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The Additive Property of the
Sum-of-Divisors Function

Marcia-Mariel Erhart, student
John Zerger

NC Zeta

Catawba College
Salisbury, NC 28144

Abstract

In the Fall 2017 issue of The Pentagon [3], Anand Prakash posed some
general questions concerning the “Sum of Divisors of Integers.” We will
be presenting some results addressing these questions. More specifically,
if σ(n) is the sum of divisors function:

1. Can we characterize all pairs (m,n)such that

2(m+ n) = σ(m) + σ(n)

and
2. Can it be shown that there are an infinite number of solutions of the

form (m, kp) where k is a perfect number and p is a prime number with
gcd(k, p) = 1?
In his note, Mr. Prakash showed that for certain values ofm and k there are
an infinite number of pairs (m, kp) satisfying the equation in (1). Though
we were unable to characterize all pairs (m,n), we show that there are
infinitely many values of m and k that satisfy the equation in (1).

The Questions

The sum-of-divisor function is a number-theoretic function and is de-
fined by σ(n) =

∑
d|n
d where n and d are positive integers. A perfect

number, n, is defined as one such that σ(n) = 2n. A couple of examples
are σ(6) = 1+2+3+6 = 2∗6 = 12 and σ(28) = 1+2+4+7+14+28 =
2 ∗ 28 = 56. Here we are seeking to determine for what positive integers
m and n is it the case that

2(m+ n) = σ(m) + σ(n). (1)
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Obviously, if m and n are both perfect numbers then σ(m) + σ(n) =
2m + 2n = 2(m + n). However, there are other integer pairs (m,n) that
satisfy this property. For example, (13, 30), (56, 22), and (118, 84). This
raises the questions which we address in this paper. Namely:
Can we characterize all pairs of positive integers (m,n) such that σ(m) +
σ(n) = 2(m+ n)?
Can we show that there are an infinite number of solutions to that charac-
terization?

Properties Used

Some elementary properties of the sum-of-divisor function are estab-
lished and stated in this section.

It is easy to see that the sum-of-divisor function for any prime number
p, is

σ(p) = p+ 1.

Theorem 1 For any integer of the form pn where p is a prime number
and n is a positive integer, the sum-of-divisors function can be expressed
as

σ (pn) = 1 + p+ p2 + p3 + · · ·+ pn =
pn+1 − 1

p− 1
.

Proof. We will use proof by induction. Since σ
(
p1
)

= 1 + p = p2−1
p−1 ,

the result holds for n = 1. Now assume that the desired result is true for a
fixed integer k, that is, assume

σ
(
pk
)

= 1 + p+ p2 + p3 + · · ·+ pk =
pk+1 − 1

p− 1
.

We need to prove that

σ
(
pk+1

)
= 1 + p+ p2 + p3 + · · ·+ pk+1 =

pk+2 − 1

p− 1
.
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By substitution we have

σ
(
pk+1

)
= 1 + p+ p2 + p3 + · · ·+ pk + pk+1

=
pk+1 − 1

p− 1
+ pk+1

=
pk+1 − 1 + pk+1(p− 1)

p− 1

=
pk+2 − 1

p− 1
.

Therefore, the claim holds for all natural numbers n.

Corollary 1 For the prime number p = 2 and any positive integer n we
have

σ (2n) =
2n+1 − 1

2− 1
= 2n+1 − 1.

Theorem 2 The function σ(n) is a multiplicative number-theoretic func-
tion, that is, for the non-negative integers m and n where gcd(m,n) = 1,

σ(m · n) = σ(m) · σ(n).

Proof. See [1]

Key Results

We now present a couple of theorems confirming that there are, in fact,
methods of generating an infinite number of pairs of integers (m,n) satis-
fying σ(m) + σ(n) = 2(m+ n).

Theorem 3 Let k be a perfect number and let p be a prime number such
that gcd(k, p) = 1. Then, if q = 2k−1 + 2r+1 is an odd prime number for
some non-negative integer r then m = 2rq and n = kp satisfies σ(m) +
σ(n) = 2(m+ n).

Proof. The theorem can be proven by using the earlier stated properties of
the divisor function as well as substitution, factorization, and expansion.
From Theorem 2 and Corollary 1,

σ(m) + σ(n) =
(
2r+1 − 1

)
(q + 1) + 2k(p+ 1),
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so

σ(m) + σ(n) = 2r+1 − q − 1 + 2k + 2r+1q + 2kp

= 2r+1 −
(
2k − 1 + 2r+1

)
− 1 + 2k

+ 2r+1
(
2k − 1 + 2r+1

)
+ 2kp(

since q = 2k − 1 + 2r+1
)

= 2r+1
(
2k − 1 + 2r+1

)
+ 2kp

= 2r+1q + 2kp(
since q = 2k − 1 + 2r+1

)
= 2 (2rq + kp)

= 2(m+ n).

Examples of pairs (m,n) satisfying Theorem 1 can be found in Table
1 (see Appendix).

Theorem 4 Let n = 2kp and m = 2rq where k and r are both positive
integers and p and q are odd prime numbers. Then, for every r and k such
that p+ q = 2

(
2k + 2r − 1

)
, σ(m) + σ(n) = 2(m+ n) is satisfied.

Proof. We have

σ(m) + σ(n) =
(

2k+1 − 1
)

(p+ 1) +
(
2r+1 − 1

)
(q + 1)

= 2k+1p+ 2k+1 − p− 1 + 2r+1q + 2r+1 − q − 1

= 2m+ 2n+ 2k+1 + 2r+1 − 2− (p+ q)

= 2m+ 2n+ 2k+1 + 2r+1 − 2−
(

2k+1 + 2r+1 − 2
)

(
since p+ q = 2

(
2k + 2r − 1

))
= 2m+ 2n

= 2(m+ n).

Goldbach’s conjecture posits that every even integer greater than 4 can
be expressed as the sum of two odd prime ([2], p. 33). Goldbach’s con-
jecture has been confirmed for integers up to 4 × 1018. Therefore, Gold-
bach’s conjecture provides the existence of such a p and q for Theorem
4. Some examples utilizing Theorem 4 are (m,n) = (23 · 7, 21 · 11),
(m,n) = (23 · 11, 21 · 7), or (m,n) = (24 · 23, 23 · 23). More examples
can be found in Table 2.
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In both of the above theorems at least one of m or n are even inte-
gers. We now turn our investigation into pairs (m,n) where both are odd
positive integers. First we give a few necessary results.

Lemma 1 The function f(x) = cx
x−1 is decreasing for all c > 0 and

x 6= 1.

Proof. The derivative of f(x) is f ′(x) = −c
(x−1)2 which is negative for a

c > 0.

Lemma 2 Let p and q be odd primes with p < q, and a and b positive
integers. Then:
σ(p) < 2p;
If m = pa, then σ(m) < 2m;
If m = paqb, then σ(m) < 2m.

Proof. (1) We have σ(p) = p+ 1 < p+ p = 2p.
(2) If m = pa then, by Theorem 1,

σ(m) = σ (pa) =
pa+1 − 1

p− 1
<

pap

p− 1
=

mp

p− 1
.

By lemma 1, since p ≥ 3, mp
p−1 6

3m
2 . Therefore

σ(m) 6
3m

2
< 2m.

(3) If m = paqb, then by Theorem 1 and Theorem 2

σ(m) = σ
(
paqb

)
=
pa+1 − 1

p− 1
· q

b+1 − 1

q − 1

<
papqbq

(p− 1)(q − 1)

=
mpq

(p− 1)(q − 1)
.

Since p ≥ 3 and q > p we have q ≥ 5. From lemma 1 above it follows
that mp

p−1 <
3m
2 and q

q−1 <
5
4 . Therefore

σ(m) <
3m

2
· 5

4
=

15m

8
< 2m.
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Corollary 2 If p, q, r and s are distinct odd primes and a, b, c and d are
positive integers and (m,n) = (paqb, rcsd) then σ(m)+σ(n) < 2(m+n).

Proof. By part (c) of Lemma 2, σ(m) < 2m and, similarly, σ(n) < 2n
so σ(m) + σ(n) < 2(m+ n).

Corollary 3 If the pair (m,n) is such that σ(m)+σ(n) = 2(m+n) and
both m and n are odd positive integers, then at least one of m or n must
have 3 or more different prime factors.

Proof. Part (1) of Lemma 2 tells us we cannot have both m and n as
odd primes, part (2) and part (3) of the lemma give us that m and n cannot
be products of two odd primes or products of powers of two odd prime
numbers.

Some examples of such pairs are (945, 31), (2205, 37), (4095, 547),
(2835, 139). More examples can be found in Table 3.

We have found a fair number of such pairs. In each of the pairs we
found one is an odd prime and the other is an abundant odd number. Abun-
dant numbers n, are defined to be those which have σ(n) > 2n. A list
of such odd abundant numbers can be found athttp://oeis.org/
wiki/Odd_abundant_numbers.

Further research

So far we have shown that there are an infinite number of pairs (m,n)
satisfying σ(m) + σ(n) = 2(m + n). However, there is still some work
to be done in order to classify all such pairs. Further research regarding
abundant numbers and the possible compositions of the integer pairs could
also lead to more results.
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Appendix

Table 1

This table was generated by an appropriate pair of integers m and n
and then check that q is a prime as required.

Table 2

This table was generated by an appropriate pair of integers m and n
and then check that p+ q = 2(2k + 2r − 1) as required.
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Table 3

This table was generated by an odd prime n and an abundant odd num-
ber m.
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Counting Odd Numbers in Truncations of
Pascal’s Triangle

Robert G. Donnelly1

Molly W. Dunkum2

Courtney George2 student
Stefan Schnake1 student

1. Murray State University
Murray, KY 42071

2. Western Kentucky University
Bowling Green, KY 42101

Abstract

A “truncation” of Pascal’s triangle is a triangular array of numbers that
satisfies the usual Pascal recurrence but with a boundary condition that
declares some terminal set of numbers along each row of the array to be
zero. Presented here is a family of natural truncations of Pascal’s triangle
that generalize a kind of Catalan triangle. The numbers in each array are
realized as differences of binomial coefficients; as counts of certain lattice
paths and tableaux; and as entries of representing matrices for certain lin-
ear transformations of polynomial spaces. Lucas’s theorem is applied to
determine precisely those truncations for which the number of odd entries
on each row is a power of two.

1. Introduction

Observe that the following conditions (i), (ii), and (iii) uniquely deter-
mine an integer-valued function A on Z× Z:

(i) A(0, 0) = 1,

(ii) A(n, k) = 0 if n < 0, k < 0, or k > bn/2c, and

(iii)A(n, k) = A(n− 1, k− 1) +A(n− 1, k) for all other integer
pairs (n, k) when n > 0.

The output numbers of interest are those within the triangular array (A(n, k))
indexed by integer pairs (n, k) for which 0 ≤ k ≤ n. When we display
this array, we get a kind of “truncation” of Pascal’s triangle. Here are the
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first ten rows:
1

1 0
1 1 0

1 2 0 0
1 3 2 0 0

1 4 5 0 0 0
1 5 9 5 0 0 0

1 6 14 14 0 0 0 0
1 7 20 28 14 0 0 0 0

1 8 27 48 42 0 0 0 0 0

Figure 1

The numbers of this array are very well-known in enumerative combi-
natorics. For example, the sequence of numbers in the rightmost nonzero
“column” of the array is the famous sequence of Catalan numbers. The
nonzero entries of this array are called “ballot numbers,” as they count
the number of ways one candidate can defeat another candidate in a two-
person election, under certain constraints. For further explication of this
and other well-known phenomena related to this Catalan array, see for ex-
ample [1] and references therein.

In this paper, we generalize this Catalan array by simply and naturally
varying the “boundary condition” (ii) above. We will have one such ar-
ray for each positive integer t, where t identifies the first row of the array
that no longer fully agrees with Pascal’s triangle, i.e. the first “truncated”
row. So, for example, the t = 1 array is the Catalan array depicted above.
The nonzero numbers in these more general triangular arrays are shown
to be differences of binomial coefficients as well as counts of certain lat-
tice paths. The fourth author, in consultation with the first author, stud-
ied these arrays in an undergraduate student honors thesis [13] concern-
ing differential operators on function spaces. A version of the motivating
problem of that thesis is presented below, and in Theorem 4 it is shown
how the numbers in our truncated Pascal arrays are coefficients for certain
polynomials which arise in the study of differential operators. However,
in [10], Reuveni independently presented the so-called “Catalan’s trape-
zoids,” which are the same as our truncated Pascal’s triangles but indexed
and formatted somewhat differently. In [11], these trapezoids are applied
in a probabilistic analysis of certain lattice-gas flow models.

We close this introduction with some descriptive comments about the
content of the paper. We think these Pascal-like arrays are inherently pretty
and provide for an excellent enumerative example or exercise: We have a
recurrence, an explicit formula, combinatorial interpretations, and a poly-
nomial algebra context for these numbers, as summarized in Theorem 4.
This would seem to place us well within a salutary enumerative environ-
ment as envisioned by Stanley in Chapter 1 of his classic text [14]. Our
main result – Theorem 7 – is a (modest) enumerative application of these
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arrays that generalizes the well-known problem of counting odd numbers
in the rows of Pascal’s triangle; this new theorem, which appears in [3],
was obtained by the third author in consultation with the first and second
authors. For Pascal’s triangle, solutions to this odd-counting problem and
other related problems are entertainingly recounted in [4]. Our work in this
paper leaves open the possibility of generalizing other such problems from
Pascal’s triangle to the truncations of Pascal’s triangle presented here.

2. A family of truncations of Pascal’s triangle

For the rest of the paper, n and k are integer variables and t denotes
a fixed positive integer, which we think of informally as designating the
first truncated row of the associated Pascal-like integer array. Consider a
function at : Z× Z −→ Z satisfying

(i) at(0, 0) = 1,

(ii) at(n, k) = 0 if n < 0, k < 0, or k > min
{
bn−1+t

2 c, n
}

, and

(iii) at(n, k) = at(n− 1, k − 1) + at(n− 1, k)

for all other integer pairs (n, k). Figure 2 displays the first ten rows of
the array (a4(n, k)) when viewed as a truncation of Pascal’s triangle. We
call an array (at(n, k))0≤k≤n<∞ a truncated Pascal’s triangle. Of course,
the Catalan array (A(n, k)) of §1 is just the t = 1 version of (at(n, k)).
In the next section we offer various interpretations of and contexts for the
numbers in these truncated Pascal’s triangles.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 0
1 5 10 10 4 0

1 6 15 20 14 0 0
1 7 21 35 34 14 0 0

1 8 28 56 69 48 0 0 0
1 9 36 84 125 117 48 0 0 0

Figure 2: The first ten rows of the truncated Pascal’s triangle (a4(n, k)).

3. Algebraic-combinatorial aspects of truncated Pascal’s triangles

In this section, we aim to give several different descriptions of the num-
bers appearing in our given truncated Pascal’s triangle (at(n, k)), which
will culminate in Theorem 4. These new descriptions will be denoted by
bt(n, k), ct(n, k), c′t(n, k), and dt(n, k). To start, declare that

bt(n, k) :=

(
n

k

)
−
(

n

k − t

)
, (2)

with the usual understanding that the binomial coefficient
(
p
q

)
is zero unless



Fall 2019 15

0 ≤ q ≤ p. For example,

b4(7, 5) =

(
7

5

)
−
(

7

1

)
=

7 · 6 · 5 · 4 · 3
5!

− 7

1!
= 21− 7 = 14.

Note that the latter quantity agrees with a4(7, 5), which is the (n, k) =
(7, 5) entry of the example array (a4(n, k)) depicted in §2 above.

Next, we count lattice paths. An NE-path from (x1, y1) to (x2, y2) in
the plane will be a continuous path starting at (x1, y1), ending at (x2, y2),
and consisting of a finite number of unit steps in the north and east direc-
tions only. Say an NE-path from (0, 0) to (k, n− k) is an (n, k)-NE-path,
and call such a path t-admissible if it does not intersect the line y = x− t;
in such a case we say the path stays weakly above y = x − t + 1. For
example, when t = 4 and (n, k) = (7, 5), then (k, n− k) = (5, 2). As we
can see in the pictures below, the number of 4-admissible (7, 5)-NE-paths
is 14, i.e. there are fourteen NE-paths from (0, 0) to (5, 2) that stay weakly
above y = x − 3. For now, one can ignore the numbers assigned to the
horizontal steps of each lattice path, although the pattern in which they are
assigned should be evident.
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So, this count agrees with a4(7, 5) and b4(7, 5). In general, we set

ct(n, k) := |{t-admissible (n, k)-NE-paths}|. (3)

For integers x1, y1, x2, and y2, the number of all NE-paths from (x1, y1)

to (x2, y2) is easily seen to be
(
y2 − y1 + x2 − x1

x2 − x1

)
: Of the y2 − y1 +

x2 − x1 N or E steps required to move from (x1, y1) to (x2, y2), exactly
x2− x1 must be E’s. Consider for the moment those NE-paths from (0, 0)
to (k, n−k) which cross the line y = x−t+1 and therefore cross or touch
the line y = x− t. At the first point of intersection with y = x− t, reflect
the initial part of each such path across that line to obtain an NE-path from
(t,−t) to (k, n− k). For example, here is how we reflect a (7, 5)-NE-path
that is not 4-admissible:

��

��

��

��

��

y = x − 4
A
AAK

�
�
�
�
�
�
�
��

6
y

-
x

s
s

- s- s- s- s6s- s6
1 2 3 4

6

reflect−→

y = x − 4
A
AAK

�
�
�
�
�
�
�
��

6
y

-
x

s

s

6
s6s6
s6s6
s- s6

This reflection procedure, often called André’s reflection principle, can
be reversed and therefore shows that the set of NE-paths from (0, 0) to
(k, n−k) which cross the line y = x−t−1 is in one-to-one correspondence
with the set of all NE-paths from (t,−t) to (k, n− k). That is, the number
of NE-paths from (0, 0) to (k, n − k) that cross the line y = x − t − 1 is
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n−k+t+k−t

k−t
)
. Therefore,

ct(n, k) =

(
n

k

)
−
(
n− k + t+ k − t

k − t

)
=

(
n

k

)
−
(

n

k − t

)
= bt(n, k).

This shows:

Lemma 5 For all integers n and k, we have bt(n, k) = ct(n, k).

For more about the well-known observation recorded above as Lemma
1, see Chapter 1 of [6]. For a recent and readable survey of lattice path
enumeration with references to many closely related results, see [5].

In algebraic combinatorics, objects called “tableaux” are often used as
row and column indices for collections of matrices that represent alge-
braic structures such as groups or Lie algebras.1 Such tableaux generally
take the form of an array of boxes of some specified shape filled with in-
teger entries subject to certain rules. Next, we offer a re-interpretation
of t-admissible NE-paths as columnar tableaux; some possible algebraic-
combinatorial contexts for such tableaux are briefly mentioned in the clos-
ing section of the paper.

An (n, k)-columnar tableau T = (T1, T2, . . . , Tk) is a strictly increas-
ing k-tuple of integers with {T1, T2, . . . , Tk} ⊆ {1, 2, . . . , n}. We typi-
cally visualize such a tableau as a vertical column of k boxes filled from
top to bottom with the entries T1, T2, . . . , Tk:

T =

T1

T2

•
•
•
•

Tk

An (n, k)-columnar tableau T = (T1, . . . , Tk) is t-admissible if, when-
ever t−1 < k, then Tt−1+j ≥ t−1+2j for any j ∈ {1, 2, . . . , k− t+1}.
For example, when t = 4 and (n, k) = (7, 5), then k − t + 1 = 2, and
our j’s are therefore from the set {1, 2}. When j = 1, Tt−1+j = T4 ≥ 5,
and when j = 2, Tt−1+j = T5 ≥ 7. Thus, the (7, 5)-columnar tableau
(1, 2, 3, 4, 6) is not 4-admissible. Indeed, one can easily check that the
4-admissible (7, 5)-columnar tableaux are precisely these:

1 For examples of such tableaux relating to matrix representations of the symmetric
groups, see for instance [12]; for many examples arising in Lie theory, see [9].
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1

2

3

5

7 ,

1

2

3

6

7 ,

1

2

4

5

7 ,

1

2

4

6

7 ,

1

2

5

6

7 ,

1

3

4

5

7 ,

1

3

4

6

7 ,

1

3

5

6

7 ,

1

4

5

6

7 ,

2

3

4

5

7 ,

2

3

4

6

7 ,

2

3

5

6

7 ,

2

4

5

6

7 , and

3

4

5

6

7 ,

a total of 14 columnar tableaux. This count agrees with a4(7, 5), b4(7, 5),
and c4(7, 5). At this point, a correspondence with the fourteen 4-admissible
(7, 5)-NE-paths presented above should be clear. Now let

c′t(n, k) := |{t-admissible (n, k)-columnar tableaux}|. (4)

The proof of our next lemma is obtained by producing an explicit bijection
between the t-admissible (n, k)-columnar tableaux and the t-admissible
(n, k)-NE-paths. This bijection merely formalizes what we have observed
in our example correspondence between the 4-admissible (7, 5)-NE-paths
and the 4-admissible (7, 5)-columnar tableaux. The proof can be found in
§5.

Lemma 6 For all integers n and k, we have ct(n, k) = c′t(n, k).

Finally, we consider another set of numbers dt(n, k) which arise as
coefficients of certain polynomials or, from another viewpoint, as entries
of representing matrices for certain linear transformations on polynomial
vector spaces. It appears this can be viewed within the context of Rota’s
finite operator calculus (see [7]), but we use more direct and elementary
reasoning here. To set things up, let {xj}j≥0 be the basis for the poly-
nomial vector space R[x] (polynomials in the indeterminate x and with
real coefficients) given by xj := xj/j!. Let S be the subspace of R[x]
spanned by {xj}j≥1. The linear transformation D : S −→ R[x] will be
the differential operator D(y) := y′ + y′′. So for any j ≥ 1, we have
D(xj) = xj−1 + xj−2 if we regard x−1 := 0. In fact, D is a vector space
isomorphism. For any positive integer N , set D−N := (D−1)N .

It is easy to see by induction on N that for all positive integers N ,
D−N (xt−1) is in spanR{xj}

t−1+N
j=1 . (For the basis step of the induction

argument, prove that D−1(xt−1) =

t−1∑
i=0

(−1)ixt−i by instead checking

that xt−1 =

t−1∑
i=0

(−1)iD(xt−i).) This means that for any positive integer
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N we can write

D−N (xt−1) =

t−1+N−1∑
i=0

(−1)idt(i+N − 1, i)xt−1+N−i (5)

for some real numbers dt(i + N − 1, i). Declare dt(n, k) to be zero for
any integer pair (n, k) such that for all N > 0 and 0 ≤ i ≤ t− 1 +N − 1,
(n, k) 6= (i+N − 1, i), i.e. dt(n, k) = 0 if (n, k) does not index any term
appearing in any of the sums shown in equation (4) above when N ≥ 1.
Thus, dt is a real-valued function defined on all of Z× Z.

As an example, consider t = 4 and (n, k) = (7, 5), so that
(i + N − 1, i) = (n, k) exactly when i = 5 and N = 3. Then d4(7, 5)
will be the coefficient of xt−1+N−i = x4−1+3−5 = x1 in the expansion
of D−N (xt−1) = D−3(x4−1) = D−3(x3), multiplied by (−1)i = (−1)5.
Starting with D−1(x3) = x4 − x3 + x2 − x1, it is easy to confirm that

D−3(x3) = D−1(D−1(D−1(x3))) = x6−3x5+6x4−10x3+14x2−14x1,

whence d4(7, 5) = (−1)5 · (−14) = 14. That is, d4(7, 5) agrees with
a4(7, 5), b4(7, 5), c4(7, 5), and c′4(7, 5).

The content of the next lemma, which is proved in §5, is that the
dt(n, k)’s satisfy the defining relations for the truncated Pascal’s triangle
(at(n, k)).

Lemma 7 We have dt(0, 0) = 1. For all integers n and k, we have

(i) dt(n, k) = 0 if n < 0, k < 0, or k > min
{
bn−1+t

2 c, n
}

, and
otherwise

(ii) dt(n, k) = dt(n− 1, k − 1) + dt(n− 1, k) as long as n > 0.

The preceding lemmas furnish the key steps in the proof of the main
result of this section, whose value is not so much the novelty of the results
(which are routine to enumeration experts) but rather the pleasantness and
illustrative utility of the results taken together as an assemblage.

Theorem 8 For all integers n and k, we have

at(n, k) = bt(n, k) = ct(n, k) = c′t(n, k) = dt(n, k).

Proof. The bt(n, k)’s are easily seen to satisfy the defining conditions
(i), (ii), and (iii) which uniquely determine the at(n, k)’s, so bt(n, k) =
at(n, k). The dt(n, k)’s satisfy these same conditions by Lemma 3, hence
dt(n, k) = at(n, k). And by Lemmas 1 and 2 we have bt(n, k) =
ct(n, k) = c′t(n, k).
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4. Counting odd numbers in truncations of Pascal’s triangle

It is a well-known phenomenon that the number of odds on any given
row of Pascal’s triangle is a power of two. A classical proof of this fact uti-
lizes Lucas’s Theorem and is recapitulated in Corollary 6 below, cf. §8.4 of
[2]. Our goal is to generalize this result to truncations of Pascal’s triangle.
Before we proceed, we fix some notation. For a prime p and a nonnega-
tive integer m, let lp(m) be 0 when m = 0 and blogp(m)c otherwise. For

i ∈ {0, 1, . . . , lp(m)}, let m(p)
i denote the ith digit of the base p represen-

tation of m, and let Dp(m) be the subset of {0, 1, . . . , lp(m)} for which
i ∈ Dp(m) if and only if m(p)

i 6= 0. Further, let dp(n) := |Dp(m)|. Our
interest is mainly in the case that p = 2, but we state Lucas’s Theorem
in its full generality in order to encourage the reader (and the authors) to
keep in mind the possibility of extending some of the ideas of this section
to other primes.

Theorem 9 (Lucas’s Theorem) Let p be any prime, and fix any nonnega-
tive integers n and k. Let l := max(lp(n), lp(k)). Then,(

n

k

)
≡

l∏
i=0

(
n
(p)
i

k
(p)
i

)
(mod p).

From here on, we suppress the “p” superscripts and subscripts from the
notation introduced above and fix p = 2 as our prime. So, for example,
“d(n)” means d2(n), “l(n)” means l2(n), “D(n)” means D2(n), etc.

Corollary 10 Let n be a nonnegative integer. Then the number of odds
on the nth row of Pascal’s triangle is 2d(n).

Proof. Suppose 0 ≤ k ≤ n. Then by Lucas’ Theorem,
(
n
k

)
is odd

if and only if ni = 1 whenever ki = 1. So,
(
n
k

)
is odd if and only if

D(k) ⊆ D(n). Of course, there are 2|D(n)| = 2d(n) choices for such
subsets.

Now we turn our attention to truncations of Pascal’s triangle. Corol-
lary 6 and the reasoning exhibited in its proof will be used in several of
the lemmas that follow. These lemmas support the proof of the following
theorem, which is the main result of this paper.

Theorem 11 The number of odds on each row of the Pascal triangle trun-
cation (at(n, k)) is a power of two if and only if t is a power of two. In
this case, when n is a nonnegative integer, the number of odds on row n of
the array is precisely 1

2 · 2
d(n+t).
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The proof of Theorem 7 is at the end of this section and will be easily
deduced from the lemmas we establish next.

Lemma 12 Suppose t is not a power of two. Then the number of odds
on row t of the truncated Pascal’s triangle (at(n, k)) is an odd number
greater than one and therefore not a power of two.

Proof. Let n = t. If 0 ≤ k ≤ n− 1, then

at(n, k) =

(
n

k

)
−
(

n

k − t

)
=

(
n

k

)
−
(

n

k − n

)
=

(
n

k

)
.

And if k = n, then at(n, k) =
(
n
n

)
−
(
n
0

)
= 0. So the nth row of the given

truncated Pascal array is the same as the nth row of Pascal’s triangle with
the sole exception of the nth entry, which is a 1 in Pascal’s triangle and a
0 in the truncated Pascal array. So, the number of odds on row n of the
truncated Pascal array is, by Corollary 6, 2d(n) − 1. This odd number is a
power of two if and only if d(n) = 0 if and only if n is a power of two.
But since t = n is not a power of two, we conclude that the number of
odds on row n is an odd number greater than one.

The simple observations of Lemmas 9 and 10 are needed for our proof
of Lemma 4.8.

Lemma 13 Let m be a nonnegative integer. The binomial coefficient(
2(m+1)
m+1

)
is even. The binomial coefficient

(
2m+1
m

)
is odd if and only if

there is a positive integer q such that 2m+ 1 = 2q − 1.

Proof. Since
(
2(m+1)
m+1

)
=
(
2m+1
m+1

)
+
(
2m+1
m

)
, which is even since

(
2m+1
m+1

)
=(

2m+1
m

)
. Now assume 2m+ 1 = 2q − 1 for a positive integer q. If

q = 1, then
(
2m+1
m

)
=
(
1
0

)
= 1, which is odd. Next assume q > 1. Now,

l(2m + 1) = q − 1, l(m) = q − 2, D(2m + 1) = {0, 1, . . . , q − 1}, and
D(m) = {0, 1, . . . , q − 2}. So by Lucas’s Theorem,(

2m+ 1

m

)
≡
(

1

0

)(
1

1

)(
1

1

)
· · ·
(

1

1

)
(mod 2),

hence
(
2m+1
m

)
is odd. Finally, assume

(
2m+1
m

)
is odd. If m = 0, then

2m+ 1 = 1 = 21 − 1. So now assume m > 0. Set r − 2 := l(m) (hence
r > 0) and write

m = mr−22
r−2 +mr−32

r−3 + · · ·+m12
1 +m02

0,

where of course mr−2 = 1. So,

2m+ 1 = mr−22
r−1 +mr−32

r−2 + · · ·+m02
1 + 1 · 20.
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Since
(
2m+1
m

)
is odd, Lucas’s Theorem requires that

(
mr−3

mr−2

)
=
(
mr−4

mr−3

)
=

· · · =
(
m0

m1

)
= 1. Based on these equalities, we observe that mr−2 = 1

forces mr−3 = 1, which in turn forces mr−4 = 1, etc. We conclude that

mr−2 = mr−3 = mr−4 = · · · = m1 = m0 = 1.

Then m = 2r−1 − 1, so 2m+ 1 = 2r − 1.

Lemma 14 Let n be a nonnegative integer. All entries on the nth row of
Pascal’s triangle are odd if and only if there is a nonnegative integer q
such that n = 2q − 1.

Proof. Suppose all entries on the nth row are odd. If n = 0, then n =
20 − 1. If n > 0, then by Lemma 9, there is a positive integer q with
n = 2q − 1. Conversely, suppose n = 2q − 1 for a nonnegative integer q.
If n = 0 = 20−1, then all entries on this row are odd, since the only entry
on this row is

(
0
0

)
= 1. Now say q is positive, so

n = nq−12
q−1 + nq−22

q−2 + · · ·+ n12
1 + n02

0

with nq−1 = nq−2 = · · · = n1 = n0 = 1. Let 0 ≤ k ≤ n, and write

k = kq−12
q−1 + kq−22

q−2 + · · ·+ k12
1 + k02

0.

Then by Lucas’s Theorem,(
n

k

)
≡
(

1

kq−1

)(
1

kq−2

)
· · ·
(

1

k0

)
( mod 2) ≡ 1 ( mod 2).

So all entries on the nth row are odd.

The following binomial coefficient identity is a version of Vandermonde’s
Identity, cf. Identity 132 of [2].

Lemma 15 (Vandermonde’s Identity) Let m, l, and j be nonnegative in-
tegers. Then

l∑
i=0

(
l

i

)(
m− l
j − i

)
=

(
m

j

)
.

Lemma 16 Suppose t = 2q for some nonnegative integer q. Then the
quantities at(n, k) and

(
n+t
k

)
have the same parity.

Proof. By Lemma 4.7,
(
n+t
k

)
=
∑t

i=0

(
t
i

)(
n+t−t
k−i

)
. Then(

n+ t

k

)
≡

t∑
i=0

(
t

i

)(
n

k − i

)
(mod 2).
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Since t = 2q for a nonnegative integer q, then by Lemma 10, all entries on
row t − 1 are odd. Then all entries on row t except the first and last are
even. So,

t∑
i=0

(
t

i

)(
n

k − i

)
≡
(
n

k

)
+

(
n

k − t

)
(mod 2).

And, (
n

k

)
+

(
n

k − t

)
≡
(
n

k

)
−
(

n

k − t

)
(mod 2).

Since at(n, k) =
(
n
k

)
−
(

n
k−t
)

by Theorem 4, we conclude that(
n+ t

k

)
≡ at(n, k) (mod 2).

We are now ready to prove Theorem 7.

Proof of Theorem 7:

Lemma 8 shows that if the number of odds on each row of the Pascal
triangle truncation (at(n, k)) is a power of two, then t must be a power
of two. Conversely, let us now suppose that t = 2q for some nonnega-
tive integer q. We aim to demonstrate the following claim: When n is a
nonnegative integer, the number of odds on row n of the array is precisely
1
2 · 2

d(n+t).
We begin by assuming n is odd. Write n = 2m + 1 for a non-

negative integer m. The last nonzero entry on row n occurs at position
k = min

{⌊
t−1+n

2

⌋
, n
}

= min
{⌊

2q+2m
2

⌋
, 2m+ 1

}
. If q = 0, then⌊

2q+2m
2

⌋
= m, so k = m. Of course, we now have t = 20 = 1. By

Lemma 4.8, the parity of entry a1(n, j) of the nth row of our array (where
0 ≤ j ≤ k = m) is the same as the parity of the binomial coefficient(
n+1
j

)
=
(
2m+2

j

)
. Since

(
2m+2
m+1

)
is even by Lemma 9, then the number of

odds on the (n + 1)st row of Pascal’s triangle is twice the number of odds
amongst the entries entry

(
n+1
j

)
for 0 ≤ j ≤ k = m. Now, the number

of odds on the (n+ 1)st row of Pascal’s triangle is 2d(n+1) by Corollary 6.
Therefore, the number of odds on the nth row of our truncated Pascal array
is 1

2 · 2
d(n+1), confirming our desired claim when q = 0.

Continuing with the assumption that n is odd, now assume that q > 0.
Then

⌊
2q+2m

2

⌋
= 2q−1 + m. If 2q−1 + m ≥ 2m + 1 (and hence 2q >

2m + 1), then k = 2m + 1, so the entries of the nth row of our array
coincide with the entries of the nth row of Pascal’s triangle. This shared
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number of odds is therefore 2d(n), by Corollary 6. But

d(n+ t) = d(n+ 2q) = d(n) + 1

since 2q > 2m + 1 = n. Then the number of odds on the nth row of our
array is 2d(n) = 1

2 · 2
d(n)+1 = 1

2 · 2
d(n+t), again confirming our claim. So

now consider the case that 2q−1 +m < 2m+1. The nth row entry at(n, j)
of our truncated Pascal array (where 0 ≤ j ≤ k) has the same parity as the
entry

(
n+t
j

)
of Pascal’s triangle, by Lemma 4.8. Now, k = 2q−1 +m while

n+t = 2q+2m+2 = 2(2q−1+m+1). Since
(

n+t
2q−1+m+1

)
=
(2(2q−1+m+1)

2q−1+m+1

)
is even by Lemma 9, then the number of odds on the (n + t)th row of
Pascal’s triangle is twice the number of odds amongst the entries entry(
n+t
j

)
for 0 ≤ j ≤ k = 2q−1 + m. So, the number of odds on the nth row

of our truncated Pascal array is 1
2 · 2

d(n+t), completing the confirmation of
our claim when n is odd.

Next, assume n is even, and write n = 2m for some nonnegative integer
m. As before, the last nonzero entry on row n occurs at position
k = min

{⌊
t−1+n

2

⌋
, n
}

= min
{⌊

2q−1+2m
2

⌋
, 2m

}
. Say q = 0, so t = 1.

Then k = min
{⌊

2m
2

⌋
, 2m

}
= m. By Lemma 4.8, the parity of entry

a1(n, j) of the nth row of our array (where 0 ≤ j ≤ k = m) is the same as
the parity of the binomial coefficient

(
n+1
j

)
=
(
2m+1

j

)
. Since the entries(

n+1
0

)
,
(
n+1
1

)
, . . . ,

(
n+1
m

)
comprise exactly half of the entries of said row

of Pascal’s triangle, then there are 1
2 · 2

d(n+1) odds amongst these entries.
So there are 1

2 · 2
d(n+1) odd entries on the nth row of our truncated Pascal

array, completing the confirmation of our claim when q = 0.
Keeping the hypothesis that n is even, now assume that q > 0. Then⌊

2q−1+2m
2

⌋
= 2q−1 +m−1. If 2q−1 +m−1 ≥ 2m (and hence 2q > 2m),

then k = 2m, so the entries of the nth row of our array coincide with the
entries of the nth row of Pascal’s triangle. This shared number of odds is
therefore 2d(n), by Corollary 6. But d(n + t) = d(n + 2q) = d(n) + 1
since 2q > 2m = n. Then the number of odds on the nth row of our array
is 2d(n) = 1

2 · 2
d(n)+1 = 1

2 · 2
d(n+t), again confirming our claim. So now

consider the case that 2q−1 +m− 1 < 2m. The nth row entry at(n, j) of
our truncated Pascal array (where 0 ≤ j ≤ k) has the same parity as the
entry

(
n+t
j

)
of Pascal’s triangle, by Lemma 4.8. Now, k = 2q−1 + m − 1

while n+t = 2q+2m = 2(2q−1+m). The central coefficient
(2(2q−1+m)

2q−1+m

)
of the (n + t)th row of Pascal’s triangle is even by Lemma 9, so this entry
does not contribute to the tally of odd numbers on this row. Therefore the
number of odds in row n of our array is exactly one-half the number of
odds on the (n + t)th row of Pascal’s triangle, which is 1

2 · 2
d(n+t). This

completes the confirmation of our claim when n is odd. �
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5. Some proofs deferred from §3

Proof of Lemma 2.

LetPt(n, k) be the set of t-admissible (n, k)-NE-paths, and let Tt(n, k)
be the set of t-admissible (n, k)-columnar tableaux. In this proof, we iden-

tify an (n, k)-NE-path s with the sequence s =
(

(xi(s), yi(s))
)k
i=1

con-
sisting of the k successive endpoints of the horizontal, or easterly, steps of
the path. For example, for the first 4-admissible (7, 5)-NE-path depicted
above, the sequence of horizontal endpoints is(

(1, 0), (2, 0), (3, 0), (4, 1), (5, 2)
)
.

Given a t-admissible (n, k)-NE-path s =
(

(xi(s), yi(s))
)k
i=1

, set

φ(s) :=
(
xi(s) + yi(s)

)k
i=1

. Let T = (T1, . . . , Tk) = φ(s). Since

xi(s) = i, then i ≤ xi(s) + yi(s) = Ti. In particular, 1 ≤ T1. Also,
yi(s) ≤ yi+1(s), then

xi(s) + yi(s) = Ti < Ti+1 = xi+1(s) + yi+1(s)

when i ∈ {1, 2, . . . , k − 1}. Since xk(s) = k and yk(s) ≤ n − k, then
Tk ≤ n. So T is an (n, k)-columnar tableau. Now suppose t− 1 < k, and
let j ∈ {1, 2, . . . , k − t+ 1}. Since s is t-admissible, then we have

j = (t− 1 + j)− t+ 1 = xt−1+j(s)− t+ 1 ≤ yt−1+j(s).

So,
t− 1 + 2j = (t− 1 + j) + j = xt−1+j(s) + j

≤ xt−1+j(s) + yt−1+j(s)

= Tt−1+j .
Thus T is a t-admissible (n, k)-columnar tableau. We can therefore

regard φ : Pt(n, k) −→ Tt(n, k) as a well-defined function.
Now suppose that T = (T1, . . . , Tk) is a t-admissible (n, k)-columnar

tableau. Declare that ψ(T ) :=
(

(i, Ti − i)
)k
i=1

. Set

s =
(

(xi, yi)
)k
i=1

:= ψ(T ).

To prove that s is an (n, k)-NE-path, it suffices to check that

0 ≤ y1 ≤ y2 ≤ · · · ≤ yk ≤ n− k.
Since 1 ≤ T1, then 0 ≤ T1 − 1 = y1. When i ∈ {1, 2, . . . , k − 1}, then
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Ti < Ti+1 so

yi = Ti − i ≤ Ti+1 − (i+ 1) = yi+1.

Also, yk = Tk − k ≤ n − k since Tk ≤ n. Next, we check that s is
t-admissible by showing that each yi ≥ xi − t + 1, assuming t − 1 < k.
Suppose for the moment that i > t− 1, so that i = t− 1 + j with
j ∈ {1, 2, . . . , k − t+ 1}. Then

yi = Ti − i = Tt−1+j − (t− 1 + j)

≥ t− 1 + 2j − t+ 1− j
= j = i− t+ 1

= xi − t+ 1.

On the other hand, if i ≤ t− 1, then xi− t+ 1 = i− t+ 1 ≤ 0 ≤ yi. This
reasoning shows that s is t-admissible.

We can therefore regard ψ : Tt(n, k) −→ Pt(n, k) as a well-defined
function. Clearly φ andψ are inverses, soPt(n, k) and Tt(n, k) are equinu-
merous, which is what we needed to show. �

Proof of Lemma 3.

For (i), consider the i = 0 term in the expression for D−1(xt−1) given
in the paragraphs preceding the lemma statement. Then

1 = dt(i+N − 1, i) = dt(0, 0).

For (ii), we observe that an integer pair (n, k) is indeed a pair (i+N−1, i)
corresponding to a term in the sum shown in equation (4) above if and only
if k = i and n = k +N − 1 for some N > 0 and 0 ≤ i ≤ t− 1 +N − 1.
Now simply check inequalities to see that k ≥ 0, n ≥ 0, k ≤ n, and
k ≤ bn−1+t

2 c.
For (iii), we apply D to each side of equation (4). First,

D(D−N (xt−1)) = D−(N−1)(xt−1)

=

t−1+N−2∑
i=0

(−1)idt(i+N − 2, i)xt−1+N−1−i.
(6)

On the other hand,

(D−N (xt−1))

= D

( t−1+N−1∑
i=0

(−1)idt(i+N − 1, i)xu+N−i

)
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=

t−1+N−1∑
i=0

(−1)idt(i+N − 1, i)(xt−1+N−1−i + xt−1+N−2−i)

=

t−1+N−1∑
i=0

(−1)i[dt(i+N − 1, i)− dt(i+N − 2, i− 1)]xt−1+N−1−i,

where the latter is obtained by expanding and reindexing. Then by equat-
ing coefficients in the latter expression with coefficients for the expression
obtained in equation (5), we see that

dt(t−1+2N−2, t−1+N−1)−dt(t−1+2N−3, t−1+2N−2) = 0

and that for all 0 ≤ i ≤ t− 1 +N − 2 we have

dt(i+N − 1, i)− dt(i+N − 2, i− 1) = dt(i+N − 2, i).

The latter formula actually becomes the former when i = t− 1 +N − 1,
as dt(t− 1 + 2N − 3, t− 1 +N − 1) evaluates to zero. Therefore,

dt(i+N − 1, i) = dt(i+N − 2, i− 1) + dt(i+N − 2, i) (7)

for all N > 0 and 0 ≤ i ≤ t − 1 + N − 1. Now if (n, k) is an integer
pair with n ≥ 0 and 0 ≤ k ≤ min

{
bn−1+t

2 c, n
}

, then set i = k and
N = n+1−k. As in the previous paragraph we can see that (i+N−1, i)
corresponds to a term from equation (4). Then from equation (6), we get
dt(n, k) = dt(n− 1, k − 1) + dt(n− 1, k), as desired. �

Some thoughts on extending this work

Given that our proofs employ elementary techniques, perhaps these
proofs can be modified to obtain more general results (which is, indeed, a
crucial function of rigorous proof in mathematics). One possible direction
is to consider patterns in truncated Pascal arrays modulo other primes or
prime powers, cf. [4]. Also, when t = 1, the truncated Pascal array is just
the Catalan triangle. In this case, as mentioned in §3, the nonzero num-
bers in any given row are known to be dimensions of certain fundamental
representations of the associated symplectic Lie group. With t = 1, the
t-admissible (n, k)-columnar tableaux we presented in §3 coincide (after
a simple change in the alphabet of tableaux entries) with columnar sym-
plectic tableaux of [9]. It might be interesting to consider what similar al-
gebraic contexts might be found for t-admissible (n, k)-columnar tableaux
when t > 1.
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The Problem Corner
Edited by Pat Costello

The Problem Corner invites questions of interest to undergraduate students.
As a rule, the solution should not demand any tools beyond calculus and linear
algebra. Although new problems are preferred, old ones of particular interest or
charm are welcome, provided the source is given. Solutions should accompany
problems submitted for publication. Solutions of the following new problems
should be submitted on separate sheets before November 1, 2020. Solutions re-
ceived after this will be considered up to the time when copy is prepared for pub-
lication. The solutions received will be published in the Fall 2020 issue of The
Pentagon. Preference will be given to correct student solutions. Affirmation of
student status and school should be included with solutions. New problems and
solutions to problems in this issue should be sent to Pat Costello, Department of
Mathematics and Statistics, Eastern Kentucky University, 521 Lancaster Avenue,
Richmond, KY 40475-3102 (e-mail: pat.costello@eku.edu, fax: (859) 622-3051)

NEW PROBLEMS 849 - 858

Problem 849. Proposed by Daniel Sitaru, “Theodor Costescu” National
Economic College, Drobeta Turnu – Severin, Mehedinti, Romania.

Prove that in an acute ∆ABC the following relationship holds:
1

sinA
+

1

sinB
+

1

sinC
+

1

cosA
+

1

cosB
+

1

cosC
> 6
√

2.

Problem 850. Proposed by Daniel Sitaru, “Theodor Costescu” National
Economic College, Drobeta Turnu – Severin, Mehedinti, Romania.

If x, y, z > 0 and x+ y + z = 2π , prove

cos4x

y + z
+

cos4y

z + x
+

cos4(x+ y)

x+ y
>

9

64π
.
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Problem 851. Proposed by Daniel Sitaru, “Theodor Costescu” National
Economic College, Drobeta Turnu – Severin, Mehedinti, Romania.

Let a < b and f : [a, b]→ (0,∞) be continuous. Prove

3(b− a)

∫ b

a

f2(x)dx+ (b− a)
2 > 2(b− a)

∫ b

a

f(x)dx+ 2

(∫ b

a

f(x)dx

)2

.

Problem 852. Proposed by Daniel Sitaru, “Theodor Costescu” National
Economic College, Drobeta Turnu – Severin, Mehedinti, Romania.

If a, b, c > 0 and a+ b+ c = 3, prove∑
cyc

a3c(b+ 1) + b3c(a+ 1)

a2b(b+ 1) + b2a(a+ 1)
> 3.

Problem 853. Proposed by Marcel Chirita, Bucharest, Romania.

Let x ∈ Z. If x5 + 5x3 + 15x2 > 21x, prove x5 + 5x3 + 15x2 − 21x > 30.

Problem 854. Proposed by D.M. Bǎtinetu-Giurgiu, “Matei Basarab”
National College, Bucharest, Romania and Neculai Stanciu, “George
Emil Palade” School, Buzǎu, Romania.

If f : R→ R with f(0) = 2019 and 3f(x) = f(x+ y) + 2f(x− y) + y for
any x, y ∈ R, then compute

∫ π
e
f(x)dx.

Problem 855. Proposed by D.M. Bǎtinetu-Giurgiu, “Matei Basarab”
National College, Bucharest, Romania and Neculai Stanciu, “George
Emil Palade” School, Buzǎu, Romania.

Let {an}, {bn}, {cn} be positive real sequences such that
lim
n→∞

an+1

nan
= a > 0, lim

n→∞
bn+1

nbn
= b > 0, and lim

n→∞
cn+1

ncn
= c > 0.

Compute lim
n→∞

1
n
√
a3n

n∑
k=1

(bkck)
1/k
.
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Problem 856. Proposed by José Luis Díaz-Barrero, School of Civil
Engineering, Barcelona Tech - UPC, Barcelona, Spain.

Each 1×1 square of a 7×211 rectangle is painted either black or white. Prove
that it is possible to choose four rows and four columns of the rectangle so that
the sixteen 1× 1 squares in which they intersect are painted with the same color.

Problem 857. Proposed by José Luis Díaz-Barrero, School of Civil
Engineering, Barcelona Tech - UPC, Barcelona, Spain.

Let a, b, c, d be four positive real numbers. Find the maximum value of
4
√
a+ 4
√
b+ 4
√
c+ 4
√
d

4
√
a+ b+ c+ d

.

Problem 858. Proposed by Pedro H.O. Pantoja, University of Campina
Grande, Brazil.

Let M = 8
7 sin2

(
π
7

)
+
√
7
7 cot

(
π
7

)
. Is M irrational?

SOLUTIONS TO PROBLEMS 829 - 839

Problem 829. Proposed by Daniel Sitaru, “Theodor Costescu” National
Economic College, Drobeta Turnu – Severin, Mehedinti, Romania.

Let Ωn =

(
n
7

)
+ 2

(
n− 1

7

)
+ 3

(
n− 2

7

)
+ · · · (n − 6)

(
7
7

)
for

all n > 7. Find Ω = lim
n→∞

n
√

Ωn.

Solution by Brian Bradie, Christopher Newport University, Newport News,
VA.

Let n ≥ 7 and

Ωn =

(
n
7

)
+ 2

(
n− 1

7

)
+ 3

(
n− 2

7

)
+ · · · (n− 6)

(
7
7

)
=

n∑
j=7

j∑
i=7

(
i
7

)
.

By the Hockey Stick Identity,
j∑
i=7

(
i
7

)
=

(
j + 1

8

)
and

n∑
j=7

(
j + 1

8

)
=

n+1∑
j=8

(
j
8

)
=

(
n+ 2

9

)
.
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Thus

Ωn =
(n+ 2)(n+ 1)n(n− 1)...(n− 6)

9!

=
1

9!
n9
(

1 +
2

n

)(
1 +

1

n

)
...

(
1− 6

n

)
,

and

Ω = lim
n→∞

n
√

Ωn

= lim
n→∞

(
n
√
n
)9 n

√
1

9!

(
1 +

2

n

)(
1 +

1

n

)
...

(
1− 6

n

)
= 1.

Also solved by Abhijit Bhattacharjee (student), Banaras Hindu University,
India; Brent Dozier, North Carolina Wesleyan College, Rocky Mount, NC;
Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain; Ioannis
Sfikas, National and Kapodistrian University of Athens, Greece; and the
proposer.

Problem 830. Proposed by Daniel Sitaru, “Theodor Costescu” National
Economic College, Drobeta Turnu – Severin, Mehedinti, Romania.

If x ∈ (0, π2 ), prove that 2(sinx)1−sin x · (1− sinx)sin x 6 1.

Solution by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

Noting that 0 < sinx < 1 for x ∈ (0, π/2), we apply the weighted AGM
inequality twice to see that

2(sinx)1−sin x · (1− sinx)sin x 6 2[(1− sinx) sinx+ sinx(1− sinx)]

= 4 sinx(1− sinx)

6 4

(
sinx+ (1− sinx)

2

)2

= 1,

with equality when x = π/6.

Also solved by Brian Bradie, Christopher Newport, Newport News, VA;
Brent Dozier, North Carolina Wesleyan College, Rocky Mount, NC; Jalil
Hajimir, Canada; Mokhtar Khassani, Mostaganem, Algerie; Missouri State
University Problem Solving Group, Springfield, MO; Rovsen Pirguliyev,
Sumgait, Azerbaijan; Angel Plaza, Universidad de Las Palmas de Gran
Canaria, Spain; Ioannis Sfikas, National and Kapodistrian University of
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Athens, Greece; Remus Florin Stanca, Romania; Neculai Stanciu, “George
Emil Palade” School, Buzǎu, Romania and Titu Zvonaru, Comǎnesti, Ro-
mania; Daniel Vǎcaru, “Maria Teiuleanu” National Economic College,
Pitesti, Romania; and the proposer.

Problem 831. Proposed by Daniel Sitaru, “Theodor Costescu” National
Economic College, Drobeta Turnu – Severin, Mehedinti, Romania.

If ∆ABC ∼ ∆A′B′C ′, prove that∑ (a′ + b′)(a′ + c′)

b′c′
+ 3 >

15(b+ c)(c′ + a′)(a′ + b′)

8ab′c′
.

Solution by Daniel Vǎcaru, “Maria Teiuleanu” National Economic Col-
lege, Pitesti, Romania.

With ∆ABC ∼ ∆A′B′C ′, we have a = ka′, b = kb′, c = kc′ and obtain
(a′ + b′)(a′ + c′)

b′c′
=

(a+ b)(a+ c)

bc
and

15(b+ c)(c′ + a′)(a′ + b′)

8ab′c′
=

15(b+ c)(c+ a)(a+ b)

8abc
.

That is ∑ (a+ b)(a+ c)

bc
+ 3 >

15 (b+ c) (c+ a)(a+ b)

8abc
.

Multiplying by abc
(b+c)(c+a)(a+b) , we obtain∑ a

b+ c
+

3abc

(a+ b)(b+ c)(c+ a)
>

15

8

and we write this as∑ a

b+ c
− 3

2
>

3

8
− 3abc

(a+ b)(b+ c)(c+ a)
.

By a calculation, we obtain the LHS is equal to
∑

[(a+b)(a−b)2]
2(a+b)(b+c)(c+a) and the RHS is

equal to
∑
a(b−c)2

8(a+b)(b+c)(c+a) . But

4(a+ b) > c⇒ 4(a+ b)(a− b)2 > c(a− b)2

which implies the required inequality.

Also solved by Ioannis Sfikas, National and Kapodistrian University of
Athens, Greece; and the proposer.

Problem 832. Proposed by José Luis Díaz-Barrero, School of Civil
Engineering, Barcelona Tech - UPC, Barcelona, Spain.
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Prove that in any triangle ABC the following holds:

a

a+ b+ c
>

2
√

3

9
sinA.

Solution by Scott Brown, Auburn University, Montgomery, AL.

According to Bottema, Geometric Inequalities, 1968, we have sinA = a
2R

so the inequality can be written as a
a+b+c >

2
√
3

9 ·
a
2R . But this can be further

simplified as 9R
2 >

√
3 · Fr where F

r = a+b+c
2 . Now write the inequality as

27Rr2 > 6
√

3F which can be found on page 63 of Bottema.

Also solved by Brian Bradie, Christopher Newport University, Newport
News, VA; Ioannis Sfikas, National and Kapodistrian University of Athens,
Greece; Neculai Stanciu, “George Emil Palade” School, Buzǎu, Romania
and Titu Zvonaru, Comǎnesti, Romania; Daniel Vǎcaru, “Maria Teiuleanu”
National Economic College, Pitesti, Romania; and the proposer.

Problem 833. Proposed by José Luis Díaz-Barrero, School of Civil
Engineering, Barcelona Tech - UPC, Barcelona, Spain.

Show that the equation x6 − 5x5 − 6x4 + 2x3 + 9x2 − 17x + 1 = 0 has no
negative roots.

Solution by Sarah Seales, Prescott, AZ.

Let p(x) = x6 − 5x5 − 6x4 + 2x3 + 9x2 − 17x + 1. We will show that
when x is negative, p(x) > 0. Let x = −a for some positive real a. Then
p(−a) = a6 + 5a5 − 6a4 − 2a3 + 9a2 + 17a + 1. By the AM-GM inequality,
a6 + 9a2 > 2

√
9a8 = 6a4 and 5a5 + 17a > 2

√
85a6 = 2

√
85a3. So p(−a) > 0.

Thus p(x) has no negative roots.

Also solved by Brian Beasley, Presbyterian College, Clinton, SC; Brian
Bradie, Christopher Newport University, Newport News, VA; Brent Dozier,
North Carolina Wesleyan College, Rocky Mount, NC; Ravi Prakash, New
Delhi, India; Angel Plaza, Universidad de Las Palmas de Gran Canaria,
Spain; Henry Ricardo, Westchester Area Math Circle, Purchase, NY; Ioan-
nis Sfikas, National and Kapodistrian University of Athens, Greece; Michael
Sterghiou, Greece; Marian Ursǎrescu, Romania; Daniel Vǎcaru, “Maria
Teiuleanu” National Economic College, Pitesti, Romania; and the pro-
poser.

Problem 834. Proposed by D.M. Bǎtinetu-Giurgiu, “Matei Basarab”
National College, Bucharest, Romania, Neculai Stanciu, “George Emil
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Palade” School, Buzǎu, Romania.

Let (Fn) be the Fibonacci sequence, i.e.

F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn, for all n > 0.

If en =
(
1 + 1

n

)n
, prove that

(
n∑
k=1

ekF2k−1

)(
n∑
k=1

F2k−1

ek

)
6 (e+2)2

8e F 2
2n.

Solution by Marian Ursǎrescu, Romania.

We use the Kantorovich inequality: xk ∈ [m,M ]

xk ∈ [m,M ], 0 < m < M, tk > 0

⇒
n∑
k=1

tkxk ·
n∑
k=1

tk
xk
6

(m+M)
2

4mM

(
n∑
k=1

tk

)2

.

Let ek =
(
1 + 1

k

)k
. Then

2 < ek < e

⇒

(
n∑
k=1

ekF2k−1

)(
n∑
k=1

F2k−1

ek

)
6

(e+ 2)
2

8e

(
n∑
k=1

F2k−1

)2

.

But F2k−1 = F2k − F2k−2 and so
n∑
k=1

F2k−1 =
n∑
k=1

F2k −
n∑
k=1

F2k−2 = F2n −

F0 = F2n, and the inequality is proved.

Also solved by Brian Bradie, Christopher Newport University, Newport
News, VA; Henry Ricardo, Westchester Area Math Circle, Purchase, NY;
Ioannis Sfikas, National and Kapodistrian University of Athens, Greece;
Daniel VVcaru, “Maria Teiuleanu” National Economic College, Pitesti,
Romania; and the proposers.

Problem 835. Proposed by D.M. Bǎtinetu-Giurgiu, “Matei Basarab”
National College, Bucharest, Romania, Neculai Stanciu, “George Emil
Palade” School, Buzǎu, Romania.

Let (Ln) be the Lucas sequence, i.e.

L0 = 2, L1 = 1, Ln+2 = Ln+1 + Ln, for all n > 0.

Prove that nn−2(n− 1)
n∑
k=1

Lnk + nn−1
n∏
k=1

Lk > (Ln+2 − 3)n for all

n > 2.

Solution by Ioannis Sfikas, National and Kapodistrian University of Athens,
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Greece.

We may write the inequality as

(n− 1)

n∑
k=1

Lnk + n

n∏
k=1

Lk >
(Ln+2 − 3)

n

nn−2
. (1)

By Janos Suranyi’s inequality, if xk > 0 then

(n− 1)

n∑
k=1

xnk + n

n∏
k=1

xk >

(
n∑
k=1

xk

)(
n∑
k=1

xn−1k

)
.

In the case of (1), we have

(n− 1)

n∑
k=1

Lnk + n

n∏
k=1

Lk >

(
n∑
k=1

Lk

)(
n∑
k=1

Ln−1k

)
.

We need to show that(
n∑
k=1

Lk

)(
n∑
k=1

Ln−1k

)
>

(Ln+2 − 3)
n

nn−2
.

By Holder’s inequality:
n∑
k=1

Ln−1k >
(
∑n
k=1 Lk)

n−1

nn−2
.

But ∑n

k=1
Lk =

∑n

k=1
Lk+2 −

∑n

k=1
Lk+1 = Ln+2 − L2 = Ln+2 − 3.

Putting these together gives the desired inequality.

Also solved by Marian Ursǎrescu, Romania; Daniel Vǎcaru, “Maria Teiuleanu”
National Economic College, Pitesti, Romania; and the proposers.

Problem 836. Proposed by Abhijit Bhattacharjee (student), Banaras
Hindu University, India.

Prove that the equation 1 + x
1! + x2

2! + · · ·+ xn

n! = 0 has exactly one real root
if n is odd and no real root if n is even.

Solution by Missouri State University Problem Solving Group, Spring-
field, MO.

Let Tn(x) = 1 + x
1! + x2

2! + ... + xn

n! . Note that 0 is not a root of Tn(x)
for any n. Suppose that n is an even integer. Note that Tn′(x) = Tn−1(x) and
Tn(x) = Tn

′(x) + xn

n! . Since Tn′(x) has odd degree, we know it has at least one
real root. Let r be any of the real roots of Tn′(x). Then Tn(r) = Tn

′(r) + rn

n! .
Since n is even and r 6= 0, then Tn(r) > 0. Because Tn is positive at each of
its critical points, the absolute minimum of Tn(x) must be a positive real number.
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Thus Tn(x) has no real roots when n is even.
Suppose that n is an odd integer. Since Tn′(x) = Tn−1(x) and n− 1 is even,

then Tn(x) has no critical points as shown above. So Tn(x) is an increasing odd
degree polynomial. Therefore, there is exactly one real root of Tn(x) when n is
odd.

Also solved by Brian Bradie, Christopher Newport University, Newport
News, VA; Brent Dozier, North Carolina Wesleyan College, Rocky Mount,
NC; Avinaba Majumdar, Bandel, India; Henry Ricardo, Westchester Area
Math Circle, Purchase, NY; Ioannis Sfikas, National and Kapodistrian
University of Athens, Greece; Daniel Vǎcaru, “Maria Teiuleanu” Na-
tional Economic College, Pitesti, Romania; and the proposer.

Problem 837. Proposed by Pedro H.O. Pantoja, University of Campina
Grande, Brazil.

Evaluate lim
n→∞

1∫
−1

(
x2n+1 + 1

x2n+1

)
ln(1 + enx)dx.

Solution by Brent Dozier, North Carolina Wesleyan College, Rocky Mount,
NC.

Let fn(x) =
(
x2n+1 + 1

x2n+1

)
ln(1 + enx). Then

fn(−x) = −
(
x2n+1 +

1

x2n+1

)
ln(1 + e−nx)

= −
(
x2n+1 +

1

x2n+1

)
ln

1 + enx

enx

= −
(
x2n+1 +

1

x2n+1

)
(ln(1 + enx)− nx)

= −fn(x) + n(x2n+2 + x−2n).

Therefore fn(x) = −fn(−x) + n(x2n+2 + x−2n). Integrating
1∫
−1

fn(x)dx = −
1∫
−1

fn(−x)dx+ n

1∫
−1

(x2n+2 + x−2n)dx

= −
1∫
−1

fn(x)dx+ n

1∫
−1

(x2n+2 + x−2n)dx
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which gives
1∫
−1

fn(x)dx =
n

2

1∫
−1

(x2n+2 + x−2n)dx = n

(
1

2n+ 3
+

1

1− 2n

)
→ 0

as n→∞. Therefore lim
n→∞

1∫
−1

(
x2n+1 + 1

x2n+1

)
ln(1 + enx)dx = 0.

Also solved by Ioannis Sfikas, National and Kapodistrian University of
Athens, Greece; and the proposer.

Problem 838. Proposed by Mathew Cropper, Eastern Kentucky
University, Richmond, KY.

Let An be the number of n-bit strings of zeros and ones that contain at least
one sequence of three consecutive ones (111) and no sequence of four or more
consecutive ones. The sequence starts

A1 = 0, A2 = 0, A3 = 1, A4 = 2.

Using the well-known tribonacci sequence

T0 = 0, T1 = 0, T2 = 1,

which counts the number of (n− 3)-bit strings that contain NO sequence of three
consecutive ones, develop a recursive formula for An and use it to compute A15.

Solution by the proposer.

The recurrence desired is An = An−1 +An−2 +An−3 +An−4 +Tn−1. This
comes from:

adding a leading 0 to any (n− 1)-bit string counted by An−1, or
adding a leading 10 to any (n− 2)-bit string counted by An−2, or
adding a leading 110 to any (n− 3)-bit string counted by An−3, or
adding a leading 1110 to any (n− 4)-bit string counted by An−4, or
adding a leading 1110 to any (n− 4)-bit string which has NO sequence

of three consecutive ones.
Since n− 4 = (n− 1)− 3, the number of such (n− 4)-bit strings is counted by
Tn−1.

So A15 = 9960.

Also partially solved by Ioannis Sfikas, National and Kapodistrian Uni-
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versity of Athens, Greece.

Problem 839. Proposed by the editor.

A recurrence is defined in the following way: c1 = 3, cn = 4 +
n−1∑
i=1

ci for all

n > 2. Find a formula for cn for n > 2 that just involves n.

Solution by Angel Plaza, Universidad de Las Palmas de Gran Canaria,
Spain.

The solution is cn = 7 · 2n−2 for all n ≥ 2. It is enough to see that for for
n > 2, cn = 2cn−1. This comes from

cn = 4 +

n−1∑
i=1

ci = 4 +

n−2∑
i=1

ci + cn−1 = 2cn−1.

Also solved by Brian Beasley, Presbyterian College, Clinton, SC; Carl Li-
bis, Columbia Southern University, Orange Beach, AL; Corneliu Manescu-
Avram, Ploiesti, Romania; Henry Ricardo, Westchester Area Math Circle,
Purchase, NY; Ioannis Sfikas, National and Kapodistrian University of
Athens, Greece; Bill Yankosky, North Carolina Wesleyan College, Rocky
Mount, NC; and the proposer.
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Kappa Mu Epsilon News
Edited by Cynthia Huffman, Historian

Updated information as of January 2020

News of chapter activities and other noteworthy KME events should be
sent to

Cynthia Huffman, KME Historian
Pittsburg State University
Mathematics Department
117 1701 S. Broadway

Pittsburg, KS 66762
or to

cjhuffman@pittstate.edu

Chapter News

AL Beta – University of North Alabama
AL Beta – University of North Alabama
New Initiates – Sylver Carter, Walker Ericsson, Cyndra Graves, Chase Holcombe, Harris
Kain, Bella Martinez, Olivia McGriff, Joshua Morgan, Jacob Morris, Areanna Orozco,
Molly Palmer, Jeanette Pina, Jessa Plunket, Kevin Saint, Lucas Scott, Ethan Sutherland,
and Sara Woodley.
AL Gamma – University of Montevallo
Corresponding Secretary – Scott Varagona; 10 New Members; 699 Total
Members
New Initiates – Autumn Bruncz, Rachel Cox, Johnathan Ridley Herron, Sumer Hudson,
Krenar Krasniqi, William Lowery, Milan Ludlage, Ashlynn Partridge, Victoria Evelina
Teran, and Alexander Weldon.
AL Theta – Jacksonville State University
Chapter President – Marcus Shell; 50 Current Members
Other Fall 2019 Officers: Ben Junkins, Vice President; Sabin Banjara,
Secretary; LeeAnne Powell, Treasurer; and Dr. David Dempsey, Corre-
sponding Secretary and Faculty Sponsor
The Alabama Theta chapter met biweekly during Fall 2019. Meetings
included business (T-shirt and fundraiser ideas), card & board games, as
well as pizza and snacks. Early in the semester, students organized weekly
Homework Nights, reserving a classroom for students to get together to
study, help each other out, and hold each other accountable; snacks were
provided. Our now-traditional “MathCon” (Nov. 1) saw several students
dress up as math-related characters, including one near-clone of our pro-
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fessors. In December, we hosted an end-of-semester holiday party, includ-
ing a “Dirty Santa” gift exchange.
AR Beta – Henderson State University
Chapter President – Bryan Neal; 8 New Members; 56 Total Members
Other Fall 2019 Officers: Kelli LaRue, Vice President; Dallas Crumby,
Secretary; Kayla Earnest, Treasurer; Dr. Fred Worth, Corresponding Sec-
retary; and Dr. Carolyn Eoff, Faculty Sponsor
New Initiates – Nadia Ballarin, Carlos Barbosa, Dallas Crumley, Gillian Garamone, Kelli
LaRue, C. Brett Little, Nestor Molina, and Jacquelyn Mosely.
CT Beta – Eastern Connecticut State University
Corresponding Secretary and Faculty Sponsor – Dr. Mehdi Khorami; 501
Current Members
CT Gamma – Central Connecticut State University
Chapter President – Nicholas Sabia; 70 Total Members
Other Fall 2019 Officers: Jonathan Maldonado, Vice President; Alyssa
Mercaldi, Secretary; Sabrina Doolgar, Treasurer; Dr. Leah Frazee, Cor-
responding Secretary; and Dr. Marian Anton, Faculty Sponsor
FL Beta – Florida Southern College
Corresponding Secretary – Dr. Susan Serrano; 8 New Members; 455 Total
Members
New Initiates – Braden Arango, Jeffrey Bindeman, Andrew Boesenberg, Alejandra Brewer,
Jacqueline Carlton, Ashlee Carnahan, Brittany Drummond, Zachary Fralish, Alexandra
Garcia, Alexis Hall, Samantha Hamontree, Kathryn Hoffman, Allie Johnson, Kelly Kramer,
Amanda Koski, Risley Mabile, Lillian Mulligan, Brian Roney, John Rosario, Casey Selzak,
Anthony Stefan, Katherine Tragakis, and John White.
FL Delta – Embry-Riddle Aeronautical University
Chapter President – Andrew A. McClary; 84 Total Members
Other Fall 2019 Officers: Hayley Lewis, Vice President; Mariah Marin,
Secretary; Taylor Stark, Treasurer; and Dr. Sirani M. Perera, Correspond-
ing Secretary and Faculty Sponsor
In addition to our usual meetings, we went on a tour of the UF Health Pro-
ton Institute, in Jacksonville FL and learned about real world applications
of mathematics and how a Hydrogen ion is able to create a pinpointed high
dose of radiation that can be used in the fight against cancer.
FL Gamma – Southeastern University
Corresponding Secretary – Dr. Berhane Ghaim; 3 New Members; 63 Total
Members
New Initiates – Elizabeth Bernatowicz, Kaitlyn Brett, and Marilyn Ikahane.
GA Gamma – Piedmont College
Chapter President – Rebecca Bowen; 31 Current Members
Other Fall 2019 Officers: Hope Menzel, Corresponding Secretary and



42 The Pentagon

Faculty Sponsor
IA Alpha – University of Northern Iowa
Chapter President – Jaclyn Miller; 25 Current Members; 7 New Members
Other Fall 2019 Officers: Mariah Piippo, Vice President; Rachel Liercke,
Secretary; Stephanie Peiffer, Treasurer; and Mark D. Ecker, Correspond-
ing Secretary and Faculty Sponsor
Our first fall KME meeting was held on October 9, 2019 in Wright Hall
where student member Rachel Liercke presented “Iowa Workforce Devel-
opment Laborshed Analysis”. Student member Mariah Piippo presented
her paper, entitled “2-Dimensional Crystallographic Groups” at our sec-
ond meeting on November 13, 2019. Student member Brynn Harberts
addressed the John Cross Fall KME Banquet with “Statistical Analysis of
College Volleyball Teams”. Our banquet was held at Peppers restaurant in
Cedar Falls on December 11, 2019 where seven new members were initi-
ated.
IA Gamma – Morningside College
Chapter President – Billy Salber; 437 Total Members; 4 New Members
Other Fall 2017 Officers: ETCOther Fall 2019 Officers: Krista Hogstad,
Vice President; Samantha Anderson, Secretary; David Swerev, Treasurer;
and Mitchel T. Keller, Corresponding Secretary and Faculty Sponsor
New Initiates – Anthony Glackin, Usame Suud, Mitchell Fulton, and Ethan Wyant.
IA Delta – Wartburg College
Corresponding Secretary – Dr. Brian Birgen; 12 New Members; 756 Total
Members
New Initiates – Takeaki Doi, Olivia J Klaas, Darby M Kramer, Emily L Leonhart, Sabah S
Munir, Bailey L Naig, Rachel S Ndjuluwa, Erica J Rittgers, Bridget S Schaufenbuel, Justin
M Schoppe, Ali Williams Perez, and Dr. Cristian Allen.
IL Zeta – Dominican University
Corresponding Secretary – Aliza Steurer and Mihaela Blanariu; 21 Cur-
rent Members
Other Fall 2017 Officers: ETC
In spring 2019, two new members were initiated. Dr. Amanda Harsy,
Assistant Professor of Mathematics at Lewis University in Romeoville,
Illinois, will give a talk at the Dominican University KME initiation cer-
emony on April 23, 2020 at 6 p.m. Dominican University is located in
River Forest, IL. The entire Dominican University community, as well as
folks from nearby schools, are welcome. Food will be served.
KS Alpha – Pittsburg State University
Faculty Sponsor – Dr. Scott Thuong; 8 New Members, 2144 Total Mem-
bers
The KS Alpha chapter will be hosting the North Central KME Regional
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Convention on April 17-18, 2020.
New Initiates – Sarah Case, Andrew Chesney, Tyler Clark, Rylee Dennis, Sloan Geddry,
Skyler Hausback, Morgan Panovich, and Morgan Singletary.
KS Beta – Emporia State University
Chapter President – Katherine Beckley; 32 Current Members; 7 New Mem-
bers
Other Fall 2019 Officers: Alec Bergeron, Vice President; Elisabeth Evans,
Secretary; Amber Innes, Treasurer; Tom Mahoney, Corresponding Secre-
tary; and Brian Hollenbeck, Faculty Sponsor
KS Delta – Washburn University
Chapter President – Jacob Talkin; 20 Current Members
Other Fall 2019 Officers: Abby Beliel, Vice President;Madison Henley,
Secretary; Mary Greene, Treasurer; and Kevin Charlwood, Correspond-
ing Secretary and Faculty Sponsor
The Kansas Delta chapter of KME met with our math club for four lun-
cheon meetings during fall 2019 to hear speakers from Security Benefit,
SE2 and Megan Jones Advisory Group (financial services). Dr. Charl-
wood also gave a presentation on how to solve cubic equations in radical
form.
KY Beta – University of the Cumberlands
Corresponding Secretary – Dr. Jonathan Ramey; 15 New Members; 264
Total Members
Other Fall 2017 Officers: ETC
New Initiates – Ethan F. Brown, Amber Bunch, Alexander G. Franklin, Cortina L. Hall,
Bradley Karr, Stuart Christopher Lockhart, Matthew Maher, Rachel M. Pingleton, Patrick
R. Rowe, Joshua Ramsey, David Andrew Tarrence, Hannah Spangler, Deborah Wilkerson,
Jon Kenyon Wilson, and YuChen Wu.
MA Alpha – Assumption College
Corresponding Secretary – Dr. Joseph Alfano; 13 New Members; 345
Total Members
New Initiates – Samantha H Bengiovanni, Jordan M Burt, Zachary W Durand, Callie A
Dwyer, Catherine A Harvey, Caroline R James, Sarah E Keohane, Brooke J Mullen, Sheila
R Orlando, Miranda Page, Matthew W Pugliese, Gianna Rousseau, and Michaela F Smith.
MD Alpha – Notre Dame of Maryland University
Chapter President – Amanda Ashton; 9 Current Members
Other Fall 2019 Officers: Hannah Campbell, Vice President; Emily Gar-
zon, Secretary; Aisha Aizhar, Treasurer; and Charles Buehrle, Corre-
sponding Secretary and Faculty Sponsor
Flyers from MD Alpha events are below:
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MA Beta – Assumption College
Corresponding Secretary – Spencer Hamblen; 10 New Members; 436 To-
tal Members
New Initiates – Lucas Anthony, Shannon Bernier, Blair Boyle, Nicholas Cummings, Moira
DiGiacomantonio, SoYoung Jeon, Andrew Murphy, Greta Ouimette, Luke Shuck, and Ash-
ley Wright.
MD Delta – Frostburg State University
Chapter President – Jordan Thomas; 19 Current Members
Other Fall 2019 Officers: Katelynn Suesse, Vice President; Bailey Brewer,
Secretary; Chad Shumaker, Treasurer; Mark Hughes, Corresponding Sec-
retary and Faculty Sponsor; and Frank Barnet, Faculty Sponsor
Maryland Delta Chapter held monthly meetings during the fall semester.
Each meeting featured puzzles, games and pizza. Though non-members
have always been welcome to attend meetings, our current group of offi-
cers decided to focus on getting the word out about KME. The result was
excellent in that several non-members attended meetings and we expect
most of them to join us officially at the Induction Ceremony to be held in
the spring of 2020. Our bake sale in October was the most successful one
that we ever had. Chapter members represented the Mathematics Depart-
ment at the university’s Majors Fair held in November. Congratulations
and best wishes to graduating Maryland Delta members Ryan Miller and
Matt Beall.
MD Epsilon – Stevenson University
Chapter President – Alayna Roesener; 161 Current Members; 10 New
Members
Other Fall 2019 Officers: William Heidel, Vice President; Darian Hile-
man, Secretary; Katlyn Leftridge, Treasurer; Benjamin Wilson, Corre-
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sponding Secretary and Faculty Sponsor
Our chapter of KME sponsored our Hurricane Relief bake sale for Hurri-
cane Dorian in which we raised $500.
MI Beta – Central Michigan University
Chapter President – Natalie DeVos; 15 Current Members; 0 New Members
Other Fall 2019 Officers: Austin Konkel, Vice President; Emily Naegelin,
Secretary; Evan Miller, Treasurer; and Dr. Ben Salisbury, Corresponding
Secretary and Faculty Sponsor
KME participated in the CMU MainStage event at the start of Fall 2019.
The first meeting of the semester was held on September 3, and featured
several ice breakers and opportunities for new and old members to become
acquainted. KME held a book sale in from September 16 until Septem-
ber 18 to raise funds for their activities. On September 14, KME Secretary
Emily Naegelin used simple crafts to demonstrate the mathematical pat-
terns in nature. On October 1, KME Vice President Austin Konkel and
Treasurer Evan Miller presented on their results from summer research
and discussed their experience with research in mathematics. On October
15, KME invited guest speaker Professor Emeritus Robert Chaffer to give
a talk about his artwork and the mathematical ideas he uses to create his
pieces. On October 29, the meeting was devoted to the interests of the E-
Board. Each officer gave a brief presentation on a mathematical idea that
intrigues them. With the semester winding down, KME held a game night
on November 12. The game was mathematical Jeopardy! Math-a-palooza
was co-organized by KME and the AMS Graduate Student Chapter. The
Fall 2019 event was held on December 6.
MI Delta – Hillsdale College
Chapter President – Benjamin Becker; 47 Current Members; 10 New
Members
Other Fall 2019 Officers: Emma Clifton, Vice President; Olivia Mulley,
Secretary; Nicholas West, Treasurer; and Dr. Kevin Gerstle, Correspond-
ing Secretary and Faculty Sponsor
The Michigan Delta chapter initiated 10 new members in the Fall 2019
semester on October 24. Dr. Ryan Hutchinson gave an accompanying
talk “Principal Component Analysis: An Application of Matrix Algebra in
Data Analysis.”
MO Beta – University of Central Missouri
Corresponding Secretary – Rhonda McKee; 7 New Members; 1519 New
Memberss
New Initiates – Georgiana Bray, Peter Gossell, Ryan Naugher, Victor Everett Ortiz, Abigail
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Stevens, Bo Varvil, and Briana Ward.
MO Theta – Evangel University
Chapter President – Heather Culbertson; 13 Current Members
Other Fall 2019 Officers: Jacob Crews, Vice President; and Don Tosh,
Corresponding Secretary and Faculty Sponsor
Meetings were held monthly. In December we held a pasta party at the
home of Daniel Bowerman.
MO Lambda – Missouri Western State University
Corresponding Secretary – Dr. Steve Klassen; 6 New Members; 369 Total
Members
New Initiates – Nathanial Jelinek, Nicholas Kempf, Randy Rouse, Kaitlyn Schildknecht,
Cecilia Tackett, and Kady Vandendaele.
MO Nu – Columbia College
Corresponding Secretary – Kenny Felts; 5 Current Members
MS Gamma – University of Southern Mississippi
Chapter President – Yumi Maharjan; 18 Current Members
Other Fall 2019 Officers: Hamas Tahir, Vice President; Gokul Bhusal,
Secretary; Amit Tripathi, Treasurer; Zhifu Xie, Corresponding Secretary;
and Ana Wan, Faculty Sponsor
The Chapter of Mississippi Gamma organized a movie night for all stu-
dents who are interested in mathematics. Three members volunteered in
the Golden Eagle Day at the University of Southern Mississippi to help
school recruit students from high school visitors.
MS Delta – William Carey University
Corresponding Secretary – Janie Bower; 12 New Members, 214 Total
Members
New Initiates – Caitlyn Castille, Nelson Conley, Kara Crosby, Anthony Jones, Halethe
Jones, Jenna Lee, Abby Odom, Hunter Phelps, ,Jakolbia Shipmon, Mallory Smith, Ashlyn
Stringfellow, and Mallory Thompson.
MS Epsilon – Delta State University
Corresponding Secretary – Lee Virden; 4 New Members; 117 Total Mem-
bers
New Initiates – Virginia Baker, James Walker Dean, Allison Duthu, and Ida B. Nielsen.
NE Beta – University of Nebraska Kearney
Chapter President – Tiffany Collins; 5 New Members; 927 Total Memers
Other Fall 2019 Officers: Joshua Garcia, Vice President; Evan Olson, Sec-
retary; and Julie Kent, Treasurer; and Dr. Katherine Kime, Corresponding
Secretary and Faculty Sponsor
KME member Ryan Clark was the Fall 2019 Commencement Speaker in
December. There were approximately 360 graduates, and hundreds of
family members in attendance in the large arena. Ryan is interested in
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graduate school in finance. Also, KME member Alex Sellers was one of
the December graduates. Meetings were well attended this semester. A
major topic was determining a fund raiser for travel to the Regional Con-
vention at Pittsburg State in April 2020 (In January, the decision was made
to sell cookie dough from Eileen’s, a local shop). Several KME members
serve as tutors in the Learning Commons.
New Initiates – – Paige Arnold, Lena Janssen, Amanda Larson, Carli Pofahl, and Alex
Sellers.
NE Delta – Nebraska Wesleyan University
Chapter President – Drew Damme; 18 Current Memers
Other Fall 2019 Officers: Alex Kerr, Vice President; Samantha Wright,
Secretary/ Treasurer; and Dr. Melissa Erdmann, Corresponding Secretary
and Faculty Sponsor
In December, we had our joint holiday party with the Physics Club. One
professor made chili, and all of the faculty brought sides. Physics and
mathematics carols were enjoyed by all. Earlier in the semester we had a
BINGO event and a problem solving event that were well-attended.
NY Kappa – Pace University
Corresponding Secretary – Shamita Dutta Gupta; 1 New Member; 397
Total Members
New Initiates – Jian Tong Liu.
NY Omicron – St. Joseph’s College
Chapter President – Christiana R. Morante; 15 Current Members
Other Fall 2019 Officers: Frank D. Loglisci, Vice President; Abbey V.
Knowles, Secretary; Scott T. McDonald, Treasurer; Dr. Elana Reiser, Cor-
responding Secretary; and Dr. Donna Pirich, Faculty Sponsor
The New York Omicron chapter of KME held our annual Cookie Dough
and Popcorn Fundraiser in October, from which we raised money to buy
toys to be given as Christmas gifts to children who have been affected by
domestic violence. Shopping took place in November and December. The
toys will be given out as part of KME-SJC graduate Assemblyman Doug
Smith’s eighth annual Holiday Toy Drive. Doug accepted the gifts at our
annual Christmas Toy Drive Celebration on December 12th. Photos are
included below. In addition, our KME members hosted our Math Clinic
on Saturday mornings throughout the Fall 2019 semester. The Math Clinic
offers free tutoring in mathematics to local high school students. (NY
Omicron pictures are below.)
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PA Delta – Marywood University
Corresponding Secretary – Dr. Dhanapati Adhikari; 4 New Members; 306
Total Members
New Initiates – Zachary Beja, Kimberly Sandone-Lee, Mikayla Nardone, and Samantha
Wigley.
PA Eta – Grove City College
Corresponding Secretary – Dale L. McIntyre; 11 New Members; 852 Total
Members
New Initiates – Ethan Greenly, Nicholas Grube, Jared Kettinger, Melissa Martin, Courtney
Mattey, Caleb Miller, Corrine Mummau, Micah Nelson, Isabella Patnode, Alan Potok, and
Elise Wiggins.
PA Gamma – Waynesburg University
Corresponding Secretary – James R. Bush; 3 New Members; 545 Total
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Members
New Initiates – Teagan Rae Jenner, Courtney Lynn Syfert, and Carly Breach.
PA Iota – Shippensburg University
Corresponding Secretary – Paul Taylor; 7 New Members; 761 Total Mem-
bers
New Initiates – Zachary Amisano, Conner Chapman, Crystal Evans, Rebecca Feaser, Krista
Moll, Josue Murillo, and Sumer Rininger.
PA Kappa – Holy Family University
Chapter Presidents – Melissa Cahill; 4 Current Members
Other Fall 2019 Officer: Sister Marcella Louise Wallowicz CSFN, PhD,
Corresponding Secretary and Faculty Sponsor
The Chapter did not conduct any formal Fall activities. One inductee for
the Spring semester completed his pre-induction service project: 10 hours
of volunteer math tutoring in our Center for Academic Enhancement. Two
other potential inductees will collaborate on a Spring project.
PA Lambda – Bloomsburg University
Corresponding Secretary – Dr. Eric B. Kahn; 6 New Members; 759 Total
Members
New Initiates – Caleb Beard, Dario D’Amato, Brianna Denniston, Chandler Hughes, Schyler
Kelsch, and Connor Landis.
PA Rho – Thiel College
Chapter President – Breanna Mesich; 2 New Members; 132 Total Mem-
bers
Other Fall 2019 Officers: Taylor Guth, Vice President; Courtney Harri-
man, Secretary; Emily Groves, Treasurer; Russ Richins, Corresponding
Secretary; and Dr. Jie Wu, Faculty Sponsor
This semester we had several meetings as well as our usual “Challenge 24”
activity, which also doubles as a food drive for the local food bank.
New Initiates – Emily Groves and Macy Siefert.
PA Sigma – Lycoming College
Corresponding Secretary – Dr. Christopher Reed; 13 New Members; 133
Total Members
New Initiates – John Balas, Madison Brown, Shannon Coriddi, Mackaella Goodwin, Narshini
Gunputh, Kelly Hoffman, Keely Laidacker, Maya Merhi, Elena Pikounis, Ansharah Saib,
Jeniffer Schwartz, Sheila Whitman, and Nathaniel Wilston.
RI Beta – Bryant University
Chapter President – Christopher Ethier; 16 Current Members
Other Fall 2019 Officers: Constance Tang, Vice President; Alexandra
Sherman, Secretary; Liam Mahler, Treasurer; Professor John Quinn, Cor-
responding Secretary; and Professor Alan Olinsky, Faculty Sponsor
We are planning to host the New England KME Conference in spring 2022.
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We also hope to send some students to the regional conference at Molloy
College during the spring 2020.
TN Gamma – Union University
Chapter President – Jenna Dula
Other Fall 2019 Officers: Josie Carrier, Vice President; Ainsley Duncan,
Secretary and Treasurer; John Mayer, Webmaster and Historian; Bryan
Dawson, Corresponding Secretary; and Matt Lunsford, Faculty Sponsor
TX Kappa – University of Mary Hardin-Baylor
Corresponding Secretary – Dr. Peter H. Chen; 7 New Members; 274 Total
Members
New Initiates – Jacob Fitzwater, Mariah Harris, Jenica McGill, Maricela Ramirez, Jonathan
Rosales, Ashlyn Strittmatter, and Ashley Winkle.
TX Lambda – Trinity University
Corresponding Secretary – Dr. Hoa Nguyen; 10 New Members; 290 Total
Members
New Initiates – Thomas Baer, Melinda Benavides, Alyson Laskowski, David Migl, Emi
Mondragon, Michelle Nguyen, Regan Ramirez, Nathan Richter, Derek Weix, and Jasmine
Yang.
VA Beta – Radford University
Chapter President – Morgyn Church; 4 New Members, 576 Total Members
Other Fall 2019 Officer: Eric P. Choate, Corresponding Secretary and
Faculty Sponsor
New Initiates – Ameen Ahmed, Sara Church, Katherine Mankowski, and Winston Smith.
VA Delta – Marymount University
Corresponding Secretary – Jacquelyn Rische; 4 New Members; 51 Total
Members
New Initiates – Jennifer Martin, Jasmine Roy, Joseph Scafetta, and Matthew Schneider.
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Active Chapters of Kappa Mu Epsilon
Listed by date of installation

Chapter Location Installation Date
OK Alpha Northeastern State University, Tahlequah 18 Apr 1931
IA Alpha University of Northern Iowa, Cedar Falls 27 May 1931
KS Alpha Pittsburg State University, Pittsburg 30 Jan 1932
MO Alpha Missouri State University, Springfield 20 May 1932
MS Alpha Mississippi University for Women, Columbus 30 May 1932
NE Alpha Wayne State College, Wayne 17 Jan 1933
KS Beta Emporia State University, Emporia 12 May 1934
AL Alpha Athens State University, Athens 5 Mar 1935
NM Alpha University of New Mexico, Albuquerque 28 Mar 1935
IL Beta Eastern Illinois University, Charleston 11 Apr 1935
AL Beta University of North Alabama, Florence 20 May 1935
AL Gamma University of Montevallo, Montevallo 24 Apr 1937
OH Alpha Bowling Green State University, Bowling Green 24 Apr 1937
MI Alpha Albion College, Albion 29 May 1937
MO Beta University of Central Missouri, Warrensburg 10 Jun 1938
TX Alpha Texas Tech University, Lubbock 10 May 1940
KS Gamma Benedictine College, Atchison 26 May 1940
IA Beta Drake University, Des Moines 27 May 1940
TN Alpha Tennessee Technological University, Cookeville 5 Jun 1941
MI Beta Central Michigan University, Mount Pleasant 25 Apr 1942
NJ Beta Montclair State University, Upper Montclair 21 Apr 1944
IL Delta University of St. Francis, Joliet 21 May 1945
KS Delta Washburn University, Topeka 29 Mar 1947
MO Gamma William Jewell College, Liberty 7 May 1947
TX Gamma Texas Woman’s University, Denton 7 May 1947
WI Alpha Mount Mary College, Milwaukee 11 May 1947
OH Gamma Baldwin-Wallace College, Berea 6 Jun 1947
MO Epsilon Central Methodist College, Fayette 18 May 1949
MS Gamma University of Southern Mississippi, Hattiesburg 21 May 1949
IN Alpha Manchester College, North Manchester 16 May 1950
PA Alpha Westminster College, New Wilmington 17 May 1950
IN Beta Butler University, Indianapolis 16 May 1952
KS Epsilon Fort Hays State University, Hays 6 Dec 1952
PA Beta LaSalle University, Philadelphia 19 May 1953
VA Alpha Virginia State University, Petersburg 29 Jan 1955
IN Gamma Anderson University, Anderson 5 Apr 1957
CA Gamma California Polytechnic State University, San Luis Obispo 23 May 1958
TN Beta East Tennessee State University, Johnson City 22 May 1959
PA Gamma Waynesburg College, Waynesburg 23 May 1959
VA Beta Radford University, Radford 12 Nov 1959
NE Beta University of Nebraska—Kearney, Kearney 11 Dec 1959
IN Delta University of Evansville, Evansville 27 May 1960
OH Epsilon Marietta College, Marietta 29 Oct 1960
MO Zeta University of Missouri—Rolla, Rolla 19 May 1961
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NE Gamma Chadron State College, Chadron 19 May 1962
MD Alpha College of Notre Dame of Maryland, Baltimore 22 May 1963
CA Delta California State Polytechnic University, Pomona 5 Nov 1964
PA Delta Marywood University, Scranton 8 Nov 1964
PA Epsilon Kutztown University of Pennsylvania, Kutztown 3 Apr 1965
AL Epsilon Huntingdon College, Montgomery 15 Apr 1965
PA Zeta Indiana University of Pennsylvania, Indiana 6 May 1965
TN Gamma Union University, Jackson 24 May 1965
IA Gamma Morningside College, Sioux City 25 May 1965
MD Beta McDaniel College, Westminster 30 May 1965
IL Zeta Dominican University, River Forest 26 Feb 1967
SC Beta South Carolina State College, Orangeburg 6 May 1967
PA Eta Grove City College, Grove City 13 May 1967
NY Eta Niagara University, Niagara University 18 May 1968
MA Alpha Assumption College, Worcester 19 Nov 1968
MO Eta Truman State University, Kirksville 7 Dec 1968
IL Eta Western Illinois University, Macomb 9 May 1969
OH Zeta Muskingum College, New Concord 17 May 1969
PA Theta Susquehanna University, Selinsgrove 26 May 1969
PA Iota Shippensburg University of Pennsylvania, Shippensburg 1 Nov 1969
MS Delta William Carey College, Hattiesburg 17 Dec 1970
MO Theta Evangel University, Springfield 12 Jan 1971
PA Kappa Holy Family College, Philadelphia 23 Jan 1971
CO Beta Colorado School of Mines, Golden 4 Mar 1971
KY Alpha Eastern Kentucky University, Richmond 27 Mar 1971
TN Delta Carson-Newman College, Jefferson City 15 May 1971
NY Iota Wagner College, Staten Island 19 May 1971
SC Gamma Winthrop University, Rock Hill 3 Nov 1972
IA Delta Wartburg College, Waverly 6 Apr 1973
PA Lambda Bloomsburg University of Pennsylvania, Bloomsburg 17 Oct 1973
OK Gamma Southwestern Oklahoma State University, Weatherford 1 May 1973
NY Kappa Pace University, New York 24 Apr 1974
TX Eta Hardin-Simmons University, Abilene 3 May 1975
MO Iota Missouri Southern State University, Joplin 8 May 1975
GA Alpha State University of West Georgia, Carrollton 21 May 1975
WV Alpha Bethany College, Bethany 21 May 1975
FL Beta Florida Southern College, Lakeland 31 Oct 1976
WI Gamma University of Wisconsin—Eau Claire, Eau Claire 4 Feb 1978
MD Delta Frostburg State University, Frostburg 17 Sep 1978
IL Theta Benedictine University, Lisle 18 May 1979
PA Mu St. Francis University, Loretto 14 Sep 1979
AL Zeta Birmingham-Southern College, Birmingham 18 Feb 1981
CT Beta Eastern Connecticut State University, Willimantic 2 May 1981
NY Lambda C.W. Post Campus of Long Island University, Brookville 2 May 1983
MO Kappa Drury University, Springfield 30 Nov 1984
CO Gamma Fort Lewis College, Durango 29 Mar 1985
NE Delta Nebraska Wesleyan University, Lincoln 18 Apr 1986
TX Iota McMurry University, Abilene 25 Apr 1987
PA Nu Ursinus College, Collegeville 28 Apr 1987
VA Gamma Liberty University, Lynchburg 30 Apr 1987
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NY Mu St. Thomas Aquinas College, Sparkill 14 May 1987
OH Eta Ohio Northern University, Ada 15 Dec 1987
OK Delta Oral Roberts University, Tulsa 10 Apr 1990
CO Delta Mesa State College, Grand Junction 27 Apr 1990
PA Xi Cedar Crest College, Allentown 30 Oct 1990
MO Lambda Missouri Western State College, St. Joseph 10 Feb 1991
TX Kappa University of Mary Hardin-Baylor, Belton 21 Feb 1991
SC Delta Erskine College, Due West 28 Apr 1991
NY Nu Hartwick College, Oneonta 14 May 1992
NH Alpha Keene State College, Keene 16 Feb 1993
LA Gamma Northwestern State University, Natchitoches 24 Mar 1993
KY Beta Cumberland College, Williamsburg 3 May 1993
MS Epsilon Delta State University, Cleveland 19 Nov 1994
PA Omicron University of Pittsburgh at Johnstown, Johnstown 10 Apr 1997
MI Delta Hillsdale College, Hillsdale 30 Apr 1997
MI Epsilon Kettering University, Flint 28 Mar 1998
MO Mu Harris-Stowe College, St. Louis 25 Apr 1998
GA Beta Georgia College and State University, Milledgeville 25 Apr 1998
AL Eta University of West Alabama, Livingston 4 May 1998
PA Pi Slippery Rock University, Slippery Rock 19 Apr 1999
TX Lambda Trinity University, San Antonio 22 Nov 1999
GA Gamma Piedmont College, Demorest 7 Apr 2000
LA Delta University of Louisiana, Monroe 11 Feb 2001
GA Delta Berry College, Mount Berry 21 Apr 2001
TX Mu Schreiner University, Kerrville 28 Apr 2001
CA Epsilon California Baptist University, Riverside 21 Apr 2003
PA Rho Thiel College, Greenville 13 Feb 2004
VA Delta Marymount University, Arlington 26 Mar 2004
NY Omicron St. Joseph’s College, Patchogue 1 May 2004
IL Iota Lewis University, Romeoville 26 Feb 2005
WV Beta Wheeling Jesuit University, Wheeling 11 Mar 2005
SC Epsilon Francis Marion University, Florence 18 Mar 2005
PA Sigma Lycoming College, Williamsport 1 Apr 2005
MO Nu Columbia College, Columbia 29 Apr 2005
MD Epsilon Stevenson University, Stevenson 3 Dec 2005
NJ Delta Centenary College, Hackettstown 1 Dec 2006
NY Pi Mount Saint Mary College, Newburgh 20 Mar 2007
OK Epsilon Oklahoma Christian University, Oklahoma City 20 Apr 2007
HA Alpha Hawaii Pacific University, Waipahu 22 Oct 2007
NC Epsilon North Carolina Wesleyan College, Rocky Mount 24 Mar 2008
NY Rho Molloy College, Rockville Center 21 Apr 2009
NC Zeta Catawba College, Salisbury 17 Sep 2009
RI Alpha Roger Williams University, Bristol 13 Nov 2009
NJ Epsilon New Jersey City University, Jersey City 22 Feb 2010
NC Eta Johnson C. Smith University, Charlotte 18 Mar 2010
AL Theta Jacksonville State University, Jacksonville 29 Mar 2010
GA Epsilon Wesleyan College, Macon 30 Mar 2010
FL Gamma Southeastern University, Lakeland 31 Mar 2010
MA Beta Stonehill College, Easton 8 Apr 2011
AR Beta Henderson State University, Arkadelphia 10 Oct 2011
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PA Tau DeSales University, Center Valley 29 Apr 2012
TN Zeta Lee University, Cleveland 5 Nov 2012
RI Beta Bryant University, Smithfield 3 Apr 2013
SD Beta Black Hills State University, Spearfish 20 Sept 2013
FL Delta Embry-Riddle Aeronautical University, Daytona Beach 22 Apr 2014
IA Epsilon Central College, Pella 30 Apr 2014
CA Eta Fresno Pacific University, Fresno 24 Mar 2015
OH Theta Capital University, Bexley 24 Apr 2015
GA Zeta Georgia Gwinnett College, Lawrenceville 28 Apr 2015
MO Xi William Woods University, Fulton 17 Feb 2016
IL Kappa Aurora University, Aurora 3 May 2016
GA Eta Atlanta Metropolitan University, Atlanta 1 Jan 2017
CT Gamma Central Connecticut University, New Britan 24 Mar 2017
KS Eta Sterling College, Sterling 30 Nov 2017
NY Sigma College of Mount Saint Vincent, The Bronx 4 Apr 2018
PA Upsilon Seton Hill University, Greensburg 5 May 2018
KY Gamma Bellarmine University, Louisville 23 April 2019


