution of the Declaration of Independence

To calculate this ciphertext’s Chi-Square value, we first calculate each of the
individual Chi-Square terms. For example, consider the letter a. This letter occurs
105 times. This is the observed number of occurrences, Oi. In a truly random
string of letters, the letter a would occur about 1

52 of the time. Since there are
6600 letters in the ciphertext of the Declaration of Independence, the expected
number of occurrences Ei is 6600

52 ≈ 126.923. Using the formula above, the Chi-
Square term for a is

(Oi−Ei)
2

Ei
≈ (105−126.923)2

126.923
≈ 3.7867.

This calculation is performed for each of the 52 letters, and the final Chi-Square
value is the sum of all these 52 calculations: χ2 ≈ 54.4558.

1χ2 is the symbol for the Chi-Square value.



Fall 2022 29

What does χ2 tell us? This number signifies how well the data emulates
perfect randomness by measuring the level of deviation from perfect randomness.
The larger the Chi-Square value, the more the data deviates. To determine the
amount of deviation, we use the Chi-Square value to calculate the associated p-
value. Looking up the above χ2 in a p-value table, we see that this data has a
p-value of 0.3444. This p-value means the following: if I create a string of 6600
letters by choosing each letter at random, there is a 0.3444 probability of getting
a string of letters that has a Chi-Square value of 54.4558. In other words, there is
a 0.3444 probability that the Declaration of Independence ciphertext is random.
The relevance of the p-value is in its ability to measure the level of randomness in
a ciphertext.

In order to have a respectable sample size, I encrypted six plaintexts with six
different keyed decks and performed a Chi-Square test on each ciphertext. Table
13 contains a summary of the test data.

Table 13: First Round of Chi-Square Test Results

After compiling this data, I encrypted these six plaintexts a second time, using
a different keyed deck for each encryption. Table 14 contains the data from this
second round of tests.

Table 14: Second Round of Chi-Square Test Results

7.2 Chi-Square Test on One-Time Pads
A second randomness test is a slight variation of the previous Chi-Square test.

The first Chi-Square test measures the randomness of the ciphertexts. The second
Chi-Square test measures the randomness of the associated one-time pads.

A one-time pad is a random string of numbers that is used to encrypt a mes-
sage. For example, suppose that I want to encrypt attack at dawn. Since my
plaintext is 12 letters long, I randomly choose a string of 12 numbers to be my
one-time pad: 5 3 6 14 22 19 10 8 2 23 11 15. To encrypt the plaintext, I “add” the
one-time pad to the plaintext. Since I cannot add numbers to letters, I first con-
vert attack at dawn to numbers as per the following: a is represented with the
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number 1, b becomes 2, c becomes 3, and so forth. Now, I can add the one-time
pad to the plaintext.

Converting the sum back into letters gives us the ciphertext fwzoyd kb fxhc.
The reason that we are concerned with one-time pads is because it is the only
proven way to create perfect encryption. This is because the key is a truly random
string of numbers, and there is no way to crack the cipher other than by trying
every key by brute-force.

In this example, we applied a one-time pad to a plaintext in order to generate
a ciphertext. Consider doing the reverse process. If we take a ciphertext that we
have generated and subtract the plaintext from it, we get the one-time pad that
was used to encrypt the plaintext. However, let’s say that the plaintext was not
encrypted with a one-time pad. In this case, subtracting the plaintext from the
ciphertext tells us that the encryption process has the same effect as the calcu-
lated one-time pad. If this one-time pad is sufficiently random, this would act as
evidence in favor of the cipher’s security.

For my second test, I encrypted the same six ciphertexts using six different
keys. Instead of performing another Chi-Square test on the ciphertexts, I first
subtracted the plaintexts from the ciphertexts in order to find the six one-time
pads. I then carried out a Chi-Square test on each one-time pad. Table 15 lists the
results. Since the plaintexts are slightly shorter than the ciphertexts, the one-time
pads are the same length as the corresponding plaintexts.

Table 15: First Round of Chi-Square Test Results (One-Time Pad)

Table 16 contains the results from a second round of tests in which the same six
plaintexts were encrypted with six different decks.

Table 16: Second Round of Chi-Square Test Results (One-Time Pad)
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7.3 The Washington Test
In the previous tests, I encrypted different plaintexts with different deck keys.

With this third test, I encrypted different plaintexts with the same keyed deck. I
took the first 29,120 letters of George Washington’s Farewell Address and divided
them into 28 groups of 1040 letters. I then encrypted each group using the same
deck to create 28 ciphertexts of length 1044. Table 17 contains the Chi-Square
values and p-values of each ciphertext. The average p-value is 0.4614.

Table 17: Chi-Square Test Results of Washington’s Farewell Address

7.4 Interpreting the Results
The rationale for performing these tests is as follows. An English plaintext

tends to have a predictable distribution. Letters such as e and t occur very fre-
quently, whereas letters such as q and z are comparatively rare. These tests ex-
amine whether VICCard can transform a typical English letter distribution into
something more like pure randomness.

Executing these Chi-Square tests provides reasonable evidence as to VICCard
5.0’s ability to turn an English plaintext into a random message. Notice that most
of the ciphertexts and one-time pads have respectable p-values with the occasional
outlier. The first and second Chi-Square tests on the ciphertext yielded average
Chi-Square values of 0.4932 and 0.5945, respectively. In other words, on average
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there is about a 50/50 chance that the ciphertext is random. This is further reflected
by the average p-value of 0.4614 in the data from Washington’s Farewell Address.
The first and second Chi-Square tests on the one-time pads yielded average Chi-
Square values of 0.5488 and 0.3856, respectively.

Fortunately, many of the p-values are very high. Unfortunately, there are just
as many p-values that are less than optimal. Still, this is not necessarily a bad
thing. These low p-values are cause for concern if they are the result of a bias
within VICCard 5.0. In other words, is there a security weakness of VICCard 5.0
that is making it give us low p-values?

To ensure that this is not the case, I performed what is called a drill-down
test. I randomly picked the ninth group from Washington’s Farewell Address, en-
crypted it differently, and found that the letter D occurred 31 times, a recognizable
deviation from the expected 1044

52 ≈ 20.0769 times. I then tracked each D through
the encryption process to see if there was a feature of the cipher that caused a bias
towards encrypting D more than any other letter. Given the extensive amount of
substitutions that are performed (the checkerboard, the cipher block chaining, and
the lagged Fibonacci generators), I was unable to find any factors that steered the
cipher towards the letter D.

Instead, it appears that the high Chi-Square values are the result of an expected
level of variation. For example, the second Gettysburg Address ciphertext has
a Chi-Square value of 63.5060 and a p-value of 0.1123. Since the ciphertext
had 1158 letters, each letter was expected to occur about 1158

52 ≈ 22.2692 of the
time. The high Chi-Square is not because every letter significantly deviates from
occurring 22.2692 of the time. Instead, there were 7 outlying letters that occurred
about 10 times more or less than the expected number. This is an allowable level
of variation and is not necessarily a sign of a weakness.

To further confirm this, we will use the Empirical Rule. The Empirical Rule
states that with normal data distributions and binomial data distributions, the data
tends to follow a bell-shaped curve. Numerically, this means that about 68% of
the data falls within one standard deviation of the mean, about 95% of the data
falls within two standard deviations, and nearly all of the data falls within three
standard deviations2. For example, consider the encryption of the Declaration of
Independence. Since we expect each letter to occur 1

52 of the time and since there
are 6600 letters in the ciphertext, the standard deviation is√(

1
52

)(
1− 1

52

)(
1

6600

)
≈ 0.0016905.

Furthermore, the expected number of occurrences of each letter is 6600
52 ≈ 126.92.

This means that we expect 68% of the data to be within

(0.0016905)(6600)≈ 11.16

2The symbol for standard deviation is σ .
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of 126.92, 95% of the data to be within

(2)(0.0016905)(6600)≈ 22.31

of 126.92, and almost all of the data to be within

(3)(0.0016905)(6600)≈ 33.47

of 126.92. Tables 18 through 21 confirm that the data for the six plaintexts follow
this trend.

Table 18: Empirical Rule for First Round of Chi-Square Test Results

Table 19: Empirical Rule for Second Round of Chi-Square Test Results

Table 20: Empirical Rule for First Round of Chi-Square Test Results (One-Time
Pad)

Table 21: Empirical Rule for Second Round of Chi-Square Test Results
(One-Time Pad)
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8 Closing Thoughts

Ernő Rubik, the inventor of the Rubik’s cube, had a fond way of describing
his creation. He affirmed that the Rubik’s cube “embodies the tension of our most
basic contradictions: simplicity and complexity... and so forth” [14]. The cube is
simple because a brief glance is enough to figure out the goal of the puzzle. Only a
few seconds are needed to discover how the puzzle moves. However, determining
the correct sequence of these moves is what makes it complex. It is this blend of
simplicity and complexity that has driven the Rubik’s cube’s worldwide popularity
[14].

This is the driving force behind playing card ciphers. A deck of cards is
compact, portable, and readily accessible. However, its disarming simplicity is
belied by the 225-bits of entropy that are packed into it. Furthermore, drawing out
this wellspring of entropy is far from straightforward. The nascent field of playing
card ciphers has brought to light many fascinating methods of doing so. In this
research, I have presented my own contribution to this developing field.

VICCard 5.0 combines numerous cryptographic techniques. Certain features
are reminiscent of VIC, which intensely addled the FBI during the Cold War. VIC-
Card 5.0 also makes unique contributions of its own. It creates a novel substitution
checkerboard, and it affords the incredible convenience of containing numerous
keys in a single deck. In these regards, VICCard 5.0 distinguishes itself among
other playing card ciphers. Furthermore, as demonstrated by the Chi-Square tests,
it has the potential to create ciphertexts with respectable levels of randomness.

In a time when computer ciphers have become the industry standard, it is
useful to not completely discount low-tech options. Analyzing the features that
made hand ciphers secure for hundreds of years continues to inform and inspire
our understanding of information security as a whole. In creating VICCard 5.0,
my goal has been to show that computer ciphers have not entirely superseded hand
ciphers. Additional innovation is still yielding formidable ciphers and fascinating
cryptographic principles.
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Abstract

The three famous ancient Greek construction problems involve using only a straight-
edge and compass to double the cube, trisect an angle, and square the circle. At-
tempting these constructions have captivated geometers for centuries. It was not
until the nineteenth century that Wantzel proved the impossibility of doubling the
cube and trisecting an angle and Lindemann completed the proof of the impossi-
bility of squaring the circle. While the problems seem geometric in nature, prov-
ing the impossibility of these constructions requires abstract algebra. This paper
discusses the idea of constructible numbers, i.e., lengths that can be constructed
using only a compass and straightedge and will introduce two important theorems
concerning constructible numbers. In addition, a proof of the transcendence of
pi will be presented. Finally, based on these theorems and lemmas, proofs of the
three impossibilities will be presented.
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1 Introduction

Construction problems using a compass and straightedge became popular dur-
ing the time of the Ancient Greeks. From existing points and using only a compass
and straightedge, a person can connect any two points to create a line, or place the
compass on any point to create a circle centered at that point with a radius of an
existing line segment. However, when following the classical construction rules,
some geometric constructions become impossible to achieve with only straight-
edge and compass. This paper will discuss three famous impossibilities – that of
doubling the cube, trisecting an arbitrary angle, and squaring the circle. The book
Abstract Algebra and Famous Impossibilities provides a basis for this work [1].

1.1 Statement of the Impossibilities
The first problem is to construct a cube with twice the volume of a given cube.

For example, there exists a cube with sides of length 1; so its volume is 13 = 1
cubic unit. Thus a cube of twice that volume would be 2 cubic units with sides of
length 3

√
2. This is illustrated by figure 1.

Figure 1: Doubling the cube

The second problem is to trisect an arbitrary angle. While it may be easy to
do this for angles of certain measures, this problem is asking for a way to trisect
any arbitrary angle regardless of its measure. Figure 2 illustrates this problem.

Figure 2: Trisecting an angle
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The third problem is to construct a square with the same area as a circle with
a given radius. Again, for example assume there exists a circle of radius 1; so its
area would be π×12 = π. Thus, a square with the same area would have sides of
length

√
π. This is shown in figure 3.

Figure 3: Squaring the circle

1.2 Rules
For construction problems, one needs basic rules concerning the tools and

methods that can be employed to create points and lines; else one could simply
measure or guess a distance, create a point, and draw whatever is needed to com-
plete the construction. Classical construction problems always begin with some
existing points, and possibly line segments or circles. In Euclid’s Elements, the
postulates limit the construction of geometric objects to using only the compass
and unmarked straightedge to form lines and circles [4]. The classical rules re-
garding the construction of these three problems follow from Elements.

There are two ways one can form new points from existing points: circles, and
lines or line segments. The first way is how people often think of how to make
a line – take two existing points (Pi and Pj in Figure 4) and connect them with a
line. Where this line intersects existing objects (the dotted circle and line), new
points are created (X ,Y, and Z).

Figure 4: New points from a line

The other way in which to get new points is by drawing a circle, as shown
in Figure 5. Say there exists points Pj,Pk, and Pi, and the dotted line and circle
shown. Then one can set the compass at point Pi and draw a circle of radius the
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length of line segment PjPk. Where this circle intersects existing lines and circles,
new points are created (W,X ,Y,Z).

Figure 5: New points from a circle

These two ways are the only allowable methods to create new points, and lines
and circles can only be constructed by using points.

With these rules in place, we can define what a constructible number is.

Definition 1. A real number γ is constructible if, starting with two points P1,P2
one unit length apart and doing a finite number of the above two methods of
creating new points, we can create new points Pi,Pj such that the length of PiPj is
|γ| units.

1.2.1 Collapsible vs. Noncollapsible Compasses
For the classical problems, the compass is viewed as the Ancient Greeks

viewed it: as collapsing when lifted from the page. This means it cannot be used
to copy a distance AB by placing it centered at A with radius AB, then lifting the
compass to place at another point, say C, and marking off the distance AB. In-
stead, one can imagine a string being used as a compass, which when lifted from
the page collapses and loses the radius first marked. In the modern day, compasses
are usually noncollapsible, meaning they can keep their measurement when lifted
from the page. At first thought, it may seem that the collapsible compass is more
limited than the noncollapsible compass; this is not true. In fact, any construction
a noncollapsible compass can do the collapsible compass can also do, just requir-
ing more steps. Thus, we will use a noncollapsible compass for the constructions
in this paper, with the knowledge that they can be performed via a collapsing com-
pass if need be [6]. The following theorem will demonstrate this fact, referencing
figure 6.

Theorem 2 (Collapsible Compass Theorem). Given a point A and a line segment
BC, to construct a point D such that line segment AD can be constructed and
AD∼= BC.
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Figure 6: Figure to illustrate Theorem 2

Proof. Construct an equilateral triangle4ABE with base AB. This is a construc-
tion shown in Euclid’s Elements and thus can be performed. Construct a circle
centered at B through C. Let F be the point at which this circle intersects

−→
EB such

that B is between E and F. Construct a circle centered at E through F. Let D be
the point at which this circle intersects

−→
EA.

As ED and EF are both radii of the same circle, ED ∼= EF , so ED = EF.
Furthermore, as 4ABE is an equilateral triangle, EA ∼= EB and EA = EB. Now,
as A is between E and D, and B is between E and F, we have that EA+AD = ED
and EB+BF = EF. As EF = ED, we get EA+AD = EB+BF. Since EA = EB,
we can subtract those and have AD = BF. Finally, note that as BF and BC are both
radii of the same circle, BF ∼= BC and BF = BC. Thus, AD = BC, and we have
the line segment requested. �

2 History of the Problems

2.1 Background
The three famous problems discussed in this paper – doubling the cube, tri-

secting an arbitrary angle, and squaring the circle – all originated or became pop-
ular in the 5th century B.C. in ancient Greece [5]. Part of the appeal of these
problems is their apparent simplicity. It is straightforward to understand what
each construction seeks to accomplish, and there are only the two basic rules of
Euclidean construction to follow. In ancient Greece, there was even a word used
to describe those who dedicated their time to attempting to solve the problem of
squaring the circle. This word was τετραγωνιζ ειν “Tetragonidzein”, which
translates as “to occupy oneself with the quadrature” [1].

However simple these problems may seem, they proved to be extremely diffi-
cult, if not impossible, to accomplish using only straightedge and compass while
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following the construction rules. In fact, mathematicians soon started to suspect
they were impossible, and began attempting the problems with marked straight-
edge, other tools, and/or breaking the rules. Many important discoveries in the
field of geometry were made in attempts to solve these problems. These discover-
ies include the conic sections, as well as many cubic, quartic, and transcendental
curves [4]. The later section on “Attempts and Solutions” will describe some of
these alternate solutions.

It is harder to prove something is impossible than to prove it is possible. As
an example, considering the problem of “construct a circle.” To prove it possible,
one must only describe one way to construct a circle. But to prove it impossible,
it is not enough to have even 500 ways that do not work and be unable to find a
method to construct a circle. There is always the possibility, however slight, that
the next method tried will work. Thus, it takes more effort to prove impossibility.
In ancient Greece, when the three construction problems first became popular,
there were no ways found to perform the constructions abiding by the Euclidean
rules. There is reason to believe they thought it was impossible as they began
trying other methods and utilizing more tools than the unmarked straightedge and
compass alone. However, they were not able to prove that the constructions were
impossible.

This state of not being able to find a solution to the three construction prob-
lems, yet not being able to prove the impossibility of such solutions, remained the
case for almost 2,000 years. The problems also continued to intrigue mathemati-
cians, both professional and amateur, as they attempted to settle the question of
impossibility. Around 320 A.D., Pappus of Alexandria wrote The Collection. In
Book III, he discussed the three famous construction problems, and gave solutions
by using other means than simply straightedge and compass. In his work, Pappus
categorized problems as being “plane,” “solid,” or “linear.” Plane problems are
solvable with circles and lines only; solid problems require conic sections; and
linear problems need curves other than circles, lines, and conics to solve them. Of
interest, Pappus classified doubling the cube and trisecting an angle as solid prob-
lems, and squaring the circle as a linear problem. Thus, he implies that there is no
solution to the problems following the classical rules of only using compass and
straightedge [2]. Centuries later, in 1775, the Paris Academy passed a resolution
– Histoire de l’Académie royale, année 1775 p.61—to prohibit the examination
of proposed solutions to the three problems, as this was taking too much time that
could have been used more productively on other problems [1].

While doubling the cube, trisecting an arbitrary angle, and squaring the circle
are problems which are geometric in nature, the surprising fact is that proving the
constructions to be impossible requires the use of abstract algebra. As abstract
algebra was not discovered until the 19th century, this meant the impossibility
proofs were not able to be done until then. In 1837, Pierre Wantzel published his
paper “Recherches sur les moyens de reconnaı̂tre si un problème de Géométrie
peut se résoudre avec la règle et le compas” in the Journal de Mathématiques
Pures et Appliquées, proving the impossibility of doubling the cube and trisecting
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an arbitrary angle [8]. The proof of the impossibility of squaring the circle was
more complicated, as it necessitated proving the transcendence of the real number
Pi. This was accomplished by Ferdinand von Lindemann in 1882 in his paper
“Über die Zahl π”, published in Mathematische Annalen [7].

Figure 6: Figure to illustrate Theorem 2

2.2 Historical Origins
There are several stories behind the origin of the first construction problem—that

of doubling the cube. One such explanation concerns the tomb of King Minos’s
son Glaucus. He had died, and King Minos had constructed a tomb for him in
the shape of a cube. An unknown Greek poet was unsatisfied with the size of
the tomb and wrote that it should be doubled—a feat which he claimed could be
accomplished by simply doubling each side of the tomb’s dimensions. However,
when the sides of a cube are doubled, the surface area of that cube is now four
times as large, and the cube’s volume is eight times the original volume, not dou-
bled. This realization led to many geometers becoming interesting in finding a
way in which one could double a cube with compass and straightedge [4] [1].

Another explanation for the origins of the problem of doubling the cube comes
from the time of Pericles in ancient Greece. There was a great plague at that
time, killing almost a fourth of the population of Athens. Supposedly, a group
of people went to the oracle of Apollo at Delos, seeking wisdom on how to stop
this dreadful plague. The oracle told them that they must double the cubical altar
to Apollo, and then the plague would end. The messengers quickly went to the
altar and doubled each of its dimension. However, doubling each side of a cube
results in a cube with eight times the volume, and not double. Thus, the plague
was not averted. From this, the problem of doubling a cube by using straightedge
and compass was created called the “Delian problem,” a reference to the oracle of
Apollo at Delos [4]. The origins of the other two problems, trisecting an arbitrary
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angle and squaring the circle, do not have as interesting of stories. It is likely
that the problem of trisecting an arbitrary angle arose from attempts to construct a
regular 9-sided polygon. This construction would require trisecting a 60◦ angle [1]
[4]. The third problem of squaring the circle is sometimes called the quadrature
problem, which refers to its probable origin in attempting to calculate the area
enclosed by a circle . The problem itself has been around since before the ancient
Greeks; in 1800 B.C. Egyptians attempted to square a circle by making the sides of
the square 8

9 the length of the circle’s diameter. The first mention of this problem
in Greek mathematics is by Anaxagoras, who apparently used the problem as a
means to occupy himself while in prison [2] [4].

2.3 Attempts and “Solutions”
While actually completing the construction problems of doubling the cube,

trisecting an arbitrary angle, and squaring the circle eventually proved to be im-
possible, due to the popularity of the problems, there were many attempts made
to solve them. When doing the constructions following the Euclidean construc-
tion rules proved difficult, many geometers attempted to discover new ways to
accomplish the task.

The first construction problem of doubling the cube, or the Delian problem,
has a lengthy history of attempts to solve it. While actually completing the con-
struction with only straightedge and compass is impossible, as will be shown later
on, attempts to do so resulted in many mathematical discoveries. The first major
progress towards this problem came around 430 B.C. by Hippocrates. He reduced
the problem to the construction of two mean proportionals. A mean proportional
of two positive numbers a and b is the positive value of x such that a

x = x
b . Thus,

a is to x as x is to b, and we can write x2 = ab. Using modern algebraic notation,
we let s be the length of a side of the original cube, and x the length of a side of
the doubled cube. Then finding two mean proportionals results in the equations
y2 = 2sx and x2 = sy. Solving for y yields x3 = 2s3. This x will be the length of a
side of the doubled cube with the original cube having sides of length s [4]. This
reduction of the problem, while not immediately helpful, is actually used in the
eventual proof of the impossibility of doubling the cube. In ca. 400 B.C., Archy-
tas developed a solution involving higher geometry. His three-dimensional proof
involved the intersection of a right circular cylinder, torus, and right circular cone
[4]. Later, Eudoxus also solved the problem, again by going beyond straightedge
and compass, but unfortunately his solution has been lost [4]. In ca. 350 B.C.,
Menaechmus discovered conic sections as he sought a curve that had the neces-
sary properties for use in doubling the cube [2]. Eratosthenes and Nicomedes,
ca. 203 B.C., both used mechanical contrivances to double the cube. Also around
that time, Apollonius gave a new proof of a method to double the cube using more
than compass and straightedge. In ca. 180 B.C., Diocles discovered the cissoid
curve (figure 7), which he used to accomplish the doubling [4].
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Figure 7: Cissoid Curve

Regarding the second problem of trisecting an arbitrary angle, the ancient
Greeks were able to show that by using a compass and a marked instead of un-
marked straightedge, any angle could be trisected. In addition to using a marked
straightedge, many curves were also discovered and found useful in trisecting an-
gles. In ca. 240 B.C., Nicomedes used the conchoid curve (figure 8) for trisecting
angles.

Figure 8: Conchoid Curve

In roughly 425 B.C. Hippias of Elis discovered the trisectrix curve, (figure 9),
which he used to trisect an arbitrary angle [4]. This same curve was also used
later to square the circle. The 3rd century B.C. renowned Greek mathematician
Archimedes was, like many others, interested in solving the three problems. He
succeeded in trisecting an arbitrary angle and squaring the circle, of course break-
ing the rules like all others.
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Figure 9: Trisectrix Curve

The extra object he used was what is now called the Archimedean spiral, (fig-
ure 10). This spiral is the locus of a point that is moving uniformly away from
the endpoint of a ray or half line while that ray or half line is also rotating uni-
formly about its endpoint. In modern day polar coordinates the equation of an
Archimedean spiral is given by r = aθ [2]. By using the spiral, Archimedes was
able to complete the trisection of an arbitrary angle.

Figure 10: Spiral of Archimedes

Conics can also be used to trisect angles, however the proof of trisection involving
conics was not completed until around 300 A.D. by Pappus [4]. In addition to
curves, many mechanical inventions have been created for the purpose of angle
trisection, including the tomahawk which was first published in 1835 [4].

As mentioned previously, the first Greek person recorded to have worked on
the problem of squaring the circle was Anaxagoras in around 450 B.C.. However,
his contributions to this problem are unknown [4]. Around the same time, Hip-
pocrates of Chios successfully squared some special types of lunes. He hoped that
squaring a lune would become a first step towards squaring the circle, but it did
not [2] [4]. Dinostratus, brother to Menaechmus who had worked on doubling the
cube, “solved” the problem of squaring the circle. Like his brother, Dinostratus
knowingly broke the rules of allowing only lines and circles to be used in the con-
struction. His proof used the trisectrix that Hippias had discovered in his attempts
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to trisect an angle. With this trisectrix, he was able to show how one could square
the circle. This curve later became known as the quadratrix, referring to its use in
squaring the circle [2]. While he broke the classical construction rules, this squar-
ing of the circle was still mathematically helpful. Many such attempts resulted
in the discovery of new curves. In ca. 225 B.C., Archimedes used his spiral of
Archimedes in yet another method of squaring the circle [4].

3 Algebra Background

Abstract algebra concepts and ideas that will be needed throughout the remainder
of this paper are the following: fields, field extensions, and algebraic numbers.
Unless noted otherwise, the definitions in this section come from Durbin’s book
Modern Algebra [3].

3.1 Rings and Fields

Definition 3. A ring is a set R together with two operations on R, called addition
(a+b) and multiplication (ab) such that

i) R with addition is an Abelian group,
ii) R with multiplication is associative, and

iii) a(b+ c) = ab+ac and (a+b)c = ac+bc for all a,b,c,∈ R.

An example of a ring is the set Z of integers. The integers form an Abelian
group under addition, and satisfy both associativity and commutativity under mul-
tiplication.

Definition 4. A commutative ring in which the set of nonzero elements forms a
group with respect to multiplication is called a field.

Some examples of fields include the set Q of rational numbers, or the set
R of real numbers. The set Z of integers however is not a field, since it lacks
multiplicative inverses, i.e. fractions.

3.2 Polynomials

Definition 5. If R is a commutative ring, and a0,a1, . . .an ∈ R, then an expression
of the form

a0 +a1x+a2x2 + · · ·+anxn

is called a polynomial in x. The set of all polynomials in x over R is denoted R[x].

So, for example, Z[x] would be the set of all polynomials with integer coeffi-
cients. This would include such polynomials as f (x) = x3− 9x2 + 543x+ 900−
2,g(x) = 5, and h(x) = 8x43.

The following two definitions are restricted in generality for the purposes of
this paper. The notation used comes from the book Abstract Algebra and Famous
Impossibilities [1].
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Definition 6. The irreducible polynomial of α , written irr(α,Q), is the unique,
irreducible, monic polynomial f (x) ∈Q[x] of least degree such that f (α) = 0.

For example, the irreducible polynomial of
√

2 is irr(
√

2,Q) = x2−2.

Definition 7. The degree of α , written deg(α,Q), is the degree of the polynomial
irr(α,Q).

For the previous example, the degree of
√

2 would be deg(
√

2,Q) = 2.

3.3 Extension Fields

Definition 8. If E and F are fields, then E is said to be an extension field of F if
E contains a subfield isomorphic to F.

The set R of real numbers is an extension field of the set Q of rational num-
bers.

3.4 Algebraic Numbers

Definition 9. Assume that E is an extension field of F. An element α ∈ E is said
to be algebraic over F if α is a solution of some polynomial equation with coef-
ficients in F. If an element in E is not algebraic over F, then it is called transcen-
dental.

For example, the number 17 is algebraic over Q as it is the solution of the
polynomial x−17 = 0. In this case 17 is algebraic over Q and is also an element
of Q. However, the number 3

√
2 is also algebraic over Q, as it is an element of an

extension field of Q and is a solution of the polynomial equation x3−2 = 0.

4 Constructible Numbers

With this algebra background, we can now present some theorems concern-
ing constructible numbers. Recall from Definition 1 that the set of constructible
numbers consists of all the lengths of line segments one can create starting from
a unit length of one. With this definition, it is fairly intuitive to see that one can
add and subtract numbers–one simply copies the length of the segment to add or
subtract onto the existing segment. Thus the set of integers is a subset of the set
of constructible numbers. It can also be shown that multiplication and division
can be accomplished, hence the set of the rationals is also a subset of the set of
constructible numbers.

To demonstrate multiplication, we refer to figure 11. Let α,β be the numbers
you desire to multiply. Begin with the following setup: two line segments of
length α,β respectively, and an angle with vertex point O.
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Figure 11: Multiplication

Mark points A and B on the angle, so that OA is length α and OB is length β . Mark
point U on

−→
OB so that OU is length one. Connect U,A to form a line segment

UA. Then, through B, construct a line segment parallel to UA, and mark where
it intersects

−→
OA as point X . Now, as UA ‖ BX ,∠OUA ∼= ∠OBX , and ∠OAU ∼=

∠OXB. Furthermore, ∠UOA = ∠BOX . Thus, 4OUA ∼4OBX . As the sides of
similar triangles are in proportion to each other, we get that

OX
OA

=
OB
OU

.

We know that OA = α , OB = β , and OU = 1. Thus

OX
α

=
β

1
,

and solving for OX we get
OX = αβ .

The idea for division is quite similar, also involving the use of similar trian-
gles.

With the operations of addition, subtraction, multiplication, and division now
apparent, it follows that the set of all constructible numbers forms a field.

Theorem 10. The set of all constructible numbers forms a field.

Proof. As shown above, we can perform addition, subtraction, multiplication,
and division. As the set of the constructible numbers is a subset of the reals,
it follows that we have associativity and commutativity under both addition and
multiplication. Hence, the set of constructible numbers is a subset of the set R of
real numbers. �

In addition to the field operations of addition, subtraction, multiplication, and
division, we can also construct line segments with length the square root of any
constructible number.

Figure 12 visualises the construction of square roots. Begin with two line
segments of length 1 and α , and a line with point O marked on it. Copy the length
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α onto the line, creating line segment OA, so the length of OA is α . Copy the
segment of length 1 to create line segment UO, with UO having length 1. Bisect
UA to create point M, and then draw a semi-circle with center M and radius MA.
Draw a line through O perpendicular to UA, and let X be the point where this line
intersects the semi-circle.

Figure 12: Square Root

As 4XUA is inscribed in a semi-circle, it follows that ∠UXA = 90◦. Thus, as
4UOX and4XUA are both right triangles, and it follows that∠OXU ∼=∠UAX =
∠OAX .

Now consider the right triangles 4UOX and 4XOA. As ∠UOX ∼= ∠XOA
and ∠OXU ∼= ∠OAX ,4UOX ∼4XOA by definition of similar triangles. As the
sides of similar triangles are in proportion to each other, it follows that

OX
UO

=
OA
OX

.

We know that OA = α , and UO = 1. Thus

OX
1

=
α

OX
,

and solving for OX we get

(OX)2 = α, OX =
√

α.

4.1 Two Important Theorems
With these preliminaries, we are finally ready state two important theorems.

The first one concerns constructible numbers.
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Theorem 11 (All Constructibles Come From Square Roots). A real number γ is
constructible if and only if there exist positive real numbers
γ1,γ2, . . .γn such that

γ1 ∈ F1 where F1 =Q,
γ2 ∈ F2 where F2 = F1(

√
γ1),

.

.

.
γn ∈ Fn where Fn = Fn−1(

√
γn−1),

and
γ ∈ Fn+1 where Fn+1 = Fn(

√
γn).

Proof. (⇒) When intersecting lines, circles, or a circle and line to get new points,
the worst that can happen is the need to create more square roots. Assume γ is
constructible, so a line segment of length |γ| can be constructed. By Definition 1,
a real number γ is constructible if, starting with two points P1,P2 one unit length
apart and doing a finite number of the above two methods of creating new points,
we can create new points Pi,Pj such that the length of PiPj is |γ| units.

To find the length of this line segment, we need the coordinates of each of
the endpoints. These can be found in cases, as by the rules of construction each
endpoint is formed by either the intersection of two lines, a line and a circle, or
two circles.

i) For the intersection of two lines, let the equations of the lines be ax+by+
c = 0 and dx+ey+ f = 0 respectively, where a,b,c,d,e, f are constructible num-
bers. Then x,y are found by solving the two simultaneous linear equations, some-
thing that can be accomplished using only field operations, so the coordinates of
the intersection point is also a constructible number as the set of all constructible
numbers forms a field.

ii) For the intersection of a line and a circle, let the equations of the line and
circle be ax+ by+ c = 0 and x2 + y2 + dx+ ey+ f = 0 respectively, again with
a,b,c,d,e, f ∈ F constructible numbers where F is a field. Then we can solve the
quadratic equation for x, and then substitute into the linear equation to get y. At
most, this will introduce square roots, so we can get that the coordinates are either
in F or in a quadratic extension field of F. In either case, the intersection point
is constructible as we can take a square root of an element in F and multiply it
through to obtain the extension field.

iii) For the intersection of two circles, let the equations be x2 +y2 +ax+by+
c= 0 and x2+y2+dx+ey+ f = 0. Then these two circles meet at the intersection
of the first circle x2 + y2 +ax+by+ c = 0 and the line (a−d)x+(b− e)y+(c−
f )= 0. Now, we have the form of a line and a circle intersecting, so the conclusion
is the same as before.

Now, the distance between two constructible numbers will be constructible,
as the set of constructible numbers forms a field and we can perform square root
operations. Applying the distance formula to the constructible endpoint coordi-
nates gives the length |γ| in terms of rationals and square roots. Thus we can build
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the tower of fields as desired.

(⇐) Assume there exists positive real numbers γ1,γ2, . . .γn such that the tower
of fields listed in the theorem holds. As each field extension is done by adjoining
a square root starting with the constructible field of the rationals, this is con-
structible as we can take successive square roots to adjoin to each field. Thus, γ is
constructible. �

With this theorem proven, the following are some examples of constructible

numbers: 5, 3
4 ,

2
3 +
√

8,
√

3
8 +
√

2, and 5
8

√
3+
√

7−2
√

3
1−
√

3
. Thus, even though a num-

ber may look complicated, a line segment of its length can still potentially be
constructed with straight edge and compass.

That all constructible numbers come from square roots lays the foundation
for the next theorem, which is key for proving the impossibility of the three Greek
constructions.

Theorem 12. If a real number γ is constructible, then deg(γ,Q) = 2s for some
integer s≥ 0, and γ is algebraic.

Proof. Let γ ∈ R be constructible, and let γ1,γ2 . . .γn be as in Theorem 11. Con-
sider

√
γi, which is a zero of the polynomial p(x) = x2− γi. By definition, p(x) ∈

Fi[x] because γi ∈ Fi. Thus, deg(
√

γi,Fi) cannot be greater than 2, so it is either 1
or 2. Now, as Fi+1 = Fi(

√
γi), it follows that [Fi+1 : Fi] = 1 or 2. Thus, looking at

the successive tower of fields, the degree of γ must be 2s where s is the number of
times the degree of [Fi+1 : Fi] equals 2.

Now, as the degree of γ over Q is 2s, every set of 2s + 1 elements must be
linearly dependent over Q. Consider the set {1,γ,γ2, . . .γ2s}. As this set has 2s+1
elements, it is linearly dependent over Q and thus there exists c0,c1, . . . ,c2s ∈ Q,
not all zero, such that c01+c1γ+ . . .c2sγ2s

= 0. Letting p(x)= c0+c1x+ . . .c2sx2s
,

it follows that γ is a zero of p(x). Thus γ is algebraic by definition. �

5 Transcendence of π

To prove the impossibility of the third construction–that of squaring the cir-
cle–it first must be shown that π is not algebraic. This was done by Ferdinand
von Lindemann in 1882 in his paper “Über die Zahl π”, published in Mathema-
tische Annalen [7]. The proof we will present of the fact that π is transcendental
is an adaptation of the approach used in the book Abstract Algebra and Famous
Impossibilities [1]. We begin with the following propositions.

Proposition 13. Let F be a field and let t(x) ∈ F[x] be a polynomial of degree
n with n zeros α1,α2, . . . ,αn in some extension field E of F. Assume that k ∈ Z,
1≤ k ≤ n, and let γ1,γ2, . . . ,γm be all the sums of exactly k of the αi’s. Then there
is a monic polynomial tk(x)∈ F[x] of degree m which has γ1,γ2, . . . ,γm as its zeros.
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Proof. For the proof of this proposition we refer to the book Abstract Algebra and
Famous Impossibilities [1]. �

For an example of the above theorem, we can consider the polynomial
f (x) = x3− 3x2 + 4x− 12 ∈ Q[X ]. This is a polynomial of degree 3 with three
zeros: −

√
2,
√

2,3. Thus, in this case, n = 3, α1 = −
√

2,α2 =
√

2 and α3 = 3.
Consider the case of k = 2. All the possible ways to sum exactly two of the alpha’s
are as follows: γ1 =

√
2−
√

2 = 0,γ2 =
√

2+ 3,γ3 = 3−
√

2. Now the theorem
asserts that there is a monic polynomial tx(x) of degree three that has γ1,γ2,γ3 as
its zeros. We can find this by multiplying (x)(x− 3+

√
2)(x− 3−

√
2) to get

t2(x) = x3−6x2 +7x.

Proposition 14. Suppose π is algebraic over Q. Then there exists
m,q,b,b0 ∈ Z with m,q,b ≥ 1 and β1,β2, . . .βm ∈ C with β1,β2, . . .βm 6= 0 such
that

eβ1 + eβ2 + · · ·+ eβm +q = 0 (1)

and the polynomial

h(x) =b(x−β1)(x−β2) · · ·(x−βm)

=bxm +bm−1xm−1 + · · ·+b0
(2)

has integer coefficients.

Proof. Suppose π is algebraic over Q. Then as i is algebraic over Q, being a
root of the polynomial f (x) = x2 + 1, it follows that iπ is also algebraic over Q.
Let t(x) = irr(iπ,Q), so t(x) is a monic polynomial with rational coefficients, and
t(iπ) = 0. By the Fundamental Theorem of Algebra, we can factor t(x) as

t(x) = (x−α1)(x−α2) · · ·(x−αk)

where α1,α2, . . .αk ∈ C. As t(iπ) = 0, one of these αi’s must equal iπ . Without
loss of generality, say α1 = iπ . Since eiπ = −1, we have that (eiπ + 1) = 0. As
α1 = iπ , (eα1 +1) = 0 and

(eα1 +1)(eα2 +1) · · ·(eαk +1) = 0 (3)

If we expand equation 3, we have 2k terms on the left hand side. Simplifying
using the property that ez1ez2 = ez1+z2 , we get

eγ1 + eγ2 + · · ·+ eγN +1 = 0 (4)

where N = 2k−1 and γi is a sum of αi’s. Now, applying Proposition 13, we have
that
∃ a monic polynomial t1(x) ∈Q[x] which has all the αi’s as its zeros,
∃ a monic polynomial t2(x) ∈Q[x] which has all the sums of exactly 2 αi’s as

its zeros,
. . .
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∃ a monic polynomial tk(x) ∈Q[x] which has all the sums of exactly k αi’s as
its zeros.
Thus, if

T (x) = t1(x)t2(x) · · · tk(x)

then T (x) is monic, has rational coefficients, and has all N = 2k−1 γi’s as its zeros
and

T (x) = (x− γ1)(x− γ2) · · ·(x− γN). (5)

We note that some of the γi’s might be zero, so if there are q1γi’s equal to zero,
we write equation 4 as

eβ1 + eβ2 + · · ·+ eβm +q = 0

where β1,β2, . . .βm ∈ C,β1,β2, . . .βm 6= 0 and q = q1 + 1. As q ∈ Z,q > 0, we
have now fulfilled the requirements of (1) for this proposition.

Now, for the second part of this proposition, note that m ≥ 1 or else by (1),
q = 0 which can’t be as q = q1 +1 and q1 ≥ 0.

With the notation of βi’s and q as previously, we rewrite equation 5 as

T (x) = xq−1(x−β1)(x−β2) · · ·(x−βm). (6)

Now, T (x) is a polynomial with rational coefficients, xq−1 has rational coefficients,
so (x−β1)(x−β2) · · ·(x−βm) must also have rational coefficients. Letting h(x) =
(x−β1)(x−β2) · · ·(x−βm) and multiplying by a sufficiently large b∈Z to cancel
out any possible denominators, we get

h(x) = b(x−β1)(x−β2) · · ·(x−βm) = bxm +bm−1xm−1 + · · ·+b0. (7)

with b0 ∈ Z. Thus h(x) has integer coefficients as desired. �

Proving the transcendence of π will require the use of multiple lemmas pre-
sented below.

Lemma 15. For every k ∈ Z,k ≥ 0, there exists a polynomial gk(x) ∈ R[x] such
that, for every r ∈ R, ∫ 1

0
(ur)ke−urr du = k!− e−rgk(r) (8)

Proof. The proof follows from mathematical induction and integration by parts.
For k = 0, note that

∫ 1

0
(ur)0e−urr du =

∫ 1

0
e−urr du =−e−ur

∣∣∣∣∣
1

0

=−e−1r + e0 = 1− e−r = 0!− e−r.

Thus, letting g0(r) = 1, we have that (8) is true for k = 0.
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Next, we assume that (8) is true for some k ∈ Z,k ≥ 0. Then, for k+ 1, by
integration by parts we get

∫ 1

0
(ur)k+1e−urr du =−(ur)k+1e−ur

∣∣∣∣∣
1

0

+(k+1)
∫ 1

0
(ur)ke−urr du.

Simplifying and applying the induction hypothesis, we get that this is equal to

−rk+1e−r +(k+1)(k!− e−rgk(r))

=− rk+1e−r +(k+1)k!− (k+1)e−rgk(r)

=(k+1)!− e−r(rk+1 +(k+1)gk(r)).

If we let rk+1 +(k+ 1)gk(r) be gk+1(r), we have the desired form. Thus (8) is
true for k+ 1, and by the principle of mathematical induction, (8) is true for all
k ∈ Z,k ≥ 0. �

As an example of applying the above theorem, the case of k = 0 is already
shown as the base step in the proof. For the case of k = 1, it can be shown that∫ 1

0 (ur)1e−urr du = 1!− e−rg1(r) where g1(x) = x+ 1. For k = 2, the resulting
equation is

∫ 1
0 (ur)2e−urr du = 2!− e−rg2(r) where g2(x) = x2 +2x+1.

The next lemma is very similar to the previous one.

Lemma 16. For every k ∈ Z,k ≥ 0, there exists a polynomial hk(x) ∈ R[x] such
that, for every r ∈ R, ∫ 1

0
(ur− r)ke−urr du = hk(r)− e−rk!. (9)

Proof. For k = 0, note that

∫ 1

0
(ur− r)0e−urr du =

∫ 1

0
e−urr du

=− e−ur

∣∣∣∣∣
1

0

=−e−r + e0

=1− e−r = 1− e−r0!.

Thus, letting h0(r) = 1, we have that (9) is true for k = 0.
Now, assume (9) is true for some k ∈ Z, k 6= 0. Then, for k + 1, applying

integration by parts gives
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∫ 1

0
(ur− r)k+1e−urr du =− (ur− r)k+1e−ur

∣∣∣∣∣
1

0

+

∫ 1

0
(k+1)(ur− r)ke−urr du

=(−r)k+1 +(k+1)
∫ 1

0
(ur− r)ke−urr du

=(−r)k+1 +(k+1)[hk(r)− e−rk!]

=(−r)k+1 +(k+1)hk(r)− e−r(k+1)k!

=(−r)k+1 +(k+1)hk(r)− e−r(k+1)!.

Let (−r)k+1 +(k+ 1)hk(r) be hk+1(r). Then (9) holds for k+ 1. Therefore,
by the principle of mathematical induction, (9) is true for all k ∈ Z,
k ≥ 0. �

Lemma 17. Given a polynomial f (x) ∈ R[x], there exists M ∈ R and
G(x) ∈ R[x] such that, for every r ∈ C,∫ 1

0
f (ur)e−urr du = M− e−rG(r).

Proof. Let f (x) ∈ R[x] = amxm + · · ·+a1x+a0. Then

∫ 1

0
f (ur)e−urr du =

∫ 1

0
(am(ur)m + · · ·+a1(ur)+a0)e−urr du

=
∫ 1

0
(am(ur)me−urr+ · · ·+a1(ur)e−urr+a0e−urr) du

=
∫ 1

0
am(ur)me−urr du+ · · ·+

∫ 1

0
a1(ur)e−urr du+

∫ 1

0
a0e−urr du

= am

∫ 1

0
(ur)me−urr du+ · · ·+a1

∫ 1

0
(ur)e−urr du+a0

∫ 1

0
e−urr du

= am(m!− e−rgm(r))+ · · ·+a1(1!− e−rg1(r))+a0(0!− e−rg0(r))

= (amm!+ · · ·+a11!+a00!)− e−r(amgm(r)+ · · ·+a1g1(r)+a0g0(r)).

Let
M = amm!+ · · ·+a11!+a00! ∈ R

and
G(x) = amgm(r)+ · · ·+a1g1(r)+a0g0(r) ∈ R[x]

as each gi(x) ∈ R[x]. Then
∫ 1

0 f (ur)e−urr du = M− e−rG(x). �
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For an example of this lemma, consider the polynomial f (x) = 3x2−8x+4.
Calculating ∫ 1

0
f (ur)e−urr du =

∫ 1

0
(3x2−8x+4)e−urr du

gives, after simplification, 2− e−r(3r2− 2r− 1). Thus we have that M = 2 and
G(x) = 3x2−2x−1.

For the proof of the next lemma, we will need the following lemma about
polynomials in the reals.

Lemma 18. For g(x),h(x) ∈ R[x], if g(x) = h(x)e−x for every x ∈ R, then
g(x) = h(x) = 0.

Proof. Let g(x),h(x)∈R[x] such that g(x) = h(x)e−x ∀x∈R. Then h(x) = g(x)ex.
Differentiating this equation gives

h′(x) = g(x)ex +g′(x)ex,

and multiplying by g(x) we have

g(x)h′(x) = ex(g(x))2 + exg(x)g′(x).

We know that h(x) = g(x)ex, so by substitution

g(x)h′(x) = h(x)g(x)+h(x)g′(x).

Rearranging terms gives

g(x)h(x) = h′(x)g(x)−h(x)g′(x).

Now, note that if either g(x) or h(x) equals 0, as g(x) = h(x)ex, it follows that
g(x) = h(x) = 0. Thus, assume both g(x),h(x) 6= 0. Let the deg(g(x)) = m and
deg(h(x)) = n, where m,n 6= 0. Then the deg(g′(x)) = m− 1 and deg(h′(x)) =
n− 1. It follows that the degree of g(x)h(x) would be m + n. The degree of
h′(x)g(x) would be m+n−1, and the degree of g′(x)h(x) would also be m+n−1,
so the degree of h′(x)g(x)− g′(x)h(x) would be ≤ m+ n− 1. Now, g(x)h(x) =
h′(x)g(x)−g′(x)h(x) so the degrees of these two polynomials should be equal, but
m+n > m+n−1. This is a contradiction, so the assumption that g(x),h(x) 6= 0
is false and thus h(x) = g(x) = 0. �

Lemma 19. M and G(x) as in Lemma 17 are unique in the sense that, if
p1(x), p2(x) ∈ R[x] such that∫ 1

0
f (ur)e−urr du = p1(r)− e−r p2(r)

for every r ∈ C, then p2(x) = G(x) and p1(x) = M (a constant).
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Proof. Assume that ∀r ∈ C∫ 1

0
f (ur)e−urr du = p1(r)− e−r p2(r).

By Lemma 17, we know that∫ 1

0
f (ur)e−urr du = M− e−rG(r)

for some M ∈ R and G(x) ∈ R[x]. Thus,

M− e−rG(r) = p1(r)− e−r p2(r)

and
M− p1(r) = e−r(G(r)− p2(r)).

Now M − p1(x) and G(x)− p2(x) are both polynomials over the reals, so by
Lemma 18, each polynomial is equal to 0. Thus,

M = p1(x)

and
G(x) = p2(x).

�

With these lemmas completed, we are now ready to state a definition.

Definition 20. Let

f (x) =
xp−1(h(x))p

(p−1)!
(10)

where the polynomial h(x) is given by (2) and (7), and p is prime, p > q,b, |b0|,
with q,b, |b0| as in Proposition 14. Let n = mp+ p− 1, so n = deg f (x). Let
M,G(x) be as in Lemma 17. For r ∈ {β1,β2, . . .βm}, we define

Mr = bnG(r)

and

εr = bner
∫ 1

0
f (ur)e−urr du.

Now, we need still more lemmas.

Lemma 21. M from Lemma 17 is an integer which does not have p as a factor
when p > |b0| where b0 is as in (7).
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Proof. From (10), we have that

f (x) =
xp−1(h(x))p

(p−1)!
.

Using equation 7,

f (x) =
1

(p−1)!
xp−1(bxm +bm−1xm−1 + · · ·+b0)

p

Expanding f (x) in powers of x, we can rewrite f (x) as

f (x) =
1

(p−1)!
(ap−1xp−1 +apxp + · · ·+anxn) (11)

where ap−1, . . .an ∈ Z and ap−1 = bp
0 6= 0.

Now consider
∫ 1

0 f (ur)e−urr du. Substituting (11) for f (x), we get

∫ 1

0
f (ur)e−urr du

=
∫ 1

0

1
(p−1)!

(ap−1(ur)p−1 +ap(ur)p + · · ·+an(ur)n)e−urr du.

By linearity of integration, we have

=
1

(p−1)!

(
ap−1

∫ 1

0
(ur)p−1e−urr du+ · · ·+an

∫ 1

0
(ur)ne−urr du

)
.

Applying Lemma 15 yields

=
1

(p−1)!
(ap−1(p−1)!+ap p!+ · · ·+ann!)− e−r(some polynomial)

By Lemma 19 concerning uniqueness, we conclude that

M =
1

(p−1)!
(ap−1(p−1)!+ap p!+ · · ·+ann!)

=ap−1 +ap p+ · · ·+an
(
n(n−1) · · ·(p+1)p

)
.

As ai, p,n ∈ Z, we have that M ∈ Z. Also, it is obvious that p is a factor of each
term of M except possibly ap−1. To show that p is not a factor of M, recall that
ap−1 = bp

0 . Now, as each βi 6= 0 from Proposition 14, it follows that b0 6= 0. Since
p is prime, when p > |b0| it follows that p cannot divide b0 and thus cannot divide
bp

0 . �
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Now we will manipulate f (x) and prove another lemma. We expand f (x)
from equation 10 in powers of (x− r), r ∈ C. Then,

f (x) =
1

(p−1)!
(d0(r)+d1(r)(x− r)+ · · ·+dn(r)(x− r)n) (12)

where d0(x),d1(x), . . .dn(x) ∈ Z[x].

Lemma 22. With notation as in (12), if r ∈ {β1,β2, . . . ,βm} then d0(r) = d1(r) =
· · ·= dp−1(r) = 0.

Proof. By definition of h(x) in (7), it follows that (x− r)p is a factor of h(x)p.
Thus we can write f (x) = 1

(p−1)!(x− r)pg(x) for some g(x). Expanding this g(x)
in powers of (x− r) and multiplying through, we get

f (x) =
1

(p−1)!
(bp(x− r)p +bp+1(x− r)p+1 + · · ·+bn(x− r)n). (13)

Note that n > p by definition of n. Now we equate coefficients from equations
(13) and (12). It follows that all the coefficients on
(x− r)less than p power are zero. �

With Lemma 22, we are ready to prove the following.

Lemma 23. There exists a polynomial G1 ∈ Z[x] of degree at most n such that
G(r) = pG1(r),∀r ∈ {β1,β2, . . .βm}, where the βi’s are as in Proposition 14.

Proof. Using equation (12),

∫ 1

0
f (ur)e−urr du

=
∫ 1

0

1
(p−1)!

(d0(r)+d1(r)(ur− r)+ · · ·+dn(r)(ur− r)n)e−urr du

=
1

(p−1)!

(
do(r)

∫ 1

0
e−urr du + d1(r)

∫ 1

0
(ur− r)e−urr du + . . .

+ dn(r)
∫ 1

0
(ur− r)ne−urr du

)
.

Applying Lemma 16, it follows that this is a difference of two terms, where the
second term is

e−r

(p−1)!
(d0(r)+d1(r)1!+ ...+dp(r)p!+ · · ·+dn(r)n!).

From Lemma 19 concerning uniqueness, we have that

G(r) =
1

(p−1)!
(d0(r)+d1(r)1!+ · · ·+dn(r)n!).
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From Lemma 22, when r ∈ {β1,β2, . . .βm}, we know that d0(r) = d1(r) = · · · =
dp−1(r) = 0. Thus,

G(r) =
1

(p−1)!
(dp(r)p!+ · · ·+dn(r)n!).

Distributing the 1
(p−1)! factor, we have

G(r) =
1

(p−1)!
dp(r)p!+ · · ·+ 1

(p−1)!
dn(r)n!.

Factoring out the p term yields

G(r) = p
(

dp(r))+dp+1(r)(p+1)+ · · ·+dn(r)
(
(n)(n−1) · · ·(p+1)

))
.

Letting

G1(x) = dp(x)+dp+1(x)(p+1)+ · · ·+dn(x)
(
(n)(n−1) · · ·(p+1)

)
we have

G(r) = pG1(r)

Now, as all the di(x) ∈ Z[x] and are of degree at most n, G1(x) is also of degree at
most n. �

Lemma 24. Let f (x) and n be as given in Definition 20. For r ∈ {β1,β2, ..βm}, let
εr be as given by Definition 20, so εr = bner ∫ 1

0 f (ur)e−urr du. Then limp→∞ εr = 0.

Proof. Let u∈ [0,1], x= ur, r = r1+ir2,r1,r2 ∈R. We know that er = er1(cos(r2)+
isin(r2)). Thus, |er| = er1 , and |e−ur| = e−ur1 ≤ e|r1|. From (10) and (2), we get
that

| f (x)|=
∣∣∣∣ xp−1

(p−1)!
bp(x−β1)

p(x−β2)
p . . .(x−βm)

p
∣∣∣∣ .

Thus,

| f (x)|=
∣∣∣∣ xp−1

(p−1)!
bp(x−β1)

p · · ·(x−βm)
p
∣∣∣∣

≤ |r|
p−1

(p−1)!
bp(|r|+ |β1|)p(|r|+ |β2|)p · · ·(|r|+ |βm|)p.

Note that 1 is the length of the interval of integration and

|r|p−1

(p−1)!
bp(|r|+ |β1|)p(|r|+ |β2|)p · · ·(|r|+ |βm|)pe−urr

is an upper bound for | f (ur)e−urr|.
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It can be shown [1] that an upper bound for the modulus of an integral
∣∣∣∫ b

a f (x) dx
∣∣∣

when | f (x)| ≤ c ∀x ∈ [a,b] is the following:∣∣∣∣∫ b

a
f (x) dx

∣∣∣∣≤ 2c(b−a).

Thus,

bner
∫ 1

0

∣∣ f (ur)e−urr
∣∣ du

≤ bner ∗2∗ |r|
p−1

(p−1)!
bp(|r|+ |β1|)p(|r|+ |β2|)p · · ·(|r|+ |βm|)p|e−urr|.

As n = mp+ p−1, |er|= er1 , and |e−ur| ≤ e|r1|, we have

bner
∫ 1

0

∣∣ f (ur)e−urr
∣∣ du

≤ bmp+p−1er1 ∗2∗ |r|
p−1

(p−1)!
bp(|r|+ |β1|)p(|r|+ |β2|)p · · ·

(|r|+ |βm|)pe|r1||r|

≤ Cp

(p−1)!
2er1e|r1|,

where C = bm+2|r|(|r|+ |β1|)(|r|+ |β2|) · · ·(|r|+ |βm|).
Note that C is independent of p. Thus, if we can show that Cp

(p−1)! → 0 as
p→ ∞, we would have the desired result. To that end, let m ∈ Z,m > 1,m≥ 2C.
Then, for every p≥ m, we have

Cp

(p−1)!
=

C
1

C
2

C
3
· · · C

(m−1)
C
m
. . .

C
(p−1)

C

≤C
1

C
2

C
3
· · · C

(m−1)
1
2

1
2
· · ·C =

d
2p−m

where d = C
1

C
2

C
3 . . .

C
(m−1)C. Thus,

Cp

(p−1)!
≤ d

2p−m

and
lim
p→∞

d
2p−m = 0

so
lim
p→∞

Cp

(p−1)!
= 0.
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As

bner
∫ 1

0
| f (ur)e−urr| du≤ Cp

(p−1)!
= 0

we have
lim
p→∞

εr = 0.

�

With the help of all these lemmas, the actual proof of π being transcendental
is rather straightforward.

Theorem 25. π is transcendental.

Proof. Suppose π is algebraic. Let p be prime, p > q,b, |b0| where q,b,b0 are as
in Proposition 14. Let f (x) and n be as defined in Definition 20.

By Lemma 21, we have that ∃M ∈ Z such that p does not divide M, and
∃G1(x) ∈ Z[x] of degree at most n such that, for r ∈ {β1,β2, . . . ,βm},∫ 1

0
f (ur)e−urr du = M− e−r pG1(r). (14)

For every r ∈ {β1,β2, . . . ,βm}, let M,Mr,εr be as in Definition 20. By the
uniqueness of Lemma 23, we get that

Mr = pbnG1(r). (15)

Recall that

εr = bner
∫ 1

0
f (ur)e−urr du. (16)

Thus,
Mr + εr = pbnG1(r)+bner(M− e−r pG1(r))

which simplifies to
Mr + εr = bnerM.

Solving for er, we get

er =
Mr + εr

Mbn (17)

for r ∈ {β1,β2, . . . ,βm}.
By working with symmetric polynomials, it can be shown that

Mβ1 +Mβ2 + · · ·+Mβm is an integer which is divisible by p [1].
Substituting (17) into (1), gives

[qMbn +Mβ1 + · · ·+Mβm ]+ [εβ1 + · · ·+ εβm ] = 0. (18)

Now, since M ∈ Z and p is prime, as p does not divide M, and p > q, |b|, we
have p does not divide qMbn. Thus p does not divide qMbn +Mβ1 + · · ·+Mβm ,
so qMbn +Mβ1 + · · ·+Mβm must be a non-zero integer as p divides 0. Now, by
Lemma 24, each of the εi terms can be made arbitrarily small as their limit goes
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to zero when p goes to infinity. Let p be such that |εβ1 + · · ·+ εβm |<
1
2 . Then we

have from (18) that a non-zero integer added to a number less than 1
2 gives zero,

which is a contradiction. Therefore π is transcendental. �

6 Impossibility Proofs

With all these preliminaries, we are finally ready to present proofs of the im-
possibility of the three constructions.

This impossibility of doubling the cube and trisecting an arbitrary angle was
first done by Pierre Wantzel in 1837 in his paper “Recherches sur les moyens de
reconnaı̂tre si un problème de Géométrie peut se résoudre avec la règle et le com-
pas” published in the Journal de Mathématiques Pures et Appliquées [8]. In 1882,
Lindemann’s proof of the transcendence of π provided the missing piece to the
proof of the impossibility of squaring the circle, and thus all three constructions
were proven to be impossible.

6.1 Doubling the Cube

Theorem 26. The cube cannot be doubled.

Proof. Suppose to the contrary that the cube can be doubled. Then the basic cube
of volume 1 can be doubled, creating a cube with volume 2 and thus sides of
length 3

√
2. Thus 3

√
2 must be a constructible number. We know that the irre-

ducible polynomial of 3
√

2 over Q is irr( 3
√

2,Q) = x3−2. It follows from this that
deg( 3
√

2,Q) = 3. Here we encounter a problem, in that 3 6= 2s for s ∈ Z,s ≥ 0.
This is a contradiction to Theorem 12, and thus our original assumption that 3

√
2

is constructible must be false. Therefore the cube cannot be doubled. �

6.2 Trisecting an Arbitrary Angle
The proof of the next theorem concerning the impossibility of trisecting an

arbitrary angle is similar to the one for the cube.

Theorem 27. There exists an angle that cannot be trisected with only unmarked
straightedge and compass.

Proof. Like the proof of Theorem 26, assume by way of contradiction that every
angle can be trisected with only unmarked straightedge and compass. Then, an
angle of 60◦ can be trisected. From this trisected angle, one can drop a perpendic-
ular to create a triangle. Then, as cos(θ) = ad jacent

hypotenuse , it follows that a line segment
of length cos(20◦) can be constructed. Now, consider the trigonometric identity
cos(3θ) =−3 cos(θ)+4 cos3(θ). From this, it follows that

0.5 = cos(60◦) =−3 cos(20◦)+4 cos3(20◦).

Thus, multiplying by two and rearranging terms we have

8 cos3(20◦)−6 cos(20◦)−1 = 0
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and it follows that cos(20◦) is a zero of the polynomial p(x) = x3− 6
8 x− 1

8 . This
polynomial is irreducible over Q, thus deg(cos(20◦),Q) = 3. This leads to the
same contradiction as before in that 3 6= 2s for s∈Z,s≥ 0. Therefore by Theorem
12, cos(20◦) is not constructible. Thus, it is impossible to trisect a 60◦ angle,
and as there exists at least one angle which is impossible to trisect, the statement
that every angle can be trisected with only unmarked straightedge and compass is
false. �

6.3 Squaring the Circle
Using the fact that π is a non-algebraic number, one can show the impossibil-

ity of squaring the circle.

Theorem 28. The circle cannot be squared.

Proof. Suppose by way of contradiction that the circle can be squared. Then a
circle of radius 1 and area πr2 = π can be squared, resulting in a square of area
π . It follows that this square must have sides of length

√
π , so

√
π must be a con-

structible number. Since the set of constructible numbers forms a field (Lemma
10), it is closed under multiplication and thus

√
π ∗
√

π = π must also be a con-
structible number. Applying Lemma 12, we get that π is algebraic. However, by
Theorem 25, π is transcendental, and thus is not algebraic. This is a contradiction,
and therefore the circle cannot be squared. �
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The Problem Corner
Edited by Pat Costello

The Problem Corner invites questions of interest to undergraduate students.
As a rule, the solution should not demand any tools beyond calculus and linear
algebra. Although new problems are preferred, old ones of particular interest or
charm are welcome, provided the source is given. Solutions should accompany
problems submitted for publication. Solutions of the following new problems
should be submitted on separate sheets before July 31, 2023. Solutions received
after this will be considered up to the time when copy is prepared for publication.
The solutions received will be published in the Spring 2023 issue of The Pentagon.
Preference will be given to correct student solutions. Affirmation of student status
and school should be included with solutions. New problems and solutions to
problems in this issue should be sent to Pat Costello, Department of Mathematics
and Statistics, Eastern Kentucky University, 521 Lancaster Avenue, Richmond,
KY 40475-3102 (e-mail: pat.costello@eku.edu, fax: (859) 622-3051)

NEW PROBLEMS 901 - 910

Problem 901. Proposed by José Luis Dı́az-Barrero, School of Civil Engineering,
Barcelona Tech - UPC, Barcelona, Spain.
Suppose for some integer k ≥ 2 that a1 < a2 < .. . < ak are positive integers, and
that A is their least common multiple. Prove that

a1a2 +a2a3 + . . .+ak−1ak +aka1 ≤ A2.

Problem 902. Proposed by Daniel Sitaru, “Theodor Costescu” National Eco-
nomic College, Drobeta Turnu – Severin, Mehedinti, Romania.
Without a computer, find Ω =

∫ π/30
0

sin5x sin7x sin8x
cos2xcos3xcos5xcos10x dx.

Problem 903. Proposed by Daniel Sitaru, “Theodor Costescu” National Eco-
nomic College, Drobeta Turnu – Severin, Mehedinti, Romania.
Solve for complex numbers:∣∣∣∣∣∣

x2 x2 +3x x2 +6x+9
x2 +2x+1 x2 +5x+4 x2 +8x+16
x4 +2x2 +1 x4 +3x2 +2 x4 +4x2 +4

∣∣∣∣∣∣= 0.
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Problem 904. Proposed by Albert Natian, Los Angeles Valley College, Valley
Glen, CA.
Find the nth term of the sequence (an)n≥0 defined recursively as follows:

a0 = 0, a1 = 1, a2 = 0

∀ n> 3 : an =
n−1

∑
k=1

(n− k)(n− k−4)ak.

Problem 905. Proposed by Vasile Mircea Popa, Lucian Blaga University, Sibiu,
Romania.
Calculate the following integral without a computer:∫

∞

1

x
√

x lnx
(x+1)(x2 +1)

dx.

Problem 906. Proposed by Mihaly Bencze, Braşov, Romania and Neculai Stan-
ciu, “George Emil Palade” School, Buzǎ, Romania.
If λ ≥ 1 and ABC is a triangle, prove that ∑

(
tan A

4

)λ ≥ 3
(
2−
√

3
)λ
.

Problem 907. Proposed by Toyesh Prakash Sharma (student), Agra College,
Agra, India.
If a,b,c > 0, then show that(

a
b+ c

) a
b+c

+

(
b

c+a

) b
c+a

+

(
c

a+b

) c
a+b

≥ 3
2
3 .

Problem 908. Proposed by Raluca Maria Caraion and Forică Anastase, “Alexan-
dru Odobescu” High School, Lehliu-Garǎ, Cǎlǎraşi, Romania.
If a,b,c > 0, then show that

∏
(1+ab)(1+ac)

1+a
√

bc
≥
(

1+ 3
√

a2b2c2
)3

.

Problem 909. Proposed by Seán Stewart, King Abdullah University of Science
and Technology, Saudi Arabia.
If m > 1, without a computer evaluate∫

π/2

0

cot
( x

2

)
secx log(cosx)

m
√

secx−1
dx.
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Problem 910. Proposed by the editor.
Prove that the sum of the last two digits of 2n is never 17.

SOLUTIONS TO PROBLEMS 881-890

Problem 881. Proposed by Mathew Cropper, Eastern Kentucky University, Rich-
mond, KY.
Find a formula (possibly recursive) for the number of integers with n digits that
contain exactly one 47 in the integer.

Solution by the Ashland University Problem Solving Group, Ashland, OH.

Let an be the number of n-digit integers that contain exactly one occurrence of 47,
and bn be the number of n-digit integers that contain no occurrences of 47. We
first show that

an = 10(an−1−an−2)+9an−2 +bn−2 = 10an−1−an−2 +bn−2.

Note that an−2 counts the number of (n−2)-digit numbers that contain one 47, so
it also is the number of (n−1)-digit numbers that contain one 47 and end with a
4. Hence (an−1−an−2) counts the number of (n−1)-digit numbers that don’t end
with a 4. Then we see that the formula counts the n-digit numbers with one 47 of
three types: first those that have the 47 among the first n−1 digits, whose next to
last digit is not a four, and end with any digit. Secondly, those that have the 47
among the first n−2 digits, the next to last digit is a four, and end with any digit
except 7. Lastly, those that end with 47, having no 47 among the first n−2 digits.
Using the same reasoning, we can count the n-digit numbers with no 47 as

bn = 10(bn−1−bn−2)+9bn−2 = 10bn−1−bn−2.

Solving the an formula for bn−2 and adjusting the index on the bn formula gives

bn−2 =an−10an−1 +an−2,

bn−2 =10bn−3−bn−4.

Now,

an−10an−1 +an−2,

= 10(an−1−10an−2 +an−3− (an−2−10an−3 +an−4)

Solving for an gives the recursive formula

an = 20an−1−102an−2 +20an−3−an−4.
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Also solved by Avirup and Biswarup Chakraborty, Narendrapur Ramkrishna Mis-
sion Vidyalaya. Class 12; Steven Jang, Cal Poly Pomona Problem Solving Group,
Pomona, CA; and the proposer.

Problem 882. Proposed by José Luis Dı́az-Barrero, School of Civil Engineering,
Barcelona Tech - UPC, Barcelona, Spain.
Find all functions f : R→R that satisfy f (x4+y) = f (x)+ f (y4) for all x,y ∈R.

Solution by the proposer.

For x = y = 0, we have f (0) = f (0)+ f (0) = 2 f (0) from which f (0) = 0 follows.
For y = 0, we have f (x4) = f (x)+ f (0) = f (x). Putting y =−x4, yields

f (0) = f (x)+ f (
(
−x4)4

= f (x)+ f
(
x16)= f (x)+ f (x) = 2 f (x) .

Since 2 f (x) = f (0) = 0, then f (x) = 0 for all x ∈ R. Thus the only function that
satisfies the condition is the constant function f = 0.

Also solved by Brian Bradie, Christopher Newport University, Newport News, VA;
Steven Jang, Cal Poly Pomona Problem Solving Group, Pomona, CA; and Albert
Stadler, Herrliberg, Switzerland.

Problem 883. Proposed by Daniel Sitaru, “Theodor Costescu” National Eco-
nomic College, Drobeta Turnu – Severin, Romania.
If a,b,c ∈ C are such that

∣∣a8 +1
∣∣≤ 1,

∣∣b10 +1
∣∣≤ 1,

∣∣c12 +1
∣∣≤ 1,∣∣a4 +1

∣∣≤ 1,
∣∣b5 +1

∣∣≤ 1,and
∣∣c16 +1

∣∣≤ 1, then

|a+b+ c|+3≥ |a+b|+ |b+ c|+ |c+a| .

Solution by the proposer.

We have:

2
∣∣a8∣∣= ∣∣2a8∣∣= ∣∣∣(a4 +1

)2−
(
a8 +1

)∣∣∣
≤
∣∣∣(a4 +1

)2
∣∣∣+ |a8 +1|

≤
∣∣a4 +1

∣∣2 + ∣∣a8 +1
∣∣≤ 12 +1 = 2

⇒
∣∣a8∣∣≤ 1⇒ (|a|)8 ≤ 1⇒ |a| ≤ 1;

2
∣∣b10∣∣= ∣∣2b10∣∣= ∣∣∣(b5 +1

)2−
(
b10 +1

)∣∣∣
≤
∣∣∣(b5 +1

)2
∣∣∣+ |b10 +1|

≤
∣∣b5 +1

∣∣2 + ∣∣b10 +1
∣∣≤ 12 +1 = 2

⇒
∣∣b10∣∣≤ 1⇒ (|b|)10 ≤ 1⇒ |b| ≤ 1;
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2
∣∣c12∣∣= ∣∣2c12∣∣= ∣∣∣(c6 +1

)2−
(
c12 +1

)∣∣∣
≤
∣∣∣(c6 +1

)2
∣∣∣+ |c12 +1|

≤
∣∣c6 +1

∣∣2 + ∣∣c12 +1
∣∣≤ 12 +1 = 2

⇒
∣∣c12∣∣≤ 1⇒ (|c|)12 ≤ 1⇒ |c| ≤ 1.

We will use Hlawka’s inequality for a,b,c ∈ C :

|a+b+ c|+ |a|+ |b|+ |c| ≥ |a+b|+ |b+ c|+ |c+a|,

so

|a+b+ c|+3 = |a+b+ c|+1+1+1

≥ |a+b+ c|+ |a|+ |b|+ |c|
≥ |a+b|+ |b+ c|+ |c+a| .

Problem 884. Proposed by Daniel Sitaru, “Theodor Costescu” National Eco-
nomic College, Drobeta Turnu – Severin, Romania.
If a,b,c > 0 and a4 +b4 + c4 = 3, then

(a2 +b2)
6

(3a8 +10a4b4 +3b8)
+

(b2 + c2)
6

(3b8 +10b4c4 +3c8)

+
(c2 +a2)

6

(3c8 +10c4a4 +3a8 )≤ 12.

Solution by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

It is easily established that

3a8 +10a4b4 +3b8 =
(
a2 +b2)4

+2(a4 +b4)
(
a2−b2)2 ≥

(
a2 +b2)4

with equality if and only if a = b. The power mean inequality yields(
a2+b2

2

)1/2
≤
(

a4+b4

2

)1/4
or
(
a2 +b2

)2 ≤ 2
(
a4 +b4

)
. Combining, we see that

∑
cyc

(a2 +b2)
6

3a8 +10a4b4 +3b8 ≤∑
cyc

(a2 +b2)
6

(a2 +b2)4

= ∑
cyc

(
a2 +b2)2 ≤2∑

cyc

(
a4 +b4)

= 4
(
a4 +b4 + c4)= 12.



Fall 2022 71

Also solved by Floricǎ Anastase, “Alexandru Odobescu” High School, Lehliu-
Garǎ, Cǎlǎraşi, Romania; Albert Stadler, Herrliberg, Switzerland; and the pro-
poser.

Problem 885. Proposed by Dorin Marghidanu, Colegiul National ‘A. I. Cuze’,
Corabia, Romania.
If a,b,x,y > 0 and n ∈ N∗ prove that

(x+ y)n

2(n−1) ≤
(ax+by)n +(bx+ay)n

(a+b)n ≤ xn + yn.

Solution by Floricǎ Anastase, “Alexandru Odobescu” High School, Lehliu-Garǎ,
Cǎlǎraşi, Romania.

Let f : (0,1)→ R, f (t) = tn, n ∈ N∗ be a convex function, then by Jensen’s in-
equality with weighted λ1,λ2 ∈ (0,1) ,λ1 +λ2 = 1, we have

f (λ1t1 +λ2t2)≤ λ1 f (t1)+λ2 f (t2) , ∀ t1, t2 ∈ (0,∞).

For λ1 = λ2 =
1
2 we have

f
(

1
2

t1 +
1
2

t2

)
≤ 1

2
f (t1)+

1
2

f (t2) . (1)

For λ1 =
a

a+b ,λ2 =
b

a+b , we have

f
(

a
a+b

t1 +
b

a+b
t2

)
≤ a

a+b
f (t1)+

b
a+b

f (t2) . (2)

Now taking t1 = ax+by, t2 = bx+ay in (1), it follows that

1
2n [(ax+by)+(bx+ay)]n ≤ 1

2
((ax+by)n +(bx+ay)n)

⇔ 1
2n−1 (a+b)n(x+ y)n ≤ (ax+by)n +(bx+ay)n

⇔ (x+ y)n

2n−1 ≤ (ax+by)n +(bx+ay)n

(a+b)
.

(3)

Taking t1 = x, t2 = y in (2), it follows(
a

a+b
x+

b
a+b

y
)n

≤ a
a+b

xn +
b

a+b
yn; (4)

Taking t1 = y, t2 = x in (2), it follows(
b

a+b
x+

a
a+b

y
)n

≤ b
a+b

xn +
a

a+b
yn. (5)
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Adding (4) and (5), we get

(ax+by)n +(bx+ay)n

(a+b)n ≤ a
a+b

xn +
b

a+b
yn +

b
a+b

xn +
a

a+b
yn

⇔ (ax+by)n +(bx+ay)n

(a+b)n ≤ xn + yn.

(6)

From (3) and (6) we get the desired inequality.

Also solved by Brian Bradie, Christopher Newport University, Newport News,
VA; Steven Jang, Cal Poly Pomona Problem Solving Group, Pomona, CA; An-
gel Plaza, Universidad de Las Palmas de Gran Canaria, Spain; Henry Ricardo,
Westchester Area Math Circle, Purchase, NY; Albert Stadler, Herrliberg, Switzer-
land; Marian Ursǎrescu, “Roman-Vodǎ” National College, Roman, Romania;
and the proposer.

Problem 886. Proposed by George Stoica, Saint John, New Brunswick, Canada.
Prove that for any a ∈ (1,2) and any integer n≥ 1, there exist

ε0,ε1,ε2, . . . ,εn ∈ {−1,1}

such that
(a−1)

∣∣ε0 + ε1a+ ε2a2 + . . .+ εnan
∣∣< 1.

Solution by Albert Stadler, Herrliberg, Switzerland.

The numbers εn,εn−1, . . . ,ε0 are determined recursively according to the following
algorithm: Take an and subtract successively the numbers a j with j < n until

an− an−1−an−2− . . .−an1 < 0.

Then add the numbers a j with j < n1 until

an− an−1−an−2− . . .−an1 +an1−1 + . . .+an2 > 0.

Then subtract powers until a sum is < 0 and so on. This algorithm defines the
numbers

εn,εn−1, . . . ,ε0.

The last step consists in adding or subtracting the sum 1+a+ . . .+ak to or from

εk+1 ak+1 + . . .+ εnan

whereby
∣∣εk+1ak+1 + . . .+ εnan

∣∣≤ ak+1 by construction and

1+a+ . . .+ak ≤ ak+1.
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Then

(a−1) |ε0 + ε0a+ . . .+ εnan|=
(a−1)

∣∣εk+1 ak+1 + . . .+ εnan− (1+a+ . . .+ak)
∣∣

≤ (a−1)

(
ak+1−

k

∑
j=0

a j

)

= (a−1)
(

ak+1− ak+1−1
a−1

)
= ak+1 (a−2)+1 < 1

since a−2 < 0.

Also solved by the proposer.

Problem 887. Proposed by D.M. Bǎtinetu-Giurgiu, “Matei Basarab” National
College, Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School,
Buzǎu, Romania.
Prove that in any triangle ABC with semiperimeter s, inradius r and usual nota-
tions, the following is true

a(m+1)

(s−b)m +
b(m+1)

(s− c)m +
c(m+1)

(s−a)m ≥ 3∗2(m+1) ∗
√

3∗ r.

Solution by Ioan Viorel Coddreanu, Satulung, Maramures, Romania.

Using the Radon Inequality, we get

am+1

(s−b)m +
bm+1

(s− c)m +
cm+1

(s−a)m ≥
(a+b+ c)m+1

(s−a+ s−b+ s− c)m

=
(2s)m+1

sm

= 2m+1 ∗ s.

Using the Mitrinovic Inequality, s≥ 3
√

3r, we get

am+1

(s−b)m +
bm+1

(s− c)m +
cm+1

(s−a)m ≥ 3∗2m+1 ∗
√

3∗ r.

Also solved by Floricǎ Anastase, “Alexandru Odobescu” High School, Lehliu-
Garǎ, Cǎlǎraşi, Romania; Brian Bradie, Christopher Newport University, New-
port News, VA; Albert Stadler, Herrliberg, Switzerland; Marian Ursǎrescu, “Roman-
Vodǎ” National College, Roman, Romania; and the proposer.
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Problem 888. Proposed by D.M. Bǎtinetu-Giurgiu, “Matei Basarab” National
College, Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School,
Buzǎu, Romania.
Let the positive real sequence (an)n≥1 be such that lim

n→∞

an+1

an
n
√

(n!)2 = a ∈ R∗+. Com-

pute

lim
n→∞

1
n
√
(2n−1)!!

( n+1
√

an+1− n
√

an) .

Solution by Brian Bradie, Christopher Newport University, Newport News, VA.

By Stirling’s approximation, n!∼
√

2πnn+1/2e−n, so

(2n−1)!! =
(2n)!
2nn!

∼(2n)2n+ 1
2 e−2n

2nnn+ 1
2 e−n

= 2n+ 1
2 nne−n.

Now, if lim
n→∞

an+1

an
n
√

(n!)2 = a, then

lim
n→∞

an+1

n2an
= lim

n→∞

an+1

an
n
√

(n!)2
∗

n
√

(n!)2

n2 =
a
e2 .

Additionally,

lim
n→∞

1
n
√
(2n−1)!!

( n+1
√

an+1− n
√

an)

= lim
n→∞

( n+1
√

an+1− n
√

an)∗
n

n
√
(2n−1)!!

=
e
2

lim
n→∞

1
n
( n+1
√

an+1 − n
√

an) .

Write
1
n
( n+1
√

an+1− n
√

an) =
n
√

an

n2 ∗
un−1
lnun

∗ lnun
n,

where un =
n+1√an+1

n√an
. With

lim
n→∞

n
√

an

n2 = lim
n→∞

n

√
an

n2n

= lim
n→∞

an+1

(n+1)2(n+1) ∗
n2n

an

= lim
n→∞

an+1

n2an

(
n

n+1

)2(n+1)

=
a
e2 ∗

1
e2 =

a
e4 ,
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lim
n→∞

un = lim
n→∞

n+1
√

an+1

(n+1)2 ∗
n2

n
√

an

(
n+1

n

)2

=
a
e4 ∗

e4

a
∗1 = 1,

lim
n→∞

un−1
lnun

= 1, and

lim
n→∞

un
n = lim

n→∞

an/(n+1)
n+1

an

= lim
n→∞

an+1

n2an
∗ (n+1)2

n+1
√

an+1

(
n

n+1

)2

=
a
e2 ∗

e4

a
∗1 = e2,

it follows that
lim
n→∞

1
n
( n+1
√

an+1− n
√

an) =
a
e4 ∗1∗2 =

2a
e4 .

Finally,

lim
n→∞

1
n
√

(2n−1)!!
( n+1
√

an+1− n
√

an) =
e
2
∗ 2a

e4 =
a
e2 .

Also solved by Floricǎ Anastase, “Alexandru Odobescu” High School, Lehliu-
Garǎ, Cǎlǎraşi,, Romania; Angel Plaza, Universidad de Las Palmas de Gran Ca-
naria, Spain; Albert Stadler, Herrliberg, Switzerland; Marian Ursǎrescu, “Roman-
Vodǎ” National College, Roman, Romania; and the proposer.

Problem 889. Proposed by Seán Stewart, Bomaderry, NSW, Australia.

If hn = ∑
2n
k=1

(−1)k+1

k , then evaluate the following two limits:
(i) lim

n→∞
(log(2)−hn)n,

(ii) lim
n→∞

(
hnhn+1− log2(n)

)
n.

Solution by Marian Ursǎrescu, “Roman-Vodǎ” National College, Roman, Roma-
nia.
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(i) We use Cesaro-Stolz for 0
0 :

lim
n→∞

(ln2−hn)n = lim
n→∞

ln2−hn

1/n

= lim
n→∞

ln2−hn+1− ln2+hn
1

n+1 −
1
n

= lim
n→∞

−hn+1 +hn

− 1
n(n+1)

= lim
n→∞

−2n−2+2n+1
2n(2n+1)

− 1
n(n+1)

= lim
n→∞

n(n+1)
2n(2n+1)

=
1
4
.

(ii)

lim
n→∞

(
hnhn+1− ln2 (2)

)
n = lim

n→∞

(
hn+1hn−h2

n +h2
n− ln2 (2)

)
n

= lim
n→∞

hn (hn+1−hn)n+ lim
n→∞

(
h2

n− ln2 (2)
)

n;
(1)

lim
n→∞

hn (hn+1−hn)n = lim
n→∞

hn

(
1

2n+1
− 1

2n+2

)
n

= ln2∗0 = 0;
(2)

lim
n→∞

(
h2

n− ln2 (2)
)

n = lim
n→∞

(hn− ln2)(hn + ln2)n

= 2ln2∗
(
−1

4

)
by (i)

=−1
2

ln2.

(3)

From (1), (2), and (3) it follows that

lim
n→∞

(
hnhn+1− ln2 (2)

)
n =−1

2
ln2.

Also solved by Brian Bradie, Christopher Newport University, Newport News,
VA; Steven Jang, Cal Poly Pomona Problem Solving Group, Pomona, CA; Albert
Stadler, Herrliberg, Switzerland; and the proposer.

Problem 890. Proposed by Robert Stanton, St. Johns University, Jamaica, NY.
For digits a,b,c,d, let abcd represent the ordinary decimal representation 103a+
102b+ 10c+ d. Prove that there is a unique positive integer n = aabb that is a
perfect square.
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Solution by Steven Jang, Cal Poly Pomona Problem Solving Group, Pomona, CA.

We are going to show that the only possible positive integer is 7744.
1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936,
2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136,3249,
3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356, 4489, 4624, 4761, 4900,
5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889,
7056, 7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216,
9409, 9604, 9801.
The only one of the form aabb is 7744.

Also solved by Avirup and Biswarup Chakraborty, Narendrapur Ramkrishna Mis-
sion Vidyalaya. Class 12; Brian Bradie, Christopher Newport University, New-
port News, VA; Brian Beasley, Presbyterian College, Clinton, SC; Henry Ricardo,
Westchester Area Math Circle, Purchase, NY; Albert Stadler, Herrliberg, Switzer-
land; Andrew Volk, Liberty University, Lynchburg, VA; HyunBin Yoo, South Ko-
rea; and the proposer.

Errata: In the Fall 2021 issue, Titu Zvonaru was erroneously left off the list
of solvers of the following problems: Problems 870, 872, and 873. We seriously
apologize for this omission.
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Kappa Mu Epsilon News
Edited by Mark Hughes, Historian

Updated information as of June 2022

News of chapter activities and other noteworthy KME events should be sent to

Mark Hughes, KME Historian
Frostburg State University

Department of Mathematics
Frostburg, MD 21532

or to
mhughes@frostburg.edu

KAPPA MU EPSILON

Chapter News

AR Beta – Henderson State University
Chapter President – Madison Rushing; 68 Total Members; 4 New Members
Other Spring 2022 Officers: Carmen Little, Vice President; Nicole Schranz, Sec-
retary; Rachel Pepper, Treasurer; Fred Worth, Corresponding Secretary; and Car-
olyn S. Eoff, Faculty Sponsor.
Due to Covid, our chapter did not have many activities. We did have a picnic in
conjunction with our initiation ceremony.

CT Beta – Eastern Connecticut State University
Corresponding Secretary and Faculty Sponsor – Dr. Mehdi Khorami; 547 Total
Members; 13 New Members

CT Gamma – Central Connecticut State University
Chapter President – William Caron; 78 Total Members
Other Spring 2022 Officers: Bradley Doolgar, Vice President; Emma Johnson,
Secretary; Micalyia Douglas, Treasurer; Gurbakhshash Singh, Corresponding
Secretary; and Marion Anton, Faculty Sponsor.

FL Gamma – Southeastern University
Chapter President – Elizabeth Davison; 74 Total Members; 7 New Members
Other Spring 2022 Officers: Anna Coleman, Vice President; Jonathan Kurz, Sec-
retary; Jodi Cross, Treasurer; Dr. Berhane Ghaim, Corresponding Secretary and
Faculty Sponsor.

GA Zeta – Georgia Gwinnett College
Chapter President – Aviva Kerven; 66 Total Members
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Other Spring 2022 Officers: Alexa Sheets, Vice President; Hope Doherty, Secre-
tary; William Watts, Treasurer; Dr. Jamye Curry Savage, Corresponding Secre-
tary and Faculty Sponsor; and Dr. Livy Uko, Faculty Sponsor.
The GA Zeta Chapter had 4 members to attend the Southeastern Regional Con-
vention hosted by the University of North Alabama. Those members were Alexa
Sheets, Aviva Kerven, Hope Doherty, and Gabriel Amat. Three of these students
presented their research at the convention. The student names and presentation
titles were:

• Aviva Kerven – Title: Algorithms for Topological Invariants of Surfaces
• Hope Doherty – Title: The Algebraic Structure of the Determinant of Joined

Graphs
• Gabriel Amat – Title: Algebraic Structure on the Number of Spanning Trees

of Joined Graphs

The GA Zeta Chapter also had four students to graduate this semester:
• Aviva Kerven – Accepted to the Master’s Program in Actuarial Science at

Georgia State.
• Alexa Sheets – Applied/Interviewed as a Mathematician to such companies

as NSA and Johns Hopkins Applied Physics Laboratory.
• Tyler Smith – Applied/Interviewed for Data Science Jobs such as Atlanta

Braves and Sunbelt Baseball League.

IA Alpha – University of Northern Iowa
Chapter President – Lauren Dierks; 1112 Total Members; 1 New Member
Other Spring 2022 Officers: Jacob Metzen, Vice President; Maxwell Tensen, Sec-
retary; Lydia Butters, Treasurer; and Dr. Mark D. Ecker, Corresponding Secre-
tary and Faculty Sponsor.
Eleven student members of KME and three faculty met face-to-face (for the first
time in over two years) on Monday, May 2, 2022 in Wright Hall. Student member
Dominic DeKeyser presented his senior seminar project entitled “Madden09 PS2:
A Statistical Analysis of Six Simulated Seasons” and one new student member
was initiated.

IA Delta – Wartburg College
Chapter President – David Guetzlaff; 773 Total Members; 5 New Members
Other Spring 2022 Officers: Gavin Foust-Wollenberg, Vice President; Samuel
Bast, Secretary; Tim Wengenack, Treasurer; Brian Birgen, Corresponding Secre-
tary; and Dr. Chris Allen, Faculty Sponsor.
Our initiation ceremony was held on April 9, 2022. Audrey Hesse McGarry, a
2009 alum, spoke about Threat Detection.

IL Zeta – Dominican University
Corresponding Secretary – Mihaela Blanariu; 458 Total Members; 8 New Mem-
bers
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The Illinois Zeta chapter was excited to initiate eight new members on March 31,
2022 at Dominican University. At the ceremony, Dr. Angela Antonou, Associate
Professor of Mathematics at University of St. Francis in Joliet, Illinois, gave a
wonderful plenary talk, “A Rectangular Jigsaw Puzzle and its Surprising Mathe-
matical Connections,” about a game of fitting squares into rectangles and how this,
amazingly, relates to the Euclidean algorithm and continued fractions. Audience
members played with rectangular jigsaw puzzles to get a feel for the game so that
they were primed to understand the deeper theory connected to the game—a very
fun and engaging way to learn some rich mathematics! Afterwards, participants
initiated eight new members of the chapter, many of whom had invited friends
and family to share in the celebration.

IN Beta – Butler University
Corresponding Secretary – Scott Kaschner; 444 Total Members, 4 New Members
Other Spring 2022 Officers: Rasitha Jayasekare, Faculty Sponsor.
New Initiates – Aaron Marshall, Evan Blom, Nicole Dickson, and Jackson Morrill.

KS Beta – Emporia State University
Chapter President – Joey Feuerborn; 1539 Total Members; 7 New Members
Other Spring 2022 Officers: Jeanna Hill, Vice President; Austin Crabtree, Secre-
tary; Katey Dembowski, Treasurer; Tom Mahoney, Corresponding Secretary; and
Brian Hollenbeck, Faculty Sponsor.
The Kansas Beta chapter enjoyed a very social semester. After the February meet-
ing, we had a bowling night. In March, we initiated seven new members at a Pizza
Ranch. In April, students hosted an “art night” of acrylic painting. And in May,
we gathered for a Color Run.
New Initiates – Julia Whitaker, Joey Feuerborn, Ryan Sauter, Melissa Claypool, Saman-
tha Caron, Tyler O’Dell, and Shane Mattson.

KS Delta – Washburn University
Chapter President – Clare Bindley; 834 Total Members; 12 New Members
Other Spring 2022 Officers: Kael Ecord, Vice President; Ajar Basnet, Secretary;
Katherine Cook, Treasurer; and Sarah Cook, Corresponding Secretary and Fac-
ulty Sponsor.
Ten students and two faculty were initiated into the Kansas Delta Chapter of
Kappa Mu Epsilon on March 23 through a virtual ceremony. In April, two fac-
ulty members (Beth McNamee and Sarah Cook) and five students (Ajar Basnet,
Clare Bindley, Ryan Haller, Sanskar Neupane, Gabriel Rose) attended the re-
gional KME North Central Convention in Pittsburg, Kansas. Washburn student
Ryan Haller presented his research project on “An Exploration of the Tutte Poly-
nomial”. Ryan was awarded the top prize for his presentation.
New Initiates – Corbin Cool, Lauren Frank, Rajesh Kandel, Jesse Mort, Jr., Sanskar Neu-
pane, Seth Phelps, Graci Renay Postma, Gabriel Rose, Nicolas Schwensen, Calvin Grant
Teater, Lori Gill, and Gary Hu.
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MD Alpha – Notre Dame of Maryland University
Chapter President – Cecia Zavala Ramos; 407 Total Members; 5 New Members
Other Spring 2022 Officers: Christina McConnell, Vice President; Erika Kaschak,
Secretary; Shawne Ashley Samaco, Treasurer; and Charles Buehrle, Correspond-
ing Secretary and Faculty Sponsor.
MD Alpha items are below.
New Initiates – Isabella Dallasta, Shawne Samaco, Janelle Sanglang, Bintou Timbine,
and Brigette Flores.

MD Delta – Frostburg State University
Chapter President – Ashley Armbruster; 543 Total Members; 3 New Members
Other Spring 2022 Officers: Brynn Lewis, Vice President; Jessica Farrell, Secre-
tary; Jay Collins, Treasurer; Mark Hughes, Corresponding Secretary and Faculty
Sponsor; and Frank Barnet, Faculty Sponsor.
Maryland Delta Chapter had meetings in February, March, and April where we
enjoyed pizza, math videos and puzzles. We had a successful Pi-Day bake sale
on March 14. It was nice to be able to resume this annual activity after having
missed it last year due to Covid. In early April, we were pleased to welcome three
new members. At the Initiation Ceremony, faculty sponsor Dr. Mark Hughes pre-
sented a lecture entitled “Two Theorems on Polyhedra”. We finished our semester
with a picnic in May where we had a lot of fun and enjoyed some great weather.
New Initiates – Kaitlyn Henderson-Adams, Faith James Sergent, and Adam Sullivan.

MI Beta – Central Michigan University
Chapter President – Kelsey Knoblock; 1761 Total Members; 3 New Members
Other Spring 2022 Officers: Emily Naegelin, Vice President; Jenna Wazny, Sec-
retary; Jeremy Proksch, Treasurer; and Dr. Dmitry Zakharov, Corresponding
Secretary and Faculty Sponsor.
In the Spring semester, the Michigan Beta Chapter held 6 general meetings, a
book sale fundraiser, and an end-of-semester volunteer tutoring event. The meet-
ings included two research talks by CMU professors, Dr. Jordan Watts and Dr.
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Dmitry Zakharov. The chapter also hosted a math bingo night, a scavenger hunt,
and a Pictionary game.

MO Beta – University of Central Missouri
Chapter President – Haleigh Clark; 1549 Total Members, 8 New Members (5 from
Fall 2021)
Other Spring 2022 Officers: Paige Van Blarcum, Vice President and Treasurer;
Connor Stohr, Secretary; Brianna Ward, Historian; Blaise Heider, Faculty Spon-
sor; Paul Plummer, Faculty Sponsor; and Steven Shattuck, Corresponding Secre-
tary and Faculty Sponsor.
The Missouri Beta Chapter of Kappa Mu Epsilon had monthly meetings for Fall
2021 and Spring 2022. Programming at these meetings include: a talk on La-
Tex, reports from students about their summer internships/REU experiences, math
jeopardy and other math games. The Missouri Beta chapter attended both the
South Central and North Central regional meetings.
New Initiates – Spring 2022: Andrew Barnes, Lindsey Edmonds, Jada Oldham; Fall 2021:
Karissa Abrolat, Luke George, John Mason Hocking, Hannah Noel, and Hilari Waters

MO Kappa – Drury University
Chapter President – Aspen Hill; 330 Total Members; 19 New Members
Other Spring 2022 Officers: Charlie Roder, Vice President; Levi Graham, Secre-
tary and Corresponding Secretary; Dani Brown, Treasurer; and Collin T. Baker,
Faculty Sponsor.
New Initiates – Sam Black, Dani Brown, Matthew Dalton, Julian Fisher, Kelsi Gelle, Levi
Graham, Aspen Hill, Lindsey Kollmeyer, Brandon Lacy, Micah Lehenbauer, Sean Lowry,
Marina Martins Amorim, Laura Pareja Prieto, John Rice, Charlie Roder, Bryan Valencia,
Ean Vandergraaf, Brooke Weider, and Carter Williams.

MO Theta – Evangel University
Chapter President – Peter Russell; 298 Total Members; 4 New Members
Other Spring 2022 Officers: Jack Lin, Vice President; and Dianne Twigger, Cor-
responding Secretary and Faculty Sponsor.
This spring we held three meetings including our annual initiation. We elected a
new vice president, Jack Lin, as Hannah Tower graduated this spring. Six students
and two faculty attended the North Central Regional convention at Pittsburg State
University. We had one presenter (Peter Russell).
New Initiates – Jack Lin, Hayden Pyle, Victoria Risner, and Peyton Twigg.

NC Zeta – Catawba College
Chapter President – Maria Arnold; 103 Total Members; 4 New Members
Other Spring 2022 Officers: Abigail Hartman, Vice President; Ofek Malul, Sec-
retary; Jackson Chapin, Treasurer; and Dr. Katherine Baker, Corresponding Sec-
retary and Faculty Sponsor.
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NE Gamma – Chadron State College
Chapter President – Dylan Koretko; 544 Total Members
Other Spring 2022 Officers: Kyeisha Garza, Vice President; Manou Mbombo,
Secretary; Louis Christopher, Treasurer; and Gregory Moses, Corresponding Sec-
retary and Faculty Sponsor.

NJ Epsilon – New Jersey City University
Corresponding Secretary and Faculty Sponsor – Dr. Alemtsehai Turasie; 151 To-
tal Members
Other Spring 2022 Officer: Dr. Debananda Chakraborty, Faculty Sponsor.

NY Lambda – LIU Post
Chapter President – Timothy Nagorsky; 470 Total Members; 7 New Members
Other Spring 2022 Officer: Dr. Corbett Redden, Corresponding Secretary and
Faculty Sponsor.

NY Nu – Hartwick College
Chapter President – Dell Potts; 349 Total Members
Other Spring 2022 Officers: Shane Lamparter, Vice President; Hannah Bochniak,
Secretary; James Lukasik, Treasurer; and Min Chung, Corresponding Secretary
and Faculty Sponsor.

OH Gamma – Baldwin Wallace University
Chapter President – Harrison Rouse; 1041 Total Members; 14 New Members
Other Spring 2022 Officers: Izzy Andrews, Vice President; Moore Syrowski, Sec-
retary; and David Calvis, Corresponding Secretary and Faculty Sponsor.
Annual initiation ceremony held March 27, 2022 in our lovely new Knowlton
Center.
New Initiates – Grace Fryling, Julia Gersey, Julia Grady, David Hudson, Hannah Og-
den, Brian Parnitzke, Zachary Pietrasz, Dana Rabung, Ryan Reffner, Hannah Ross, Chloe
Sperry, Parker Stevens, Emma Trost, and Ashley Workman.

OK Delta – Oral Roberts University
Chapter President – Gladys Chen; 214 Total Members; 7 New Members
Other Spring 2022 Officers: Abigail E. Lea, Vice President; Anna K. Kinnunen,
Secretary; Nathaniel P. Youmans, Treasurer; and Dr. Enrique Valderrama Araya,
Corresponding Secretary and Faculty Sponsor.
New Initiates – Gladys Chen, Anna K. Kinnunen, Abigail E. Lea, Shaofan Li, Aidan
Samuel Wright, Andrew B. Westlund, and Nathaniel P. Youmans.

PA Mu – Saint Francis University
Chapter President – Michael Gallagher; 510 Total Members; 16 New Members
Other Spring 2022 Officers: Morgan Kiesewetter, Vice President; Regina Edging-
ton, Secretary; Jared Ohler, Treasurer; and Dr. Brendon LaBuz, Corresponding
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Secretary and Faculty Sponsor.
The Pennsylvania Mu Chapter was pleased to serve free pie to the campus com-
munity again for Pi Day on March 14th. Fifteen students and one faculty member
were initiated into the Pennsylvania Mu Chapter on Monday April 4th. The cere-
mony was held at 5:00 p.m. in the atrium of the Science Center. Faculty initiate
Brother Marius Strom gave an opening prayer before dinner. After dinner KME
faculty member Dr. Ying Li presented The Fibonacci Sequence where she told us
about some interesting and unusual facts about the famous Fibonacci sequence.
The initiation ceremony followed and we celebrated our 500th member.

PA Pi – Slippery Rock University
Chapter President – Spencer Kahley; 145 Total Members; 5 New Members
Other Spring 2022 Officers: Boris Brimkov, Corresponding Secretary; and Amanda
Goodrick, Faculty Sponsor.
We held an initiation ceremony attended by department faculty and new KME
members. The initiates each gave a presentation on their research.

PA Rho – Thiel College
Chapter President – Ethan Stishan; 145 Total Members; 6 New Members
Other Spring 2022 Officers: Camryn Sankey, Vice President; Cassie Brown, Sec-
retary; Kara Baumgardner, Treasurer; Dr. Russell Richins, Corresponding Secre-
tary; and Dr. Jie Wu, Faculty Sponsor.
We had our initiation ceremony in April and several meetings throughout the
semester.

RI Beta – Bryant University
Corresponding Secretary – Prof. John Quinn; 200 Total Members; 12 New Mem-
bers
Other Spring 2022 Officer: Prof. Gao Niu, Faculty Sponsor.
We held our annual Math Honors ceremony at Bryant University on Thursday,
April 28, 2022. We initiated 12 new student members into the RI Beta Chapter of
KME. We have do not have a student executive board for this upcoming academic
year, as of yet.

TN Gamma – Union University
Chapter President – Braden Watkins; 524 Total Members; 7 New Members
Other Spring 2022 Officers: Joya Schrock, Vice President; Rylee Iorio, Secretary;
Taylor Overcast, Treasurer; Bryan Dawson, Corresponding Secretary; and Matt
Lunsford, Faculty Sponsor.
Chapter officers repainted the “Union Intersection” walls with chalkboard paint;
the results have been an abundance of mathematics, humor, and artistry. Our an-
nual initiation banquet was held at Brooksie’s Barn. Two faculty members and
three students attended the Southeast region conference in Florence, Alabama.
Two of our students, Lisa Reed and Braden Watkins, presented their work at the



Fall 2022 85

conference.
New Initiates – Ian Banderchuk, Paige Bogard, Samantha Burket, Jacob Carbonell, Eliz-
abeth Joy Lewis, Conitra Morgan, and Jessica Searl.

TX Lambda – Trinity University
Corresponding Secretary and Faculty Sponsor – Dr. Hoa Nguyen; 315 Total
Members; 8 New Members

WV Alpha – Bethany College
Chapter President – Amanda M. Reynolds; 198 Total Members; 4 New Members
Other Spring 2022 Officers: Jacob C. Thornburg, Vice President; Lauren E. Starr,
Secretary and Treasurer; and Dr. Adam C. Fletcher, Corresponding Secretary and
Faculty Sponsor.
West Virginia Alpha, like many other chapters across the country, continued to ad-
just to life in a pandemic. The College returned to life on-campus this year, with
strict COVID protocols in place throughout. The local and national restrictions
canceled or postponed a number of the chapter’s usual activities, like mathemat-
ics competitions and professional gatherings. West Virginia Alpha chapter and
our local Mathematics and Computer Science Club continued to attend meetings
virtually and host small chess and gaming tournaments on campus. The West
Virginia Alpha chapter welcomed four new members into its ranks in the spring
in-person ceremony and assisted in the initiation of two members in the Upsilon
Pi Epsilon computing sciences honor society at its corresponding ceremony.
New Initiates – Geoffrey P. Foster, Ian A. Nelson, Grace A. Omecinski, and Michael D.
Ross.
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Active Chapters of Kappa Mu Epsilon
Listed by date of installation

Chapter Location Installation Date

OK Alpha Northeastern State University, Tahlequah 18 Apr 1931
IA Alpha University of Northern Iowa, Cedar Falls 27 May 1931
KS Alpha Pittsburg State University, Pittsburg 30 Jan 1932
MO Alpha Missouri State University, Springfield 20 May 1932
MS Alpha Mississippi University for Women, Columbus 30 May 1932
NE Alpha Wayne State College, Wayne 17 Jan 1933
KS Beta Emporia State University, Emporia 12 May 1934
AL Alpha Athens State University, Athens 5 Mar 1935
NM Alpha University of New Mexico, Albuquerque 28 Mar 1935
IL Beta Eastern Illinois University, Charleston 11 Apr 1935
AL Beta University of North Alabama, Florence 20 May 1935
AL Gamma University of Montevallo, Montevallo 24 Apr 1937
OH Alpha Bowling Green State University, Bowling Green 24 Apr 1937
MI Alpha Albion College, Albion 29 May 1937
MO Beta University of Central Missouri, Warrensburg 10 Jun 1938
TX Alpha Texas Tech University, Lubbock 10 May 1940
KS Gamma Benedictine College, Atchison 26 May 1940
IA Beta Drake University, Des Moines 27 May 1940
TN Alpha Tennessee Technological University, Cookeville 5 Jun 1941
MI Beta Central Michigan University, Mount Pleasant 25 Apr 1942
NJ Beta Montclair State University, Upper Montclair 21 Apr 1944
IL Delta University of St. Francis, Joliet 21 May 1945
KS Delta Washburn University, Topeka 29 Mar 1947
MO Gamma William Jewell College, Liberty 7 May 1947
TX Gamma Texas Woman’s University, Denton 7 May 1947
WI Alpha Mount Mary College, Milwaukee 11 May 1947
OH Gamma Baldwin-Wallace College, Berea 6 Jun 1947
MO Epsilon Central Methodist College, Fayette 18 May 1949
MS Gamma University of Southern Mississippi, Hattiesburg 21 May 1949
IN Alpha Manchester College, North Manchester 16 May 1950
PA Alpha Westminster College, New Wilmington 17 May 1950
IN Beta Butler University, Indianapolis 16 May 1952
KS Epsilon Fort Hays State University, Hays 6 Dec 1952
PA Beta LaSalle University, Philadelphia 19 May 1953
VA Alpha Virginia State University, Petersburg 29 Jan 1955
IN Gamma Anderson University, Anderson 5 Apr 1957
CA Gamma California Polytechnic State University, San Luis Obispo 23 May 1958
TN Beta East Tennessee State University, Johnson City 22 May 1959
PA Gamma Waynesburg College, Waynesburg 23 May 1959
VA Beta Radford University, Radford 12 Nov 1959
NE Beta University of Nebraska—Kearney, Kearney 11 Dec 1959
IN Delta University of Evansville, Evansville 27 May 1960
OH Epsilon Marietta College, Marietta 29 Oct 1960
MO Zeta University of Missouri—Rolla, Rolla 19 May 1961
NE Gamma Chadron State College, Chadron 19 May 1962
MD Alpha College of Notre Dame of Maryland, Baltimore 22 May 1963
CA Delta California State Polytechnic University, Pomona 5 Nov 1964
PA Delta Marywood University, Scranton 8 Nov 1964
PA Epsilon Kutztown University of Pennsylvania, Kutztown 3 Apr 1965
AL Epsilon Huntingdon College, Montgomery 15 Apr 1965
PA Zeta Indiana University of Pennsylvania, Indiana 6 May 1965
TN Gamma Union University, Jackson 24 May 1965
IA Gamma Morningside College, Sioux City 25 May 1965
MD Beta McDaniel College, Westminster 30 May 1965
IL Zeta Dominican University, River Forest 26 Feb 1967
SC Beta South Carolina State College, Orangeburg 6 May 1967
PA Eta Grove City College, Grove City 13 May 1967
NY Eta Niagara University, Niagara University 18 May 1968
MA Alpha Assumption College, Worcester 19 Nov 1968
MO Eta Truman State University, Kirksville 7 Dec 1968
IL Eta Western Illinois University, Macomb 9 May 1969
OH Zeta Muskingum College, New Concord 17 May 1969
PA Theta Susquehanna University, Selinsgrove 26 May 1969
PA Iota Shippensburg University of Pennsylvania, Shippensburg 1 Nov 1969
MS Delta William Carey College, Hattiesburg 17 Dec 1970
MO Theta Evangel University, Springfield 12 Jan 1971
PA Kappa Holy Family College, Philadelphia 23 Jan 1971
CO Beta Colorado School of Mines, Golden 4 Mar 1971
KY Alpha Eastern Kentucky University, Richmond 27 Mar 1971
TN Delta Carson-Newman College, Jefferson City 15 May 1971
NY Iota Wagner College, Staten Island 19 May 1971
SC Gamma Winthrop University, Rock Hill 3 Nov 1972
IA Delta Wartburg College, Waverly 6 Apr 1973
PA Lambda Bloomsburg University of Pennsylvania, Bloomsburg 17 Oct 1973
OK Gamma Southwestern Oklahoma State University, Weatherford 1 May 1973
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NY Kappa Pace University, New York 24 Apr 1974
TX Eta Hardin-Simmons University, Abilene 3 May 1975
MO Iota Missouri Southern State University, Joplin 8 May 1975
GA Alpha State University of West Georgia, Carrollton 21 May 1975
WV Alpha Bethany College, Bethany 21 May 1975
FL Beta Florida Southern College, Lakeland 31 Oct 1976
WI Gamma University of Wisconsin—Eau Claire, Eau Claire 4 Feb 1978
MD Delta Frostburg State University, Frostburg 17 Sep 1978
IL Theta Benedictine University, Lisle 18 May 1979
PA Mu St. Francis University, Loretto 14 Sep 1979
AL Zeta Birmingham-Southern College, Birmingham 18 Feb 1981
CT Beta Eastern Connecticut State University, Willimantic 2 May 1981
NY Lambda C.W. Post Campus of Long Island University, Brookville 2 May 1983
MO Kappa Drury University, Springfield 30 Nov 1984
CO Gamma Fort Lewis College, Durango 29 Mar 1985
NE Delta Nebraska Wesleyan University, Lincoln 18 Apr 1986
TX Iota McMurry University, Abilene 25 Apr 1987
PA Nu Ursinus College, Collegeville 28 Apr 1987
VA Gamma Liberty University, Lynchburg 30 Apr 1987
NY Mu St. Thomas Aquinas College, Sparkill 14 May 1987
OH Eta Ohio Northern University, Ada 15 Dec 1987
OK Delta Oral Roberts University, Tulsa 10 Apr 1990
CO Delta Mesa State College, Grand Junction 27 Apr 1990
PA Xi Cedar Crest College, Allentown 30 Oct 1990
MO Lambda Missouri Western State College, St. Joseph 10 Feb 1991
TX Kappa University of Mary Hardin-Baylor, Belton 21 Feb 1991
SC Delta Erskine College, Due West 28 Apr 1991
NY Nu Hartwick College, Oneonta 14 May 1992
NH Alpha Keene State College, Keene 16 Feb 1993
LA Gamma Northwestern State University, Natchitoches 24 Mar 1993
KY Beta Cumberland College, Williamsburg 3 May 1993
MS Epsilon Delta State University, Cleveland 19 Nov 1994
PA Omicron University of Pittsburgh at Johnstown, Johnstown 10 Apr 1997
MI Delta Hillsdale College, Hillsdale 30 Apr 1997
MI Epsilon Kettering University, Flint 28 Mar 1998
MO Mu Harris-Stowe College, St. Louis 25 Apr 1998
GA Beta Georgia College and State University, Milledgeville 25 Apr 1998
AL Eta University of West Alabama, Livingston 4 May 1998
PA Pi Slippery Rock University, Slippery Rock 19 Apr 1999
TX Lambda Trinity University, San Antonio 22 Nov 1999
GA Gamma Piedmont College, Demorest 7 Apr 2000
LA Delta University of Louisiana, Monroe 11 Feb 2001
GA Delta Berry College, Mount Berry 21 Apr 2001
TX Mu Schreiner University, Kerrville 28 Apr 2001
CA Epsilon California Baptist University, Riverside 21 Apr 2003
PA Rho Thiel College, Greenville 13 Feb 2004
VA Delta Marymount University, Arlington 26 Mar 2004
NY Omicron St. Joseph’s College, Patchogue 1 May 2004
IL Iota Lewis University, Romeoville 26 Feb 2005
WV Beta Wheeling Jesuit University, Wheeling 11 Mar 2005
SC Epsilon Francis Marion University, Florence 18 Mar 2005
PA Sigma Lycoming College, Williamsport 1 Apr 2005
MO Nu Columbia College, Columbia 29 Apr 2005
MD Epsilon Stevenson University, Stevenson 3 Dec 2005
NJ Delta Centenary College, Hackettstown 1 Dec 2006
NY Pi Mount Saint Mary College, Newburgh 20 Mar 2007
OK Epsilon Oklahoma Christian University, Oklahoma City 20 Apr 2007
HA Alpha Hawaii Pacific University, Waipahu 22 Oct 2007
NC Epsilon North Carolina Wesleyan College, Rocky Mount 24 Mar 2008
NY Rho Molloy College, Rockville Center 21 Apr 2009
NC Zeta Catawba College, Salisbury 17 Sep 2009
RI Alpha Roger Williams University, Bristol 13 Nov 2009
NJ Epsilon New Jersey City University, Jersey City 22 Feb 2010
NC Eta Johnson C. Smith University, Charlotte 18 Mar 2010
AL Theta Jacksonville State University, Jacksonville 29 Mar 2010
GA Epsilon Wesleyan College, Macon 30 Mar 2010
FL Gamma Southeastern University, Lakeland 31 Mar 2010
MA Beta Stonehill College, Easton 8 Apr 2011
AR Beta Henderson State University, Arkadelphia 10 Oct 2011
PA Tau DeSales University, Center Valley 29 Apr 2012
TN Zeta Lee University, Cleveland 5 Nov 2012
RI Beta Bryant University, Smithfield 3 Apr 2013
SD Beta Black Hills State University, Spearfish 20 Sept 2013
FL Delta Embry-Riddle Aeronautical University, Daytona Beach 22 Apr 2014
IA Epsilon Central College, Pella 30 Apr 2014
CA Eta Fresno Pacific University, Fresno 24 Mar 2015
OH Theta Capital University, Bexley 24 Apr 2015
GA Zeta Georgia Gwinnett College, Lawrenceville 28 Apr 2015
MO Xi William Woods University, Fulton 17 Feb 2016
IL Kappa Aurora University, Aurora 3 May 2016
GA Eta Atlanta Metropolitan University, Atlanta 1 Jan 2017
CT Gamma Central Connecticut University, New Britan 24 Mar 2017
KS Eta Sterling College, Sterling 30 Nov 2017
NY Sigma College of Mount Saint Vincent, The Bronx 4 Apr 2018
PA Upsilon Seton Hill University, Greensburg 5 May 2018
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KY Gamma Bellarmine University, Louisville 23 Apr 2019
MO Omicron Rockhurst University, Kansas City 13 Nov 2020
AK Gamma Harding University, Searcy 27 Apr 2021
GA Theta College of Coastal Georgia, Brunswick 22 Oct 2021


