Spring 2011

THE PENTAGON

A Mathematics Magazine for Students

Volume 70 Number 2 Spring 2011
Contents

KME National Officers 2

The Peg Game 3

Christine Potter

Phi Patterns in Nature and Beyond 17
Leigh Johnson, Donna Marie Pirich, Heather O’Conner, and Theresa
Sampson

Properties of Zero Divisor Graphs Associated to Commutative Semigroups
37

Mark Pelfrey
The Ballot Theorem 53
Yawei Chu
The Problem Corner 59
Kappa Mu Epsilon News 73
Active Chapters of Kappa Mu Epsilon 93

(© 2011 by Kappa Mu Epsilon (http://www.kappamuepsilon.org). All
rights reserved. General permission is granted to KME members for non-
commercial reproduction in limited quantities of individual articles, in
whole or in part, provided complete reference is given as to the source.

Typeset in Scientific WorkPlace. Printed in the United States of America.



2 The Pentagon

Kappa Mu Epsilon National Officers

Ron Wasserstein President
American Statistical Association
732 N Washington Street
Alexandria, VA 22314-1943
ron@amstat.org

Rhonda McKee President-Elect
Department of Mathematics
University of Central Missouri
Warrensburg, MO 64093-5045
mckee @ucmo.edu

Mark Hamner Secretary
Department of Mathematics and Computer Science
Texas Woman’s University
Denton, TX 76204
mhamner @twu.edu

Cynthia Woodburn Treasurer
Department of Mathematics
Pittsburg State University
Pittsburg, KS 66762-7502
cwoodbur @pittstate.edu

Peter Skoner Historian
Department of Mathematics
Saint Francis University
Loretto, PA 15940
pskoner @francis.edu

Kevin Reed Webmaster
Department of Science and Technology
Evangel University
1111 N. Glenstone Avenue
Springfield, MO 65802

KME National Website:
http://www.kappamuepsilon.org/



Spring 2011 3
The Peg Game

Christine Potter, student

KS Delta

Washburn University
Topeka, KS 66621

Presented at the 2009 National Convention and awarded "top four" status
by the Awards Committee.

1. Introduction

Through this project, I explored the well-known triangular peg game
in which a player jumps pegs on the board until arriving at the desired
outcome of one peg left on the board. I was able to analyze solutions
of the game using modular arithmetic and group theory. In addition to
exploring this triangular board, I was able to draw interesting conclusions
about triangular boards of other sizes as well as linear boards.

2. Playing a Peg Game

The peg game is a single-player game. It is played on a board that
contains a fixed number of holes. To begin the game, a player starts with
one arbitrary hole empty and one peg in each of the remaining positions.
To play the game, the player makes moves by jumping a peg over an ad-
jacent peg. During a move, the jumped peg is removed from the board
altogether so that the player is left with one less peg total. A formal def-
inition of “move” is given below. The game is won by making whatever
moves necessary to obtain exactly one peg left on the board.

The most common form of peg game is a triangular shape with fifteen
holes. In this paper, we’ll explore not only this game, but linear games and
different sizes of triangular games. The following definition and theorem
holds for these forms.
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Definition: A move, or a jump takes place amongst three consecutive po-
sitions, r, s, and t, that are either all in a row or all on a diagonal (for
triangular shapes) with two pegs, P, and P, in adjacent positions, and the
remaining position empty. Without loss of generality, given that r contains
peg P and s contains P5, a jump consists of the following occurrences:

1. transfer of peg P, from position r to position ¢, and

2. removal of peg P> from the board entirely, leaving holes in positions 7
and s.

Note that from this definition we can make the statement that a jump
results in one less peg (and thus, one additional empty hole) on the board.
Also, consider the following theorem.

Theorem 1 Last Peg Theorem (LPT): In order for a peg Py, to be the
last peg left in the game, it must make the final jump into position h, the
winning hole.

Proof: Assume that P;, does not make a jump into position k. Then, Py, is
already in position h. Therefore, there exists a peg other than Py, that must
make the final jump of the board, say Fy. But, by definition of a jump,
there is a transfer of Py from position 7 to position ¢. Thus, Fy is still left
on the board. This is a contradiction to P, being the last peg left in the
game. Hence, the theorem holds. B

3. The Linear Peg Game

It is helpful now to look at trends and patterns that occur when using a
simple linear peg game, and to establish some rules. We start by labeling
the positions of the board with n numbers: 1234567 8 9...n. Note
that jumps in a linear game differ only slightly from those in the triangular
game, the difference being the omission of the diagonal move.

Let us look at linear boards of different sizes. If n = 1 orn = 2, clearly
there are no jumps possible, so these cases are not interesting to us. Now,
let » = 3. Then two positions must contain a peg and one position must be
empty. By definition of a move, we need exactly two consecutive pegs and
one empty hole in order to have any moves available. Hence a board with
configuration peg-hole-peg will result in a loss. If instead, we have either
the configuration peg-peg-hole or hole-peg-peg (See Figure 1 below), we
make the only possible jump in either case and we win.
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Figure 1

Theorem 2 For n > 3, n being the number of positions on the board (or
length of the board), the linear peg game beginning with a hole in the first
position or a hole in the last position has no solution.

Proof: Let L be a linear peg board of length n > 3. Without loss of
generality, let the first position of L be the beginning hole (for a game
in the last position, simply consider the reflection of this game). So we
know that the peg in position 3 must jump the peg in position 2 and land in
position 1. But after this jump occurs, there are two consecutive holes next
to position 1. Hence, no peg will ever be able to make a jump to occupy
position 2, and thus the peg in position 1 will not be able to jump another
peg. Therefore, by LPT, we lose and Theorem 2 holds. Figure 2 below
illustrates this. W

O N Jadl OO0 N Iadiee

Figure 2

Let n = 4. Theorem 2 tells us that in order to have a chance at win-
ning, we must start with a hole in position 2 or 3. Figure 3 below shows
the winning solution. Note also that a hole in position 3 indicates merely
a reflection of the situation illustrated below.

— —»
Figure 3
For n = 5, we arrive at an interesting result given in Theorem 3.

Theorem 3 There is no solution for linear peg game of length n = 5.

Proof: Let n = 5. Then four positions must contain a peg and one po-
sition must be empty. By Theorem 2, we may not begin with a hole in
position 1 or 5. If we start with a hole in position 2, the only jump possi-
ble leaves a peg in position 5 that is now unreachable. Thus, the hole may
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not start in position 2 and similarly, by symmetry, the hole cannot start in
position 4. This is illustrated in the figure below.

0000 -00 . 0 00
Figure 4

If we start with the hole in position 3, we may move the peg from either
position 1 or 5 into position 3. But in either case, we are left with two
consecutive holes at an end of the board. In this case, we can view the
resulting board as a single hole in an end position adjacent to a board of
n = 4. Now, by Theorem 2, we have no solution to the 4 position portion
of the board. Thus, there is no solution for the linear game of board length
n = 5. Figures 5 below illustrates this example. l

00 00 - (000 - (0 0 —

Figure 5

4. Using Z2 to Label the Board

We wish to label the board in a way that will enable us to eliminate and
analyze possible solutions to the game. Using a process as in [3], we used
the group Z,. The group Z; contains the elements {0, 1} and uses addition
modulo 2 for its binary operation. The addition table for the group is given
in Table 1. Note that the only difference with the table and regular addition
isthat 1 +1 = O here.

(+) 101
0 0|1
1 1

Table 1

Since the peg game is played by making a sequence of jumps, we begin
by analyzing a single jump. Note that each jump involves three consecutive
positions on the board. Thus, we examine the ways that we can label three
positions using Z,. These possible labelings are illustrated in Table 2.
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0 0 O
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 O
1 1 1
Table 2

Without loss of generality, assume the initial empty hole is represented
by the last column in the above chart. Consider the parity of the sum of
the positions that contain pegs before and after a jump (we will refer to
this as the parity of the board.) Thus, before the jump we sum the first two
positions. After the jump, there is only a single peg remaining in the third
position. Thus, the parity after the jump will simply be the value of the
third position. Table 3 shows the parity before and after a jump using all
possible labelings with Z,.

Zs labeling of three Parity Parity
consecutive positions before jump | after jump
0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 1
1 0 0 1 0
1 0 1 1 1
1 1 0 0 0
1 1 1 0 1
Table 3

Notice that in Table 3, the parity before and after a jump is the same
with four of the labelings; namely, when the positions in a jump are labeled
as 000, 011, 101, and 110. Therefore, we wish to label the board so that
each jump has one of these four labelings. This will ensure that parity will
stay the same with every jump that occurs.

We can quickly discard the first case, 000, because that is a useless way
to label the board since each O is indistinguishable. Now, by noting that
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each of the following three cases contains two 1’s and one 0, we can label
the board while maintaining the parity of the board by representing each
possible jump with two 1’s and one 0. The following illustration (Figure
6) uses this labeling. We arbitrarily start with a zero in the top left corner
of the triangle. This forces us to label the two adjacent positions with a 1
since the first three positions can be used in a jump. Following a similar
technique, the entire board then must be labeled as follows in Figure 6:

1 0 1 1
1 1 0
0 1
1
Figure 6

This labeling provides an interesting insight into the possible solutions
of the game, as noted in the following theorem.

Theorem 4 Given triangular peg board labeled as in Figure 6, if the
empty hole begins at a 1, the last peg in any winning game must be in a
position labeled as a 1. Similarly if the empty hole begins at a 0, the last
peg in any winning game must be in a position labeled as a 0.

Proof: If we start with an empty hole in any of the positions labeled with a
1, there are then nine holes labeled with a 1 that contain a peg. Since there
are an odd number of 1’s that contain pegs, the parity of the board before
any jumps are made is 1. Since the parity of the board must be maintained
with any jump, we know that if the game is won, the ending peg will be
in a position labeled with a 1. Similarly, if we start with an empty hole in
any one of the positions labeled with a 0, all ten of the positions labeled
as 1 contain pegs. Since there are then an even number of 1’s that contain
pegs, the initial parity of the board is 0. Thus, the ending peg must be in a
position labeled as 0. W
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Finally, we wish to ensure that the illustration in Figure 6 accounts for
all possible labelings that maintain parity through jumps. We arbitrarily
began labeling the board by using 011 in the upper left hand portion of
the board as is done in A of Figure 7 below. If we use the other two
possibilities of 101 and 110 in the upper left hand portion, we obtain the
labelings B and C in Figure 7. Note that as with the labeling for A, once
the three positions in the upper left hand corner are chosen, the remaining
labels are dictated by the requirement of maintaining parity through jumps.
It appears, then, that we have three distinct labelings for the board that will
maintain parity through jumps. However, let us note the symmetry that
occurs amongstthelabelings. B is a 120° - degree clockwise rotation of A,
and C is a 240° - degree clockwise rotation of A. Thus, our initial labeling
is sufficient for all labelings that maintain parity.

01101 10110 11011
1 011 1 101 0110
110 011 L\\? 1 01
01 A 1 0 B 11 C
1 1 0
Figure 7

5. Labeling the Board with the Klein 4-Group

Now we wish to use another labeling that will distinguish more of the
positions of the board. Since the group Z5 was used previously to label the
board, we now consider the product Zs X Zo, which itself forms a group [4,
p-27]. This group is called the Klein 4-group, denoted K4 [2, p. 132]. For
convenience, we can label these elements as z, y, z, 0, where 0 represents
the identity element. Using “+” for the binary operation, the table for the
Klein 4-group is then:

+10|x|y]| =
0O|10|x|y| =
z|x| 0| z|y
ylyl|lz|0]x
z|lzly|lx|O

Table 4
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Now, the question of relevance is whether we can use K4 to label the
peg game board. Again, the key to labeling the board with the K4 group
is to maintain the parity with every jump. As we did with Z,, we could
list out the possible combinations for labeling three positions in a jump
with the elements of K4 and examine the parity before and after a jump.
However, there are 43 ways to do this, so instead, note each element of the
group is its own inverse. Also, when we make a jump, we adjust the parity
by “subtracting” (i.e. adding the inverse) the value of the positions that
had pegs removed and adding the value of the position that the peg landed
in. Further, note that z + y + z = 0. Thus, labeling the board with an x,
y, and z for each possible jump will maintain the parity. The following,
Figure 8, shows this labeling of the board. A similar technique is used in
An Application of Elementary Group Theory to Central Solitaire [1].

z 3 X z ¥
X z 5 X
5 X z
il %
X
Figure 8

Now, just as we asked of the Zs labeling, we ask, what does this K4
labeling of the board have to offer us in terms of solutions? Again, the
solutions are narrowed down by this labeling, and in fact, even more so
than in the Z5 labeling of the board. This time, if we start with no peg in
a z position, the parity of the board is z. Thus, we know that we must end
with a peg in an z position. This result is not surprising since the z’s in
Figure 8 are in the same position as the 0’s in Figure 6. However, it is also
true that if we begin with no peg in a y position, our last peg must end in a
y position, and if we begin with no peg in a = position, our last peg must
end in an z position. The y’s and z’s in Figure 8 are in the same positions
as the 1’s in Figure 6. Thus, the Klein 4-group distinguishes the 1’s in Z»
with z’s and 4’s. And thus, Theorem 5 naturally follows.
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Theorem 5 Given triangular peg board labeled with K4 so that parity is
maintained with jumps (as in Figure 8 for a board with five rows), if the
empty hole begins at an z, the last peg in any winning game must be in a
position z, and similarly for y and .

One should note that these findings hold true with the example of the
winning game shown in the appendix. In the example, the beginning hole
starts in a position labeled as an z, and therefore, the peg left at the end of
the game resides in a hole labeled with an z.

6. Other Sizes of Triangular Peg Games

So far, we have analyzed triangular boards with 5 rows. Now we will
take a look at other sizes of triangular boards. Throughout this discussion,
let N represent the number of rows on the triangular board.

Let N = 3. Figure 9 illustrates this picture with a K labeling.

Y X z
=z )
X
Figure 9

Theorem 5 tells us that if we start with a hole at z, the last peg must
be in an z. Similarly, this is true with y and z. By definition of a move,
however, we know that in order to have any moves we must begin with the
empty hole at a corner of the triangle. Also, by LPT (Last Peg Theorem),
we know that we can only end at the endpoints of this triangle as well. By
exhaustion, we see that there are exactly three forced moves to this game.

Figure 10
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But, these moves do not give us a win. Hence, we have:

Theorem 6 There is no solution to the triangular board size N = 3.

Let N = 4. Figure 11 illustrates this picture, again with a /4 labeling.

X z ¥ X
K X z
z Y
X
Figure 11

Here, Theorem 5 is sufficient to tell us that there is no solution to this
board in some cases. If we start with a hole at z, then there are pegs in the
three other z’s and there are pegs in each of the three 4’s and 2’s. Since
T + y + 2z = 0, the beginning parity of the game is 0. This means that
in order to win the game, the winning peg must land in a position labeled
with a 0. But there are no 0’s on the board so it is impossible to win. But,
a more general claim may be made.

Theorem 7 If the number of rows of the triangular board is N = 3m+1
and if the board is labeled using K, so that the upper left corner of the
board is an x, there is no solution if the beginning hole is in a position
labeled with an .

Proof: Note that the total number of positions on a board with N rows is
i L N+

2 . We first show that if N = 3m + 1, then there exists

k=1

N (N +1)

an integer j such that =37+ 1. Since N = 3m + 1, we have

N (N +1) (3m+1)(3m+2)_9m2+9m+2_9m(m+1)+g

2 2 2 2 2

1
% is an integer. Let

j:3<7m(”;+1)>.

Note that m(m + 1) is even, so



Spring 2011 13

9m (m+1) N+1)

Then = 9k = 3 (3k) = 3j. Therefore, N(T =3j+1.
Now note that by the way the board is labeled, if we begin with an x in the
upper left position, there must be 7 number of y’s, 7 number of z’s, and
(4 + 1) number of z’s on the board. If the beginning hole is in an z, the
beginning parity is 0. But this means the final peg must land in a position
labeled 0 and there are no positions labeled as such. B

7. Summary

It should be noted that most of the analysis in this paper is not new.
However, in my explorations of the game, I purposely did not look at the
existing literature so that I could try to formulate my own conclusions
through a process of self-discovery. Further, I was unable to find any litera-
ture on the linear game or on the triangular boards of other sizes; therefore,
I believe my results in these areas are new.

The interested reader should consult Bialostocki’s article found in [1]
for an exploration of a cross-shaped peg game. Also, the Appendix gives
one possible solution to the standard five-row triangular peg game.

8. Appendix

It is important to note here that we start this example with a hole in a
position labeled x in Figure 8 and end with a peg in a position labeled x in
Figure 8.

000060 060000600

o000 o000
00 ® 0 O
o0 ® O
O ®

Figure 12
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Figure 18
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Abstract

In his paper, “The Distance of the Planets from the Sun and Their
Atmospheric Composition,” Charles William Johnson postulates the ex-
istence of a Phi pattern in planetary orbits. The conjecture hinges upon
the inclusion of Ceres as a dwarf planet. The author claims this inclusion
is necessary in order to properly represent the asteroid belt between Mars
and Jupiter, but fails to give a valid mathematical proof. We, the authors
of this paper, investigate the validity of Johnson’s work, and offer a math-
ematical proof based on regression analysis. Furthermore, we apply the
same analysis to the lunar orbits of Neptune, Uranus, and Saturn, as well
as the rings of Uranus. We believe this data analysis technique can also be
used to predict the location of undiscovered moons in our solar system, as
well as planets beyond Pluto.

1. Introduction

The existence of Phi patterns in nature has been a topic of great interest
for mathematicians, beginning with Leonardo of Pisa (1170 — 1250), who
first popularized the idea in a problem that he posed involving the growth
of a hypothetical rabbit population (Burton 289-294). Phi is related to the
Fibonacci sequence, { F}, }, where Fy = 1, F5 = 1,and F, 12 = Fj, 1+ F),
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for n > 1, and is defined as lim 1 (Bicknell-Johnson). Hence, the

n—oo n
Fibonacci numbers are:

{1,1,2,3,5,8,13,21, 34, 55,89, 144, 233, 377, 610,987 .. .},

and Phi is an irrational number, which can be aproximated by 1.61803,
correct to five decimal places. The figure below illustrates the rapid con-
vergence of the sequence.

Convergence of Phi

=l

T
-""..

e e e W Y N I TR s R L
|

Ratio
Value

|

|
|

_‘ T T T T T 1
1

2345 86 7 4}9 101112 13 14 15

= = = T =R = =)

Ratio Number

Figure 1

The Fibonacci sequence and the related Phi pattern have been observed
throughout nature. The sprouting of new shoots during the growth process
of various plants parallels the growth of Fibonacci’s hypothetical rabbit
population. This pattern can also be observed in the petals and seed heads
of certain flowers, as well as in the spiral growth pattern of pinecones and
nautilus shells (Knott).

For example, if one were to count the counterclockwise spirals created
by the seeds of a sunflower, the number would be a Fibonacci number
(Knott). Moreover, the number of clockwise spirals would be the previous
Fibonacci number, and hence the ratio of these numbers is an approxima-
tion of Phi (Knott). As the sunflower grows, the approximation improves!
The same phenomenon is also observed in pinecones (Knott).
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2. Analysis of Planetary Data

The spiral pattern associated with Phi can also be observed in space.
For example, the Milky Way is classified as a spiral galaxy (Morison and
Penston 37). It appears to have a spiral pattern that resembles the growth
pattern of pinecones, sunflowers, and nautilus shells (Harris). Therefore,
the question arises as to whether a Phi pattern can be observed in our solar
system.

Charles William Johnson postulates the existence of such a pattern in
“The Distance of the Planets from the Sun and their Atmospheric Com-
position.” The conjecture hinges upon the inclusion of Ceres as a dwarf
planet. Johnson claims this inclusion is necessary in order to properly rep-
resent the asteroid belt between Mars and Jupiter, but fails to give a valid
mathematical proof. Our research began with the development of such a
proof, based on regression analysis. The result was a data analysis tech-
nique which we then applied to the lunar orbits of Neptune, Uranus, and
Saturn, as well as the rings of Uranus.

We first analyzed the ratios of the distances from the sun of successive
planets (normalized to Mercury), without including data on Ceres (see Ta-
ble 1 and Figure 2). Using linear regression, with one-sigma error bars,
we found Jupiter to be an outlier. (Note that since multiplication is com-
mutative, dividing the distances in Column 2 of Table 1 by Mercury’s dis-
tance from the sun, and then calculating successive ratios of distances, is
equivalent to setting the first ratio in Column 3 to one, and calculating the
remaining ratios directly from the planetary distances.)

Planet Distance from Sun (km) Ratio
Mercury 57,900,000 1
Venus 108,200,000 1.868739
Earth 149,600,000 1.382625
Mars 227,900,000 1.523396
Jupiter 778,600,000 3.416411
Saturn 1,433, 500,000 1.841125
Uranus 2, 872,000,000 2.003488
Neptune 4, 485,100,000 1.561664
Pluto 5, 870,000,000 1.308778
Mean 1.767358
Std. Dev. 0.653183

Table 1
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Ratios of Distance of Planets from the Sun
“Hots Jupltar LFFB&TE to Baan Outlsr
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Figure 2

Using the linear regression equation established above,
y = .0312z 4 1.6112,

we predict the location of a “missing planet” between Jupiter and Mars,
recalculate the ratios of the distances of the planets from the Sun (normal-
ized to Mercury), and finally establish a new regression line (see Table 2
and Figure 3).

Planet Distance from Sun (km) Ratio
Mercury 57,900,000 1
Venus 108,200,000 1.868739
Earth 149, 600,000 1.382625
Mars 227,900,000 1.523396
Estimate 402,744,880 1.7672
Jupiter 778,600,000 1.933234
Saturn 1,433, 500,000 1.841125
Uranus 2,872,000,000 2.003488
Neptune 4,485,100,000 1.561664
Pluto 5, 870,000,000 1.308778
Mean 1.619025
Std. Dev. 0.3211

Table 2
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Ratics of Distance of Flanets from the Sun with Estimate
for "Nissing Flanet"
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Figure 3

Inclusion of a “missing planet” resulted in a mean normalized planetary
distance very close to Phi (1.619025). The location of the “missing planet”
is within the vicinity of Ceres, thus justifying Johnson’s inclusion of Ceres
in his data analysis (see Figure 4).

Ratios of Distance of Planets from the Sun
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Figure 4
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3. Analysis of Neptune

We began our study of lunar orbits with Neptune. The data pertain-
ing to the thirteen known moons of Neptune (see Table 3) was collected
by NASA (Williams, “Neptunian Satellite Fact Sheet”). Due to Neptune’s
great distance from Earth, and the limits of technology, discovery of these
moons is relatively recent. Five of Neptune’s moons were discovered in
2002 and 2003. As technology continues to improve, it is likely that still
others will be found. In this section we will explore the possibility of
the existence of a Phi pattern in the location of these moons. Our explo-
ration was motivated by analogies that can be made between the Kuiper
belt (which begins in the orbit of Neptune) and the asteroid belt between
Mars and Jupiter discussed in the previous section.

Using the same approach as in the planetary data analysis, the distance
between Neptune and its closest moon, Naiad, was taken to be the unit
distance, and ratios of successive distances were calculated. The method
of least squares was used to calculate the linear regression line determined
by the moon numbers and corresponding distance ratios (normalized to
Naiad). The results are plotted via Microsoft Excel, and one-sigma error
bars are shown (see Figure 5). In the remainder of this section, we con-
tinue to iterate the technique until all outliers are eliminated, and predict
the locations of possible undiscovered moons. Finally, the accuracy of our
technique is analyzed by performing a regression analysis on the mean lu-
nar distances resulting from the individual steps of the iterative technique.

- Neptune
=2 25000000
<E
2 £ 20000000 I
2% .- =0 1261x+1.7293
2% 15000000 L
3 R*=0.0155
= E 10.000000
E = 5000000 - T T - =
0.000000 L J ‘ * * L2 l + + T =
{ 5 10 15

Moon Number

Figure 5
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Table 3

Spring 2011
Moon Moon # Distance (km) Ratio
Naiad 1 48,227  1.000000
Thalassa 2 50,075  1.038319
Despina 3 52,5626  1.048947
Galatea 4 61,953 1.179473
Larissa 5 73,548 1.187158
Proteus 6 117,647  1.599595
Triton 7 354,760  3.015462
Nereid 8 5,513,400 15.541211
Halimede 9 15,730,000 2.853049
Psamathe 10 22,430,000 1.425938
Sao 11 46,700,000 1.050825
Laomedeia 12 46,700,000 1.981332
Neso 13 48,390,000 1.036188
Mean 2.612115
Std. Dev. 3.9447828

Linear regression revealed that Nereid was an outlier. Using the regres-

sion equation

y = 0.1261x + 1.7293,
we postulate the existence of an undiscovered moon between Triton and
Nereid (referred to as “Moon 1,” in Table 4 below). We then recalculate
the linear regression line and analyze the graph (see Figure 6).

Neptune with Additional Moon
Predicted Between Triton and

10

Nereid

y=0.0722x +1.3747

Ratio

0

Using

Naiad as 4
Standard 2

0

10

Moon Number

Figure 6
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Moon Moon # Distance (km) Ratio

Naiad 1 48,227  1.000000
Thalassa 2 50,075  1.038319
Despina 3 52,5626  1.048947
Galatea 4 61,953 1.179473
Larissa 5 73,548 1.187158
Proteus 6 117,647  1.599595
Triton 7 354,760  3.015462
Moon 1 8 971,368  2.738100
Nereid 9 5,513,400 5.675911
Halimede 10 15,730,000 2.853049
Psamathe 11 22,430,000 1.425938
Sao 12 46,700,000 1.050825

Laomedeia 13 46,700,000 1.981332

Neso 14 48,390,000 1.036188
Mean 2.612115
Std. Dev. 3.9447828
Table 4

Nereid continues to be an outlier. Using the new regression equation,
y = 0.0722z + 1.3747, we postulate the existence of a second undiscov-
ered moon, “Moon 2,” between “Moon 1”7 and Nereid (see Table 5). We
then recalculate the linear regression line and analyze the graph (see Fig.
7).

Neptune with Two Additional Moons Predicted
Between Triten and Nereid

' v=00276x+13518

Eatio Using 3 3 =
Naind as 30 ’__H —
Standerd 21 C

Moou Number

Figure 7
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Moon Moon # Distance (km) Ratio
Naiad 1 48,227  1.000000
Thalassa 2 50,075  1.038319
Despina 3 52,5626  1.048947
Galatea 4 61,953 1.179473
Larissa 5 73,548 1.187158
Proteus 6 117,647  1.599595
Triton 7 354,760  3.015462
Moon 1 8 971,368  2.738100
Moon 2 9 1,966,535  2.024500
Nereid 10 5,513,400 2.803611
Halimede 11 15,730,000 2.853049
Psamathe 12 22,430,000 1.425938
Sao 13 46,700,000 1.050825
Laomedeia 14 46,700,000 1.981332
Neso 15 48,390,000 1.036188

Mean 1.732166
Std. Dev. 0.77263053

Table 5

After “Moon 2” is added, Triton, “Moon 1,” Nereid, and Halimede
appear to be outliers. Using the new regression equation, y = 0.0476x +
1.3516, we postulate the location and associated distance ratios of four
more undiscovered moons (see Table 6). At this point, there appear to be
no more outliers (see Figure 8). Hence, we end our predictions here, and
evaluate the accuracy of the technique by performing a regression analysis
on the iterative mean lunar distance data.
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Neptune with Four Addidonal Moons
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Moon Moon # Distance (km) Ratio
Naiad 1 48,227  1.000000
Thalassa 2 50,075  1.038319
Despina 3 52,5626  1.048947
Galatea 4 61,953 1.179473
Larissa 5 73,548  1.187158
Proteus 6 117,647  1.599595
Moon 3 7 193,976  1.648800
Triton 8 354,760 1.828883
Moon 4 9 614,586 1.732400
Moon 1 10 971,368  1.580524
Moon 2 11 1,966,535 2.024500
Moon 5 12 3,594,040 1.827600
Nereid 13 5,513,400  1.534040
Moon 6 14 10,338,728  1.8752
Halimede 15 15,730,000 1.521464
Psamathe 16 22,430,000 1.425938
Sao 17 46,700,000 1.050825
Laomedeia 18 46,700,000 1.981332
Neso 19 48,390,000 1.036188

Mean 1.564620
Std. Dev. 0.31763458

Table 6
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Notice that Tables 3 through 6 show that with each iteration of our
data analysis technique, the mean distance ratio for the moons of Neptune
(normalized to Naiad) appears to be approaching Phi. Our results can be
fit by a power regression curve, with correlation of 0.9931, which is quite
accurate (see Table 7 and Figure 9).

Fibonacci # Fibonacci Ratio Mean of Mon Distance Ratio

1 1 2.612115
1 1 1.91645
2 2 1.732166
3 1.5 1.5642
5 1.666667
8 1.6
13 1.625
21 1.615385
34 1.619048
55 1.617647
89 1.618182
Table 7

Mean Distance Ratio for Moons of Neptune
as Wew AMoons are Discovered

y=2 568005
3 R*=0.9862

25 * R=.9931
2 + HMeanMoon
o Distance
=415 | Ratio
E1':'
c
Paovwer
05 (Mean
Moon
0 Distance
0 5 Ratin

Analysis Iteration Number
Figure 9

Note that Columns 1 and 2 of Table 7 illustrate the convergence of
successive ratios of the Fibonacci numbers. Column 3 illustrates the mean
lunar distance trend resulting from the four iterations of our regression
analysis which were necessary to eliminate all lunar outliers. The ratios in
Column 3 appear to be converging to a number which is close to Phi.
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4. Analysis of Uranus

The next planet that was researched was Uranus, which has 5 ma-
jor satellites and 22 minor satellites. The data pertaining to the moons
of Uranus (see Table 8 at www.kappamuepsilon.org, the Kappa Mu Ep-
silon website) was collected by NASA (Williams, “Uranian Satellite Fact
Sheet”). As in the planetary and Neptune data analyses, distances of satel-
lites from Uranus were normalized to a unit distance equal to the dis-
tance between Uranus and its closest moon, Cordelia. The method of least
squares was used to calculate the linear regression line determined by the
moon numbers and corresponding distance ratios (normalized to Cordelia).
The results are plotted via Microsoft Excel, and one-sigma error bars are
shown (see Figure 10).
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Figure 10

Calculation of the mean distance between Uranus and its moons did
not reveal an observable connection to Phi. However, linear regression of
the data shows a relationship between the distances, except for Francisco,
which is an outlier. Adding possible undiscovered satellites, as was done
in the case of Neptune (as well as the planetary data), would not be useful
here due to the large number of minor moons, as well as the magnitude of
the distance between these moons and the outlier, Francisco.

The moons of Uranus are classified as major or minor. The major
moons are Miranda, Ariel, Umbriel, Titania, and Oberon. They are con-
sidered to be major moons because their radii are significantly larger than
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the radii of the minor moons (Williams, ‘“Uranus Fact Sheet”). Due to their
size, there is much more data available for the major moons. We decided
to reanalyze our data using only the major moons to see if there was a Phi
pattern, but we were unable to find one. In fact, without the minor moons,
the mean is further from Phi.

We also analyzed the rings of Uranus, normalizing the radii of the rings
to the radius of the equator of Uranus (see Table 9). Linear regression of
the data reveals a strong correlation between ring number and normalized
radius, and Phi lies within one standard deviation of the mean (see Figure
11).

Rings of Uranus  Distance (km) Radius/Equator Radius

Equator of Uranus 25559 1

6 41837 1.636879377
5 42234 1.652412066
4 42571 1.665597246
Alpha 44718 1.749598967
Beta 45661 1.786493994
Eta 47176 1.845768614
Gamma 47627 1.863414062
Delta 48300 1.889745295
Lambda 50024 1.957197073

Epsilon 51149 2.00121288
Mean 1.732021099
Std. Dev. 0.271740742

Table 9

Rings of Uranus
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Ratio of 2 T T+ {

Ring 15

. : T T T
Radius to y=00421% + 1.5734
Radius of 1 R<=09834
Equator 0.5
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Figure 11
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Further research uncovered many articles which discussed a relation-
ship between the rings and moons of Uranus. The rings of Uranus are
formed by dust particles released by surrounding moons (Goudarzi). These
dust particles are formed when meteoric collisions occur with the moons.
The dust particles become trapped in the lunar orbit by surrounding forces
(“New Moons and Rings Found at Uranus”). In a 2007 MSNBC news
release, “Planet Uranus Has a Rare Blue Ring,” Goudarzi discusses the
discovery of a rare Blue Ring about Uranus, and its relationship to the
minor moon, Mab, which is believed to be the ring’s “companion moon.”
According to the article, dust particles formed by meteoric collisions were
released by Mab, and sent into the atmosphere to form this faint Blue Ring.
The Blue Ring follows the orbit of Mab, and its blue color is due to the
small size of the particles. On the other hand, the rings about Uranus which
are predominantly red were formed by larger particles that reflect red light
(Goudarzi). Further indications of a relationship between the moons and
rings of Uranus were also noted in a 2005 press release, “New Moons and
Rings Found at Uranus.” A pair of rings and two new moons were discov-
ered, due to the fact that one of the moons shared its orbit with a ring. This
set of rings was so far from the rest, that they are considered to be their
own system of rings.

The existence of a relationship between the rings and moons of Uranus
led us to search for a Phi pattern based on this connection. Noticing that
the mean of the ring data was an overestimate for Phi, while the mean of
the moon data was an underestimate, we examined the average of these
two estimates and found a much more accurate estimate for Phi:

Mean Moon Distance from Uranus (normalized to Cordelia) = 1.410173

Mean Radius of Rings (normalized to the equator of Uranus) = 1.7320210099

Mean of Moon and Ring Data = 1.57109705

The discovery of a Phi pattern which links the moons and rings of
Uranus is not surprising. As discussed earlier, the rings are composed
of particles from the moons, as in the small particles of the Blue Ring
which are attributed to Mab (Goudarzi). Scientists have also found that
the particles which comprise the rings of Uranus are being acted upon
by surrounding forces which are influenced by the mass and orbit of the
planet’s satellites.
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5. Analysis of Saturn

Finally, we investigated the moons of Saturn to determine whether or
not they revealed a Phi pattern. Data pertaining to the moons of Saturn and
their distances from Saturn was gathered from a NASA web site (Williams,
“Saturnian Satellite Fact”). As of July 2007, sixty moons of Saturn have
been identified. However, some of these discoveries are so recent that they
are still unnamed. Using Johnson’s study as a model, we set the distance
of Pan (Saturn’s nearest moon) from Saturn as the unit distance. We then
calculated successive ratios of distances, as in the Fibonacci sequence. The
data has been tabulated in Table 10, which can be found on the Kappa Mu
Epsilon website, www.kappamuepsilon.org.

As in Johnson’s work, we checked for the existence of a Phi pattern
within these ratios, by computing the mean and standard deviation. The
mean was calculated as 1.1246447, and the standard deviation was found
to be 0.3698122. Figure 12 shows the results of a regression analysis of
the raw data, along with error bars determined by the standard deviation.

Saturn

Figure 12

Titan, Iapetus, and Kiviuq appear to be outliers, and the data does not
exhibit a readily identifiable Phi pattern. The average of the ratios is con-
siderably less than Phi. In addition, two of the major moons of Saturn
each have two Trojan moons which share the same orbit (Schombert). This
forces the ratio unnaturally to one in the corresponding sequence of ratios.
It was immediately apparent that the Trojan moons Calypso, Talesto, He-
lena, and Polydeuces, needed to be removed from the analysis. The list
of data can be further reduced by considering only the most significant
moons. Since the data was standardized to Pan, only those moons having
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mean density greater than or equal to that of Pan, 560km/m? , were consid-
ered (Williams, “Saturnian Satellite Fact”). This is justifiable since many
of Saturn’s moons are actually large chunks that broke away from other
moons (Schombert). For example, Hyperion is the largest irregular shaped
moon observed, and is highly “pock-marked” (Schombert). This indicates
that pieces of Hyperion broke away and entered alternate orbits. Another
moon that shows signs of contributing to the formation of smaller moons
is Mimas. This moon has a large crater that indicates it was struck by an
asteroid or other cosmic object (Schombert). Therefore, the orbits of low
density moons really depend on the original moons at the time of impact.
Restricting the data in this way gives rise to the data in Table 11, below, as
well as the regression analysis in Figure 13. One-sigma error bars enable
us to identify outliers.

Moon Moon # Distance (km) Ratio of Distance
Pan 1 133,583 1.000000000
Epimetheus 2 151,422 1.133542442
Janus 3 151,472 1.000330203
Mimas 4 185,520 1.224780818
Enceladus 5 238,020 1.282988357
Tethys 6 294,660 1.237963196
Dione 7 377,400 1.280798208
Rhea 8 527,040 1.396502385
Titan 9 1,221,830 2.318287037
Hyperion 10 1,481,100 1.212198096
Tapetus 11 3,561,300 2.404496658
Phoebe 12 12,944,000 3.634627804
Mean Ratio 1.5938763
Std. Deyv. 0.7923295

Table 11
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Saturn’s moons suggest a strong correlation to Phi, similar to the pattern
found in the planetary data. There were many factors to consider when
analyzing the moons of Saturn, including the Trojan moons and the mean
density of moons that were smaller than Pan.

6. Further Research

While working on any project one often wonders how the research can
be extended in the future. One question that was raised by our research
was whether or not a Phi pattern can be found in the moons of Jupiter.
Considering the fact that Jupiter also has rings, if a Phi pattern was discov-
ered, would it be similar to the pattern found in the moons of Saturn, or
would it be more similar to the pattern exhibited by Uranus?

Another way our work can be extended is to draw a connection with
Johannes Kepler’s Laws of Planetary Motion. Kepler’s Laws arose fre-
quently in our research, as well as in discussions with mathematicians
and scientists at various conferences. It would be interesting to see if our
work is similar to Kepler’s. For example, Kepler’s Third Law states that
(Period)?> = (Distance)® (Morison and Penston 16), where the period is
how long a planet takes to revolve around the Sun, and the distance is
measured between the planet and the Sun. Using this information, Kepler
knew where to look in the night sky for a particular planet. This is simi-
lar to our work, in that we found where a planet or moon should be using
linear regression. Hopefully this project will lead others to discover new
information about our universe.

Another avenue that this research could follow is an in-depth study of
the asteroid belt between Mars and Jupiter. Could that have been a planet
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at one time? If so, what caused the planet’s destruction? There has also
been an asteroid belt discovered beyond Pluto, as well as a Plutiod. We
would be very interested to know if that data would support the Phi pattern
in our galaxy.

Finally, while researching the Milky Way, we learned about the classi-
fication of galaxies. For example, the Milky Way is a spiral class galaxy
which exhibits a Phi pattern. Do other spiral class galaxies also exhibit
a Phi pattern? Do the other two classifications, bar-spiral and elliptical,
reveal a different pattern altogether, or none at all? We are sure that the
quest for answers to these questions will lead to interesting discoveries in
the future.

7. Conclusion

Further study of planetary data led to a data analysis technique based
on linear regression which proved Johnson’s postulated existence of a Phi
pattern in the distance of the planets to the Sun (normalized to Mercury).
This technique was applied to data collected on three planets in our solar
system: Neptune, Uranus, and Saturn. It revealed a Phi pattern in all three
cases.

An analysis of Neptune’s satellite data led to the discovery of “missing”
moons that fit a Phi pattern. This was similar to the pattern found by
Johnson when he included Ceres (the largest asteroid in the asteroid belt
between Mars and Jupiter) in his calculations. The mean distance between
Neptune and its satellites (normalized to Naiad) was found to be close to
Phi when “missing” moons were included in the analysis.

The search for a Phi pattern in the moon and ring data of Uranus proved
to be tricky. Uranus has many moons, and our initial analysis produced a
mean satellite distance that seemed too low for a Phi ratio. Therefore, lin-
ear regression would not correct this. Instead it would make the ratio even
smaller. The ring data was taken into consideration, and at first it appeared
that this data would not help our research, since it produced an estimate
of Phi that was too high. However, information gained from the Voyager
Mission revealed that the rings of Uranus did not form at the same time
the moons did. The rings appear to be remnants of moons created prior
to the rings, either broken up by a high-velocity impact or torn apart by
gravitational effects. Therefore, a relationship exists between the satellite
and ring data of Uranus. The average of the mean distance between the
satellites and Uranus (normalized to Cordelia) and the mean of the radii of
the rings of Uranus (normalized to its equator) resulted in an estimate of
Phi.



Spring 2011 35

Saturn’s satellite data suggested that the mean ratio of the distance be-
tween Saturn and its moons (normalized to Pan) was an underestimate of
Phi. There were many factors to consider when analyzing the moons of
Saturn, including the Trojan moons and the mean density of moons that
were smaller than Pan. Once these moons were removed from our analy-
sis, a Phi pattern was revealed.

The results of our research uncovered further examples of Phi patterns
in nature and beyond. These patterns are linked to the evolution of our
solar system. We believe that similar patterns arise in other systems, and
encourage future research in this area.
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Properties of Zero Divisor Graphs
Associated to Commutative Semigroups

Mark Pelfrey

Central Michigan University

1. Introduction

This article continues the study of the zero-divisor graph associated to
a semigroup begun in [5] by F. R. DeMeyer, T. McKenzie, and K. Schnei-
der entitled The Zero-Divisor Graph of a Commutative Semigroup. 1. Beck
introduced the zero-divisor graph I'( R) associated to a commutative ring
R [3]. This graph was the sole focus of a study by Anderson and Liv-
ingston in [2], and was studied further (see [4], [1], [6] and [7]). However,
the first in-depth study of the subgraph in the context of a semigroup was
performed by DeMeyer, McKenzie, and Schneider.

While The Zero-Divisor Graph of a Commutative Semigroup was the
first paper to discuss zero-divisor graphs associated to semigroups, multi-
ple other articles have focused on the classification of zero-divisor graphs
and zero-divisor graph properties. This article will begin with a discus-
sion of the algebraic and graph-theoretic concepts associated to the study
of the zero-divisor graph, and will then expand upon the current literature
associated with zero-divisor graphs.

2. Graph Theory

For all definitions in the glossary below, we loosely follow Graph The-
ory by Reinhard Diestel [8].

Definition 1 A graph G is a set of vertices V (G) and a set of edges
E (G) consisting of unordered pairs of vertices. Two vertices, a and b,
belonging to the set V (G) are said to be adjacent to one another if the
two vertices are connected by an edge ab € E (G). Further, a simple
graph is a graph with no loops (edges from one vertex to itself) and with
at most one edge between any two vertices.
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For the duration of this article, we will assume that all graphs are simple
graphs.

Definition 2 A path is a graph G is a sequence of adjacent vertices
V ={xg,x1,..., 21 }
connected by a sequence of edges
E ={zoz1,2122, ..., Tf— 12} }

where all x; € V are distinct. Moreover, a cycle is a path that begins and
ends at the same vertex, and a graph G is said to be connected if every
pair of vertices can be joined by a path.

Figure 1

Consider, for example, Figure 1. The graph is connected since every
vertex can be joined by a path; vertices a and c are joined by the path
a — f — ¢, vertices b and d are joined by path b — ¢ — d, and so one. Note
that there can be multiple paths connecting distinct pairs of points. Also,
observe that patha — b — ¢ — f — a is a cycle, as it begins and ends at the
same vertex; however, there are also other cycles in Figure 1.

Definition 3 The distance p between two vertices in a graph G is the
length (number of edges) of the shortest path joining the two vertices. The
diameter of a graph, given by diam (G), is the maximum distance between
any pair of vertices in G.
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Again considering Figure 1, note that the distance p between d and b
is 2, as d — ¢ — b is the shortest path connecting the two vertices, and
diam(G) = 2, as the maximum distance between any two vertices in G is
length 2.

Definition 4 A vertex v is a cut vertex if deleting the vertex and all inci-
dent edges increases the number of connected components in the graph.

In Figure 2, the center vertex in the graph on the left is a cut vertex;
deleting this vertex and its incident edges produces the graph on the right.

_'

Figure 2. A Cut Vertex

Definition 5 A complete graph, denoted by K, is a graph withn vertices
and an edge between every pair of distinct vertices (see Fig. 3).

o

Figure 3. Complete Graphs K7 — K5
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Definition 6 A complete bipartite graph, denoted by Ky, ,, is a graph
in which the vertices can be partitioned into two sets, V| and Vs, and the
edges in the graph are the complete set of edges with one vertex in each
part (see Fig. 4).

Figure 4. Complete Bipartite Graph K3 »

Definition 7 A star graph is a special form of a complete bipartite graph
of the form K1, (see Fig. 5).

Figure 5. Star Graph K 5
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Definition 8 The degree of a vertex is the number of edges incident to the
vertex, a vertex of degree one is an end.

Definition 9 The core of a graph is the largest subgraph contained within
the graph such that every edge of the subgraph is the edge of a cycle (see
Fig. 6).

Figure 6. A graph induced by core graph G = {a, b, ¢, d, e}
3. Algebra

This section of the article will outline the algebraic objects, operations,
and properties of zero-divisor graphs.

Definition 10 A closed binary operation on a set A,x is a map * : A x
A — A. In other words, for a,b € A, axb € A.

Definition 11 A group is a nonempty set closed under a binary operation
that satisfies three properties:

I. (a-b)-c=a-(b-c)forall a,b,c € S (associativity);
2. There exists e € G such thate - a = a - e = a for all a € G (identity);

3. Forall a € G, there exists b € G such thata -b=10b-a = e (inverses).



42 The Pentagon

For example, the set of all integers Z under addition is a group. Also,
R — {0}, the set of all real numbers not including 0, is a group under
multiplication.

Definition 12 A commutative semigroup with zero is a set S with a binary
operation - such that

I. (a-b)-c=a-(b-c)forall a,b,c € S (associativity);
2. a-b="b-aforall a,b € A (commutativity);
3. There exists 0 € S such that0-xz =x-0=0forall z € S (zero).

It is important to note that a semigroup is not necessarily a subset of
a group. Consider the set of all integers under multiplication, (Z, x). By
observing thata - (b-¢) = (a-b) - cand thata - b = b - a, we can see that
the set is indeed a semigroup. However, if we attempt to prove that (Z, x)
is a group, we find that it is associative as shown above and that it has an
inverse (a -1 =1-a = a), but cannot prove that there is a unique inverse
for all elements in the set.

Definition 13 An ideal is a subset I of a semigroup S such that for all
x € Sandforalla €I, ax € 1.

Consider the set Zg = {0,1,2,3,4,5,6,7}. The set {0,2,4,6} is an
ideal I of Zg. Because multiplying any element in Zg by any element
in the proposed ideal of Zg carries the element back to the ideal, the set
{0,2,4,6} is in fact an ideal of Zs.

Definition 14 A non-zero element a € S is a zero divisor if there exists a
non-zero element b € S such that ab = 0.

Definition 15 A zero divisor semigroup is a semigroup in which every
non-zero element is a zero divisor.

In order to see an example of both zero divisors and a zero divisor
semigroup, consider Zg = {0, 1,2, 3,4, 5}. The zero divisors of Zg with 0
form the zero divisor semigroup S = {0,2, 3,4}, as 2 - 3 = 0 mod 6, and
34 =0mod 6.
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4. The Zero-Divisor Graph

We will begin with a basic definition of a zero-divisor graph associ-
ated to a commutative semigroup, and then we will discuss some relevant
results that have been found relating to the graph.

Definition 16 Let S be a commutative semigroup. Associate a zero-
divisor graph G = T'(S) by assigning a vertex to each zero divisor and
connecting two distinct vertices a and b by an edge if and only if ab = (.

We give three examples of zero divisor graphs (see Figures 7, 8, and
9). In each, notice that vertices are represented by the zero divisors of
the commutative semigroups associated to the graphs, and that vertices are
connected by an edge if their product is 0.

Further, there are important things to note about the examples that we
give here. First notice that the graph structure of the graph associated to
S is identical to the structure of the graph associated to So. However, we
see that while zero divisor graphs can have identical structures, it is not
necessarily true that their associated semigroups are identical.

Also, in Figure 9, note that S5 is defined to include specific products
that are not known by the structure of the graph, namely the products ac,
bd, and the squares of all of the individual vertices. In order for a semi-
group to be commutative and for it to be associated to a zero divisor graph,
all triple products of elements of the semigroup must be associative, and
these definitions allow us to show that the semigroup is indeed associative.

l.-':

X

Figure 7. S = {z, 22, 23|z = 0}
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r

Figure 8. Zero Divisors of Zg : Sy = {2, 3,4}

II.III

'
i
il

Figure 9. S3 = {a, b,c,dlac = a,bd = b,a® = a,b® =b,c? = c,d*> = d}

Finally, we define a neighbor of a vertex in a graph to be a vertex con-
nected to the given vertex by an edge. With this definition, we are now
ready to dissect a fundamental theorem concerning zero divisor graphs.
For reference, we will refer to this theorem as Theorem 1 for the duration
of this article.
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Theorem 1 If G is a zero divisor graph, then G satisfies all of the fol-
lowing conditions:

1. G is connected.

2. Any two vertices belonging to V (G) are connected by a path with at
most three edges.

3. If G contains a cycle, then the core of G is a union of quadrilaterals
and triangles, and any vertex not in the core of G is an end.

4. For each pair x,y of non-adjacent vertices of G, there is a vertex z with
N (z)UN (y) C N(z)U z.

Property (1) states that any pair of vertices of a zero divisor graph must
be connected by some path. Property (2) states that all vertices of the graph
must be connected by a path of 3 edges or fewer, or, in other words, that
the diameter of the graph must be less than or equal to 3.

Property (3) states that if a graph contains a cycle, then for the graph to
be a zero divisor graph, the core of that graph must be a union of quadri-
laterals and triangles, and any vertex not in the core of that graph must be
an end, or a vertex of degree one. In the example below, the graph on the
left is a zero divisor graph, while the graph on the right is not. Because
vertex c in the graph on the right has a cycle and a vertex of degree 2 that
is not in the core of G, the graph fails part three of the theorem above.

d d

2
i

Figure 10. An illustration of part three of Theorem 1.

Property (4) of Theorem 1 arises because any product a;a; within the
semigroup associated to the zero divisor graph must be a vertex already
in the semigroup that is adjacent to all of the vertices to which both a;and
a;are adjacent. Consider the examples below. All of the products of non-
connected vertices in the graph on the left can be defined within a semi-
group S associated to the graph; however, in the graph on the right, the
product cf would have to be a vertex existing in the graph adjacent to
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b, d, e, and a. Because no such vertex exists, the graph on the right is not
a zero divisor graph. In the latter example, we see that for vertices cand f,
there does not exist any vertex zsuch that N(xz) U N(y) C N(z) U z.

d ! 4 3 d

Figure 11. An illustration of part four of Theorem 1

For graphs of five vertices or fewer, the conditions in Theorem 1 are
necessary and sufficient to classify a graph as a zero divisor graph [4].
However, for graphs of more than five vertices, the conditions are neces-
sary to classify a graph as a zero divisor graph but are not sufficient to do
so. The following graphs are all of the graphs with six vertices that adhere
to the conditions in Theorem 1 but have been proven to not be associated
to any zero-divisor semigroup. This list of graphs was compiled by the
REU students at Central Michigan University in the summer of 2008 [7].

L * &
Figure 12. CMU REU Graph 1
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Figure 13. CMU REU Graph 2

Figure 14. CMU REU Graph 3
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Figure 15. CMU REU Graph 4

Finally, before we move on to our findings, there is one more result that
is helpful in studying zero divisor graphs.

Theorem 2  The following graphs are the graph of a semigroup.

1. A complete graph or a complete graph together with an end.

2. A complete bipartite graph or a complete bipartite graph together with
an end.

3. A refinement of a star graph.
4. A graph which has at least one end and has diameter at most 2.

5. A graph which is the union of two star graphs whose centers are con-
nected by a single edge.

5. Results on Wedge Construction of Zero Divisor Graphs

In our exploration of the zero divisor graph, we studied new ways to
classify graphs on more than 5 vertices. One way in which we stud-
ied these graphs was by wedging both zero-divisor and non zero-divisor
graphs with multiple vertices.

Before we present our theorems, we must first describe a special type
of graph construction used in our findings called wedging.

Definition 17 Let K and H be two graphs. We define the wedging of
graphs K and H to be a new graph G = K V H such that V (G) =
V(K)UV(H), E(K),E(H) C E(G), and vertices k and h are joined
by an edge for all k € V (K) and for allh € V (H).
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Theorem 3 A zero-divisor graph connected to 2 separate, distinct ver-
tices (complete bipartite graphs of degree one) is also a zero divisor graph.

Proof.

Suppose G is a zero-divisor graph. Then G V 2 (K;) is also a zero-
divisor graph.Let S be the semigroup associated to the graph GG, and let
S* = SU{x, y} with the multiplication inherited from S and with zy = z,
x? = x, y2 =y, and a;x = a;y = 0 for all a; € S. Given that G is a
zero-divisor graph and S is an commutative semigroup, to prove that S*
is also an commutative semigroup we must prove that all triple products
containing factors belonging to {z, y} are associative.

e In the first case, with O terms belonging to {z, 3} involved a triple prod-
uct, associativity holds.

o If there is one element belonging to {:c, y}, then,since a;x = a;y = 0,
the triple product will be associative because it will be equal to zero.
Then, given any pair of elements {a;, a;} € S, (a;a;)y = (a;aj)z =0
because a;a; € S, and both = and y multiply any element in S to 0.

e If there are two elements belonging to {z,y}, the triple product will
equal zero since a;zx = (a;x) x = Ox = 0. Also, a;zy = (aix)y =
Oy = 0. Similarly, a;yx = a;yy = 0.

e Finally, triple products involving three elements belonging to {z, y} are
also associative. We have zzz = (zx) x = zz = x; similarly, yyy =
y. Also, zzxy = (zx)y = 2y = z, and zzy = z(xy) = zx = x.
Finally, xyy = (zy)y = 2y = =, and zyy = z (yy) = 2y = x.

Observe that the graph associated to S* is GV 2 (K7).

Our next theorem requires a bit of notational explanation. The symbol
[ | represents a disjoint union, and for our purposes, we describe a disjoint
union between two graphs as a graph including both graphs in their entirety
with no edges connecting them. Equipped with that knowledge, we now
describe a class of graphs that are always zero divisor graphs.

Theorem 4 Let G be a disconnected graph such that G = H HnKl,
where H is a zero divisor graph, and nK; are n isolated vertices. Then
G V 2K is a zero divisor graph.
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Proof.

Let S be the semigroup associated to the graph G. Also, let h, k,l € H,
let a;, aj, a € nKy, and let 2K, = {z,y}. Further, define the following
products: ha; = h for all a; € nK7y; a;a; = Umin{as,a;)}> 2?2 =x9? =y
Ty = T.

In order to prove that G is a zero divisor graph, we must prove that all
triple products with factors belonging to [, n kK, and 2K are associative.
In order to complete this task systematically, we will deal with vertices
from one subgraph at a time.

e First, consider . Because H is a zero divisor graph by definition,
any triple product from h, k,l € H is associative. Given two elements
from H, we have either (hk)a; = 0-a; = 0 = hk = h(ka;) or
(hk)z =0-2=0=h-0 = h(kz).Given one element from H, we
have (ha;) a; = ha; = h = ha; = h(a;a;), (ha;))x = he = 0 =
h-0=h(az), (hx)r =0-2=0=h-0= hx = ha®> = hzx, and
(ht)y=0-y=0=hx=h(xy).

e Now, we will consider elements of n/k;. Given three elements of
nkKi, we have either (a;a;) ar, = aar, = a; = a;a; = a; (ajay) or
(aiar) aj = aa; = a; = aja; = a; (aga;) .Given two elements of
nkKi, we have (a;a;)x = a;x = a;x = 0 = a; - 0 = a; (aj7) .And,
given one element of n K, we have either (a;z) z = 0-2 =0=q;-0 =
a;x = a;x% = a; (zz)or (a;x)y =0-y =0 = a;z = a; (vy).

e Finally, we must consider triple products with factors only from {z, y };
because x? and y? are defined in the semigroup definition, we only need
to consider zzy = (zx)y = 2y = v = 22 = 2z = x (vy) = zry and
yyz = (yy) v = yx = x = yx =y (yz) = yy=.

This completes the proof.

Theorem 5 Let G = H H F', where H and F' are graphs that contain
non-trivial connected components. Then G V 2K7 is not a zero divisor
graph.

Proof. Consider the picture of G below in Figure 16, where a — b is
an edge in H and ¢ — d is an edge in F. The product ac cannot be de-
fined because of part 4 of Theorem 1; the product ac must belong to either
{a,b,¢,d} or {x,y} and must be neighbors with b, d, z, and y at the same
time. Since no such vertex exists, GV 2K is not a zero divisor graph.
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Figure 16. G = H][ F

Theorem 6 Let GG be a connected graph that fails to meet condition 4 of
Theorem 1. Then G V 2K is not a zero divisor graph.

Proof. Let S be the semigroup associated to the graph GG. By hypoth-
esis, there exist vertices a; and a; such that the product a;a; cannot be
defined because of the neighborhood condition of the DMS/DD Theorem.
To illustrate this failure to meet the neighborhood condition, let there exist
vertices ay, a;, and a,, such that the product a;a; must be adjacent to ay,
ay, and a,,, but such that there is no such vertex in G. Then, wedge 2K, =
{z,y} with G. Similar to the proof for Theorem 5, the product a;a; must
be adjacent to ag, a;, a,,, =, and y. Because no such vertex exists, we find
that GV 2K is in fact not a zero divisor graph, a contradiction. Therefore,
the theorem is proved. W

i

Figure 17. An illustration of Theorem 6



52 The Pentagon

6. Conclusion and Open Questions

While the theorems contained in this paper help us to classify zero di-
visor graphs of a certain type, those created from the graph construction
technique of wedging, there is much more to be discovered about zero di-
visor graphs and the commutative semigroups attached to them. Is there
a way to determine if graphs of greater than 5 vertices are zero divisor
graphs? Are there other graph construction techniques which we can use
to determine that certain classes of graphs are zero divisor graphs?

Also, our paper focused on determining if given graphs were in fact
zero divisor graphs. Another question to consider concerns the semigroup
attached to a zero divisor graph. Is the semigroup for a given zero divisor
graph unique? What are the algebraic properties concerning semigroups
attached to zero divisor graphs?
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1. Introduction

For hundreds of years, mathematics scholars have studied complex
math underlying ballot elections.

The Ballot Problem. Suppose that Al gets A-votes in an election, Betty
gets B-votes. Let a be the number of A-votes, and b be the number of
B-votes, where a > b. Votes are tallied in a random order. Find the
probability that Al always leads (ties are not allowed) during the counting
of the votes.

The answer, it turns out, is surprisingly simple.

The Ballot Theorem. The probability that Al always leads is
(a—10b)/(a+0), in other words, Al’s margin of victory divided by the
total number of votes.

The Ballot problem and theorem are old. Mathematicians have made
this problem popular by using different methods to solve the Ballot prob-
lem. Joseph Bertrand [2] proved the theorem by induction in 1887. Also,
in [1], Rich Durrett used “backwards martingales” to solve the problem.

2. An Example

Here, we present another approach. Let’s start with an easy example,
where ¢ = 3 and b = 2. Since there are five possible positions for the
two B-votes, there are (g) = 10 possible outcomes. We can, of course,
list all 10 outcomes. Instead, we will attempt to categorize the different
possibilities. It is convenient to display a string of votes on a circle. For
example, voting string of AAABB can be displayed as:
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A A
Figure 1

Notice that we do not need to list all circles from each individual string,
since on any circle there are a + b votes and each vote can start a string.
Strings from any circle may be distinct from one another or some strings
may be the same. We know that if any two circles are the same, then these
two circles contain all the same strings. Therefore, the number of circles,
which is sufficient to represent all possible strings, is less than the number
of all possible strings. Thus, if we remove those repeat circles, then all
remaining circles will be distinct from one another.

e Assume there is no gap between Betty’s two votes as shown in Figure
1 above. Notice that Betty and Al must not be tied, and Al must be
strictly ahead of Betty. If the string goes clockwise, then the only pos-
sible starting point is “one A,” shown below:

B
B

A A

Figure 2

Since these categorized votes are around a circle, any vote on this circle
can start a string. Since there are five votes, there are five strings.
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e Assume there is one gap (one or two A’s) between two B’s (Betty’s
votes.)

A

Figure 3

Then there is still one vote, on the circle, which starts a string that keeps
Al wining at all stages. After listing all possible circles, we observe that
in every circle, the probability that Al is ahead of Betty stays the same,
which is 1/5. Therefore, the probability is 1/5 in this example. But,
here is the question: is this just a coincidence that each circle has the
same number of votes that can be counted as a starting vote for a string
that keeps Al winning at any stage?

3. Proof of the Ballot Theorem

In Ballot problems, it is assumed that Betty has at least one vote; oth-
erwise, the Ballot Theorem has no meaning. Let us revisit the question:
what is the probability that Al always leads? If we want Al to always lead,
then at any stage Al has to have more votes than Betty. Thus, as long as
there is at least one vote left for Al after cancelling Betty’s votes at any
stage, Al leads all the time in such a string. Also, we know that the first
and second votes of any successful string always have to be A-votes.

Suppose a string from a ‘circle’ meets the requirement that Al is always
ahead of Betty. In such a string, whenever an A-vote meets a B-vote,
we use that last A before a B-vote to cancel this vote of Betty. Once all
Betty’s votes are cancelled out, we will have some of Al’s votes left which
can be the starting votes for such a string in a circle. Why can each of
these remaining A-votes be a starting vote of a string that satisfies the
criteria? Only when we start with any of those remaining A-votes, are we
guaranteed that some other A-votes will be available to be used to cancel
B-votes. How do we find all possible leading A-votes? Note that if we
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know which successful string we start with to form a circle, then, we can
work backwards on this circle to find the A-votes which are not used on the
original string to cancel B’s. For the leading A’s to remain, it is necessary
to use a non-leading A-vote to cancel a B-vote. If we use non-leading
A-votes to cancel the B-votes on a string, then the remaining A’s are all
possible leading votes. Note that there are two cases for the location of
the remaining A-votes on a string: one in which they are adjacent, and one
in which at least one possible leading A-vote is separated from the other
possible leading votes. Suppose we know one successful string that forms
a circle.

Case 1 «all possible leading votes adjacent on a string.

Since we know that the first and second votes of any successful string
always have to be A-votes, the remaining A’s, which are all possible lead-
ing votes, start from the first vote on that string. Since the leading A’s stay
together on a string, there are no leading A-votes between or after non-
leading A-votes on this string. Thus, a non-leading A-vote is the closest
vote to some B on a string also on a circle (clockwise.) It follows that
to find the leading A-votes backwards on a circle, we can use a B-vote to
cancel the previous A-vote, which must be a non-leading vote. Since such
strings are arranged around a circle, there is always an A before a B so
there always exists a string in such a circle that satisfies the criteria which
keeps Al winning all the time.

Case 2 at least one leading A-vote that is separated from the other lead-
ing A-votes

Suppose we know all successful strings on such a circle, so we also
know the leading A-votes. Pick any string from these successful strings on
the circle, and then keep the votes from the first leading A-vote to the last
B-vote before the A-vote which is the first leading vote separated from the
other leading votes. If we string these votes around a circle, then this circle
is exactly an example in Case 1. Back to the example of Case 2, since a B-
vote cancels the previous A, the leading A-votes that come after the partial
string will not be canceled by any B-vote from the previous partial string.
Because the partial string that we pick is from any string of all successful
strings on the circle, we can find all possible leading A’s which remain on
any circle after using a B to cancel the previous A-vote also in Case 2.

Since all strings are around circles, and on any circle a > b, there is
always a closest previous A for a B to be cancelled. It follows that there
exists a successful string in any circle in which Al always leads. Since
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one B is canceling the previous A-vote, there is a quantity b of A-votes
that would be cancelled. Then, there would be a quantity a — b of A-votes
left which can be leading votes for keeping the condition Al always leads
on any circle. There are a + b possible leading votes around any circle,
which can lead a string whether Al always leads, or not. Therefore, the

g . . . a
probability in this case is

a

What if there are two or more strings on a circle that represent the same

ordered string? For example:

b with a > b.

A A

A A

Figure 4

—b
Is the probability, a—er, still accurate in such a circle? The answer is
a

yes’. Assume there is a string which is repeated n times in a circle. Let X
denote the leading vote of any of those repeated strings, and let Y denote
the next leading vote after X of the repeated string. Since strings started
with X and Y have the same ordered votes, votes between X and Y appear
again after Y and before the next coming string repeating the same ordered
votes as strings started with X and Y on the circle. Therefore, votes from
X to the vote right before Y can be the leading votes for keeping Al leads
all the time appear again after the last vote before Y. Thus, the number of
votes satisfying the condition that Al leads all the time stays the same in
any intervals between X and the last vote before Y inclusively. If we string
these “intervals” into ‘small circles,” then these circles will be exactly the

>

same. Thus, the probability we get, a—er, is also the probability for each
a

of the small circles that have no repeated strings on them. In conclusion,
having repeated strings on any circles will not be a problem for counting
the probability.
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4. The Possibility of Ties

Suppose that we now modify the problem, asking for the probability
that Al always leads or Al is tied with Betty? Unfortunately, the above
method does not apply for finding the number of “ties.” Since we now
know which A’s can be the leading votes of a string that has the property
that Al always leads, obviously, the next A after those leading A’s would
lead to a string in which Al and Betty would be tied in at least one stage.
When the A’s are together, there is only one A available as a leading vote
to have a tie string. In separated cases, there would be one A for leading
a string having Al and Beth tied after each separated group of leading A-
votes which can start strings that ensure that Al wins all the time. Some A’s
for keeping Al winning at any stage stay together, some A’s are separated,
and these A’s could appear on any circles, so it is impossible to predict
which circles have separated leading A-votes. Thus, we cannot find the
probability that Al always leads or Al is tied with Betty by using circles to
solve such a problem.
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The Problem Corner

Edited by Pat Costello

The Problem Corner invites questions of interest to undergraduate stu-
dents. As a rule, the solution should not demand any tools beyond calcu-
lus and linear algebra. Although new problems are preferred, old ones of
particular interest or charm are welcome, provided the source is given. So-
lutions should accompany problems submitted for publication. Solutions
of the following new problems should be submitted on separate sheets be-
fore February 1, 2012. Solutions received after this will be considered up
to the time when copy is prepared for publication. The solutions received
will be published in the Spring 2012 issue of The Pentagon. Preference
will be given to correct student solutions. Affirmation of student status
and school should be included with solutions. New problems and solu-
tions to problems in this issue should be sent to Pat Costello, Department
of Mathematics and Statistics, Eastern Kentucky University, 521 Lancaster
Avenue, Richmond, KY 40475-3102 (e-mail: pat.costello@eku.edu, fax:
(859)-622-3051).

NEW PROBLEMS 679-688

Problem 679. Proposed by Hongbiao Zeng, Fort Hays State University,
Hays, KS.

Suppose that f (x) is continuous and bounded on (0, c0) and the se-
quence {f (n)}--; doesn’t converge. Show that for any positive constant
M, there exists an xg > M such that f (zg + 1) > f (zo).

Problem 680. Proposed by Hongbiao Zeng, Fort Hays State University,
Hays, KS.

Let

n n n n

fn(z) = ZZcosiscsinjsc - Zcosisc - Zsinjsc + 1.
=1 j=1 i=1 j=1

Show the following two things:

1. The function f,, () has exactly two zeros in the interval (%, g) for

n=23,...

2. If we denote the smaller zero and larger zero as a,, and b,,, respectively,

then - -
lim a, = — and lim b, = —.
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Problem 681. Proposed by Jose Luis Diaz-Barrero, Universitat
Politecnica de Catalunya, Barcelona, Spain.

Let a, b, c be the lengths of the sides of an acute triangle ABC'. Prove

that a8
Z (cos“ B cos? A) <2

cyclic

Problem 682. Proposed by Jose Luis Diaz-Barrero, Universitat
Politecnica de Catalunya, Barcelona, Spain.

Let a, b, c be three positive numbers such that a® +b%+ ¢ = 1. Prove
that

[ LS S ]1/5>§
ad3(b+c)’ B(c+a)® ABla+b) — 2

Problem 683. Proposed by Pedro H.O. Pantoja (student), University of
Natal, Brazil.

LetF,, = 22" + 1, the nth Fermat number. Prove that
o0
1

;W(F1)+7T(F2)+...+7T(Fn) <2,

where 7 (x) denotes the number of primes less than or equal to .

Problem 684. Proposed by Ovidiu Furdui, Campia Turzii, 405100, Cluj,
Romania.

Calculate fol zIn(V1+z—+v1-1)d

Problem 685. Proposed by Russell Euler and Jawad Sadek, Northwest
Missouri State University, Maryville, MO.

Assume that f () is continuous and the integral

IO N
I‘/c ICEDESICED N

exists. Evaluate 1.
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Problem 686. Proposed by Panagiote Ligouras, Leonardo da Vinci High
School, Noci, Italy.

The lengths of the sides of the hexagon ABCDEF satisfy 3AB =
BC,3CD = DFE,3EF = FA. Prove that
AF CB FED

9
2= > 2
cr "TEB T AD 1

Problem 687. Proposed by the editor.

On a calculus test, one student wrote that the derivative of the prod-
uct of three functions f (), g (x), h (x) was equal to f' (x) ¢’ (x) h(z) +
fl(@)g(x)h (x) + f(z) ¢ () B (). While this is not the correct for-
mula, it does work sometimes. Do the following two things:

1. Prove that if the functions are all linear functions and this formula
holds, either the functions are all constant or one is the zero function.

2. Find an infinite collection of sets of three non-constant functions

{f(@),g9(z),h(x)}

where this formula gives the correct derivative of the product of three
functions.

Problem 688. Proposed by the editor.

Find a 6-digit prime integer  where all of its digits are prime and every
pair of consecutive digits is a prime. Find a 12-digit prime integer y with
the same property.
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SOLUTIONS 659-668

Problem 659. Proposed by Andrew Cusumano, Great Neck, NY.

Find the value of the infinite series
o0

2n
Solution by Rustyn VanDeventer (student), OK Alpha, Northeastern State
University, Tahlequah, OK.
The series is a telescoping series. The denominator factors as
(n2—n+1) (n2+n+1).
When we set
A B B 2n
n?—n+1 JrnQJrnJrl Cont4n?24 1
weget A=1and B = —1. So
2n B 1 1
nd 42+l n2-n+l n24ntl
The partial sum is

Lo a 1 1
S, = - = = _
F ngln‘urnQJrl ngl<712n+1 n2+n+1>

()G

1 1
+<k2k+1k2+k+1>

1
= 1—msmce(n+1)2—(n+1)+1:n2+n+1
Thus
o0
2n 1
—— = 1lim S, = Li l—-———— =1
;n4+n2+1 hmoo kinio< k2+k+1>

Also solved by PA Kappa Problem Solving Group, Holy Family University,
Philadelphia, PA; Amanda Goodrick (student), PA Pi, Slippery Rock
University, Slippery Rock, PA; Carly Campbell and Brieann Pedro
(students), Cal State University - Fresno, Fresno, CA; Jessie Deering
(student), TN Beta, East Tennessee State University, Johnson City, TN;
Pedro H. O. Pantoja, UFRN, Natal - RN, Brazil; and the proposer.
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Problem 660. Proposed by Hongbiao Zeng, Fort Hays State University,
Hays, KS.

Let n be a positive integer greater than 1. Let f©) (z) = f(z) =
(x —1)(z —2) - (x —n). Let f) be the i*" derivative of f (z). Let S
denote the sum of all zeros of f(*) (). Show that

n—1 1 n
> 8= ~ >
=0

i=1

Solution by Robert Gardner, TN Beta, East Tennessee State University,
Johnson City, TN.

First we prove a lemma.

Lemma: The average of the zeros of a polynomial is the same as the
average of the zeros of its derivative.

Proof: Let the zeros of a polynomial p of degree n be z1, 22, ..., 25, SO

that
n n
p(z) = Zakzk = an H (2 —2k) -
k=0 k=1

Equating coefficients of 2"~ ! gives
Un-1= —0n (21 + 22+ 2),
so that the average of the zeros of p (z) is
z1+tz+ -2y ap—1

n na,
Let the zeros of p’ be w1, wo, ..., w,_1. Then

n n—1
P (z) = Z kapz*~1 = ay, H (z — wg) .
k=1 k=1

As above, the average of the zeros of p/ is
wy +we + -+ Wy 1 [(nl)an—l]_an—l

n—1 T n-—1 nay, na,
Therefore, the averages of the zeros of p and p’ are the same.

Now we can prove the claim. For

fO@) =f@)=(@-1)(z-2)-(z—n),

14+24-.. 1
and we see that the average of the zeros is retdn n;r .
n
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n(n+1)

. 2
Next, f(0) (z) is an n—1i degree polynomial which, by repeated application
of Rolle’s Theorem, has n — ¢ distinct real zeros. The average of its zeros

Since there are 1 zeros of f(°) (), the sum of the zeros is Sy =

1 . —1 1
is = + . Thus the sum of the zeros of f() is S; = %
Summing the S;’s, we have

”is B nil(ni)(nJrl)_nJrl " n+1 n(n+1)

P 2 T2 4T 2

=0 =0 i=1

1 nm+ D] 1N 4
_n[ 2 ]_n;Z'

Also solved by Gerhardt Hinkle (student), Central High School,
Springfield, MO, and the proposer.

Problem 661. Proposed by Hongbiao Zeng, Fort Hays State University,
Hays, KS.

Evaluate the double sum
1 2k [1 + $(2k+1)(i2—1)]

Zz(l)k/ 1 +$2k+1)i2+1 dz.

k=0 i=1 0
Solution by Gerhardt Hinkle (student), Central High School, Springfield,

MO.

We note that

d 1 —1 4 g (2k+1)
dz i (2k+ 1) (14 22+1)”
1 d 5 —i?
. S _ i2(2k+1) 2k+1
i2(2k+1)d:c[1+( Lo )(HS” ) ]
1
= ——(A-B
i2(2k+1) ( )
where ,
A= (2k + 1)$i2(2k+1)—1 (1 JrSC%H) :
and

—i?—1 .
B = ,1:2 (Zk + 1)$2k (1 +fL‘2k+1> v (71 + CL'Z (2k+1)> .
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Thus,

dzi® (2k + 1) (1 + z2k+1)”
2@ =1)(2k+1) _1 4 @kt ]

d 1 —1 4 m<2k+1><i2>]

SL‘Qk

(14 226+1)" (1 4 g2k+1)PF1
22 [1 4 2GR DE-D)]

(1 + g2k+1)"+1

Thus,

dr =

/ 22k [1 + $(2k+1)(i2—1)] 1

(1+ $2k+1)i2+1 i (2k+1)
and

1 g2k [1 4 p(2k+1)(7-1) 1
/ [ T ] dr = = (1-
0 (1t ayit 22k + 1)
Plugging this into the double sum gives

(o)

k=0 i=1 (1+ SU%H)FH

Also solved by the proposer.

oo 1,.2k (2k+1)(12—1) o0 00
(Uk/ T [1+sc ]d:c _ Z
0
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Problem 662. Proposed by Ken Dutch, Eastern Kentucky University,
Richmond, KY.

In the following diagram, the shaded rectangle measures 2 cm by 4 cm.
What is the radius of the circles in centimeters?

" N

/ / \\

SN

Solution by the proposer.

Let r be the radius of the circles. Notice that the SW-NE diagonal of
the square is made up of four segments with lengths (from left to right):
™2, 7T, T, r\/§. Thus by the Pythagorean theorem, the length, s, of the

side of the square must satisfy s2 + s? = (2r + 27"\/5)2. Hence

(2+2v2)r ( )
s NG V242)r.
In the lower circle, draw a radius to the point at which the rectangle touches
the circle, and drop a vertical segment to the horizontal diameter. By the
Pythagorean theorem, we have

(r—22%4(s—r—4)* =72

Combining these two equations gives a quadratic which can be solved by
the quadratic formula. The only solution that works is

. 6+ 42 + 2v/2 +2¢/2

~ 2.754.
3422

Also solved by Jacob Curley and Jon Janzen (students), OK Alpha,
Northeastern State University, Tahlequah, OK, and Elias Alvarez
(student), Cal State -Fresno, Fresno, CA.
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Problem 663. Proposed by Jose Luis Diaz-Barrero, Universitat
Politecnica de Catalunya, Barcelona, Spain.

Let0 < a < band f : [a,b] — R be a continuous function. If A (x) is
a polynomial with real coefficients for which A (a) < (b — a)? < A (b),
show that there exist a, 5 € (a, b) such that

b
/ f () dz = f () VA(B).

Solution by the proposer.

Let0 < a < b, and let f : [a,b] — R be a continuous function.
Applying the Mean Value Theorem for Integrals, we have that there exists

a € (a,b) such that f:f(sc) dr = (b—a) f(a). Let B(x) = A(z) —
(a — b)%. Then from A (a) < (b—a)?* < A (b), we get

B(a)B(b) = [A (a) - (a — b)ﬂ [A (b) — (a— b)ﬂ <.
Applying Bolzano’s Theorem, we have that there exists 8 € (a,b) such
that B (8) = 0, from which we obtain A (8) = (b— a)®. Taking square

roots in both terms of the preceding expression yields /A (8) = b — a,
and we are done.
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Problem 664. Proposed by Jose Luis Diaz-Barrero, Universitat
Politecnica de Catalunya, Barcelona, Spain.

Find all triplets (a, b, ¢) of real numbers that satisfy the equations
a® =5b* — 2,0 =5¢* — 2,8 = 54" — 2.

Solution by Amanda Goodrick, PA Pi, Slippery Rock University, Slippery
Rock, PA.

Suppose a? > b?. Then 8 = 5a? — 2 > 5b2 — 2 = a. This means
that ¢ — a® > 0, so that (02 — a2) (04 + 2a? + a4) > (. Thus ¢2 > a2
so that b > ¢b, and b2 > 2. We have shown that ¢2 > a2 > b2 > 2
and so a? = b?> = 2. A similar argument leads to the same result when
b2 > a?. Therefore the given hypotheses imply that a? = b? = ¢2. Thus
a% —5a%2+2 =0, and so (a2 — 2) (a4 +2a2% — 1) = 0. Therefore a? = 2

or a®> = —1 + /2, implying that a = v/2 or a = £1/—1 + /2. There
are eight solutions corresponding to a> = 2 and eight corresponding to
a2 =—-1+ \/§, for a total of 16 solutions.

Also solved by Robert Gardner, TN Beta, East Tennessee State University,
Johnson City, TN; and the proposer.
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Problem 665. Proposed by Jason Gibson, Eastern Kentucky University,
Richmond, KY.

Let T" be the set of integers greater than 1 whose prime divisors live in
the set {2,3,5}. What is the sum of the reciprocals of the integers in the
set 17

Solution by Cade Herron (student), TN Beta, East Tennessee State
University, Johnson City, TN.

11
The particular solution is —. We prove a more general case. Let T’

be the set of integers greater than 1 whose prime divisors live in the set
{p1, p2, p3}, where these are distinct primes. Let z € T'. Then z = p’lp%plg ,

. o 1 .
where i, j, k are nonnegative integers. Thus z~! = ———. Since T does

i
not include 1, in order to find the sum of the reciprocals of all the integers
in T', we compute

> 2> DD SIS
i=0 j=0 k= op1p2p3 i=0 Zlg:op% k=0 3
1 1 1
= . —1
1 1 1
1-— 1-— 1-—
P P2 P3
_ pr P2 P34
pr—1 pp—1 ps—1
_ P1p2p3 1

(p1—1)(p2—1)(ps —1)
For (p1,p2,p3) = (2,3,5), we get 11/4.

Also solved by Rex Edmonds (student), PA Pi, Slippery Rock University,
Slippery Rock, PA; OK Alpha chapter, Northeastern State University,
Tahlequah, OK; Jeff Hanson and Conlan Simons, Cal State - Fresno,
Fresno, CA; and the proposer.
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Problem 666. Proposed by Ovidiu Furdui, Campia Turzii, 405100, Cluj,
Romania.

Let a be a positive real number. Find the value of

1
lim V/ (14 az™)" du.
n—oo 0

Solution by the proposer.

The limit equals 1 + a. Let z,, = v fol (1 + az™)" dx. Integrating by
parts, we have

1
/ (14 az™)" dx
0
1
= z(1+ a:c”)”|é — n2a/ " (14 a:c”)”_l dz
0
1 1
= (1+a)"—n? [/ (1+ax™)" dx — / (1 +az™" ! do
0 0

1
= (1+a)" —n%" + n2/ (14 az™)" ! dz
0

> (1+a)" —nz".
It follows that z,, - /1 + n2 > 1 4 a. We find, since z,, < 1 + a, that
1+a

V1+n?

and the limitis 1 + a.

<z, <1+4a,

Also solved by Luis Belman and Cheng Siong (students), Cal State
University - Fresno, Fresno, CA.
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Problem 667. Proposed by Russell Euler, Northwest Missouri State
University, Maryville, MO.

For n > 1, find all Pythagorean triples (7},, Sy, P,) where T}, S,,, and
P, are the n'" triangular, square, and pentagonal numbers, respectively.

Solution by Rex Edmonds (student), PA Pi, Slippery Rock University,
Slippery Rock, PA.

Below are the formulas for the nth triangular, square, and pentagonal
numbers.

Number Formula
Triangular w
Square n?
Pentagonal M

Placing these formulas into the Pythagorean equation and solving for n,

we have
vt - ]

2 2
nt+ 2+ n?4+4nt = 9nt —6n +n?
an* = 8nd
n = 2.

Putting 2 into the above formulas produces only the Pythagorean triple
(3,4,5).

Also solved by Catawba College Math Club, NC Zeta, Catawba College,
Salisbury, NC; Jessie Dering (student), TN Beta, East Tennessee State
University, Johnson City, TN; William Jamieson (student), TN Beta,
East Tennessee State University, Johnson City, TN, Ed Wilson, Eastern
Kentucky University, Richmond, KY; and the proposer.
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Problem 668. Proposed by the editor.

Prove that the sum of the cubes of three consecutive positive integers
can never equal the sum of the squares of two integers which are relatively
prime.

Solution by Patrick James and Brian Tucker (students), Cal State -
Fresno, Fresno, CA.

Preliminary assumption and facts:

1. Fact: Let a > 0. Then the three consecutive integers at,a + 1, a + 2
have the property a® + (a 4+ 1) + (a + 2)® = 3a® + 9a% + 1504+ 9 =
3 (a3 + 3a? + 5a + 3) = Omod 3.

2. Fact: Any integer squared is congruent to either 0 or 1 mod 3.

3. Assumption: The integers b and c are relatively prime.

We proceed by contradiction. Assume that a, b, and c are integers with
a > 0and (b, c) = 1, and suppose that
A+ (a+1)P°+(a+2)?° =02+
By fact 1,0 = b? + ¢?mod 3, so that b = —¢? mod 3. By fact 2, we can
consider two cases.
e Suppose b?> = 1 mod 3. This implies that ¢ = —1 = 2mod 3, contra-
dicting fact 2.

e Suppose b> = Omod 3. This implies that ¢> = O0mod 3. Then 3|b?
and 3|c? so that 3|b and 3|c. This implies that (b, ¢) is a multiple of 3,
contradicting (b, c) = 1.

Also solved by Rho Middleton (student), OK Alpha, Northeastern State
University, Tahlequah, OK,; and the proposer.
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Kappa Mu Epsilon News

Edited by Peter Skoner, Historian

Updated information as of April 2011

Send news of chapter activities and other noteworthy KME events to

Peter Skoner, KME Historian
Saint Francis University
117 Evergreen Drive
313 Scotus Hall
Loretto, PA 15940
or to
pskoner @francis.edu

Installation Report

Georgia Epsilon
Wesleyan College

The Georgia Epsilon Chapter of Kappa Mu Epsilon was installed at
11:15 a.m. on Tuesday, March 30, 2010, at a ceremony in Munroe Sci-
ence Center on the campus of Wesleyan College, located in Macon, Geor-
gia. The meeting was conducted by Jennifer Aust. KME President Ron
Wasserstein served as the Installing Officer. The charter members, Supriya
Shrestha, Bhumika Thapa, Mona Shrestha, Ankit Pokhrel, Shreejaya
Shrestha, Sudha Regmi, Xiaochen Dong, Yiwei Han, Feiya Zhao, Dahlia
Wright, Azea Mustafa, Sadikshya Adhikary, and Sadichha Sitaula were
initiated into the chapter. The first officers of Georgia Epsilon, President
Azea Mustafa, Vice President Shreejaya Shrestha, Recording Secretary
Xiaochen Dong, Treasurer Bhumika Thapa, and Corresponding Secre-
tary/Faculty Sponsor Joe Iskra.

About twenty people were in attendance. After the formal ceremonies,
Ron Wasserstein presented a talk entitled “What Probability and Forrest
Gump Teach Us About the Georgia Lottery.”
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Massachusetts Beta Chapter
Stonehill College

The installation of the Massachusetts Beta Chapter of Kappa Mu Ep-
silon was held in the Merkert-Tracy Administrative Building, on the cam-
pus of Stonehill College in North Easton on Friday, April 8, 2011, at 4:30
p-m.

In attendance were the seven charter faculty members who were ini-
tiated, including Professors Ralph Bravaco, Fr. Rudy Carchidi, Carlos
Curley, Norah Esty, Eugene Quinn, Hsin-hao Su, and Timothy Wood-
cock; nine of the 12 charter students members including Laura Bercume,
Sarah Chiodi, Meghan Galiardi, Cortney Logan, Stephanie Martino, Kris-
ten Mattson, Daniel Perry, and Jamie Long; installing officer National
Historian Peter Skoner; and 22 family members of initiates for a total of
39 people in attendance. Charter student members Lauren Balla, Alyssa
Harel, Katherine McCue, and Kathleen Zarnitz did not attend.

The afternoon celebration began with a buffet dinner including salad,
shrimp, ravioli, and very popular chocolate cake. Professor Woodcock
welcomed the initiates and guests to the ceremony. Installing officer Pe-
ter Skoner followed with a welcome from the Kappa Mu Epsilon national
council, and an introduction to the aims, activities, and history of the orga-
nization.

For the installation ceremony, Laura Bercume and Cortney Logan had
speaking parts in the installation ritual. After initiates accepted their mem-
bership pledges, each initiate was invited to sign the Massachusetts Beta
Chapter Roll, and accepted a membership card, a KME brochure, a pro-
gram announcing the charter initiates, their KME certificate, and a KME
jewelry pin. Following the description of the crest, Cortney accepted
the framed charter for the newly installed Massachusetts Beta Chapter of
Kappa Mu Epsilon. Then the charter chapter officers were installed in-
cluding: President Cortney Logan, Vice President Laura Bercume, Sec-
retary Kathleen Zarnitz (with member Jamie Long accepting), Treasurer
Alyssa Harel (with member Dan Perry accepting), Faculty Sponsor Pro-
fessor Ralph Bravaco, and Corresponding Secretary Professor Timothy
Woodcock. Each officer was charged with the responsibilities of the of-
fice, and each chose to accept those responsibilities. Several large rounds
of applause followed each significant part of the ceremony.

Following the ceremony, charter member Meghan Galiardi presented
“Facial Recognition using Conformal Geometry,” a summary of her sum-
mer 2010 REU research at Central Michigan University. The evening
concluded with many camera flashes, congratulations, fellowship, pleas-
ant conversation, and the partitioning of the remaining chocolate cake.
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Chapter News

AL Alpha — Athens State University
Chapter President — Melisa Dutton, 240 Current and 21 New Members
Other Fall 2010 Officers: Carl Kuby, Vice President; Shannon Harwell,
Secretary, and Patricia Glaze, Corresponding Sec. and Faculty Sponsor
We participated with the Math and Computer Science (MACS) Club
for two events: During the SGA-sponsored "Welcome Back Week" we
helped promote membership in MACS. We also assisted MACS during
The Old Time Fiddler’s Convention by selling smoked BBQ ribs to raise
money for charities.
AL Epsilon — Huntingdon College
Dr. Sally Clark, Corresponding Secretary
New Initiates — Ashleigh Karis Anderson, Tin May Aye, Johnathan Brett Barnett, and Han-
nah Elizabeth Correia.
AL Zeta — Birmingham Southern College
Chapter President — Rebecca Terry, 17 Current Members
Other Fall 2010 Officers: Amy Schumacher, Vice President; Stephanie
Gosset, Secretary, Bernadette Mullins, Corresponding Secretary and Fac-
ulty Sponsor
Alabama Zeta hosted Dr. John Mayer of the University of Alabama
at Birmingham in November who spoke on Mathematical Models for Fair-
ness; he presented an interactive colloquium in which the audience was
responsible for the fair division of property and power. They wrestled with
issues such as that posed by the following problem: Andy, Bert, and Con-
nie are farmers. Their neighbor who is also a farmer is retiring next month
and wishes to sell her 12 pigs for $480. Andy, Bert, and Connie can only
afford to purchase the pigs if they pool their money. Andy can contribute
$97, Bert can contribute $210, and Connie can contribute $173. How many
pigs each should Andy, Bert, and Connie get? Explain why your distribu-
tion is a fair division of the pigs. (Note: No pigs may be harmed or shared
in your solution.)
AL Theta - Jacksonville State University
Dr. David W. Dempsey, Corresponding Secretary
New Initiates - William Justin Beam, Wesley Stone Campbell, Allison Leighanne Clark,
Felisha Nelson Cleland, Stephen Coggins, Courtney Marie Crosby, Rachel Lynn Howell-
Farley, April Dianne Franklin, Jordan Comelus Fuller, Elizabeth Mae Garnett, Tiffany
D. Hill, Megan Michelle Lightsey, Evan Michael Mince, Tara Modesa Naugher. Noel
Overton, Jr., Sharon Padgett, Amanda Camille Pitts, Russell Price, Sarah Elizabeth Pugh,
Matthew Allen Sosebee, Christian Hope Whitfield, Ashlin Donielle Young, and Kara Marie
Young.
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CO Delta — Mesa State College
Erik Packard, Corresponding Secretary
New Initiates — Melissa Asay, Krystal Arnett, Robert Atkins, Katee Denham, Gordon Gib-
son, Jonathan Lusk, David Miller, Ethan Stanley, and Brittelle Thorpe.
FL Beta — Florida Southern College
Allen Wuertz, Corresponding Secretary
New Initiates — Melissa J. Adams, Brian R. Covello, Robert Wesley Crues, Kelly A. Mad-
den, Joshua Ryan Newell, Alex Paradis, Spencer D. Parry, Lindsay C. Snyder, Christopher
G. Stahl, and Sarah Ilyta Studebaker.
GA Beta — Georgia College and State University
Laurie Huffman, Corresponding Secretary
New Initiates — Kelsey Davis, Trey Gay, Thomas Pangia, Lauren Tripi, Kendyl Wade, and
Scott Wofford.
IA Alpha — University of Northern Iowa
Chapter President — Jaime Zeigler; 30 Current and 5 New Members
Other Fall 2010 Officers: Tristam Nebelsick, Vice President; Kelsey Stau-
dacher, Secretary; David Rygh, Treasurer, and Mark D. Ecker, Corre-
sponding Secretary and Faculty Sponsor

Our first meeting was held on September 27, at Professor Mark Ecker’s
house where student member Samantha Jaeger presented her paper entitled
“Factors of Household Income.” Student member Khang Ng presented his
paper entitled “Goal Scorers for Manchester United Soccer Players” at
our second meeting on November 3 at Professor Russ Campbell’s home.
Student member Kelsey Staudacher addressed the initiation banquet with
"Analysis of State Graduation Rates." Our banquet was held at Pepper’s
Grill and Sports Pub in Cedar Falls on December 8, where five new mem-
bers were initiated.
New Initiates — Hannah Andrews, Allison Meier, Elizabeth Mastalio, David Ta, and Nicole
Weis.
IL Beta — Eastern Illinois University
Nancy Van Cleave, Corresponding Secretary
New Initiates - Sylvia Carlisle, Marlon Chatman, Christopher DeSanto, Daniel Dulaney,
Renee Fietsam, Julie Huber, Ethan Ingram, Catherine Kruger, Kelly Price, Jessica Ringler,
James Romack, and Will Zukowski.
IL Zeta — Dominican University
Chapter President — Kim Plesnicar
Other Fall 2010 Officers: Daniel Dziarkowski, Vice President; Eva Mehta,
Secretary, Lisa Gullo, Treasurer; and Aliza Steurer, Corresponding Secre-
tary and Faculty Sponsor
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This semester we focused our efforts on fundraising. We held a pop-
corn sale and an origami ornament sale. For the letter, Professor Paul Coe
gave a workshop on how to make a few simple origami platonic solids. We
spent a couple of afternoons making several copies of these ornaments in
different colors and sold them at the end of the semester. It was a great
bonding experience and we earned a decent amount of money!

IL Theta — Benedictine University

Chapter President — Michael Whitley, 253 Current Members

Other Fall 2010 Officers: Michael Mutersbaugh, Vice President, Victo-
ria Blumen, Secretary, Jared Gustafson, Treasurer; Dr. Thomas Wangler,
Corresponding Secretary, and Dr. Jeremy Nadolski, Faculty Sponsor

IN Beta — Butler University

Chapter President — Sarah Prusinski; 20 Current and 13 New Members
Other Fall 2010 Officers: Ashley Drees, Vice President; Kristen Allen, Sec-
retary,; Eric Buenger, Treasurer; and Dr. Amos Carpenter, Corresponding
Secretary and Faculty Sponsor

In addition to our monthly meetings, we had two invited speakers.
New Initiates - Roshni Agarwal, Kristen Allen, Eric Buenger, Xi Chen, Rachel Colby, Ben
Craw, Ashley Drees, Ashley Hanson, Alaina Kenney, Zachary Lovall, Sarah Prusinski,
Casey Szulc, and Katherine Wainwright.

IN Gamma - Anderson University

Dr. Stanley L. Stephens, Corresponding Secretary

New Initiates — Matthew J. Danskey, Dorothy G. Clements, Mathew S. Preston, Joseph A.
Davidson, Mengjiao Tan, Carrie M. Steinke, Nabin Timsina, and Amy L. Wuestefeld.

KS Alpha - Pittsburg State University

Chapter President — Vanessa Peach

Other Fall 2010 Officers: Jordan Jameson, Vice President; Aisha Ford,
Secretary;, Wes Brook, Treasurer; Dr. Tim Flood, Corresponding Secre-
tary; and Dr. Cynthia Woodburn, Faculty Advisor

New Initiates — Bilal Abdullah, Matthew Haffner, Steven Huskey, and Lissa Mentzer.

KS Beta - Emporia State University

Chapter President - Yuchen Chen; 35 Current and 11 New Members
Other Fall 2010 Officers: Jennifer Long, Vice President; Yuying Cao, Sec-
retary, Whitney Turley, Treasurer; and Dr. Connie Schrock, Correspond-
ing Secretary and Faculty Sponsor

We had a very busy semester with mathematics and social events
monthly. Events included bowling, movies and mathematical games. At
the end of the semester we took a trip to Kansas City to visit the rare math-
ematics book collections at the Linda Hall Library. After the visit we went
to the Plaza for dinner. One of our continuing service projects is to help
College Algebra and other students learn how to use graphing calculators.
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New Initiates - Jessica Anderson, Yuying Cao, Daria Cuznetova, Heather Czechowski,
Jared Dyche, Keely Grossnickle, Yuan Guo, Yangrong Jia, Ye Kang, Lezley Lawson,
Xiongya Li, Fan Liu, Jennifer Long, Chase Mclver, Andrew Rees, Sheila Sarrafi, Alexan-
dra Schmaderer, Emily Schmar, Yusuke Suita, Jungshuang Sun, Chris Teeter, Cade Witte,
and Tiayue Zhao.
KS Delta — Washburn University
Chapter President — Stephen Littleton, 26 Current Members
Other Fall 2010 Officers: Sean Van Dyke, Vice President;, Anna Lischke,
Secretary and Treasurer, Dr. Mike Mosier, Corresponding Secretary; and
Dr. Kevin Charlwood, Faculty Sponsor
KY Alpha - Eastern Kentucky University
Chapter President — Jennifer Fischesser; 11 Current Members
Other Fall 2010 Officers: Kristin Eppinghoff, Vice President; Michael
Mazzotta, Secretary; Ryan Whaley, Treasurer, and Pat Costello, Corre-
sponding Secretary and Faculty Sponsor

The Fall semester included a meeting to elect officers and discuss
plans for the new year. In December, we had a meeting where we did a
White Elephant gift exchange.
KY Beta — University of the Cumberlands
Chapter President — Amy Roberts; 29 Current Members
Other Fall 2010 Officers: Megan Barrowman Brown, Vice President; Jer-
rid Neeley, Secretary; Clint Creekmore, Treasurer, Dr. Jonathan Ramey,
Corresponding Secretary, and Dr. John Hymo, Faculty Sponsor

Along with the Mathematics and Physics Club and Sigma Pi Sigma,
the chapter had a picnic at Briar Creek Park on October 7. On Decem-
ber 10, the entire department, including the Kentucky Beta chapter, had a
Christmas party with about 41 people in attendance.
New Initiates — Megan Barrowman, Aaron Bruce, Nathan Centers, Marie Dennison, Delilah
Devore, Alissa Ellis, Lindsey Embry, Erin Engel, Whitney Horn, Candace Mack, Natalia
McClellan, Jerrid Neeley, Olivia Neeley, Amy Roberts, Melodye Smith, and Michelle We-
ber.
LA Gamma — Northwestern State University
Chapter President — Jessica Bass, 14 Current Members
Other Fall 2010 Officers: Baylen Johnson, Vice President; Carrie Faulk,
Secretary,; Phillip Adams, Treasurer, Leigh Ann Myers, Corresponding
Secretary, and Lisa Galminas, Faculty Sponsor

The Louisiana Gamma chapter of Kappa Mu Epsilon collected toys
for children in the LSU Health Sciences Center Hospital in Shreveport,
LA.

New Initiates — Carrie Falke, Baylen Johnson, and Jessica Ricks.
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MA Beta — Stonehill College
Timothy Woodcock, Corresponding Secretary
New Initiates — Lauren Balla, Laura Bercume, Ralph Bravaco, Rudy Carchidi, CSC, Sarah
Chiodi, Carlos Curley, Norah Esty, Meghan Galiardi, Alyssa Harel, Cortney Logan, Jamie
Long, Stephanie Martino, Katherine McCue, Kristen Mattson, Daniel Perry, Eugene Quinn,
Hsin-hao Su, Timothy Woodcock, and Kathleen Zarnitz.
MD Delta — Frostburg State University
Chapter President — Joshua Wilson, 21 Current Members
Other Fall 2010 Officers: Rachel Skipper, Vice President; Jesse Otto, Sec-
retary, Kevin Loftus, Treasurer; Mark Hughes, Corresponding Secretary
and Faculty Sponsor, and Frank Barnet, Faculty Sponsor

The Maryland Delta Chapter’s fall activities commenced with a meet-
ing in September featuring a lecture by our Vice President Rachel Skipper
concerning her summer research experience with the McNair Program,
giving an interesting presentation on Zipf’s Law and the GDP’s of emerg-
ing economies. Also in September was the chapter’s participation in the
Mathematics Department’s annual Meet and Greet event for Mathematics,
Physics and Engineering students and faculty. During October, the chap-
ter represented the Mathematics Department at the annual Major’s Fair
on campus. Our October meeting featured a presentation on the fascinat-
ing Farey Sequence given by Professor Emeritus Edward White, a former
faculty sponsor of the Maryland Delta Chapter. Our November meeting
involved a workshop on Mathematica software given by Dr. Barnet, one
of our current faculty sponsors.
New Initiates — Marcus Carter, Justin Good, Aaron Littlejohn, Jacob Pickwoad, Adam
Rexroad, Luke Valenta, and Meghan Voelkel.
MD Epsilon — Stevenson University
Chapter President — Rebecca Hollins; 35 Current and 19 New Members
Other Fall 2010 Officers: Megan Staudenmaier, Vice President; Diane
Swale, Secretary, Rachel Buchanan, Treasurer, and Dr. Christopher E.
Barat, Corresponding Secretary and Faculty Sponsor

On September 21, the Chapter initiated 19 new members in a cer-
emony on Stevenson’s Greenspring campus; the guest speaker was Dr.
Bonita Saunders of the National Institute of Standards and Technology
(NIST), who gave a talk entitled "Creating Interactive 3D Graphs for a
Digital Library: So How is This Math?" The participants also watched a
video tribute to Dr. Susan P. Slattery, Chair of the Department of Mathe-
matics, who was killed in a car accident in August prior to the beginning
of Fall classes. The Chapter’s share of the proceeds from the Fall 50-50
Raffle, near $300, was donated to the newly established Dr. Susan P. Slat-
tery Scholarship Fund, to provide financial support to female students in
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science or mathematics. KME members also assisted in the Stevenson
School of the Sciences Reef Ball Project, which created concrete balls to
be used in an artificial reef in Chesapeake Bay.
New Initiates - Amanda Boodhoo, Rachel Buchanan, Maria Carrera, Jennifer DeHoff, Tyler
Demasky, Aline Dzaringa, Kellie Forsyth, Thomas Fuller, Grace Guerrier, Marie Guerrier,
Amanda Hieatzman, Rebecca Hollins, Staci Hoover, Amanda King, Daniela Poss, Megan
Staudenmaier, Monalee Swale, Joshua Vogel, and Lindsay Ward.
MI Beta — Central Michigan University
Chapter President - David Creech
Other Fall 2010 Officers: Katerina Tiles, Vice President; Marie Ermete,
Secretary, Nick Stephenson, Treasurer;, Abram Demski, Public Relations;
and Dr. Sivaram K. Narayan, Faculty Sponsor

During the academic year KME met once every two weeks. Ten new
members were initiated in the spring 2010. KME members raised money
through a book sale held jointly with other student organizations in the de-
partment. KME members designed and sold t-shirts for Pi day (March 14)
and "Never Drink and Derive" t-shirt during October. The money raised
was used for buying pizza on meeting days and for conducting initiation
ceremonies. Additional funding was sought through the College of Sci-
ence and Technology. Dr. Tim Pennings from Hope College spoke on
April 20, 2010, “Do Dogs Know Calculus?,” that was attended by over
150 students. Dr. Narayan gave a 5-10 minute talk at every meeting on
different topics in mathematics and its applications, and spoke on the re-
search opportunities for undergraduates here at CMU with both the REU
and LURE programs. Two members presented their research from summer
projects on September 15th, and one gave a talk at the Michigan Under-
graduate Mathematics Conference, held at Grand Valley State University
on October 16th; other members also attended the conference. On Octo-
ber 23rd, members spent an evening at Uncle Jon’s Cider Mill (the haunted
barn was awesome) followed by the Terror on 27. Six members formed
two teams and took part in the 16th Annual Michigan Autumn Take Home
(MATH) Challenge on November 6th; one team placed 6th and the other
placed 18th out of the 67 teams. Dr. Xiaomeng Zheng spoke on applica-
tion of mathematics in cancer research on November 10th. On December
4th six members took part in the William Lowell Putnam Mathematical
Competition.
New Initiates - Joan Barry, Alyssa Benetti, Joseph Bibi, Michael Black, Michael Came,
David Creech, Earle Crosswait, Robert Cundy, Brittany DeGroot, Angela Enck, Zachary
Gillette, Veronica Lach, Mark Pelfrey, Mickey Redmond, Katherine Revenaugh, Nick
Stephenson, Katerina Tiles, Shawn Witte, and Philip Zerull.
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MI Delta — Hillsdale College
Chapter President — Kerry Frost;, 46 Current and 14 New Members
Other Fall 2010 Officers: Juliana O’Neill, Vice President; Jonathan Gregg,
Secretary, Meredith Longlois, Treasurer, and Dr. David Murphy, Corre-
sponding Secretary and Faculty Sponsor

To announce the new officers elected, we held a Kick-Off Picnic on
September 10. At that event, our newly elected Secretary, Jonathan Gregg,
was also awarded the Second Place Trophy for last spring’s Honorama,
an annual bowling tournament for honoraries of Hillsdale College. The
KME team came in fifth in the overall competition and we are looking to
do even better this year. On October 1, KME and the Math Department
co-sponsored a Student Mathematics Symposium, where KME students
Jonathan Gregg, Ian Markwood and Hannah Yee presented the results of
their summer research while Heidi Schweizer talked about her Budapest
Semester in Mathematics. Three more students (two doing research and
one doing an actuarial internship) were unavailable to speak. Three stu-
dents attended the Michigan Undergraduate Mathematics Conference held
at Grand Valley State University, and Hannah Yee presented her summer
REU research. We hosted our second annual Euchre Night on October 27,
and recognized our 14 new members. On December 15, we sponsored a
Final Exam Study Break.
New Initiates - Aubrey Childs Annis, Patricia Bassett, Jaclyn A. Beattey, Brigitta Estelle
Burguess, Casey Gresenz, Casey Haggerty, David S. Montgomery, Miriam L. Poole, Jamin
M. Rager, Daniel Rhodes, Ethan Thomas Smith, Edward Leo Sutherland, Jennifer Waller,
and Roxanna C. West.
MI Epsilon — Kettering University
Chapter President — Jessi Harden (A Section) and Matthew Sornig (B Sec-
tion),; 198 Current Members
Other Fall 2010 Officers: Brian Curbin (A Section) and Starla Walters
(B Section), Vice Presidents;, Keishawna Baker (A Section) and Shah-
noor Amin (B Section), Secretaries; Derek Hazard, Kasey Simons, and
Michael Steinert, Officers;, Boyan N. Dimitrov, Corresponding Secretary,
and Ruben Hayrapetyan (Section A — Winter and Summer terms), and Ada
Cheng (Section B — Spring and Fall terms), Faculty Sponsors

At Kettering University, we the traditional Pizza/Movie Parties with
the movie "Infinite Secrets" about Archimedes lost book on August 11
and 25. For 10th consecutive year, we hosted the KU High School Math-
ematics Olympiad, organized by the Mathematics group of enthusiastic
faculty, (http://paws.kettering.edu/~acheng/Olympiad/new-winners.html).
The competition is designed to identify and encourage students with inter-
ests and abilities in mathematics, and our goal is to develop the Olympiad
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into one of the most prestigious mathematical competitions in the region.
The examination is designed for students in grades 9 through 12, consists
of six challenging problems and has a time limit of four hours. The prob-
lems range from "mind-benders" that require little mathematical skills to
problems that require the knowledge of geometry, trigonometry and be-
ginning calculus. The winners were: First Place: Joseph Renzi,10th grade
at University Liggett School; Second Place: Mason Liang, 12th grade at
Troy High School. Third Place: Dalton Allan, 12th grade at Saginaw Arts
and Science Academy and SVSU. Fourth - Seven Place: Matthew Bauerle,
11th grade and homeschooled; Magda Lee Hlavacek, 10th grade in Sag-
inaw Arts and Science Academy and SVSU; Alex Kitchin, 12th grade at
Flushing Senior High School; and Mayank Patke, 10th grade at Okemos
High School.
MO Alpha — Missouri State University
Chapter President — Christina Tharp, 36 Current and 7 New Members
Other Fall 2010 Officers: Brett Foster, Vice President; Ashley Lewis, Sec-
retary,; Lee Hicks, Treasurer; and Jorge Rebaza, Corresponding Secretary
and Faculty Sponsor

Seminars were held on the following dates with the following speak-
ers: 09/29/10-KME Annual Picnic; 09/22/10-KME Seminar with speaker
John Havel (Biology), MSU; 10/28/10-KME Seminar and Math Power
Hour with Math games and contests; and11/30/10-KME Seminar with
speakers Jeff Chapman and Ashley Lewis (Mathematics), MSU.
New Initiates - Brian Barnhouse, Ashley Bartkoski, Miles Collins, Josh Hartman, Peng
Hou, Sarah Kramer, and Kelsey Ryan.
MO Beta — University of Central Missouri
Rhonda McKee, Corresponding Secretary
New Initiates - Amy Billups, John Crooker, Codey Davis, Jennifer Granicke, Zachary Fos-
ter, Sara Kennedy, David Lewis, Kevin Loeffler, Annie Lowe, Christopher Purcell, Emilee
Rice, Hannah Williams, and Alexandra Wolf.
MO Theta — Evangel University
Chapter President — Rosemary Sherwood; 11 Current Members
Other Fall 2010 Officers: Lindsay Paur, Vice President; and Don Tosh,
Corresponding Secretary and Faculty Sponsor

Meetings were held monthly. In September, we had our first meeting
at the home of Don Tosh. In November, most members were able to attend
the math conference held at Missouri State University.
New Initiates - Elizabeth Baumeister, Rebecca E. Dalstein, Jonathan Ryan Faggart, Richard
Grauberger, Nathaniel McGinnis, Danika C. Lindsey, and Katie Strand.
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MO Iota - Missouri Southern State University
Chip Curtis, Corresponding Secretary, Grant Lathrom and Rich Laird,
Faculty Sponsors
New Initiates - Nicole Green, Adebayo Orunpekun, Jared Smith, and Peter Thompson.
MO Mu - Harris-Stowe State College
Dr. Ann Podleski, Faculty Sponsor

KME activities are combined with an open Math Club. We sponsor
review sessions for the mathematics certification exams. We also have
a series of hands-on math activities that are open to the entire university
community. In December we had a session entitled "Coloring Pascal’s
Triangle." We began planning for the KME National Convention, which
Harris-Stowe is hosting in April 2011.
MO Nu - Columbia College
Tomas Horvath, Chapter President, 10 Current Members
Other Fall 2010 Officers: Chris Hawkins, Vice President, Kyle Christian,
Secretary, Austin Miller, Treasurer; and Dr. Kenny Felts, Corresponding
Secretary and Faculty Sponsor
New Initiates - Serena Jenkins, Ran Kim, Giang Le, Rahel Lemma, Olim Negmatov, Car-
olyn Summers, AnniLauri Villeme, and Tabitha Williams.
MS Alpha — Mississippi University for Women
Chapter President — Kerri Dewitt; 11 Current Members
Other Fall 2010 Officers: Matthew Toncrey, Vice President; Tyler Greer,
Secretary, Jami Henry, Treasurer, Dr. Shaochen Yang, Corresponding
Secretary, and Dr. Joshua Hanes, Faculty Sponsor

On September 29th, we discussed future projects for KME, interest-
ing topics in mathematics, and had some tasty snacks. And on November
17th, we assembled four boxes for "Operation Christmas Child" of Samar-
itan’s Purse, and had refreshments.
NC Epsilon — North Carolina Wesleyan College
Bill Yankosky, Corresponding Secretary
New Initiates — Holly Lauren Deaver, Trevour Andrew Huber, Jenalee Michele McFadden,
Linh Su Nguyen, Brittany Nichols, Tyler Kevin Olkowski, and Deanna Petersen.
NC Zeta — Catawba College
Chapter President — Cynthia Cook, 16 Current Members
Other Fall 2010 Officers: Spencer Ashley, Vice President; Zachary Owen,
Secretary, Bridgett Hendersen, Treasurer, and Doug Brown, Correspond-
ing Secretary and Faculty Sponsor
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KME and Math Club members ran a weekly help session, open to
any students with questions about any of their mathematics courses, and
planned and hosted events such as a movie night (A Beautiful Mind), fund-
raising activities and activities for Pi Day next spring. Five new members
were initiated on February 3.

New Initiates — Alan Burgess, Jacob Hill, Mark Ketterer, Joseph Manser, and Jonathon
McNeill.

NC Eta - Johnson C. Smith University

Chapter President, Niketa Jones, 14 Current Members

Other Fall 2010 Officers: Maurice Scott, Vice President; Shimeca Bow-
man, Secretary, Quadashia Walker-Moss, Treasurer, Dr. Lakeshia Leg-
ette, Corresponding Secretary, and Dr. Brian Hunt, Faculty Sponsor

New Initiates — Gerald Agbegha, Jerran Banks, Merischia Griffin, Dr. Nailong Guo, Dr.
Dawn McNair, Ashley Moore, Brigette Pitts, Amber Shoecraft, Mikkita Stevens, Sasha
Thornhill, and Dr. Hampton Wright.

NE Alpha — Wayne State College

Chapter President — Hannah Lee; 3 Current and 10 New Members

Other Fall 2010 Officers: Baili Klein, Vice President, Katie Svec, Secre-
tary; Kyle Martin, Treasurer; and Dr. Jennifer Langdon, Corresponding
Secretary and Faculty Sponsor

This semester, we initiated 10 members. It had been over four years
since we’ve had initiates, so this was a banner year! We also won third
prize in the homecoming banner competition, decorated a math-themed
Christmas tree as part of a fundraiser for underprivileged children, and
painted/decorated the math department’s computer lab rescuing it from its
former basement-drab condition.

New Initiates - Deena Bignell, Amy Doerr, Emily Gardner, April Groteluschen, Jennifer
Haselhorst, Jake Hirz, Jennifer Langdon, Amy Maika, Eric Snitily, and Christy Wilson.
NE Beta — University of Nebraska Kearney

Chapter President — Valerie Sis, 13 Current and 5 New Members

Other Fall 2010 Officers: Kandi Young, Vice President, Brian Flannery,
Secretary, Kali Anderson, Treasurer; and Dr. Katherine Kime, Corre-
sponding Secretary and Faculty Sponsor

This fall, five KME members participated in the Homecoming parade.
Three marched, each with a sign with a letter, spelling out KME; the other
two gave out candy. We sent thank you letters, including photos, to the
five charter members who came to our 50th Anniversary Celebration last
spring. We were asked for information for a university press release on
KME, and our president designed a brochure about KME and our chapter,
copies of which were given out at a student function. We are planning a
Math Fun Day at a local school, to be held in April.
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New Initiates - Claire Aylward, Josh Brummer, Koichi Sato, Laura Slaymaker, and Brent
‘Wheaton.
NE Delta — Nebraska Wesleyan University
Chapter President — Brent McKain, 13 Current Members
Other Fall 2010 Officers: Macklin Warrington, Vice President;, Abigail
Raasch, Secretary, and Melissa Erdmann, Corresponding Secretary and
Faculty Sponsor

In the autumn we had an event where participants in various research
experiences for undergraduates spoke. At another event a rubix cube was
solved slowly with explanation, and then a rubix cube race ensued. To
close the term we had a holiday party with the Physics Club where chili
was eaten, gifts were exchanged, and mathematical carols were sung.
New Initiates — Dana Anderson, Amanda Ardito, Linda Arthur, Laura Booton, Mary Ca-
narsky, Michelle Koke, and Joseph Menousek.
NH Alpha - Keene State College
Vincent J. Ferlini, Corresponding Secretary
New Initiates - Abigail Ball, Joshua Binder-Brantley, Jessica Boland, Caitlin Bowen, Heather
Burbine, Matthew Caputo, Megan Ferm, Alexandra Petrilli, Eric Sansone, and Katlyn San-
tosuosso.
NJ Delta — Centenary College
Chapter President — Kim Kupper, 18 Current Members
Other Fall 2010 Officers: Ashley Burger, Vice President;, Carissa Utter
Secretary,; Brandon luzzolin, Treasurer; and Kathy Turrisi, Corresponding
Secretary and Faculty Sponsor
NJ Epsilon — New Jersey City University
Chapter President — Peter Morin; 22 Current Members
Other Fall 2010 Officers: Phil Carrillo, Vice President, Tracy Goycochia,
Secretary, Cody Ching, Treasurer; Dr. Beimnet Teclezghi, Corresponding
Secretary,; and Dr. Yi Ding, Faculty Sponsor
NY Mu - St. Thomas Aquinas College
Dr. Marie Postner, Corresponding Secretary
New Initiates - Amy Aquilina, Renee C. Bluszcz, Stephen M. De Paul, Heather Lynn Ed-
sall, James C. Joy, Jeannine M. Mulder, and Leanne Nicole Urbancik.
NY Nu - Hartwick College
Chapter President — Amanda Cappelli; 18 Current Members and 1 New
Member
Other Fall 2010 Officers: Dechhin Lama, Vice President; Julie Kessler,
Secretary, Rebecca Lounsbury, Treasurer; and Ron Brzenk, Correspond-
ing Secretary
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NY Omicron - St. Joseph’s College
Chapter President — Melissa A. Bernstein, 40 Current Members
Other Fall 2010 Officers: Charles C. Essig, Vice President; Maggie Kumpas,
Secretary, Gabriela Rodrigues, Treasurer; Elana Reiser, Corresponding
Secretaries; and Dr. Donna Marie Pirich, Faculty Sponsor
KME members spent the Fall semester volunteering to tutor in the
Mathematics Clinic, where local high school students can get free tutor-
ing. We have also held bake sales and raffles to raise money to send repre-
sentatives to the national conference.
New Initiates - Salvatore J. Alfredson, Lauren Beaudoin, Steven Brucato, Christina Cal-
varese, Thiessen Charles, Alessandro da Luz, Alexander De Ridder, James Ehrhardt, Megan
E. Fensterer, Edward M. Gocinski, Jillian Kearney, Philip Lombardo, Alison Nunziata,
Melissa O’Connell, Samantha R. O’Connor, Kerry Ojakian, Alyssa Quagliata, Brittany
Michele Silver, Shannon M. Stark, Alison E. Stephens, Jennifer Turturro, Maria C. Werner,
Michael Wheaton, and Robert J. Woods.
NY Pi — Mount Saint Mary College
Lee Fothergill, Corresponding Secretary
New Initiates — Bridget M. Costello, Theresa Dabroski, Gregory J. Dowling, Matthew
Brandt Fowler, Jessica Giordano, Amy Goldstein, Allison E. Hasse, Christine D. Lauber,
Sara Ann Soll, and Jennifer Weber.
NY Rho - Molloy College
Chapter President — Kimberly Thompson; 51 Current and 31 New Mem-
bers
Other Fall 2010 Officers: Jennifer Zontini, Vice President;, Marissa Cusa,
Secretary;, Amin Hashimi, Treasurer; Manyiu Tse, Corresponding Secre-
tary; and Deborah Upton, Corresponding Secretary and Faculty Sponsor
Our chapter piloted “Calculus Corner,” a walk-in for those that need
help in Calculus (as well as other math courses). All the tutors volunteered
their time to make it happen.
New Initiates — Lisa Marie Amabile, Genevieve Brzezinski, Megan Butterworth, Erika
Capogna, Sanna Cheema, Brian Ciampo, Brigid Damm, Jillian Dutra, JoBeth Dutra, Vanessa
Estevez, Marissa Felice, Daniel Flanick, Taylor Flinn, Alfeen Hasmani, Amanda Kovacs,
Patricia Lyons, Stefanie Macaluso, Joanna Mantone, Christina Marra, Annmarie Pagano,
Gillian Plaia, Nicole Reverberi, Meghan Schmidt, Claire Troiano, and Andrea Turrisi.
OH Gamma - Baldwin-Wallace College
David Calvis, Corresponding Secretary
New Initiates — Adam J. Bianchi, Michelle A. Blevins, Matthew J. Ciha, Christopher L.
Cramer, Julia A. Donajkowski, Gina Mingo, Adam E. Pengal, Hannah V. Shoemaker, An-
thony M. Testa, Alexander J. Trzeciak, and Sarah L. Widener.



Spring 2011 87

OK Alpha - Northeastern State University
Chapter President — Toni Slagle; 55 Current and 12 New Members
Other Fall 2010 Officers: Seth Vansell, Vice President, Jacob Curley, Sec-
retary,; Jonathan Moyer, Treasurer; and Dr. Joan E. Bell, Corresponding
Secretary and Faculty Sponsor
Our fall initiation brought 12 new members into our chapter. At our
September meeting, Dr. Giovanni Petris from the University of Arkansas
spoke on “Bayesian statistics, or how to combine historical information
with data,” and also spoke with students about their graduate program in
mathematics. Dr. Bell showed the “classroom edition” DVD of the Dis-
ney movie Donald in Mathmagic Land, which features scene selection and
clips correlated for three grade bands (3-5, 6-8, and 9-12). We spent one
evening calling alumni of the College of Science and Health Professions
and asking for their support. We ended the semester with a Christmas
party for KME members, math majors and faculty. After eating pizza and
Christmas treats, we played the logic game Mafia.
New initiates — Summer L. Bingham, Roderick L. Bledsoe, Shelbi N. Bowin, Kalin M.
Bradshaw, Blane H. Burge, Xue Dang, Molly A. Erwin, Tatsuya Eto, Rebecca C. Folsom,
Erik J. Friend, Jonathan H. Garcia, Leah L. Imboden, Ashley K. Keys, Randee J. McBride,
Abraham Middleton, Gregory S. Palma, Tanisha N. Payne, Taylor M. Pride, Joshua L.
Qualls, Tandy R. Roberts, Wen Shao, Jordan D. Smith, Brent A. Spencer, and Amanda L.
Willinger.
OK Delta — Oral Roberts University
Chapter President — Lori Fielding, 203 Current Members; 12 New Mem-
bers (Fall 2010), 8 (Spring 2010)
Other Officers: Daniel Holman (Fall 2010) and Grant Shaida (Spring
2010), Vice Presidents; Jessica Shearer (Fall 2010) and Jesse Patsolic
(Spring 2010), Secretary/Treasurers, and Dr. Vincent Dimiceli, Corre-
sponding Secretary and Faculty Sponsor
OK Epsilon — Oklahoma Christian University
Chapter President — Jacob Clark; 31 Current Members and 11 New Mem-
bers
Other Fall 2010 Officers: Cady Block, Vice President, Jordan Courte-
manche, Secretary and Treasurer; Dr. Ray Hamlett, Corresponding Secre-
tary and Faculty Sponsor; and Craig Johnson, Faculty Sponsor
Oklahoma Epsilon projects for the current year include facilitating
our third annual High School Mathematics contest in March and tutoring
at-risk inner-city children in South Oklahoma City.
New initiates — Lexi Brown, Anna Hyldahl, Jonathan McCallum, Matthew Miller, Shaylee
Patzer, Nathaniel Spencer, Teaven Taylor, and Ivan Yeah.
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PA Beta - LaSalle University
Chapter President — Veronica Ventura
Other Fall 2010 Officers: Stephen Kernytsky, Vice President, Rose Venuto,
Secretary, Ryan Cunningham, Treasurer, Luke Giordano, Events Coordi-
nator, and Stephen Andrilli, Corresponding Secretary and Faculty Sponsor
We hosted the first joint meeting of the EPaDel (Eastern PA and
Delaware) and NJ (New Jersey) sections of the MAA on November 6;
there were three major talks and two workshops, as well as undergraduate
and graduate paper sessions. Ten members of our Math Club (aka KME)
served as student-volunteers during the meeting handling registration and
book sales, and moderating student paper sessions, etc. This was a wonder-
ful opportunity for our students to attend interesting talks and meet faculty
and students from other local colleges and universities.
PA Iota — Shippensburg University
Chapter President — Laura Henzy; 734 Current and 4 New Members
Other Fall 2010 Officers: Chad Nunemaker, Vice President, Lauren Robin-
son, Secretary, Drew Snyder, Treasurer; Dr. Paul Taylor, Corresponding
Secretary and Faculty Sponsor.
PA Kappa — Holy Family University
Chapter President — Michael Browning, 9 Current Members
Other Fall 2010 Officers: Jacqueline Gallelli, Vice President;, Alyssia
Overline, Secretary; Michelle Kustra and Katie Blumenstock, Treasurers,
and Sister Marcella Louise Wallowicz, CSFN, Corresponding Secretary
and Faculty Sponsor
On October 30, our KME members and the Math Club hosted its
4th annual Evening of Mathematical Suspense, a Halloween-themed event
in the form of a Math Murder Mystery/Dinner Theatre in which partici-
pants solve math problems in order to obtain the clues to solve the murder
mystery. Approximately 35 students participated, enjoying pizza, refresh-
ments, and university logo items as prizes. In December, KME members
performed during the university’s annual Christmas celebration, singing
both ‘Twas the Night Before Finals and Rudolph the Tangent Function.
We established an after school mathletes program at a South Philadelphia
elementary school. Mike Browning, Jackie Gallelli and Alyssia Over-
live coached approximately 25 elementary students who participated in
the program during the Fall. The 4 candidates for Spring 2011 initiation
began a peer math tutoring program at the University. Each candidate tu-
tored for 10 hours during the Fall semester. Members and candidates held
several bake sales to raise money to support planned Spring activities.
New Initiates — Emily Anick, Angela Hand, and Gidget Montelibano.
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PA Lambda — Bloomsburg University
Elizabeth Mauch, Corresponding Secretary
New Initiates — Rodrigo Cano, Lauren Rumberger, Ray Steffen, and Jarid Yanos.
PA Mu - Saint Francis University
Chapter President — Michelle Wetzel; 53 Current and 19 New Members
Other Fall 2010 Officers: Katie Dacanay, Vice President; Colin Trout, Sec-
retary, Laura Stibich, Treasurer, Peter Skoner, Corresponding Secretary;,
and Katherine Remillard, Faculty Sponsor

On August 26, several members presented their research from the
summer at the Fifth Annual Undergraduate Research Poster Symposium.
On September 28th, an audio conference sponsored by the Association of
American Colleges & Universities was presented entitled "More Options
for Women in Science." On October 6, several KME members participated
in the Commissioning Service in the University Chapel for students who
perform community service. At the 17th Annual Science Day held No-
vember 23, KME members served as session moderators for faculty mak-
ing presentations, and moderators, judges, scorekeepers, and timers for
the Science Bowl; a total of 435 high school students from 26 area high
schools attended.
New Initiates - Jenna Bailey, Marissa Basile, Quy Cao, Dane-Marie Greaves, Addison
Fox, Courtney Francis, Theodore Jagielski, Maura Jones, Sean Kane, Ryan Knee, Dr. Ying
Li, Adam Mengel, Lucas Mignogna, Brittany Miller, Julie Moore, Amber Shaikh, Jessica
Ulishney, Matt Warfel, and Mara Weinzierl.
RI Alpha - Roger Williams University
Chapter President — Raveena Siegel; 18 Current Members
Other Fall 2010 Officers: Erin Gilliam, Vice President; Adrianna Johnson,
Secretary,; Sarah Jeanfavre, Treasurer, and Annela Kelly, Corresponding
Secretary and Faculty Sponsor

Our chapter held several meetings and a bake sale fundraiser before
the holidays. A student team attended a mathematics team competition at
MAA NES meeting in Providence, RI. We are making plans to hold an
initiation in the spring semester.
SC Epsilon — Francis Marion University
Damon Scott, Corresponding Secretary
New Initiates - Curtis M. Jones, Charles J. Nettles, Kristen Dione Shaw, Daniel Stone,
Abbey E. Sullivan, Derek J. Turner, and Zachary Wilson.
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SC Gamma - Winthrop University
Dr. Trent Kull, Corresponding Secretary
New Initiates — Matthew Harrison Neal, Ryan Patrick Nikin-Beers, Heather Marie Schneck,
Kimberly Ann Schneck, and Whitney Anne Taylor.
TN Alpha - Tennessee Technological University
Andrew J. Hetzel, Corresponding Secretary
New Initiates - Stephanie Amato, Bridgette Buchanan, Samuel Carruthers-Thorne, John
Carter, Kevin Casler, Erin Chambers, Raven Cross, Evan Dirube, Micah Eller, Rebecca
Escue, Jackson Ewton, Sarah Flanigan, Douglas Ford, Leah Frauendienst, Sarah Frizzell,
Cathleen Fry, Robert Griffin, Elizabeth Hess, Eric James, Seth Latture, James Leverette,
Jeremy Miller, Leslie Moore, Eric Morgan, Brittany Murphy, Paige Nash, Annie Powers,
Cassie Putman, Nicole Reese, Arturo Santa Ruiz, Katlyn Smegelsky, Mark Straussberger,
Jie Tang, Matthew Thompson, David Velez, and Jake Wilson.
TN Beta — East Tennessee State University
Chapter President — Jeffrey Bonnell; 11 New Members
Other Fall 2010 Officers: Jeremy Brooks, Vice President; Elizabeth Har-
ris, Secretary, Andrew Herron, Treasurer, Robert Gardner, Corresponding
Secretary and Faculty Sponsor

Our fall semester started with a meeting to discuss our budget, de-
partment “logo” contest, possible solutions to the problems presented in
the Pentagon, and a presentation by our KME coadvisor Dr. Gardner of
“Permutation Groups: Cycles, Transpositions, and Futurama.” We had a
“problem day” that resulted in a submission of Pentagon problem solu-
tions by three of our chapter members: Deering, Jamieson, and Herron.
We have also made a few purchases this year, including “The Story of
Math” on DVD. Visit http://faculty.etsu.edu/gardnerr/KME/KME.html for
our home page.
TN Gamma — Union University
Chapter President — Rebecca Eaton, 22 Current Members
Other Fall 2010 Officers: Emilie Huffman, Vice President; Kim Lukens,
Secretary/Treasurer; Seth Kincaid, Historian/Webmaster, Michelle Nielsen,
Corresponding Secretary, and Matt Lunsford, Faculty Sponsor

On September 13, the Tennessee Gamma Chapter held the annual
back-to-school cookout at the Union University campus. Several Union
mathematics students and faculty, along with their family members, were
in attendance.
TX Gamma — Texas Woman’s University
Dr. Mark Hamner, Corresponding Secretary
New Initiates — Cammy Boaz, Melanie Cannon, Meg Chetwood, Lilian Chu, Yolanda
Flores, Greg Gengo, Loree Johnson, Violeta Rodriguez, Crystal Smith, Brittany Watson,
Emma Zemler, and Preeti Paliwal.
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TX Iota — McMurry University
Dr. Kelly McCoun, Corresponding Secretary
New Initiates — Michael Herriage, Tiffany Keasler, Mike Luval, Tylar Murray, Aaron Ward,
Kamron Ward, Austin Wegner, and Robert Wheeler.
TX Mu - Schreiner University
Chapter President — Audra Burnap; 18 Current Members
Other Fall 2010 Officers: Denise Begley, Vice President; Caitlin Gayle,
Secretary, Antonio Rameriz, Treasurer; William M. Sliva, Corresponding
Secretary
This fall, Matthew Moreno and Antonio Ramirez presented their on-
going research each at a separate noon meeting. They are hoping to attend
and present at the national conference.
New Initiates — Brittany Elise Cardwell, Rebecca Mary Chiaro, Danielle Jean DeBacker,
Molly K. Hutcherson, William Geoffrey Keaton, Austin F. Loza, Amanda Noel Ludwig,
Marcus Paul Myhaver, and Madison Catherine Nelson.
VA Delta — Marymount University
Chapter President — Hannah Korbach; 31 Current and 6 New Members
Other Fall 2010 Officers: Matthew Villemarette and Eric Kamta jointly
hold the positions of Vice President, Secretary, and Treasurer; William
Heuett, Corresponding Secretary, and Elsa Schaefer, Faculty Sponsor
We had one meeting on December 5, at Dr. Elsa Schaefer’s residence
to initiate new members and to enjoy an evening together with games and
food. Fifteen people, including students, faculty, family and friends, mem-
bers and non-members, were in attendance.
New Initiates - Amanda Billy, Mike Bokosha, Atanaska Dobreva, Eric Kamta, Hannah
Korbach, and Matthew Villemarette.
WI Gamma - University of Wisconsin-Eau Claire
Chapter President — Mark Bauer; 80 Current and 26New Members
Other Fall 2010 Officers: Joshua Frinak, Vice President; Lindsay Brunshi-
dle, Secretary, Hong Yang, Treasurer; and Dr. Simei Tong, Corresponding
Secretary and Faculty Sponsor
UWEC students Josh Frinak and Austen Ott received a poster award
at undergraduate poster section at the annual Joint Mathematics Meetings
for their project "Constructing Moduli Spaces of Low Dimensional Aoo-
Algebras by Extensions" under the direction of Dr. Michael Penkava. This
was the fourth consecutive year that his students received an award at the
conference. Others from UWEC who presented posters included:

e Shawn Peters and Becky Sippert, faculty advisor Dr. Simei Tong, Clas-
sifying Complemented Subspaces of Ly, 2 < p < oo, with Alspach
Norm;,
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e Chelsey Drohman, Ying Yang, and Alice Oswalt, faculty advisers Dr.
Kate Masarik and Dr. Tong, An International Study of Mathematics in
the Middle Grades: China, Russia, and the United States;

e Bret Meier and Austen Ott, faculty adviser Dr. Colleen Dufty, Polyno-
mial Equations over Matrices;

e Tristan Williams with research team members from the University of
St. Thomas, Worcester State University and the University of Indi-
anapolis, An Exploration of Ideal-Divisor Graphs.

New Initiates - Lindsey Alger, Joseph Anderson, Patrick Bagan, Julia Baranek, Brittany
Bauer, Travis Bischel, Kristina Bleess, Jake Bohlmann, Sam Brueggen, Wai Shan Chan,
Cole Cook, Tim Deckers, Brian Fastner, Kimberly Finco, Kurt Flesch, Mitch D. Gardner,
Kaisey Garrigan, Adam Gewiss, Lindsey Gohr, Ashley Grunau, Kevin Thomas Hankes,
Eileen Heughins, Jeremy Kieser, Jacob Korinek, Wendell Tan Vooi Ley, Alyssa Markuson,
Bret Meier, Hannah Miller, Aaron Moe, Michael North, Deana Petersen, Kyle Riesen,
Stephanie Anne Ringsred, Corey Schulz, Jessica Spurr, Trevor Thompson, Anton Tillmann,
Chun Yang Tang, Krystal Urness, Reba Van Beusekom, and Ying Yang.
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Active Chapters of Kappa Mu Epsilon

Chapter

OK Alpha
IA Alpha
KS Alpha
MO Alpha
MS Alpha
MS Beta
NE Alpha
KS Beta
AL Alpha
NM Alpha
IL Beta

AL Beta
AL Gamma
OH Alpha
MI Alpha
MO Beta
TX Alpha
KS Gamma
IA Beta

TN Alpha
MI Beta

NJ Beta

IL Delta
KS Delta
MO Gamma
TX Gamma
WI Alpha
OH Gamma
CO Alpha
MO Epsilon
MS Gamma
IN Alpha
PA Alpha
IN Beta

KS Epsilon
PA Beta
VA Alpha
IN Gamma
CA Gamma
TN Beta
PA Gamma
VA Beta
NE Beta

IN Delta

Listed by date of installation

Location

Northeastern State University, Tahlequah
University of Northern lowa, Cedar Falls
Pittsburg State University, Pittsburg
Missouri State University, Springfield
Mississippi University for Women, Columbus
Mississippi State University, Mississippi State
Wayne State College, Wayne
Emporia State University, Emporia
Athens State University, Athens
University of New Mexico, Albuquerque
Eastern Illinois University, Charleston
University of North Alabama, Florence
University of Montevallo, Montevallo
Bowling Green State University, Bowling Green
Albion College, Albion
University of Central Missouri, Warrensburg
Texas Tech University, Lubbock
Benedictine College, Atchison
Drake University, Des Moines
Tennessee Technological University, Cookeville
Central Michigan University, Mount Pleasant
Montclair State University, Upper Montclair
University of St. Francis, Joliet
Washburn University, Topeka
William Jewell College, Liberty
Texas Woman’s University, Denton
Mount Mary College, Milwaukee
Baldwin-Wallace College, Berea
Colorado State University, Fort Collins
Central Methodist College, Fayette
University of Southern Mississippi, Hattiesburg
Manchester College, North Manchester
Westminster College, New Wilmington
Butler University, Indianapolis
Fort Hays State University, Hays
LaSalle University, Philadelphia
Virginia State University, Petersburg
Anderson University, Anderson

California Polytechnic State University, San Luis Obispo

East Tennessee State University, Johnson City
Waynesburg College, Waynesburg
Radford University, Radford
University of Nebraska—Kearney, Kearney
University of Evansville, Evansville

Installation Date

18 April 1931
27 May 1931
30 Jan 1932
20 May 1932
30 May 1932
14 Dec 1932
17 Jan 1933
12 May 1934
5 March 1935
28 March 1935
11 April 1935
20 May 1935
24 April 1937
24 April 1937
29 May 1937
10 June 1938
10 May 1940
26 May 1940
27 May 1940
5 June 1941
25 April 1942
21 April 1944
21 May 1945
29 March 1947
7 May 1947

7 May 1947
11 May 1947
6 June 1947
16 May 1948
18 May 1949
21 May 1949
16 May 1950
17 May 1950
16 May 1952
6 Dec 1952
19 May 1953
29 Jan 1955

5 April 1957
23 May 1958
22 May 1959
23 May 1959
12 Nov 1959
11 Dec 1959
27 May 1960
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OH Epsilon Marietta College, Marietta 29 Oct 1960
MO Zeta University of Missouri—Rolla, Rolla 19 May 1961
NE Gamma Chadron State College, Chadron 19 May 1962
MD Alpha College of Notre Dame of Maryland, Baltimore 22 May 1963
CA Delta California State Polytechnic University, Pomona 5 Nov 1964
PA Delta Marywood University, Scranton 8 Nov 1964
PA Epsilon Kutztown University of Pennsylvania, Kutztown 3 April 1965
AL Epsilon Huntingdon College, Montgomery 15 April 1965
PA Zeta Indiana University of Pennsylvania, Indiana 6 May 1965
AR Alpha Arkansas State University, State University 21 May 1965
TN Gamma Union University, Jackson 24 May 1965
WI Beta University of Wisconsin—River Falls, River Falls 25 May 1965
IA Gamma Morningside College, Sioux City 25 May 1965
MD Beta McDaniel College, Westminster 30 May 1965
IL Zeta Domincan University, River Forest 26 Feb 1967
SC Beta South Carolina State College, Orangeburg 6 May 1967
PA Eta Grove City College, Grove City 13 May 1967
NY Eta Niagara University, Niagara University 18 May 1968
MA Alpha Assumption College, Worcester 19 Nov 1968
MO Eta Truman State University, Kirksville 7 Dec 1968
IL Eta Western Illinois University, Macomb 9 May 1969
OH Zeta Muskingum College, New Concord 17 May 1969
PA Theta Susquehanna University, Selinsgrove 26 May 1969
PA Tota Shippensburg University of Pennsylvania, Shippensburg 1 Nov 1969
MS Delta William Carey College, Hattiesburg 17 Dec 1970
MO Theta Evangel University, Springfield 12 Jan 1971
PA Kappa Holy Family College, Philadelphia 23 Jan 1971
CO Beta Colorado School of Mines, Golden 4 March 1971
KY Alpha Eastern Kentucky University, Richmond 27 March 1971
TN Delta Carson-Newman College, Jefferson City 15 May 1971
NY lota Wagner College, Staten Island 19 May 1971
SC Gamma Winthrop University, Rock Hill 3 Nov 1972
IA Delta Wartburg College, Waverly 6 April 1973
PA Lambda Bloomsburg University of Pennsylvania, Bloomsburg 17 Oct 1973
OK Gamma Southwestern Oklahoma State University, Weatherford 1 May 1973
NY Kappa Pace University, New York 24 April 1974
TX Eta Hardin-Simmons University, Abilene 3 May 1975
MO Iota Missouri Southern State University, Joplin 8 May 1975
GA Alpha State University of West Georgia, Carrollton 21 May 1975
WYV Alpha Bethany College, Bethany 21 May 1975
FL Beta Florida Southern College, Lakeland 31 Oct 1976
WI Gamma University of Wisconsin—Eau Claire, Eau Claire 4 Feb 1978
MD Delta Frostburg State University, Frostburg 17 Sept 1978
IL Theta Benedictine University, Lisle 18 May 1979
PA Mu St. Francis University, Loretto 14 Sept 1979
AL Zeta Birmingham-Southern College, Birmingham 18 Feb 1981
CT Beta Eastern Connecticut State University, Willimantic 2 May 1981
NY Lambda  C.W. Post Campus of Long Island University, Brookville 2 May 1983
MO Kappa Drury University, Springfield 30 Nov 1984

CO Gamma Fort Lewis College, Durango 29 March 1985
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NE Delta Nebraska Wesleyan University, Lincoln 18 April 1986
TX Iota McMurry University, Abilene 25 April 1987
PA Nu Ursinus College, Collegeville 28 April 1987
VA Gamma Liberty University, Lynchburg 30 April 1987
NY Mu St. Thomas Aquinas College, Sparkill 14 May 1987
OH Eta Ohio Northern University, Ada 15 Dec 1987
OK Delta Oral Roberts University, Tulsa 10 April 1990
CO Delta Mesa State College, Grand Junction 27 April 1990
PA Xi Cedar Crest College, Allentown 30 Oct 1990
MO Lambda Missouri Western State College, St. Joseph 10 Feb 1991
TX Kappa University of Mary Hardin-Baylor, Belton 21 Feb 1991
SC Delta Erskine College, Due West 28 April 1991
SD Alpha Northern State University, Aberdeen 3 May 1992
NY Nu Hartwick College, Oneonta 14 May 1992
NH Alpha Keene State College, Keene 16 Feb 1993
LA Gamma Northwestern State University, Natchitoches 24 March 1993
KY Beta Cumberland College, Williamsburg 3 May 1993
MS Epsilon Delta State University, Cleveland 19 Nov 1994
PA Omicron University of Pittsburgh at Johnstown, Johnstown 10 April 1997
MI Delta Hillsdale College, Hillsdale 30 April 1997
MI Epsilon Kettering University, Flint 28 March 1998
KS Zeta Southwestern College, Winfield 14 April 1998
TN Epsilon Bethel College, McKenzie 16 April 1998
MO Mu Harris-Stowe College, St. Louis 25 April 1998
GA Beta Georgia College and State University, Milledgeville 25 April 1998
AL Eta University of West Alabama, Livingston 4 May 1998
NY Xi Buffalo State College, Buffalo 12 May 1998
NC Delta High Point University, High Point 24 March 1999
PA Pi Slippery Rock University, Slippery Rock 19 April 1999
TX Lambda Trinity University, San Antonio 22 November 1999
GA Gamma Piedmont College, Demorest 7 April 2000
LA Delta University of Louisiana, Monroe 11 February 2001
GA Delta Berry College, Mount Berry 21 April 2001
TX Mu Schreiner University, Kerrville 28 April 2001
NJ Gamma Monmouth University 21 April 2002
CA Epsilon California Baptist University, Riverside 21 April 2003
PA Rho Thiel College, Greenville 13 February 2004
VA Delta Marymount University, Arlington 26 March 2004
NY Omicron St. Joseph’s College, Patchogue 1 May 2004
IL Iota Lewis University, Romeoville 26 February 2005
WYV Beta Wheeling Jesuit University, Wheeling 11 March 2005
SC Epsilon Francis Marion University, Florence 18 March 2005
PA Sigma Lycoming College, Williamsport 1 April 2005
MO Nu Columbia College, Columbia 29 April 2005
MD Epsilon Stevenson University, Stevenson 3 December 2005
NJ Delta Centenary College, Hackettstown 1 December 2006
NY Pi Mount Saint Mary College, Newburgh 20 March 2007
OK Epsilon Oklahoma Christian University, Oklahoma City 20 April 2007
HA Alpha Hawaii Pacific University, Waipahu 22 October 2007
NC Epsilon North Carolina Wesleyan College, Rocky Mount 24 March 2008
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CA Zeta Simpson University, Redding 4 April 2009
NY Rho Molloy College, Rockville Center 21 April, 2009
NC Zeta Catawba College, Salisbury 17 September, 2009
RI Alpha Roger Williams University, Bristol 13 November, 2009
NJ Epsilon New Jersey City University, Jersey City 22 February, 2010
NC Epsilon Johnson C. Smith University, Charlotte 18 March, 2010
AL Theta Jacksonville State University, Jacksonville 29 March, 2010
GA Epsilon Wesleyan College, Macon 30 March, 2010
FL Gamma Southeastern University, Lakeland 31 March, 2010
MA Beta Stonehill College, Easton 8 April, 2011



