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Classification of Consonance in
Generalized Tonal Systems

Jonathan Takeshita, student

MI Alpha

Albion College
Albion, MI 49224

Abstract

In this paper, we expand on Carmen Weddell’s work in describing general-
ized tonal systems. We work towards developing a framework in which we
can actually compose music, by beginning to develop generalized counter-
point. In particular, we present an algorithm for classification of conso-
nance of tones in a generalized tonal system.

1. Introduction, Background, and Motivation

Western music utilizes a twelve-tone system, in which each octave has
twelve semitones1. Carmen Weddell’s work utilized group theory to de-
scribe equal-temperament tonal systems using more than twelve semitones
for an octave [1]. Important results from Weddell’s work included choos-
ing octaves to be N = 8k + 4 semitones (for natural numbers k at least
1), definition of the generalized dominant and subdominant2 as the inter-
vals of (N/2) + 1 and (N/2) − 1, respectively. Throughout this work,
we will assume a basic familiarity with Weddell’s framework and results
and the appropriate music theory and group theory. Weddell’s work devel-
oped the foundations of generalized tonal systems, and even went so far
as to describe generalized chords and harmonic progressions. However,
no mention of counterpoint was made. Counterpoint is a set of rules de-
scribing a certain style of Baroque music epitomized by the works of J.S.
Bach. In contrapuntal music, independent melodic lines are prescribed to
move in certain ways relative to each other, such that acceptable harmonic

1 The term “twelve-tone” is thus a slight misnomer, as each octave contains twelve
semitones. The use of “twelve-tone” in this work should mean only that the octave has
twelve semitones, and should not be confused with other meanings.
2 Referred to by Weddell as the generalized fifth/fourth, respectively.
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motion occurs.
In counterpoint, the idea of consonance (informally, the degree to which

two pitches played simultaneously sound harmonic or discordant) is an im-
portant one. By developing a way to classify the consonance of intervals in
a generalized tonal system, we can progress towards a rigorously defined
model in which music can be written. To describe consonance, a property
of intervals, we must first define intervals.

An interval is the distance between two pitches, informally defined as
the ratio or logarithmic difference of their frequencies. In Western music
theory, a pitch p has a frequency (in Hz) of the form 440× 12

√
2
n

, where the
integer n represents the distance in semitones from the base pitch of A440
(440 Hz). (For context: an ordinary piano has n ∈ [−48, 39], ranging from
4 octaves below A440 to 3 octaves and 3 semitones above.) An analysis
of this equation is given by Stewart [2, p. 32]. The interval between two
pitches p0 = 440× 12

√
2
n0 and p1 = 440× 12

√
2
n1 is defined to be

(n0 − n1) mod 12, in units of semitones. (Some areas of music theory
ignore the modulus to consider intervals larger than an octave.)

In traditional music theory, intervals are classified as perfect (extremely
consonant), consonant, or dissonant, based on how pleasing these intervals
sound to the human ear. Consonance in standard music theory is a result
of the underlying ratios that compose different intervals—simpler ratios
sound more pleasing. In standard music theory, classification of intervals
is as follows:
• Perfect (perfectly consonant) intervals are the perfect unison (0 semi-

tones difference, ratio between the frequencies of 1), octave (12 semi-
tones difference, frequency ratio of 2 considered to be “enharmonic”,
i.e. harmonically identical for most purposes with the perfect unison),
perfect fourth (5 semitones difference, also referred to as the subdom-
inant tone), and perfect fifth (7 semitones difference, also referred to
as the dominant tone). These intervals are consonant enough to have a
“perfect” quality to them.

• Consonant intervals are the major/minor pairs closest to the central per-
fect intervals: the major/minor third (4 and 3 semitones difference, re-
spectively) and the major/minor sixth (9 and 8 semitones difference,
respectively). While these tones are not as consonant as perfect inter-
vals, they are still consonant and pleasing to the ear.

• Dissonant intervals are the remaining tones: the major/minor second (2
and 1 semitones difference, respectively), the major/minor seventh (11
and 10 semitones difference, respectively), and the tritone (6 semitones
difference, the interval between the perfect fourth and perfect fifth).
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This is summarized graphically in Table 1, with P representing per-
fectly consonant intervals, C representing the consonant intervals, and D
representing the dissonant intervals.

Semitone 0 1 2 3 4 5 6 7 8 9 10 11
Consonance P D D C C P D P C C D D

Table 1: Consonances in the twelve-tone system

Counterpoint is highly dependent on consonances, with many of the
rules of counterpoint being dependent on the consonances of the different
melodic lines at a given point in time. (For example, the first and last
notes of a piece should be a consonant interval that is not a perfect fourth.)
By developing a model of consonance in a generalized tonal system, we
can create a foundation on which to describe counterpoint in a generalized
tonal system, and work towards a full framework of music in a generalized
tonal system.

2. Criteria and Observations

To begin classifying intervals as consonant, dissonant, or perfect, our
strategy is to observe traits in the twelve-tone system that are distinctive,
important, and desirable. Further, these traits should be describable in
abstract terms not tied to the 12-tone system. The noted traits are:
• The unison has perfect consonance.

• The “central region of perfection”, i.e. the set of intervals comprised
of the subdominant, augmented fourth, and dominant, has a pattern of
consonance (two perfect intervals enclosing a dissonant interval, with
the dissonant referred to as the tritone). This region, the tritone in par-
ticular, serves as a natural halfway point.

• The intervals on either side of the central region of perfection are con-
sonant.

• The perfect unison/octave (enharmonic pitches) have dissonant tones
on either side. (The word “octave” is highly context-dependent; it
can mean either an interval enharmonic with the perfect unison, or the
whole set of intervals.)

• Intervals not perfect or the tritone should be arranged as adjacent pairs,
with the larger of the two being referred to as the major interval and
the smaller of the two being referred to as the minor interval. Minor in-
tervals should have the same consonance as their corresponding major
interval, and vice versa.
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• Consonant and dissonant major/minor pairs (as formed from the above
point) alternate. For simplicity, we will say that consonant and disso-
nant are opposite terms.

• Any interval has the same consonance as its inverse. The inverse of an
interval, in correspondence with an interval’s group-theoretic represen-
tation, is the interval such that the sum of the intervals is a full octave,
enharmonic with the unison. (For simplicity, we consider the unison to
be its own inverse.)

• There should be an equal amount of consonant and dissonant intervals
not equal to the unison, subdominant, tritone, or dominant, and equal
amounts of consonant and dissonant tones greater than and less than
the tritone.

3. Algorithm and Justification

We now can present the algorithm (next page) for classifying tones as
consonant, dissonant, or perfect. An implementation in C++ is provided at
https://gitlab.com/jtakeshi/consonances. Because the workings and cor-
rectness may not immediately be apparent, a qualitative analysis will fol-
low.

As noted above, we assume basic knowledge on the reader’s part of
the work of Weddell, specifically of the natural correspondence between
pitches in a N -tone system and the elements of ZN . Without this, the ca-
sual use of mathematical operations (addition, modulus, etc.) on harmonic
intervals may be difficult to follow.

3.1 Algorithm

The algorithm takes as input a natural number N of the form 8k + 4,
where k ≥ 1 and k ∈ N. It returns a list of the classifications (Perfect,
Consonant, or Dissonant) for the intervals of size 0 to N − 1 in a gen-
eralized tonal system of size N . Array indexing is zero-based, reflecting
the context (and making implementation in most programming languages
easier).

The workings, while difficult to see at a first glance, are simple: after
classifying the unison and central region, the algorithm will iterate over
each interval of i semitones, such that i ranges from 0 to N − 1 semitones.
(While iterating in this manner is not strictly necessary, it is easiest to
understand and easier to implement iterating i upwards from 0 to N −
1.) At each interval not yet classified, the interval is classified based on
its distance from the unison/octave and whether it is closer to a unison
or octave, i.e. if the interval is larger than the tritone. (The tritone is
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Algorithm 1 Classification of Consonances in Generalized Tonal Systems

procedure Consonances(N)

vals← array with N elements, each element initialized to be Unclassified

vals[0]← Perfect

vals[N2 − 1]← Perfect

vals[N2 + 1]← Perfect

vals[N2 ]← Dissonant

for i ∈ ZN do

if vals[i] = Unclassified then

k ← i modulo 4

if i < N
2 then

if k ∈ {1, 2} then

vals[i]← Dissonant

else

vals[i]← Consonant

end if

else

if k ∈ {2, 3} then

vals[i]← Dissonant

else

vals[i]← Consonant

end if

end if

end if

end for

return vals

end procedure
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defined to be the interval of N
2 semitones.) The unison is ignored, as it is

already classified as perfect. The next interval after the unison, the minor
second (i = 1) is classified as dissonant. Pitches not perfect or the tritone
come in major/minor pairs, so the next highest tone, (i = 2) is the major
second, and is assigned a consonance of dissonant, in accordance with
its corresponding minor interval. The next two intervals comprising the
major/minor third (i = 4, 3) are then given the opposite consonance of the
preceding major/minor pair, and classified as consonant. At this point, the
first half of the octave in a twelve-tone system has been fully classified.
For larger systems, the process continues, assigning each major/minor pair
a consonance the opposite of the previous pair, until the central region is
reached.

At this point, the lower half of the octave has been finished, along with
the interval i = N

2 + 1, the generalized dominant. At this point, the al-
gorithm results in the upper half of the octave being classified in a similar
but different manner: the upper half of the octave will be a mirror image
of the lower half. Musicians may find it helpful to think of this part of
the process as progressing downwards from the octave instead of mov-
ing upwards from the middle. No matter how one approaches the process
mentally (upwards from the unison, downwards from the octave, outwards
from the central region), the result is the same.

4. Consequences

In this section we present theorems and lemmas that collectively show
that the algorithm presented in Section 3.1 does classify the intervals of
a generalized tonal system, such that the criteria observed earlier are ful-
filled. The result will be that the abstract, notable traits of a tonal system
described in Section 2 are shown to be consequences of the algorithm.
For each of these, we take as universal assumptions that N is of the form
8k + 4 for k ∈ Z and k ≥ 1, and that every interval i ∈ ZN has been
classified in accordance with the above algorithm. Mathematical opera-
tions and relations on intervals are taken to have the same meaning as their
corresponding element of ZN . The reader should refer frequently to the
algorithm’s specification while reading these proofs, as it will make the
reasoning behind the assertions made casewise more clear.

Lemma 1 The unison, generalized subdominant, and generalized domi-
nant are all classified as perfect. Additionally, the tritone is classified as
dissonant.

Proof. This is trivially seen by observing the steps of the algorithm
preceding the iterative portion: the intervals 0, N2 − 1, and N

2 + 1 are
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classified as perfect, and the interval N2 is classified as dissonant.

Theorem 2 The intervals on either side of the central region of perfection
are consonant.

Proof. The intervals in question are (N2 − 1)− 1 and (N2 + 1) + 1, better
written as N

2 − 2 and N
2 + 2. Recalling that N = 8k+ 4, we again rewrite

these tones as (4k + 2) − 2 and (4k + 2) + 2, and simplify these to 4k
and 4k + 4. The interval 4k is less than N

2 , not 0, and 4k ≡ 0 mod 4, so
4k is classified as consonant. The interval 4k + 4 is greater than N

2 , and
4k + 4 ≡ 0 mod 4, so 4k + 4 is classified as consonant.

Theorem 3 The intervals directly adjacent to the unison modulo N (i.e.
the intervals 1 and N − 1) are dissonant.

Proof. The interval 1 is less than N
2 , and 1 ≡ 1 mod 4, so 1 is classified

as dissonant. The interval N − 1 is greater than N
2 , and N − 1 ≡ 3 mod 4,

so N − 1 is classified as dissonant.

The musician will note that intervals in the twelve-tone system occur in
major-minor adjacent pairs with the same consonance (e.g. the major and
minor third are one semitone removed, and have the same consonance).

Theorem 4 Intervals not the perfect unison, generalized subdominant,
generalized tritone, or generalized dominant (the four excepted intervals)
occur in adjacent pairs having the same consonance.

Proof. This can be seen by observing how intervals are assigned. Suppose
i is an interval not equal to any of the four excepted intervals. We then wish
to show that for each interval i where i /∈ {0, N2 − 1, N2 ,

N
2 + 1}, there

exists a unique interval j such that |i − j| = 1 (i.e. i and j are adjacent
and not equal), i and j have the same consonance, and j is also not equal
to any of the four excepted intervals (the set {0, N2 − 1, N2 ,

N
2 + 1}). We

let k = i mod 4, and proceed to find j by cases:
• If i < N

2 , we note that i 6= 0 and i 6= N
2 − 1.

– If k = 0, then we choose j = i− 1. (i and j are consonant.)

– If k = 1, then we choose j = i+ 1. (i and j are dissonant.)

– If k = 2, then we choose j = i− 1. (i and j are dissonant.)

– If k = 3, then we choose j = i+ 1. (i and j are consonant.)

• On the other hand, if i > N
2 , we note that i 6= N

2 and i 6= N
2 + 1.
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– If k = 0, then we choose j = i+ 1. (i and j are consonant.)

– If k = 1, then we choose j = i− 1. (i and j are consonant.)

– If k = 2, then we choose j = i+ 1. (i and j are dissonant.)

– If k = 3, then we choose j = i− 1. (i and j are dissonant.)

In each case, we have chosen j to be one semitone removed from i. It
can be verified that j will have the same consonance as i. We now verify
that this selection of j also results in j not being one of the four excepted
intervals:

For j to be one of the four excepted intervals and be one semitone
removed from i, then i must be one semitone removed from one of the
four excepted intervals (i is also assumed to not be equal to any of the four
excepted intervals). Then i ∈ {1, N2 − 2, N2 + 2, N − 1}. (We consider
N − 1 because it is a semitone removed from the unison, modulo N .) We
again proceed by cases:
• If i = 1, then i < N

2 and r = 1, so j = i+ 1 = 2 /∈ {0, N2 − 1, N2 ,
N
2 +

1}.

• If i = N
2 − 2, then i < N

2 and r = 0, so j = i − 1 = N
2 − 3 /∈

{0, N2 − 1, N2 ,
N
2 + 1}.

• If i = N
2 + 2, then i > N

2 and r = 2, so j = i + 1 = N
2 + 3 /∈

{0, N2 − 1, N2 ,
N
2 + 1}.

• If i = N − 1, then i > N
2 and r = 3, so j = i − 1 = N − 2 /∈

{0, N2 − 1, N2 ,
N
2 + 1}.

The assertion that j /∈ {0, N2 − 1, N2 ,
N
2 + 1} in each case is clear by

the condition that N ≥ 12. (N would have to be 2, 4, or 6 for j to be in
{0, N2 − 1, N2 ,

N
2 + 1}).

In each case, |i − j| = 1 forces either j = i + 1 or j = i − 1. The
reader can verify that in each choice of j, the other choice results in a pair
of intervals that do not share the same consonance. This uniqueness is
what allows us to state that intervals sharing the same consonance occur in
pairs.

We have thus proven that for each i /∈ {0, N2 − 1, N2 ,
N
2 + 1}, there

exists j /∈ {0, N2 − 1, N2 ,
N
2 + 1} such that |i− j| = 1 and i and j have the

same consonance.
.

These pairs of intervals with the same consonance are referred to as
major/minor pairs, as mentioned above.



12 The Pentagon

Theorem 5 Consonant and dissonant major/minor pairs alternate.

Proof. As a consequence of the previous theorem, this reduces to showing
that for all intervals iwhere i /∈ {0, N2 −1, N2 +1, N−1}∪{1, N2 −2, N2 +2}
(the excepted four and their neighbors), there exists a unique interval j
such that |i− j| = 1, j /∈ {0, N2 − 1, N2 ,

N
2 + 1}, and the consonances of i

and j are opposite. (We restrict i as such because when i is adjacent to one
of the four excepted intervals, we want to instead consider the major/minor
partner of i.) We again let k = i mod 4, and proceed by cases:
• If i < N

2 :
– If k = 0, then i is consonant. We choose j = i + 1, so that j is

dissonant.

– If k = 1, then i is dissonant. We choose j = i − 1, so that j is
consonant.

– If k = 2, then i is dissonant. We choose j = i + 1, so that j is
consonant.

– If k = 3, then i is consonant. We choose j = i − 1, so that j is
dissonant.

• On the other hand, if i > N
2 :

– If k = 0, then i is consonant. We choose j = i − 1, so that j is
dissonant.

– If k = 1, then i is consonant. We choose j = i + 1, so that j is
dissonant.

– If k = 2, then i is dissonant. We choose j = i − 1, so that j is
consonant.

– If k = 3, then i is dissonant. We choose j = i + 1, so that j is
consonant.

By choosing j in such a way, we ensure that j and i have opposite
consonances and that |i−j| = 1. From the previous theorem, we know that
each considered interval will have one neighbor sharing its consonance,
and its other neighbor will have the opposite consonance. Because
i /∈ {1, N2 − 2, N2 + 2} and |i− j| = 1, j /∈ {0, N2 − 1, N2 ,

N
2 + 1}.

Remark 6 One should note that as a result of the structure of the algo-
rithm, the choices of j in the two above proofs are necessarily unique. To
uphold the condition that |i− j| = 1, there are exactly two choices for j: j
must be equal to i+ 1 or i−1. The reader can verify in each case that one
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choice of j would lead to at least one of the desired conditions for j not
being fulfilled, which leaves the other choice as the correct one to prove
the theorem.

Lemma 7 In any generalized tonal system, there exist an equal amount
of consonant and dissonant intervals, excepting the intervals 0, N2 −1, N2 ,
N
2 + 1.

Proof. This follows from the above two theorems.

Theorem 8 There exist equal amounts of consonant and dissonant inter-
vals greater and less than N

2 , excepting the intervals 0, N2 − 1, N2 + 1.

Proof. We note that the octave contains the 8k + 4 intervals {0, 1, . . . ,
N − 2, N − 1}. By excepting 0, N2 − 1, N2 ,

N
2 + 1, we see that there are 8k

intervals remaining. Half of these are greater than N
2 , and half are less than

N
2 , so each half of the octave contains 4k intervals. Because each iteration

of 4 steps of the iterative portion of the algorithm assigns two intervals as
consonant and two as dissonant, we see that the algorithm assigns an equal
amount of consonant and dissonant intervals to either half of the octave.

Remark 9 The above theorem’s line of reasoning can also be extended
into another proof of the preceding lemma.

Theorem 10 Any interval has the same consonance as its inverse.

Proof. Let i be an interval, and k its residue modulo 4. We let i−1 be the
additive inverse of i ∈ ZN , fulfilling the condition that i+i−1 ≡ 0 mod N .
Noting that the residue s of i−1 is equal to (4− k) mod N , we proceed by
cases:
• If i = 0 or i = N

2 , then i = i−1, and it is trivially true that i has the
same consonance as its inverse.

• If i = N
2 − 1 (i.e. i is the subdominant interval), then we have

i−1 = N
2 + 1 (the dominant interval). Similarly, if i = N

2 + 1, then
i−1 = N

2 − 1. Both N
2 − 1 and N

2 + 1 are perfectly consonant.

• If i < N
2 , then we proceed by cases:

– If k = 0, then i is consonant. Then s = 0 and i−1 > N
2 , so i−1 is

also consonant.
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– If k = 1, then i is dissonant. Then s = 3 and i−1 > N
2 , so i−1 is

also dissonant.

– If k = 2, then i is dissonant. Then s = 2 and i−1 > N
2 , so i−1 is

also dissonant.

– If k = 3, then i is consonant. Then s = 1 and i−1 > N
2 , so i−1 is

also consonant.

• On the other hand, if i > N
2 , then we again proceed by cases:

– If k = 0, then i is consonant. Then s = 0 and i−1 < N
2 , so i−1 is

also consonant.

– If k = 1, then i is consonant. Then s = 3 and i−1 < N
2 , so i−1 is

also consonant.

– If k = 2, then i is dissonant. Then s = 2 and i−1 < N
2 , so i−1 is

also dissonant.

– If k = 3, then i is dissonant. Then s = 1 and i−1 < N
2 , so i−1 is

also dissonant.

Lemma 11 A major/minor pair of intervals will have a major/minor pair
of intervals as their inverses, and will share the same consonances.

Proof. This follows from the above theorems.

Lemma 12 If i and j are two intervals whose residues modulo 4 are both
zero, then their sum is a consonant interval or equivalent to 0 mod N .

Proof. If i ≡ 0 mod 4 and j ≡ 0 mod 4 then i + j ≡ 0 mod 4. By
observing the algorithm, it is clear that an interval with a residue of zero
modulo 4 will always be either classified as consonant or be equivalent to
the unison/octave (0 mod N ).

Remark 13 Musicians will note that this lemma shows that every inter-
val that is a sum of any number of major thirds is consonant or perfect.
This is certainly true in the twelve-tone system, although not very inter-
esting, as the only intervals to consider are the unison, major third, minor
sixth, and octave.
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5. Example: Consonance of tones in a twenty-tone system

We will demonstrate this procedure with the twenty-tone system. As
an aside, the reader will note that one can determine the consonance of in-
tervals either by directly applying the algorithm, or by applying the above
theorems and lemmas. We will use the second strategy, as it is more infor-
mative. To start, we classify the intervals {0, N/2−1, N/2+1} as perfect:
in a 20 - tone system, these are the intervals {0, 9, 11}. Additionally, the
tritone N/2 (the interval of 10 semitones in a 20-tone system) is dissonant.
We then progress up the octave from the unison to the subdominant:
• The interval 1 is adjacent to the unison, so it is classified as dissonant.

• The interval 2 is the corresponding major interval to the interval 1, so
it is also dissonant.

• The major/minor pair 4, 3 is adjacent to the dissonant major/minor pair
2, 1, so 3 and 4 are both classified as consonant.

• The major/minor pair 6, 5 is adjacent to the consonant major/minor pair
4, 3, so 5 and 6 are both classified as dissonant.

• The major/minor pair 8, 7 is adjacent to the dissonant major/minor pair
6, 5, so 7 and 8 are both classified as consonant. This could also have
been done by noting that 8 is one less than 9, the subdominant, so 8 and
also 7 will be consonant.

At this point, we have classified the lower half of the octave. There are
now multiple possible ways to proceed. One way would be to proceed in
the same way as above, by moving up from the dominant or down from
the octave, and giving adjacent major/minor pairs consonances alternating
between consonant and dissonant. Because this method has already been
illustrated, we will instead use the fact that inverses of major/minor pairs
have the same consonance:
• The major/minor pair 19, 18 are inverses of the major/minor pair 2, 1,

so 19, 18 are also dissonant.

• The major/minor pair 17, 16 are inverses of the major/minor pair 4, 3,
so 17, 16 are also consonant.

• The major/minor pair 15, 14 are inverses of the major/minor pair 6, 5,
so 15, 14 are also dissonant.

• The major/minor pair 13, 12 are inverses of the major/minor pair 8, 7,
so 13, 12 are also consonant.
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We have classified the tones 0 through 19 as follows:
• Consonant: {3, 4, 7, 8, 12, 13, 16, 17}

• Dissonant: {1, 2, 5, 6, 10, 14, 15, 18, 19}

• Perfect: {0, 9, 11}

The structure of the twenty-tone system is shown graphically in Table
2. The reader can verify that this assignment of consonances satisfies the
results in Section 6.

Semitone 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Consonance P D D C C D D C C P D P C C D D C C D D

Table 2: Consonances in the twenty-tone system

6. Future Goals

In future research, goals include a more careful definition of interval
equality, rigorous statement of rules of counterpoint (in both twelve-tone
and generalized systems), and seeking deeper mathematical relationships
in the study of generalized tonal systems. The overarching goal is to de-
velop a framework for generalized tonal systems in which well-formed
music can be composed (by human or computer musicians).
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Abstract

Several theorems are proved concerning the asymptotic nature of the
growth of animal populations in the popular computer game Minecraft.
These results are then generalized to different kinds of populations.

Introduction

Many will be familiar with the popular video game, Minecraft. Minecraft
is a sandbox-type game in which the player can gather blocks and re-
sources, build with these blocks, explore and generate new terrain, fight
enemies, and engage in a host of other activities. The player can also tame
and breed animals. The animals in Minecraft are asexual. That is, there
are no male or female animals. There are simply cows, pigs, sheep, etc.
To breed these animals, one needs the right breeding food. Cows, for in-
stance, require wheat. To breed two cows and create a new baby cow, the
player feeds a piece of wheat to each cow, causing red hearts to appear
above each. Soon after, a single baby cow is born which can then be bred
with another member of the population after a 20 minute maturation cycle.
Minecraft animals do not age and hence will not die unless killed by the
player or by some other factor.

The goal of this chapter is to find an effective method of calculating
the number of animals in an animal population after n breeding cycles.
By a breeding cycle, we mean that we breed together as many animals as
possible (there is potentially one animal not bred if the population size is
odd) and then wait for all baby animals to mature into breedable animals.

In Section 1, we derive an intuitive asymptotic relationship for the
growth rate of a Minecraft animal population. In Section 2, we use this re-
lation to derive an exact formula for the population size pn after n breeding
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cycles. In Section 3, we present a generalization of the results in Section
2.

As a note on terminology, an animal population is taken to mean a
population consisting of only a single kind of animal.

1. Asymptotic Relation

Suppose we have an initial animal population of size p0 ≥ 2. The popula-
tion size pn after n breeding cycles is given by the recurrence relation

pn = pn−1 +
⌊pn−1

2

⌋
, n ≥ 1,

where b·c denotes the greatest integer function. Using this relation, we
make the following definition:

Definition. Let p0 ∈ N with p0 ≥ 2; let (pn) be the sequence defined by

pn =

{
p0 n = 0,

pn−1 +
⌊pn−1

2

⌋
n ≥ 1.

The sequence (pn) is called the p-sequence with parameter p0.

Clearly we would prefer a method of calculating the population size
that is not recursive. Moreover, we would like this to be in closed-form. In
fact, there is an exact, closed-form formula for pn. We begin with several
lemmas, the fist of which will allow us to make certain inequalities strict
later on in the proof of our main results.

Lemma 1 Let (pn) be a p-sequence. For every n, there exists k ≥ 1 such
that pn and pn+k have opposite parity.

Proof. Let n, n′ ∈ N such that pn is even and pn′ is odd. Then
pn = q

(
2k
)

for some k ≥ 1 and odd q, and pn′ = q′
(
2k
′)

+ 1 for some
k′ ≥ 1 and odd q′. We have

pn+1 = 3q
(

2k−1
)
, pn′+1 = 3q′

(
2k
′−1
)

+ 1,

pn+2 = 9q
(

2k−2
)
, pn′+2 = 9q′

(
2k
′−2
)

+ 1,

...
...

pn+i = 3iq
(

2k−i
)
, pn′+i′ = 3i

′
q′
(

2k
′−i′
)

+ 1,

...
...

pn+k = 3kq, pn′+k′ = 3k
′
q′ + 1.
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This completes the proof since pn+k is odd and pn′+k′ is even.

Corollary 2 Every p-sequence contains infinitely many even and odd
terms.

Lemma 3 Let (pn) be a p-sequence with parameter p0.

1. For all n,

p0

(
3

2

)n
− pn ≤

(
3

2

)n
− 1. (1)

2. There exists N ≥ 1 such that this inequality is strict for all n ≥ N .

Proof. To prove the first statement, note that for all n we have

pn

(
3

2

)
− 1

2
≤ pn+1 ≤ pn

(
3

2

)
.

To prove (1) we proceed by induction on n. The case of n = 0 yields
equality. Supposing (1) holds for some arbitrary n, we have

p0

(
3

2

)n+1

− pn+1 ≤ p0
(

3

2

)n+1

−
(
pn

(
3

2

)
− 1

2

)
=

3

2

(
p0

(
3

2

)n
− pn

)
+

1

2

≤ 3

2

((
3

2

)n
− 1

)
+

1

2
=

(
3

2

)n+1

− 1.

(2)

Thus by the induction hypothesis, (1) must hold for all n ≥ 0. This proves
the first statement.

We now prove the second statement. From (2), it is clear that if the
inequality (1) is strict for some N , then it must also be strict for N + 1.
Thus, it suffices to show that such an N exists for all p0. We have two
cases. If p0 is even, then p1 = p0

(
3
2

)
and the inequality is strict for n = 1

since p0
(
3
2

)
− p1 = 0 < 1

2 . In this case, set N = 1. If p0 is odd, then by
Lemma 1 there exists k such that pk is even. Hence pk+1 = pk

(
3
2

)
. Using

the same argument as in (2), we have

p0

(
3

2

)k+1

− pk+1 < p0

(
3

2

)k+1

− pk
(

3

2

)
+

1

2
≤
(

3

2

)k+1

− 1.

Thus if p0 is odd, set N = k + 1. This completes the proof.
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Theorem 4 Let pn be a p-sequence with parameter p0. Then there exists
a constant c with p0 − 1 < c < p0 such that

lim
n→∞

pn(
3
2

)n = c. (3)

Proof. By Lemma 3, there exists N such that

p0

(
3

2

)n
− pn <

(
3

2

)n
− 1

for all n ≥ N . Hence
pN(
3
2

)N > p0 − 1 +
1(
3
2

)N .
Define δ to be half the distance between pN

(3/2)N and p0 − 1 + 1
(3/2)N in the

above inequality. In other words, δ := 1
2

(
pN

( 3

2)
N − p0 + 1− 1

( 3

2)
N

)
. Then

pN(
3
2

)N > p0 − 1 + δ +
1(
3
2

)N .
Note that for any x ∈ R, if pn

( 3

2)
n > x+ 1

( 3

2)
n , then

pn+1(
3
2

)n+1 ≥
pn
(
3
2

)
− 1

2(
3
2

)n+1 =
pn(
3
2

)n − 1

2
(
3
2

)n+1

> x+
1(
3
2

)n − 1

2
(
3
2

)n+1 = x+
1(

3
2

)n+1 .

(4)

Setting x = p0 − 1 + δ, it follows from (4) and induction that
pn(
3
2

)n > p0 − 1 + δ +
1(
3
2

)n > p0 − 1 + δ

for all n ≥ N .
The sequence pn

( 3

2)
n is decreasing since

pn+1(
3
2

)n+1 =
pn +

⌊pn
2

⌋(
3
2

)n+1 ≤
pn
(
3
2

)(
3
2

)n+1 =
pn(
3
2

)n .
Thus by the Monotone Convergence Theorem, there exists a constant
c ≥ p0 − 1 + δ such that

lim
n→∞

pn(
3
2

)n = c.

Since pn

( 3

2)
n is decreasing, and since δ > 0, we have p0 − 1 < c < p0.
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2. Population Approximation

Theorem 5 Let (pn) be a p-sequence. Then

0 < pn − c
(

3

2

)n
< 1 (5)

for all n ≥ 0.

Proof. By Corollary 2, there exists a subsequence (pnj
) of (pn) such

that pnj
is odd for all nj . Thus pnj+1 = pnj

(
3
2

)
− 1

2 . Since pn
(3/2)n is a

decreasing sequence, we have

pnj(
3
2

)nj
=

pnj

(
3
2

)(
3
2

)nj+1 >
pnj

(
3
2

)
− 1

2(
3
2

)nj+1 =
pnj+1(
3
2

)nj+1 ≥
pnj+1(
3
2

)nj+1
.

Hence the subsequence
pnj

(3/2)nj is strictly decreasing. Since pn
(3/2)n is mono-

tonic and has a strictly decreasing subsequence, we must have pn
(3/2)n > c

for all n. Thus pn − c
(
3
2

)n
> 0.

Since lim pn
(3/2)n = c by Theorem 4, we also have lim pn−1

(3/2)n = c. In

order to show that pn − c
(
3
2

)n
< 1, we show that the sequence pn−1

(3/2)n is
both increasing and has a strictly increasing subsequence. We have

pn+1 − 1(
3
2

)n+1 ≥
pn
(
3
2

)
− 1

2 − 1(
3
2

)n+1 =
pn − 1(

3
2

)n .

Hence pn−1
(3/2)n is increasing. Again by Corollary 2, there exists a subse-

quence (pnl
) of (pn) such that pnl

is even for all nl. Thus pnl+1 = pnl

(
3
2

)
.

Since pn−1
(3/2)n is increasing, we have

pnl
− 1(

3
2

)nl
=
pnl

(
3
2

)
− 3

2(
3
2

)nl+1 =
pnl+1 − 3

2(
3
2

)nl+1 <
pnl+1 − 1(

3
2

)nl+1 ≤
pnl+1

− 1(
3
2

)nl+1
.

Hence the subsequence pnl
−1

(3/2)nl
is strictly increasing. Since pn−1

(3/2)n is mono-

tonic and has a strictly increasing subsequence, we must have pn−1
(3/2)n < c

for all n. Thus pn − c
(
3
2

)n
< 1, which proves the theorem.

Letting dke denote the smallest integer greater than or equal to k (that
is, k rounded up if k is not an integer), we can now give an exact formula
for pn.
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Corollary 6 Let (pn) be a p-sequence with parameter p0. For all n, we
have

pn =

⌈
c

(
3

2

)n⌉
.

Remark. Although there exists a closed form expression for pn involving
c, it is not known (at the time of this writing) if there exists a closed form
expression for c. Although cmay be calculated to arbitrary precision using
known terms of (pn), the exact value of c remains unknown. As well, the
questions of the irrationality and transcendence of c remain open.

3. Generalization to Other p-sequences

We move now to a generalization of the above results. Consider a pop-
ulation in which a offspring are produced by b parents. This yields the
following generalized definition for p-sequences.

Definition. Let a, b ∈ N with b ≥ 2; let p ∈ N with p ≥ b; let Pa,b(n) be
the sequence defined by

Pa,b(n) =

{
p n = 0,

Pa,b(n− 1) + a
⌊
Pa,b(n−1)

b

⌋
n ≥ 1.

The sequence Pa,b(n) is said to be the p-sequence with parameters a, b and
p. The p-sequence examined in Sections 1 and 2 can thus be written as

P1,2(n). What we shall see is that the same results as before, specifically
Theorem 5, hold for the generalized case. Unfortunately, Corollary 6 does
not hold in general. Instead, we prove that there exists a constant c such
that

0 < Pa,b(n)− c
(
a+ b

b

)n
< b− 1.

We follow the same approach as in Sections 1 and 2. We begin our
generalization by treating the case of b | a, as this permits a simple closed
form expression.

Before treating this case though, let us first introduce some convenient
notation. Let r(x, y) denote the remainder of x on division by y. Thus
r(8, 3) = 2 and r(12, 9) = 3. It is clear then that r(a, b) < b; we shall
make much use of this inequality. Also, we let (a, b) denote the greatest
common divisor of a and b.

Theorem 7 Let Pa,b(n) be a p-sequence with parameters a, b and p and
suppose b | a. Then for all n, we have

Pa,b(n) = b
(a
b

+ 1
)n ⌊p

b

⌋
+ r(p, b). (6)
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Proof. We proceed by induction on n. For n = 0, note that p = b
⌊p
b

⌋
+

r(p, b). Supposing that (6) holds for some arbitrary n ≥ 0, we have

Pa,b(n+ 1) = Pa,b(n) + a

⌊
Pa,b(n)

b

⌋
= b

(a
b

+ 1
)n ⌊p

b

⌋
+ r(p, b) + a

⌊
b
(
a
b + 1

)n ⌊p
b

⌋
+ r(p, b)

b

⌋

= b
(a
b

+ 1
)n ⌊p

b

⌋
+ r(p, b) + a

⌊(a
b

+ 1
)n ⌊p

b

⌋
+
r(p, b)

b

⌋
.

(7)

Since
(
a
b + 1

)n ⌊p
b

⌋
is an integer, and since r(p, b) < b, we have r(p,b)

b < 1
and the last line of (7) becomes

Pa,b(n+ 1) = b
(a
b

+ 1
)n ⌊p

b

⌋
+ r(p, b) + a

(a
b

+ 1
)n ⌊p

b

⌋
= b

(a
b

+ 1
)n+1 ⌊p

b

⌋
+ r(p, b).

Thus (6) holds for all n ≥ 0.

Having treated this case, it shall be assumed henceforth that b - a. The
proof of our next lemma makes use of several divisibility properties of the
integers. We state these properties now without proof, as they are basic
results in number theory.1

Property 8 Let a, b be integers with (a, b) = 1. Then
(
(a+ b)k, b

)
= 1

for all k ≥ 1.

Property 9 Let a, b, c be integers with (a, b) = 1. If a | bc, then a | c.

We now prove our next lemma which contains two statements, both of
which are proven in a nearly identical manner. As such, we prove only the
first statement and leave the minor details of the proof of the second to the
reader.

Lemma 10 Let Pa,b(n) be a p-sequence with parameters a, b and p. For
every n,

1. There exists an integer M ≥ 0 such that r(Pa,b(n+M), b) < b− 1;

2. There exists an integer M ′ ≥ 0 such that r(Pa,b(n+M ′), b) > 0.

Proof. We prove the first statement. If r(n, b) 6= b−1, then r(n, b) < b−1
and we set M = 0. Otherwise, let k be the smallest nonzero power of b
1 The proofs of these properties can be found in the Appendix.
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that divides Pa,b(n)− (b− 1). That is, k ≥ 1 and bk | Pa,b(n)− (b− 1).
Such a k exists since Pa,b(n) ≥ b. Then Pa,b(n) = qbk + (b− 1) for some
q. Since k is minimal, b - q. Let d = (a, b). Then a = dta and b = dtb for
some ta and tb with (ta, tb) = 1. Thus we have

Pa,b(n) = qbk + (b− 1).

Pa,b(n+ 1) = qbk + (b− 1) + aqbk−1.

= q(dtb)
k + (b− 1) + dtaq(dtb)

k−1.

= qdk(ta + tb)t
k−1
b + (b− 1).

Pa,b(n+ 2) = qdk(ta + tb)
2tk−2b + (b− 1).

...

Pa,b(n+ i) = qdk(ta + tb)
itk−ib + (b− 1).

...

Pa,b(n+ k) = qdk(ta + tb)
k + (b− 1).

Since ta and tb are relatively prime,
(
(ta + tb)

k, tb
)

= 1 by Property 8.
If tb - qdk−1, then tb - qdk−1(ta + tb)

k by contraposition of Property 9.
Hence b - qdk(ta + tb)

k and thus r(qdk(ta + tb)
k, b) 6= 0. Therefore

r(Pa,b(n+ k), b) 6= b− 1. In this case, set M = k. Otherwise, let j be the
largest power of tb that divides qdk−1. That is,

tjb | qd
k−1 and tj+1

b - qdk−1.
Then we have

Pa,b(n+ k) = qdk(ta + tb)
k + (b− 1).

Pa,b(n+ k + 1) =

(
1 +

ta
tb

)
qdk(ta + tb)

k + (b− 1).

...

Pa,b(n+ k + i) =

(
1 +

ta
tb

)i
qdk(ta + tb)

k + (b− 1).

...

Pa,b(n+ k + j) =

(
1 +

ta
tb

)j
qdk(ta + tb)

k + (b− 1).

Since j is maximal, tb -
(
ta
tb

)j
qdk−1. Since (tb, (ta + tb)

k) = 1, we have

also that tb -
(
ta
tb

)j
qdk−1(ta+tb)

k and thus b -
(
ta
tb

)j
qdk(ta+tb)

k. Since
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b divides
(
ta
tb

)i
qdk(ta + tb)

k for each i < j, we must have

b - qdk(ta + tb)
k

(
j∑
i=0

(
j

i

)(
ta
tb

))
=

(
1 +

ta
tb

)j
qdk(ta + tb)

k.

In other words, b divides each term in the product of qdk(ta + tb)
k and the

binomial expansion of
(

1 + ta
tb

)j
except the single term

(
ta
tb

)j
qdk(ta +

tb)
k, so that b does not divide the whole product

(
1 + ta

tb

)j
qdk(ta + tb)

k.
Thus r(Pa,b(n+k+ j), b) 6= b−1. In this case, setM = k+ j. This com-
pletes the proof of the first statement. The proof of the second statement is
nearly identical, as one need only replace each (b− 1) with 0 in the above
equations and make the appropriate modifications.

Corollary 11 Every p-sequence contains infinitely many terms Pa,b(n)
and Pa,b(m) such that r(Pa,b(n), b) < b− 1 and r(Pa,b(m), b) > 0.

Remark. Throughout the remainder of this chapter, we shall make abun-
dant use of the quantities a+b

b and
(
a+b
b

)n
. In order to avoid cumbersome

notation, we define the β = a+b
b .

Lemma 12 Let Pa,b(n) be p-sequence with parameters a, b and p.

1. For all n ≥ 0,

pβn − Pa,b(n) ≤ (b− 1) (βn − 1) . (8)

2. There exists N ≥ 1 such that this inequality is strict for all n ≥ N .

Proof. For all positive integers a and b, the difference a
b −

⌊
a
b

⌋
is at most

b−1
b . Hence

⌊
a
b

⌋
≥ a

b −
b−1
b so that

Pa,b(n+ 1) = Pa,b(n) + a

⌊
Pa,b(n)

b

⌋
≥ Pa,b(n) + a

(
Pa,b(n)

b
− b− 1

b

)
= βPa,b(n)− a

(
b− 1

b

)
.

When Pa,b(n) is divisible by b, we have Pa,b(n + 1) = βPa,b(n). Hence
for all n,

βPa,b(n)− a
(
b− 1

b

)
≤ Pa,b(n+ 1) ≤ βPa,b(n).
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To prove the first statement, we proceed by induction on n. As in Lemma
3, the case of n = 0 yields equality. Supposing (8) holds for some arbitrary
n ≥ 1,

pβn+1 − Pa,b(n+ 1)

≤ pβn+1 −
((

a+ b

b

)
Pa,b(n)− a

(
b− 1

b

))
= β (pβn − Pa,b(n)) + a

(
b− 1

b

)
≤ β(b− 1) (βn − 1) + a

(
b− 1

b

)
= (b− 1)

(
βn+1 − 1

)
.

(9)

Thus by the induction hypothesis, (8) holds for all n ≥ 1. This proves the
first statement.

We now prove the second statement. From (9), it is clear that if the
inequality (8) is strict for some N , then it must also be strict for N + 1.
Thus, it suffices to show that there exists such an N for all a, b, and p. If
r(p, b) < b − 1, then pβ − Pa,b(1) < a

(
b−1
b

)
= (b − 1)(β − 1). In this

case, set N = 1. Otherwise, we have by Lemma 10 that there exists M
such that r(Pa,b(M), b) < b− 1. Substituting n = M into (9) yields

pβM+1 − Pa,b(M + 1)

< pβM+1 −
(
βPa,b(M)− a

(
b− 1

b

))
≤ (b− 1)

(
βM+1 − 1

)
.

In this case, set N = M + 1. This completes the proof.

Theorem 13 Let Pa,b(n) be a p-sequence with parameters a, b and p.
Then there exists a constant c with p− b+ 1 < c < p such that

lim
n→∞

Pa,b(n)

βn
= c.

Proof. By Lemma 12, there exists N such that

pβn − Pa,b(n) < (b− 1) (βn − 1)

for all n ≥ N . Hence
Pa,b(N)

βN
> p− b+ 1 +

b− 1

βN
.

Define δ to be half the distance between Pa,b(N)
βN and p− b+ 1 + b−1

βN in the
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above inequality. In other words,

δ :=
1

2

(
Pa,b(N)

βN
− p+ b− 1− b− 1

βN

)
.

Hence we have
Pa,b(N)

βN
> p− b+ 1 + δ +

b− 1

βN
.

For any x ∈ R, if Pa,b(n)
βn > x+ b−1

βn , then

Pa,b(n+ 1)

βn+1 ≥
βPa,b(n)− a

(
b−1
b

)
βn+1 =

Pa,b(n)

βn
−
a
(
b−1
b

)
βn+1

> x+
b− 1

βn
−
a
(
b−1
b

)
βn+1 = x+

b− 1

βn+1 .

(10)

Setting x = p− b+ 1 + δ, it follows from (10) and induction that
Pa,b(n)

βn
> p− b+ 1 + δ +

b− 1

βn
> p− b+ 1 + δ

for all n ≥ N .
The sequence Pa,b(n)

βn is decreasing since

Pa,b(n+ 1)

βn+1 ≤
βPa,b(n)

βn+1 =
Pa,b(n)

βn
.

Thus by the Monotone Convergence Theorem, there exists a constant
c ≥ p− b+ 1 + δ such that

lim
n→∞

Pa,b(n)

βn
= c.

Since Pa,b(n)
βn is decreasing, and since δ > 0, we have p − b + 1 < c < p.

Theorem 14 Let Pa,b(n) be a p-sequence with parameters a, b and p.
Then

0 < Pa,b(n)− cβn < b− 1 (11)
for all n ≥ 0.

Proof. By Corollary 11, there exists a subsequence Pa,b(nj) such that
r(Pa,b(nj), b) > 0 for all nj . Hence βPa,b(nj) > Pa,b(nj + 1). Since
Pa,b(n)
βn is a decreasing sequence, we have

Pa,b(nj)

βn
=
βPa,b(nj)

βnj+1 >
Pa,b(nj + 1)

βnj+1 ≥
Pa,b(nj+1)

βnj+1
.
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Hence the subsequence Pa,b(nj)
βnj is strictly decreasing. Since Pa,b(n)

βn is

monotonic and has a strictly decreasing subsequence, we must have Pa,b(n)
βn >

c for all n. Thus Pa,b(n)− cβn > 0.
Since lim Pa,b(n)

βn = c by Theorem 13, we also have

lim
Pa,b(n)− (b− 1)

βn
= c.

In order to show that Pa,b(n) − cβn < b − 1, we show that the sequence
Pa,b(n)−(b−1)

βn is both increasing and has a strictly increasing subsequence.
We have
Pa,b(n+ 1)− (b− 1)

βn+1 ≥
Pa,b(n)β − a

(
b−1
b

)
− (b− 1)

βn+1

=
Pa,b(n)β − (b− 1)(ab + 1)

βn+1 =
Pa,b(n)− (b− 1)

βn
.

By Corollary 11, there exists a subsequencePa,b(nl) such that r(Pa,b(nl), b) <
b− 1 for all nl. Hence Pa,b(nl)β − a

(
b−1
b

)
< Pa,b(nl + 1). Since Pa,b(n)

βn

is an increasing sequence, we have

Pa,b(nl)− (b− 1)

βnl
=
Pa,b(nl)β − (b− 1)β

βnl+1 =
Pa,b(nl)β − a

(
b−1
b

)
− (b− 1)

βnl+1

<
Pa,b(nl + 1)− (b− 1)

βnl+1 ≤
Pa,b(nl+1)− (b− 1)

βnl+1
.

Hence the subsequence Pa,b(nl)−(b−1)
βnl is strictly increasing. Since Pa,b(n)

βn

is monotonic and has a strictly increasing subsequence, we must have
Pa,b(n)−(b−1)

βn < c for all n. Thus Pa,b(n)− cβn < b− 1.
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Appendix

Proof of Property 8
Proof. Since (a, b) = 1, there exist distinct integers x and y such that
ax+ by = 1. We have

ax+ by = ax+ b(y + x− x) = (a+ b)x+ b(y − x) = 1

so that (a+ b, b) = 1. Thus a+ b and b share no prime factors. Since a+ b
and (a + b)k have the same prime factors for all k ≥ 1, (a + b)k and b
share no prime factors. Therefore

(
(a+ b)k, b

)
= 1 for all k ≥ 1.

Proof of Property 9
Proof. Since (a, b) = 1, a and b share no prime factors. Since a | bc,
a divides b or c. Since a and b share no prime factors, a cannot divide b.
Thus a divides c.



30 The Pentagon

The Problem Corner
Edited by Pat Costello

The Problem Corner invites questions of interest to undergraduate stu-
dents. As a rule, the solution should not demand any tools beyond calcu-
lus and linear algebra. Although new problems are preferred, old ones of
particular interest or charm are welcome, provided the source is given. So-
lutions should accompany problems submitted for publication. Solutions
of the following new problems should be submitted on separate sheets be-
fore March 15, 2018. Solutions received after this will be considered up
to the time when copy is prepared for publication. The solutions received
will be published in the Spring 2018 issue of The Pentagon. Preference
will be given to correct student solutions. Affirmation of student status
and school should be included with solutions. New problems and solu-
tions to problems in this issue should be sent to Pat Costello, Department
of Mathematics and Statistics, Eastern Kentucky University, 521 Lancaster
Avenue, Richmond, KY 40475-3102 (e-mail: pat.costello@eku.edu, fax:
(859) 622-3051).

NEW PROBLEMS 798-807

Problem 798. Proposed by the editor.

In 2002, Britney Gallivan (high school junior) found a formula for pa-
per folding and managed to do 12 folds of a long sheet of toilet paper. She
found that

L =
πt

6
(2n + 4) (2n − 1)

where t represents the thickness of the material to be folded, L is the length
of the paper to be folded and n is the number of folds desired (in only one
direction). Suppose you tape together sheets of standard 8.5” x 11” copier
paper (thickness .0035”) end to end, how many sheets would be needed to
be able to fold the long taped sheet 14 times?

Problem 799. Proposed by Daniel Sitaru, “Theodor Costescu” National
Economic College, Drobeta Turnu – Severin, Mehedinti, Romania.

Prove that if a, b, c ∈ (0, 2] then

3
√

2 ≤
∑ b(

√
a+
√

2− a)

c
≤ 2

(
a

b
+
b

c
+
c

a

)
.
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Problem 800. Proposed by Daniel Sitaru, “Theodor Costescu” National
Economic College, Drobeta Turnu – Severin, Mehedinti, Romania.

Prove that if a ∈ R,then
a+5∫
a+3

ln(1 + ex)dx+

a+8∫
a+6

ln(1 + ex)dx ≤
a+2∫
a

ln(1 + ex)dx+

a+11∫
a+9

ln(1 + ex)dx.

Problem 801. Proposed by Jose Luis Diaz-Barrero, Barcelona Tech-UPC,
Barcelona, Spain.

Compute

lim
n→∞

1

n3

n∑
k=1

k2 + n2

1 + 2
√

k2+n2+n3

n3

.

Problem 802. Proposed by Jose Luis Diaz-Barrero, Barcelona Tech-UPC,
Barcelona, Spain.

Let n ≥ 1 be an integer. Prove that

n

√√√√ n∏
k=1

Fk+1 ≥
1

2

 n

√√√√ n∏
k=1

Fk + n

√√√√ n∏
k=1

Lk

 ,

where Fn and Ln are the nth Fibonacci and Lucas numbers defined by
F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 3 and by L1 = 1, L2 = 3
and Ln = Ln−1 + Ln−2 for n ≥ 3.

Problem 803. Proposed by Ovidiu Furdui and Alina Sintamarian,
Technical University of Cluj-Napoca, Cluj-Napoca, Romania.

Calculate
∞∑
n=1

∞∑
m=1

Hn+m

n(n+m)2

where Hn = 1 + 1/2 + · · ·+ 1/n denotes the nth harmonic number.



32 The Pentagon

Problem 804. Proposed by D.M. Batinetu–Giurgiu, “Matei Basarab”
National College, Bucharest, Romania and Neculai Stanciu, “George
Emil Palade” School, Buzau, Romania.

Compute the following limit

lim
n→∞

n
√√

2! · 3
√

3! · ... · n
√
n!

n+1
√

(2n+ 1)!!
.

Problem 805. Proposed by D.M. Batinetu–Giurgiu, “Matei Basarab”
National College, Bucharest, Romania and Neculai Stanciu, “George
Emil Palade” School, Buzau, Romania.

Let zk = xk + iyk be a complex number where k ∈ {1, 2, . . . , n}.
Prove that

n∑
k=1

√
xk4 + yn−k+1

4 ≥
√

2

2

n∑
k=1

|zk|2.

Problem 806. Proposed by Marius Dragan, Bucharest, Romania and
Neculai Stanciu, “George Emil Palade” School, Buzau, Romania.

If a1, a2, . . . , an > 0 are such that
n∑
k=1

ak = 1, then prove that

(1 + 1/a2)
na2

1(1 + 1/a3)
na2

2 ...(1 + 1/an)na
2
n−1(1 + 1/a1)

na2
n ≥ n+ 1.

Problem 807. Proposed by Titu Zvonaru, Comanesti, Romania.

If A, B, and C are the angles of a triangle and α = A/2, β = B/2, and
γ = C/2, prove that√

6(1 + cosA cosB cosC)− 2 sinα sinβ sin γ(1− 8 sinα sinβ sin γ)

≥ 4 cosα cosβ cos γ.
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SOLUTIONS TO PROBLEMS 780-788

Problem 780. Proposed by Daniel Sitaru, Colegiul National Economic
Theodor Costescu, Drobeta Turnu – Severin, Mehedinti, Romania.

Prove that if a, b, c ∈ [1,∞), then ab+ bc+ ca ≥ 3 + 2 ln(abbcca).

Solution by Richdad Phuc, University of Sciences, Hanoi, Vietnam

We have
LHS −RHS = b(a− 2 ln a) + c(b− 2 ln b) + a(c− 2 ln c)− 3

= (b/a)a(a− 2 ln a) + (c/b)b(b− 2 ln b) + (a/c)c(c− 2 ln c)− 3.
Let f(x) = x(x − 2 lnx) for x ≥ 1. The derivative is f ′(x) = 2x −
2 lnx− 2 and f ′′(x) = 2− 2/x ≥ 0 for all x ≥ 1, so f ′(x) ≥ f ′(1) = 0.
This means that f(x) is strictly increasing on [0, 1). Then f(x) ≥ f(1) for
all x ≥ 1.Hence a(a−2 ln a) ≥ 1, b(b−2 ln b) ≥ 1, and c(c−2 ln c) ≥ 1.
Then

LHS −RHS ≥ (b/a) + (c/b) + (a/c)− 3
so LHS −RHS ≥ 0 by the AM-GM inequality. Equality holds if
a = b = c = 1.

Also solved by Angel Plaza, Universidad de Las Palmas de Gran Canaria,
Spain; Henry Ricardo, New York Math Circle, NY; and the proposer.

Problem 781. Proposed by Daniel Sitaru, Colegiul National Economic
Theodor Costescu, Drobeta Turnu – Severin, Mehedinti, Romania.

Prove that if a, b, c ∈ (0,∞), then∑
a

√
(b4 + c4)

2
≥ a2(b+ c) + b2(a+ c) + c2(a+ b)− 3abc.

Solution by the proposer.

We prove that if x, y ∈ (0,∞), then

x+ y −√xy ≥
√
x2 + y2

2
. (1)

We denote u =
√

x2+y2

2 , which means 2u2 = x2 + y2, and let v =
√
xy

so v2 = xy. With these notations, we have

2u2 + 2v2 = x2 + 2xy + y2 = (x+ y)2.
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We can rewrite (1) as x+ y − v ≥ u or

(x+ y)2 ≥ (u+ v)2

⇔ 2u2 + 2v2 − u2 − v2 − 2uv ≥ 0

⇔ (u− v)2 ≥ 0.

Now replace x with x/y and y with y/x in (1) to get

x

y
+
y

x
≥

√
(x/y)2 + (y/x)2

2
+

√
x

y
· y
x

⇔ x2 + y2

xy
≥ 1

xy

√
x4 + y4

2
+ 1

⇔ x2 + y2 ≥
√
x4 + y4

2
+ xy.

For x = a and y = b and multiplying by c we have

a2c+ b2c ≥ c
√
a4 + b4

2
+ abc.

Analogously,

b2a+ c2a ≥ a
√
b4 + c4

2
+ abc

and

c2b+ a2b ≥ b
√
c4 + a4

2
+ abc.

Adding the last three inequalities gives the desired result.

Also solved by Titu Zvonaru, Comanesti, Romania and Neculai Stanciu,“George
Emil Palade” School, Buzau, Romania; Ioan Viorel Codreanu, Satulung,
Maramures, Romania; Soumitra Moukherjee, Scottish Church College,
Chandar Nagore, India; Ravi Prakash, Oxford University Press, New Delhi,
India.

Problem 782. Proposed by Jose Luis Diaz-Barrero, School of Civil
Engineering, Barcelona Tech - UPC, Barcelona, Spain.

Let a, b, c be the lengths of the sides of triangle ABC and ma,mb, and
mc the lengths of its medians. Prove that

2ma + 2mb + 2mc

2a + 2b + 2c
< 1.

Solution by Titu Zvonaru, Comanesti, Romania and Neculai Stanciu,“George
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Emil Palade” School, Buzau, Romania.

Since mc <
a+b
2 , by the AM-GM inequality we have

2a + 2b ≥ 2
√

2a2b = 2 · 2
a+b

2 > 2 · 2mc .

Writing the other two similar inequalities and adding all three gives the
desired result.

Also solved by Madison Estabrook, Missouri State University, Springfield,
MO; Rovsen Pirkulyev, Baku State University, Sumgait, Azerbaidjian; and
the proposer.

Problem 783. Proposed by Jose Luis Diaz-Barrero, School of Civil
Engineering, Barcelona Tech - UPC, Barcelona, Spain.

Find all real solutions to the following system of equations:

x3 + 2x+ y = 9 + 3x2

3y2 + 6y + z = 21 + 9y2

5z3 + 10z + x = 33 + 15z2.

Solution by the proposer.

We can rewrite the system as

3− y =x3 − 3x2 + 2x− 6

3− z =3(y3 − 3y2 + 2y − 6)

3− x =5(z3 − 3z2 + 2z − 6).

Since t3 − 3t2 + 2t− 6 = (t− 3)(t2 + 2), we have

3− y =(x− 3)(x2 + 2)

3− z =3(y − 3)(y2 + 2)

3− x =5(z − 3)(z2 + 2).

Multiplying these together gives

−(x−3)(y−3)(z−3) = 15(x−3)(y−3)(z−3)(x2+2)(y2+2)(z2+2).

From this we get

0 = (x− 3)(y − 3)(z − 3)(15(x2 + 2)(y2 + 2)(z2 + 2) + 1).

Since the last factor above is positive, either x = 3, y = 3 or z = 3. If
we assume that x = 3, the first equation says y = 3. Substituting this into
the second equation implies that z = 3. The same occurs for starting with
y = 3 or z = 3. So x = y = z = 3 is the only real solution.
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Also solved by Soumava Chakraborty, Softweb Technologies, Kolkota, In-
dia.

Problem 784. Proposed by D.M. Batinetu-Giurgiu, “Matei Basarab”
National College, Bucharest, Romania, Neculai Stanciu, “George Emil
Palade”, Buzau, Romania.

Prove that in any triangle ABC with BC = a,CA = b, AB = c and
area F, the following inequalities are true.

(b2 + c2) sin
A

2
+ (c2 + a2) sin

B

2
+ (a2 + b2) sin

C

2
≥ 4
√

3F ,

ab(1 + sin2 C

2
) + bc(1 + sin2 A

2
) + ca(1 + sin2 B

2
) ≥ 4

√
3F .

Solution by Ioan Viorel Codreanu, Satulung, Maramures. Romania.

We have

(b2 + c2) sin
A

2
≥ 2bc sin

A

2
=
bc sinA

cos A2
=

2F

cos A2
= 2F sec

A

2
.

Similarly, (c2 + a2) sin B
2 ≥ 2F sec B

2 and (a2 + b2) sin C
2 ≥ 2F sec C

2 .

Then
∑

(b2 + c2) sin A
2 ≥ 2F

∑
sec A

2 . Using Jensen’s Inequality and
that f(x) = secx on (0, π/2) is a convex function, we get∑

sec A
2 ≥ 3 sec

∑
A
6 = 2

√
3. Thus

∑
(b2 + c2) sin A

2 ≥ 4
√

3F. Next

ab(1 + sin2C

2
) ≥ 2ab sin

C

2
=
ab sinC

cos C2
= 2F sec

C

2
.

Similarly, bc(1 + sin2A
2 ) ≥ 2F sec A

2 and ca(1 + sin2B
2 ) ≥ 2F sec B

2 .
Then ∑

ab(1 + sin2C

2
) ≥ 2F

∑
sec

A

2
≥ 4
√

3F.

Also solved by Soumava Chakraborty, Softweb Technologies, Kolkota, In-
dia; Ravi Prakash, Oxford University Press, New Delhi, India; Soumitra
Moukherjee, Scottish Church College, Chandar Nagore, India; and the
proposer.

Problem 785. Proposed by Iuliana Trasca, Scornicesti, Romania.

Show that if x, y, z > 0, then

x6z3 + y6x3 + z6y3

x2y2z2
≥ x3 + y3 + z3 + 3xyz

2
.
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Solution by Soumava Chakraborty, Softweb Technologies, Kolkota, India.

The inequality is equivalent to

2
(
x6z3 + y6x3 + z6y3

)
≥ x5y2z2 + y5z2x2 + z5x2y2 + 3x3y3z3.

Using the AM-GM inequality, we have

x6z3 + x6z3 + x3y6 ≥ 3x5y2z2

y6x3 + y6x3 + y3z6 ≥ 3y5z2x2

z6y3 + z6y3 + z3x6 ≥ 3z5x2y2.

Adding these gives

3
(
x6z3 + y6x3 + z6y3

)
≥ 3

(
x5y2z2 + y5z2x2 + z5x2y2

)
.

Dividing by 3 yields

x6z3 + y6x3 + z6y3 ≥ x5y2z2 + y5z2x2 + z5x2y2.

The AM-GM inequality also gives us

x6z3 + y6x3 + z6y3 ≥ 3x3y3z3.

Summing the previous two inequalities gives the inequality that is equiva-
lent to the one of the problem.

Also solved by Soumitra Moukherjee, Scottish Church College, Chandar
Nagore, India; Ioan Viorel Codreanu, Satulung, Maramures, Romania;
Titu Zvonaru, Comanesti, Romania; and the proposer.

Problem 786. Proposed by Thomas Chu, Macomb, Illinois.

If x, y, z > 1, then

(x2 + y2 + z2)(x+ y + z) + x3 + y3 + z3 > 4xy + 4xz + 4yz.

Solution by Angel Plaza, Universidad de Las Palmas de Gran Canaria,
Spain.

By changing variables x = 1+a, y = 1+b and z = 1+c, the problem
reads as: Prove that if a, b, c > 0, then(∑

(1 + a)2
)(

3 +
∑

a
)

+
∑

(1 + a)3

> 4(1 + a)(1 + b) + 4(1 + b)(1 + c) + 4(1 + c)(1 + a).
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Expanding the right-hand side and left-hand sides, we get

LHS = 12+12 (a+ b+ c)+4 (ab+ ac+ bc)+ 8
∑

a2+
∑

a2b+2
∑

a3

and
RHS = 12 + 8 (a+ b+ c) + 4 (ab+ ac+ bc) .

We can clearly see that the LHS > RHS when a, b, c > 0.

Also solved by Anas Adlany (student), Omar Ben Abdelaziz University,
El Jadida, Morroco; Myagmarsuren Yadamsuren, Ulanbataar University,
Ulanbataar, Mongolia; Soumava Chakraborty, Softweb Technologies, Kolkota,
India; and the proposer.

Problem 787. Proposed by the editor.

Mike buys some pants and shorts at the Great Pants Store. Mike buys
shorts that cost $11each and pants that cost $14 each. His total before taxes
is $283. How many shorts and how many pants did Mike buy?

Solution by by Robert Bailey (former KME national President 2001-2005),
Niagara University, NY.

Let x = number of shorts and y = number of pants. We have
11x+ 14y = 283 which is a linear Diophantine equation in two variables.
Then 14y = 28311x which is equivalent to 14y ≡ 283(mod11) or 3y ≡
8(mod11) or 3y ≡ −3(mod11). Since 3 is relatively prime to 11, we get
y ≡ −1(mod11). This means y = 10, 21, 32, . The only value for y that
causes x to be positive in the equation 11x + 14y = 283 is y = 10 in
which case x = 13.

Also solved by Michael Bhujel, Bobbie Legg, Katie Tyson (students), and
Bill Yankosky, North Carolina Wesleyan College, Rocky Mount, NC; Jeremiah
Bartz, University of North Dakota, Grand Forks, ND; and the proposer.

Problem 788. Proposed by George Heineman, Worcester Polytechnic
Institute, Worcester, MA.

A SujikenTM puzzle has a triangular grid of cells containing digits from
1 to 9. You must place a digit in each of the empty cells with the constraint
that no digit can repeat in any row, column, or diagonal. Additionally,
no digit can repeat in the 3x3 large squares withthick borders or the three
triangular regions with thick borders. The puzzle below is of intermediate
difficulty.
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Solution

Solved by Jamie Farrar, Destinee Fisher, Nicole Kettle, Courtney Lush
(students), Ed Wilson (retired faculty), Eastern Kentucky University, Rich-
mond, KY; Jeremiah Bartz, University of North Dakota, Grand Forks, ND;
Katie Tyson (student), Gail Stafford, Carol Lawrence, Bill Yankosky, North
Carolina Wesleyan College, Rocky Mount, NC.
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Kappa Mu Epsilon News
Edited by Peter Skoner, Historian

Updated information as of June 2017

Another Historian was elected in April, so news of chapter activities and
other noteworthy KME events should now be sent to

Cynthia Huffman, KME Historian
Pittsburg State University
Mathematics Department
117 1701 S. Broadway

Pittsburg, KS 66762
or to

cjhuffman@pittstate.edu

KAPPA MU EPSILON
Installation Report

Connecticut Gamma, Central Connecticut University
New Britain, Connecticut

The installation of the Connecticut Gamma Chapter of Kappa Mu Epsilon
was held in the Connecticut Room of Memorial Hall on the campus of
Central Connecticut State University on Friday, March 24, 2017, at 5:30
PM.

Faculty sponsor, Professor Marian Anton organized the event, and corre-
sponding secretary Professor Mihai Bailesteanu opened the event with a
welcome and led the events. Dean Faris Malhas offered a formal univer-
sity welcome and opening remarks. An elegant dinner was followed by
an interesting talk by Professor Rachel Schwell, who presented on “What
Topology Tells Us about the Nash Equilibrium.” The initiation and instal-
lation ceremony was led by the installing officer, KME National Historian
Peter Skoner.

Participating in the ceremony were the charter officers: Zoe Anne Cramer,
President; Nilay Nitin Bhatt, Vice President, Rina Saliu; Recording Sec-
retary; and Cassady Brooke Zipkin, Treasurer. Each officer was charged
with the responsibilities of the office, and each chose to accept those re-
sponsibilities. After Secretary Saliu completed describing KME’s crest,
the organization was declared to be the Connecticut Gamma Chapter of
Kappa Mu Epsilon and the chapter’s charter was presented to chapter pres-
ident Cramer.
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In addition to the faculty mentioned, the other faculty charter members
of Connecticut Gamma include Professors Nelson Castaneda and Fred-
eric Latour. The other student charter members of Connecticut Gamma
are Olivia Baillargeon, Jeffrey Blankenship, Rong Chen, Luke D’Ascoli,
Natalie Decker, Patrick Dzioba, Robert Johnston III, Heath Loder, Lilia
Miller, Nicholas Pipino, Andrew Pelletier, Michael Quinonez, Landon
Renzullo, Ryan Schmidt, Patryk Stolarz, Damian Szarwacki, David Thorne,
Pedro Urbina, and Peter Woolard. Each initiate was invited to sign the
Connecticut Gamma Chapter Roll, and was presented with a certificate,
membership card, KME brochure, a program, and a KME jewelry pin.
Professor Skoner offered remarks about the history of Kappa Mu Epsilon
and best wishes to the charter and future members of Connecticut Gamma.
A total of 68 people attended.

Connecticut Gamma
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KAPPA MU EPSILON
Installation Report

Georgia Eta, Atlanta Metropolitan State College
Atlanta, Georgia

The installation of the Georgia Eta Chapter of Kappa Mu Epsilon was
held at 2:00 P.M. on Tuesday, January 31, 2017, in the Edwin Thomp-
son Student Activity Center Conference Room on the campus of Atlanta
Metropolitan State College in Atlanta, GA. Dr. Bryan Mitchell, Dean of
the Division of Science, Math, and Health Professions, served as mas-
ter of ceremonies and conductor. Dr. Michael Heard, Vice President for
Academic Affairs, welcomed those attending. Dr. David Dempsey, KME
National Treasurer, served as the installing officer after giving a short talk
on “A Brief History of Time . . . Functions.” After the installation cere-
mony, Dr. Gary McGaha, President of Atlanta Metropolitan State College,
gave some remarks and congratulated the initiates. The following charter
members were initiated during the installation:

Faculty Students
Bassam Abduliatif Malik Burton
Gyuheui Choi Toni Byrd
Shreyas Desai Simone Clark
James D. Dowdell Joseph Daniels
Anthonia Ekwuocha Rama Hawai
Raghu Gompa Bruce McNeal
Jackson Henry Lanessa Northcut
Mulugeta Markos Leia Singh
Joseph Patterson Devante Singletary
Pitso Senalte
Noel Whelchel
Dongwook Kim
Kwan Lam

The first officers of the Georgia Eta chapter were installed and are as
follows: Leia Singh, president; Devante Singletary, vice president; Joseph
Daniels, secretary; Lanessa Northcut, treasurer; Dr. Mulugeta Markos,
corresponding secretary; and Dr. Kwan Lam, faculty sponsor. The af-
ternoon concluded with a reception and refreshments. About 40 people
attended the event.
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Georgia Eta
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Chapter News

AL Zeta – Birmingham-Southern College
Chapter President – Adam Pratt; 31 Current Members
Other Fall 2016 Officers: Marjory Day, Vice President; Mary-Stewart
Wachter, Secretary; Cynthia Kagambirwa, Treasurer; and Maria Stadnik,
Corresponding Secretary and Faculty Sponsor
This fall our KME colloquium was given on October 18 by Dr. Joshua
Zelinsky of Birmingham-Southern College. Dr. Zelinsky gave an inter-
esting talk entitled “The ABC Conjecture, Mason-Stothers, and Fermat’s
Last Theorem.”
AL Eta – The University of West Alabama
Corresponding Secretary – Hazel Truelove; 14 New Members
New Initiates – Brady Badon, Kaylee Ryan Banister, Katelynn Carlson, Jaamal Elkins,
Chicko Jones, Jacob Adam Ramsey, Kirsten Jan Reilly, Jallena Roberts, Yana Alexis
Rodgers, William Waylong Rowell, Timothy Wayne Watson, Keith Watson, Lane Reid
Weaver, and KelviNeisha Williams.
AL Theta – Jacksonville State University
Chapter President – Daniel Miradakis; 50 Current Members
Other Fall 2016 Officers: Other Fall 2016 Officers: Timothy Garrett, Vice
President; Jasmine Beaudette, Secretary; James Thompson, Treasurer;
and Dr. David Dempsey, Corresponding Secretary and Faculty Sponsor
The Alabama Theta chapter met biweekly during Fall 2016 and had at
least monthly events. September’s event was an outing for dinner and the
musical “The Addams Family,” in which our chapter secretary, Jasmine
Beaudette, played a role. On October 21, we held our annual Halloween
Party, complete with math-themed costumes and pumpkin carving. On De-
cember 2, we combined our Christmas/End-of-the-Semester Party with Psi
Chi (psychology honor society). Our annual Spring Initiation Ceremony
is planned for March 3, 2017.
AR Beta – Henderson State University
Chapter President – Jacob Woodall; 39 Current Members
Other Fall 2016 Officers: Zach Winfield, Vice President; Jacob Woodall,
Secretary; Carmen Wise, Treasurer; Fred Worth, Corresponding Secre-
tary; and Carolyn Eoff, Faculty Sponsor
Six new members were initiated in a ceremony in April; the other main
activity of HSU’s KME chapter during 2016 was a Pi-day celebration, co-
ordinated with the HSU Math-Stat club.
CA Eta – Fresno Pacific University
Chapter President – Elaine Draper; 33 Current Members
Other Fall 2016 Officers: Kimberlie Raulino, Vice President and Trea-
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surer; Terence Yi, Corresponding Secretary; and Ron Pratt, Faculty Spon-
sor
CT Beta – Eastern Connecticut State University
Corresponding Secretary and Faculty Sponsor – Mehdi Khorami; 462
Current Members
FL Delta – Embry Riddle Aeronautical University
Corresponding Secretary – Jayathi Raghavan; 14 New Members
New Initiates – James Bukowski, Naia Butler-Craig, Benjamin Button-Edelson, Janice D.
Cabrera, Alexander Paul Donato, Steve Gulliksen, Wanjiku Kanjumba, Brooke Linendoll,
Meghan Ray, Daniel Silverio, Taylor Stark, Sandra Pamela Torrez, Katelyn Wentworth,
and Anissa Zacharias.
GA Zeta – Georgia Gwinnett College
Chapter President – Shahriyar Roshan Zamir; 44 Current Members
Other Fall 2016 Officers: Bess Burnett, Vice President; Heather McAfee,
Secretary; Antoinette Miezan, Treasurer; Dr. Jamye Curry, Corresponding
Secretary; and Drs. Jenny Sinclair and Livy Uko, Faculty Sponsors
HI Alpha – Hawaii Pacific University
Chapter President – Dyon Buitenkamp; 15 Current Members; 6 New Mem-
bers
Other Fall 2016 Officers: Tara Davis, Corresponding Secretary and Fac-
ulty Sponsor
We had an initiation dinner in November.
New Initiates – Kristofer Francis Caluya, Tram Hoang-Nguyen, Pancy T. Lwin, Monica
Parrish, Dylan West-Von Sonn, and Taylor Suzanne Tuleja.
IA Alpha – University of Northern Iowa
Chapter President – Toby Maggert; 26 Current Members; 5 New Members
Other Fall 2016 Officers: Julie Kirkpatrick, Vice President; Destiny Leitz,
Secretary; Jake Weber, Treasurer; and Mark D. Ecker, Corresponding Sec-
retary and Faculty Sponsor
Our first fall KME meeting was held on September 28, 2016 at Professor
Doug Mupasiri’s house where student member Julie Kirkpatrick presented
her paper entitled “Knot Theory.” Student member Heather Bavido pre-
sented her paper entitled “3D Modelling and Printing for Math” at our
second meeting on November 2, 2016 at Professor Mark Ecker’s home.
Morgan Bigbee addressed the fall initiation banquet with “St. Louis Car-
dinals Run Differential.” Our fall banquet was held at Peppers restaurant in
Cedar Falls on December 7, 2016, where five new members were initiated.
New Initiates – Nathan Flaherty, Nathan Matthes, Duece Phaly, Taryn Vanryswyk, and
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Macey Winter.
IL Zeta – Dominican University
Corresponding Secretary – Aliza Steurer; 19 Current Members
We are planning a spring semester imitation ceremony.
KS Beta – Emporia State University
Chapter President – Brian Mosier; 44 Current Members
Other Fall 2016 Officers: Michelle Foster, Vice President; Kandace Miller,
Secretary; Dallas Shafer, Treasurer; Tom Mahoney, Corresponding Secre-
tary; and Brian Hollenbeck, Faculty Sponsor
The Kansas Beta chapter recently opened a KME Lounge for mathematics
students to come to for studying or relaxing. We visited the Linda Hall
Library in Kansas City and participated in an Escape Room challenge. The
chapter also constructed their own Escape Room experience to challenge
our Intro to Math course.
KS Delta – Washburn University
Chapter President – Katelyn Rollins; 20 Current Members
Other Fall 2016 Officers: Leanna Willer, Vice President; Katelyn Skilling-
stad, Secretary; Taylor Balsmeier, Treasurer; and Kevin Charlwood, Cor-
responding Secretary and Faculty Sponsor
We met four times over lunch this fall with our math club, Club Mathe-
matica, and had speakers on three occasions. Our Math Club adviser, Ja-
son Shaw, spoke on several of Ramanujan’s contributions to mathematics.
John Blocher from Security Benefit Group spoke on the actuarial profes-
sion and gave advice to students on resume preparation and interviewing
skills. He also textitasized the need for students to take actuarial exams
earlier in their academic careers. Bill Gahnstrom in our department gave a
presentation on how to use a slide rule.
KY Beta – University of the Cumberlands
Chapter President – Daniel Enge; 16 Current Members
Other Fall 2016 Officers: James MacPherson, Vice President; Dage Spin-
ning, Secretary; McKenzie Wheeler, Treasurer; Dr. Reid Davis, Corre-
sponding Secretary; and Dr. Jonathan Ramey, Faculty Sponsor
Along with the Mathematics and Physics Club and Sigma Pi Sigma, the
chapter had a picnic at Briar Creek Park on October 11. On December 10,
the entire department, including the Kentucky Beta chapter, had a Christ-
mas party with about 22 people in attendance.
MD Alpha – Notre Dame of Maryland University
Chapter President – Kristin Kneller; 14 Current Members
Other Fall 2016 Officers: Stephanie Roche, Vice President; Margaret Ped-
erson, Secretary; Fareeha Syed, Treasurer; and Charles Buehrle, Corre-
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sponding Secretary and Faculty Sponsor
MD Alpha hosted a KME cookie social on Wednesday October 4th.
MD Beta – McDaniel College
Corresponding Secretary – Spencer Hamblen; 12 New Members
New Initiates – Joshua Bussiere, Yann Wendeu (Steve) Foyet, Madison Gamble, Elias Jaffe,
Vi Lam, Grace Lyons, Ann Marshall, Matthew Meagher, Noel Nunnermacker, Kenneth
Porter, Samantha Smith, and Chung Truong.
MD Delta – Frostburg State University
Chapter President – Rebecca Lee; 18 Current Members
Other Fall 2016 Officers: Jimmy West, Vice President; Emma Siebert,
Treasurer; Mark Hughes, Corresponding Secretary and Faculty Sponsor;
and Frank Barnet, Faculty Sponsor
The Maryland Delta Chapter held monthly meetings throughout the fall
semester. Each meeting featured pizza and fun videos on a variety of
mathematical topics. Chapter members also took part in some mathemat-
ics department activities, in particular, a movie night featuring a film on
H. S. M. Coxeter and a presentation from a visiting lecturer on using game
theory to develop strategies in playing basketball. Chapter members also
participated in the university’s annual Majors Fair.
MI Delta – Hillsdale College
Chapter President – Hannah Andrews; 37 Current Members; 16 New
Members
Other Fall 2016 Officers: Linnet Mbogo, Vice President; Nathanael Mead-
owcroft, Secretary; Tanner Orion Wright, Treasurer; and Dr. David Gae-
bler, Corresponding Secretary and Faculty Sponsor
The Michigan Delta chapter welcomed three news officers at the begin-
ning of the 2016-2017 school year. Due to a surge in the number of eligi-
ble candidates, reflecting a trend in the college toward more math majors
and more non-majors taking advanced math classes, we have switched to
holding initiation every semester rather than once a year. We continue
to offer 20-minute mini-math-talks at the initiation ceremony, and more
treats afterward than we can eat. In addition to initiation, we held a so-
cial “Math Jeopardy” event which drew close to 20 people for a fun and
intense evening of trivia.
New Initiates – Shelby Bargenquast, Rebecca Carlson, Adrienne Carrier, Conner Dwinell,
Curtis Fullom, Madeline Greb, Nathan Hollern, Jean Pendergrass, Christopher Pudenz,
Amanda Reagle, Thomas Reusser, Laura Salo, Rose Schweizer, Abigail Trouwborst, Gill
West, and Conor Woodfin.
MO Alpha – Missouri State University
Chapter President – Paige Buchmueller; 40 Current Members; 5 New



48 The Pentagon

Members
Other Fall 2016 Officers: Ashley Kingston, Vice President; Rebecca Crow,
Secretary; Sara Jones, Treasurer; and Jorge Rebaza, Corresponding Sec-
retary and Faculty Sponsor
1. As in every semester, we had three seminars:

– Seminar 1: Monday September 26th. Dr. Peter Plavchan, faculty
member in the Physics and Astronomy Department at MSU, pre-
sented the talk “Astrostatistics: The Intersection of Astronomy and
Mathematics.” Pizza and soda were served.

– Seminar 2: Monday October 25th. Meagan Leppien, actuarial an-
alyst at American National Property and Casualty Company, pre-
sented the talk “Careers in Actuarial Science: From College to the
Workplace.” Pizza and soda were served. At this event, we also
initiated 5 new KME members.

– Seminar 3: Tuesday November 15th.Two students from the Senior
Seminar class (MTH 497) presented their papers: “Exploring NFL
Player Ranking with Mathematics”, by Victoria Hagan, and “Mas-
termind Decision Rule” by Michelle Pellegrino. Pizza and soda
were served.

2. As in every fall semester, we organized a picnic on Wednesday Septem-
ber 7th, starting at 5PM at Phelps Grove Park. As usual, we had a great
turnout of students, faculty, and their families!

3. We also had an end-of-semester party on Thursday December 8th, the
last day of classes. We had lots of games music, food, drinks, and
desserts. Students from other student organizations in the College par-
ticipated at this event.

New Initiates – Joshua Gooch, Madison Jones, Kendra Larsen, Mengqing Qin, and Adam
Somers.
MO Beta – University of Central Missouri
Chapter President – Madison Ultican; 26 Current Members
Other Fall 2016 Officers: Christina Duerr, Vice President; Aaron Butz,
Secretary; Nicholas Purcell, Treasurer; Ashley Beard, Historian; Rhonda
McKee, Corresponding Secretary; Rhonda McKee, Steve Shattuck and
Nicholas Baeth, Faculty Sponsors
The Missouri Beta chapter of KME met monthly during the fall 2016
semester. One of our favorite meetings included a game of Math Jeop-
ardy. We are looking forward to the National Convention in April!
MO Eta – Truman State University
Corresponding Secretary – David Garth; 8 New Members
New Initiates – Christian Burton, Lucas Doherty, Erin Leventhal, Rachel Miller, Brandon
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Mueller, Megan Perry, Allison Smith, and Andrew Wolf.
MO Theta – Evangel University
Chapter President – Kevin Grimes; 16 Current Members
Other Fall 2016 Officers: Samantha Orr, Vice President; and Don Tosh,
Corresponding Secretary and Faculty Sponsor
Meetings were held monthly. In December we held an ice cream social at
the home of Don Tosh.
MO Nu – Columbia College
Corresponding Secretary – Kenny Felts; 10 Current Members
MS Alpha – Mississippi University for Women
Chapter President and Treasurer – Ciara Peoples; 10 Current Members;
2 New Members
Other Fall 2016 Officers: Sugam Bhattarai, Vice President; Aastha Ghimire,
Secretary; Dr. Joshua Hanes, Corresponding Secretary and Faculty Spon-
sor
In the fall semester we initiated two new members and we gathered sup-
plies to put together boxes for Operation Christmas Child.
New Initiates – Aisha Ghirmire and Sweyaksha Srestha.
MS Delta – William Carey University
Corresponding Secretary – Janie Bower; 5 New Members
New Initiates – Pankaj Bhatta, Ashleigh Jones, Brent Manint, Taylor McCollister, and
Gretchen Waters.
NC Zeta – Catawba College
Chapter President – Declan Stinson; 19 Current Members; 8 New Mem-
bers
Other Fall 2016 Officers: Alicia Richards, Vice President; Dominique
Karriker, Secretary; Christian Watts, Treasurer; and Doug Brown, Cor-
responding Secretary and Faculty Sponsor
New Initiates – Kerry Aitken, Cody Bennett, Avery Denton, Dagur Ebenezersson, Marcia-
Mariel Erhart, Matthew Hefner, Dr. Karen Lucas, and Erin Moore.
NE Delta – Nebraska Wesleyan University
Chapter President – Karissa Vandenberg; 10 Current Members
Other Fall 2016 Officers: Madison Montgomery, Vice President; Will Reimer,
Secretary and Treasurer; and Melissa Erdmann, Corresponding Secretary
and Faculty Sponsor
The Nebraska Delta KME chapter had a great autumn! We had a beginning-
of-the-year picnic and game night, a career panel, a math movie night, and
a joint holiday party with the math/physics club, complete with math/-
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physics carols.
NJ Epsilon – New Jersey City University
Corresponding Secretary – Beimnet Teclezghi; 23 New Members
New Initiates – Gabriella Ariemma, Sofiane Boudib, Gunhan Caglayan, Geomara Cando,
Manuel Dones, Caitlin Dugan, Andrea Gloetzer, Leslie Gomez, Camila Guerrero, Ma-
hamoud Hassan, Zined Hassoune, Ivana Lopa, Valerie Nigrelli, Daniell Olivera, Krupa Pa-
tel, Jose Pedroza, Abdurrahaman Pllana, Laura Pojero, Zanib Saeed, Rebecca Semeniak,
Irene Umana, Irley Vallejo, and Fatima Yusuf.
NY Omicron – St. Joseph’s College
Chapter President – Ryan Stephens; 25 Current Members
Other Fall 2016 Officers: Michael Mirrione, Vice President; Melissa De
Jesus, Secretary; Angela Vetere, Treasurer; Dr. Elana Reiser, Correspond-
ing Secretary; and Dr. Donna Pirich, Faculty Sponsor
We ran a Christmas toy drive and donated to a local charity. Our members
volunteered their time to tutor in our math clinic for local high school
students.
OH Gamma – Baldwin Wallace University
Chapter President – Corrinne Horvath; 60 Current Members
Other Fall 2016 Officers: Natalie Castragano, Vice President; Stephen
Osborn, Secretary; and David Calvis, Corresponding Secretary and Fac-
ulty Sponsor
OH Zeta – Muskingum University
Corresponding Secretary – Richard Daquila; 4 New Members
New Initiates – Stephanie Clark, Tyler Miller, Matthew Nardi, and Jacob Shoup.
OH Theta – Capital University
Chapter President – Julia Kunkel; 14 Current Members
Other Fall 2016 Officers: Jennie White, Vice President; Nick Hernandez,
Secretary; Jack Gorden, Treasurer; Paula Federico, Corresponding Sec-
retary; and Jonathan Stadler, Faculty Sponsor
OK Epsilon – Oklahoma Christian University
Corresponding Secretary – Jennifer Bryan; 17 New Members
New Initiates – Drew Bellcock, Josh Bilello, Laura Blair, Seth Brown, Jason Brunner, Ines
Dushime, Kaylee Eubank, Aubrey Gonzalez, Michael Harlan, Brennym Kaelin, Kristen
Lindsey, David Lopez, Hannah McKenzie, Brayden Reiter, Haylie Ritchie, Anna Taylor,
and Grant Tucker.
PA Lambda – Bloomsburg University of Pennsylvania
Corresponding Secretary – Elizabeth Mauch; 6 New Members
New Initiates – Kate Cossitor, Brianna Hendrickson, Jonathan Piperato, Chase Sakitis,
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Marissa Shelhammer, and Derek Stahl.
PA Mu – Saint Francis University
Corresponding Secretary – Pete Skoner: 39 Current Members
Other Fall 2016 Officers: Brendon LaBuz, Faculty Sponsor
PA Rho – Thiel College
Chapter President – Julia Fink; 8 Current Members
Other Fall 2016 Officers: Jennifer Rickens, Vice President; Amanda Dobi,
Secretary; Jesse Sealand, Treasurer; Russell Richins, Corresponding Sec-
retary; and Dr. Jie Wu, Faculty Sponsor
In the fall, we hosted a Challenge 24 competition with donation for the
Good Shepherd of Grenville and we also initiated a Math Zone drop-in
tutoring.
PA Sigma – Lycoming College
Chapter President – Rachel Duncan; 20 Current Members; 7 New Mem-
bers
Other Fall 2016 Officers: Bethany Hipple, Vice President; Coral Chiaretti,
Secretary; Amanda MacTarnaghan, Treasurer; and Santu de Silva, Corre-
sponding Secretary.
The Fall of 2016 saw a significant increase in Pennsylvania Sigma activ-
ity. The following were more in the line of social activities: Lottery Ticket
Tree Fundraiser – October 17th-21st, 2016; Ard’s Farm Trip and Dinner
– Saturday, October 22nd, 2016 –a Halloween visit to a pumpkin farm,
followed by dinner; Peer Interview Program – Thursday, November 3rd,
2016 –practice interviews to help graduating seniors prepare for their em-
ployment search; Moe’s Southwest Grill Fundraiser – Friday, November
11th, 2016. Unlike the funds allocated to honor societies by the college,
money raised by the students themselves may be kept for use in future
years. In addition, we had a visit and presentations by a successful alumna
who worked for the NSA, describing the work environment, and what it
was like to work on certain sorts of projects. And these were service activ-
ities: KME members prepared materials, and held classes to help students
certifying in education prepare for the State Board examinations in Mathe-
matics. The student officers this year have been very pro-active, and there
is reason to believe that this level of activity will continue.
New Initiates – Dr. Andrew Brandon, Coral Chiaretti, Katherine Cleland, Ian Fairclough,
Bethany Hipple, Amanda McTarnaghan, and Kimberly Perotta.
RI Beta – Bryant University
Chapter President – William Kelley; 25 Current Members
Other Fall 2016 Officers: Emma Wieduwilt, Vice President; Nathaniel
Morgan, Secretary; Owen Wrinn, Treasurer; John Quinn, Corresponding



52 The Pentagon

Secretary; and Alan Olinsky, Faculty Sponsor
We met with our student executive board to do early planning for the initia-
tion ceremony for new member which will be held during the spring 2017.
We also made a presentation of the KME Honor Society to our mathe-
matics majors during the Actuarial Association meeting on November 16
2016.
SC Gamma – Winthrop University
Chapter President – MaLyn Lawhorn; 14 Current Members; 8 New Mem-
bers
Other Fall 2016 Officers: Alison Tighe, Vice President; Genia Kennedy,
Secretary; Jean Wolfe, Treasurer; and Jessie Hamm, Corresponding Sec-
retary and Faculty Sponsor
Winthrop University’s chapter of Kappa Mu Epsilon initiated 8 new mem-
bers this fall. We have had several meetings throughout the year. Last
weekend we went to dinner and the movie Hidden Figures. We are plan-
ning a community outreach event for April. For this event we are hosting
a fun “Math Day” for a local elementary school. We are also planning to
celebrate Math Awareness Month in April by hosting a variety of fun math
activities on campus. We have a busy spring ahead of us!
New Initiates – Colin Frazier, Genia Kennedy, Christina Knight, Sydney McCall, Justin
McCullough, Victoria Nidiffer, Christina Sadak, and Jean Wolfe.
SC Epsilon – Francis Marion University
Corresponding Secretary – Damon Scott; 5 New Members
New Initiates – Amy N. Benton, Chase Covington, April Garrity, Alexis K. Glover, and
Nicholas Tomlinson.
TN Beta – East Tennessee State University
Corresponding Secretary – Bob Gardner; 12 New Members
New Initiates – Devanshu Agrawal, Tiffany Blevins, Kendra Disney, Kaeli Gardner, Sydney
Gardner, Jessica Lang, Miranda Lawhorn, Macon Magno, Ashton Morelock, Kyle Murphy,
Natalie Murray, and Logan Norton.
TN Gamma – Union University
Chapter President – Rachel Brewer
Other Fall 2016 Officers: Joshua Stucky, Vice President; Amy Murdaugh,
Secretary and Treasurer; Andrew Edmiston, Webmaster and Historian;
Bryan Dawson, Corresponding Secretary; and Matt Lunsford, Faculty
Sponsor
TN Gamma held its annual picnic on September 23.
TX Iota – McMurry University
Corresponding Secretary – Dr. Kelly L. McCoun; 10 New Members
New Initiates – Blake Cochran, Nicholas Conklin, Nathan Elders, Derek Gainey, Gladys
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Hinestroza, Rodney Jones, Ryan Pittman, Kandi Rose, Curtis Summers, and Shantel Thomas.
TX Lambda – Trinity University
Chapter President – Zach Tuten; 249 Current Members
Other Fall 2016 Officers: Shelby Luikartt, Vice President; David Stroud,
Secretary; and Dr. Hoa Nguyen, Corresponding Secretary and Faculty
Sponsor
VA Delta – Marymount University
Chapter President – Bernadette Wunderly; 40 Current Members
Other Fall 2016 Officers: Kayla Baughman, Vice President; Nicole Fer-
ree, Secretary; Katherine Martin, Treasurer; Will Heuett, Corresponding
Secretary and Faculty Sponsor
WV Alpha – Bethany College
Chapter President – Alyssa K. Smydo; 7 Current Members
Other Fall 2016 Officers: Robert A. Murano, Vice President; and Adam C.
Fletcher, Corresponding Secretary and Faculty Sponsor
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Active Chapters of Kappa Mu Epsilon
Listed by date of installation

Chapter Location Installation Date
OK Alpha Northeastern State University, Tahlequah 18 Apr 1931
IA Alpha University of Northern Iowa, Cedar Falls 27 May 1931
KS Alpha Pittsburg State University, Pittsburg 30 Jan 1932
MO Alpha Missouri State University, Springfield 20 May 1932
MS Alpha Mississippi University for Women, Columbus 30 May 1932
MS Beta Mississippi State University, Mississippi State 14 Dec 1932
NE Alpha Wayne State College, Wayne 17 Jan 1933
KS Beta Emporia State University, Emporia 12 May 1934
AL Alpha Athens State University, Athens 5 Mar 1935
NM Alpha University of New Mexico, Albuquerque 28 Mar 1935
IL Beta Eastern Illinois University, Charleston 11 Apr 1935
AL Beta University of North Alabama, Florence 20 May 1935
AL Gamma University of Montevallo, Montevallo 24 Apr 1937
OH Alpha Bowling Green State University, Bowling Green 24 Apr 1937
MI Alpha Albion College, Albion 29 May 1937
MO Beta University of Central Missouri, Warrensburg 10 Jun 1938
TX Alpha Texas Tech University, Lubbock 10 May 1940
KS Gamma Benedictine College, Atchison 26 May 1940
IA Beta Drake University, Des Moines 27 May 1940
TN Alpha Tennessee Technological University, Cookeville 5 Jun 1941
MI Beta Central Michigan University, Mount Pleasant 25 Apr 1942
NJ Beta Montclair State University, Upper Montclair 21 Apr 1944
IL Delta University of St. Francis, Joliet 21 May 1945
KS Delta Washburn University, Topeka 29 Mar 1947
MO Gamma William Jewell College, Liberty 7 May 1947
TX Gamma Texas Woman’s University, Denton 7 May 1947
WI Alpha Mount Mary College, Milwaukee 11 May 1947
OH Gamma Baldwin-Wallace College, Berea 6 Jun 1947
CO Alpha Colorado State University, Fort Collins 16 May 1948
MO Epsilon Central Methodist College, Fayette 18 May 1949
MS Gamma University of Southern Mississippi, Hattiesburg 21 May 1949
IN Alpha Manchester College, North Manchester 16 May 1950
PA Alpha Westminster College, New Wilmington 17 May 1950
IN Beta Butler University, Indianapolis 16 May 1952
KS Epsilon Fort Hays State University, Hays 6 Dec 1952
PA Beta LaSalle University, Philadelphia 19 May 1953
VA Alpha Virginia State University, Petersburg 29 Jan 1955
IN Gamma Anderson University, Anderson 5 Apr 1957
CA Gamma California Polytechnic State University, San Luis Obispo 23 May 1958
TN Beta East Tennessee State University, Johnson City 22 May 1959
PA Gamma Waynesburg College, Waynesburg 23 May 1959
VA Beta Radford University, Radford 12 Nov 1959
NE Beta University of Nebraska—Kearney, Kearney 11 Dec 1959
IN Delta University of Evansville, Evansville 27 May 1960



Spring 2017 55

OH Epsilon Marietta College, Marietta 29 Oct 1960
MO Zeta University of Missouri—Rolla, Rolla 19 May 1961
NE Gamma Chadron State College, Chadron 19 May 1962
MD Alpha College of Notre Dame of Maryland, Baltimore 22 May 1963
CA Delta California State Polytechnic University, Pomona 5 Nov 1964
PA Delta Marywood University, Scranton 8 Nov 1964
PA Epsilon Kutztown University of Pennsylvania, Kutztown 3 Apr 1965
AL Epsilon Huntingdon College, Montgomery 15 Apr 1965
PA Zeta Indiana University of Pennsylvania, Indiana 6 May 1965
AR Alpha Arkansas State University, Jonesboro 21 May 1965
TN Gamma Union University, Jackson 24 May 1965
WI Beta University of Wisconsin—River Falls, River Falls 25 May 1965
IA Gamma Morningside College, Sioux City 25 May 1965
MD Beta McDaniel College, Westminster 30 May 1965
IL Zeta Dominican University, River Forest 26 Feb 1967
SC Beta South Carolina State College, Orangeburg 6 May 1967
PA Eta Grove City College, Grove City 13 May 1967
NY Eta Niagara University, Niagara University 18 May 1968
MA Alpha Assumption College, Worcester 19 Nov 1968
MO Eta Truman State University, Kirksville 7 Dec 1968
IL Eta Western Illinois University, Macomb 9 May 1969
OH Zeta Muskingum College, New Concord 17 May 1969
PA Theta Susquehanna University, Selinsgrove 26 May 1969
PA Iota Shippensburg University of Pennsylvania, Shippensburg 1 Nov 1969
MS Delta William Carey College, Hattiesburg 17 Dec 1970
MO Theta Evangel University, Springfield 12 Jan 1971
PA Kappa Holy Family College, Philadelphia 23 Jan 1971
CO Beta Colorado School of Mines, Golden 4 Mar 1971
KY Alpha Eastern Kentucky University, Richmond 27 Mar 1971
TN Delta Carson-Newman College, Jefferson City 15 May 1971
NY Iota Wagner College, Staten Island 19 May 1971
SC Gamma Winthrop University, Rock Hill 3 Nov 1972
IA Delta Wartburg College, Waverly 6 Apr 1973
PA Lambda Bloomsburg University of Pennsylvania, Bloomsburg 17 Oct 1973
OK Gamma Southwestern Oklahoma State University, Weatherford 1 May 1973
NY Kappa Pace University, New York 24 Apr 1974
TX Eta Hardin-Simmons University, Abilene 3 May 1975
MO Iota Missouri Southern State University, Joplin 8 May 1975
GA Alpha State University of West Georgia, Carrollton 21 May 1975
WV Alpha Bethany College, Bethany 21 May 1975
FL Beta Florida Southern College, Lakeland 31 Oct 1976
WI Gamma University of Wisconsin—Eau Claire, Eau Claire 4 Feb 1978
MD Delta Frostburg State University, Frostburg 17 Sep 1978
IL Theta Benedictine University, Lisle 18 May 1979
PA Mu St. Francis University, Loretto 14 Sep 1979
AL Zeta Birmingham-Southern College, Birmingham 18 Feb 1981
CT Beta Eastern Connecticut State University, Willimantic 2 May 1981
NY Lambda C.W. Post Campus of Long Island University, Brookville 2 May 1983
MO Kappa Drury University, Springfield 30 Nov 1984
CO Gamma Fort Lewis College, Durango 29 Mar 1985
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NE Delta Nebraska Wesleyan University, Lincoln 18 Apr 1986
TX Iota McMurry University, Abilene 25 Apr 1987
PA Nu Ursinus College, Collegeville 28 Apr 1987
VA Gamma Liberty University, Lynchburg 30 Apr 1987
NY Mu St. Thomas Aquinas College, Sparkill 14 May 1987
OH Eta Ohio Northern University, Ada 15 Dec 1987
OK Delta Oral Roberts University, Tulsa 10 Apr 1990
CO Delta Mesa State College, Grand Junction 27 Apr 1990
PA Xi Cedar Crest College, Allentown 30 Oct 1990
MO Lambda Missouri Western State College, St. Joseph 10 Feb 1991
TX Kappa University of Mary Hardin-Baylor, Belton 21 Feb 1991
SC Delta Erskine College, Due West 28 Apr 1991
SD Alpha Northern State University, Aberdeen 3 May 1992
NY Nu Hartwick College, Oneonta 14 May 1992
NH Alpha Keene State College, Keene 16 Feb 1993
LA Gamma Northwestern State University, Natchitoches 24 Mar 1993
KY Beta Cumberland College, Williamsburg 3 May 1993
MS Epsilon Delta State University, Cleveland 19 Nov 1994
PA Omicron University of Pittsburgh at Johnstown, Johnstown 10 Apr 1997
MI Delta Hillsdale College, Hillsdale 30 Apr 1997
MI Epsilon Kettering University, Flint 28 Mar 1998
KS Zeta Southwestern College, Winfield 14 Apr 1998
TN Epsilon Bethel College, McKenzie 16 Apr 1998
MO Mu Harris-Stowe College, St. Louis 25 Apr 1998
GA Beta Georgia College and State University, Milledgeville 25 Apr 1998
AL Eta University of West Alabama, Livingston 4 May 1998
NY Xi Buffalo State College, Buffalo 12 May 1998
NC Delta High Point University, High Point 24 Mar 1999
PA Pi Slippery Rock University, Slippery Rock 19 Apr 1999
TX Lambda Trinity University, San Antonio 22 Nov 1999
GA Gamma Piedmont College, Demorest 7 Apr 2000
LA Delta University of Louisiana, Monroe 11 Feb 2001
GA Delta Berry College, Mount Berry 21 Apr 2001
TX Mu Schreiner University, Kerrville 28 Apr 2001
NJ Gamma Monmouth University, West Long Branch 21 Apr 2002
CA Epsilon California Baptist University, Riverside 21 Apr 2003
PA Rho Thiel College, Greenville 13 Feb 2004
VA Delta Marymount University, Arlington 26 Mar 2004
NY Omicron St. Joseph’s College, Patchogue 1 May 2004
IL Iota Lewis University, Romeoville 26 Feb 2005
WV Beta Wheeling Jesuit University, Wheeling 11 Mar 2005
SC Epsilon Francis Marion University, Florence 18 Mar 2005
PA Sigma Lycoming College, Williamsport 1 Apr 2005
MO Nu Columbia College, Columbia 29 Apr 2005
MD Epsilon Stevenson University, Stevenson 3 Dec 2005
NJ Delta Centenary College, Hackettstown 1 Dec 2006
NY Pi Mount Saint Mary College, Newburgh 20 Mar 2007
OK Epsilon Oklahoma Christian University, Oklahoma City 20 Apr 2007
HA Alpha Hawaii Pacific University, Waipahu 22 Oct 2007
NC Epsilon North Carolina Wesleyan College, Rocky Mount 24 Mar 2008
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CA Zeta Simpson University, Redding 4 Apr 2009
NY Rho Molloy College, Rockville Center 21 Apr 2009
NC Zeta Catawba College, Salisbury 17 Sep 2009
RI Alpha Roger Williams University, Bristol 13 Nov 2009
NJ Epsilon New Jersey City University, Jersey City 22 Feb 2010
NC Eta Johnson C. Smith University, Charlotte 18 Mar 2010
AL Theta Jacksonville State University, Jacksonville 29 Mar 2010
GA Epsilon Wesleyan College, Macon 30 Mar 2010
FL Gamma Southeastern University, Lakeland 31 Mar 2010
MA Beta Stonehill College, Easton 8 Apr 2011
AR Beta Henderson State University, Arkadelphia 10 Oct 2011
PA Tau DeSales University, Center Valley 29 Apr 2012
TN Zeta Lee University, Cleveland 5 Nov 2012
RI Beta Bryant University, Smithfield 3 Apr 2013
SD Beta Black Hills State University, Spearfish 20 Sept 2013
FL Delta Embry-Riddle Aeronautical University, Daytona Beach 22 Apr 2014
IA Epsilon Central College, Pella 30 Apr 2014
CA Eta Fresno Pacific University, Fresno 24 Mar 2015
OH Theta Capital University, Bexley 24 Apr 2015
GA Zeta Georgia Gwinnett College, Lawrenceville 28 Apr 2015
MO Xi William Woods University, Fulton 17 Feb 2016
IL Kappa Aurora University, Aurora 3 May 2016
GA Eta Atlanta Metropolitan University, Atlanta 1 January 2017
CT Gamma Central Connecticut University, New Britan 24 March 2017


