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Computing Homoclinic Bifurcations

Suzanne Shontz, student
Iowa Alpha

University of Northern lowa
Cedar Falls, IA 50613

Presented at the 1999 National Convention.

Motivation

Dynamical systems is a very large field of mathematics which
can be broken down into two main categories: differential equations
and iterated mappings. Both categories of dynamical systems have
several possible areas of application, as well. For example, differ-
ential equations can be used to model drug flow in the blood, while
iterated mappings can be use to model the path along which a bunny
hops.

This research involves only iterated mappings but could be ex-
tended to differential equations rather easily. In particular, this re-
search focuses on real, planar iterated mappings.

The phenomenon of interest that we wish to study is called the
homoclinic tangle for reasons that will soon become evident. Ho-
moclinic tangles occur near one or more saddle points and are the
intersection of stable and unstable manifolds. Manifolds, or separa-
trices, are solutions going away from the saddle points that exhibit
special properties and separate the general regions of various behav-
ior [1]. Homoclinic tangencies occur when the stable and unstable
manifolds are tangent and the unstable manifold of the saddle point
becomes the stable manifold of the same saddle point [1]. Homo-
clinic tangencies separate where there is a homoclinic tangle and
where no homoclinic tangle occurs. See Figure 1 (attached at the
end of the paper) for an illustration of one such homoclinic tangle.
The mapping shown in this figure is the Hénon mapping witha = 1
and ¢ = 0.5. The Hénon mapping from %2 — R2 is of the form:

(m) (m2_ay+c)
—
Y z

Note that the Hénon mapping is named after Michel Hénon, an
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astrophysicist from Paris, who suggested in 1968 that this mapping
be used to study changing orbits of asteroids or satellites [2].

In figure 1, the stable manifold is shown in red; the unstable man-
ifold is shown in blue; and the saddle point is labelled in green.

unstoble
manifold

stable
manifold

Figure 1

The Hénon mapping will be used for all further illustrations in
this paper. In addition, the convention of using red for the stable
manifold, blue for the unstable manifold, and green for the saddle
point will also be used throughout the entirety of the paper. |

The specific goal is to compute and visualize the homoclinic tan-
gencies for planar iterated mappings from %2 — R2. In order to
accomplish this goal, we allow the system to bifurcate by changing
the values of its parameters and then determine where the tangencies
occur.

In order to understand the process of bifurcation, consider the
following example. Consider again the Hénon mapping with @ =
0.3 and ¢ = —1.2. See Figure 2.
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Figure 2

Notice how the stable and unstable manifolds are not quite touch-
ing in the circled region. However, when we allow the system to bi-
furcate and change the value of ¢ to —1.5, we see that the manifolds
are now overlapping in the same region. See Figure 3.

Figure 3
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Thus, dynamical systems theory tells us that for some value of
¢ between —1.2 and —1.5, the stable and unstable manifolds will
be tangent. This is an example of a homoclinic bifurcation, and the
tangency is called a homoclinic tangency. We will investigate the
process of bifurcation in greater detail in Section Five.

The rest of this paper is organized as follows. In the remaining
sections, we outline a method for computing and visualizing homo-
clinic bifurcations. In order to do so, we must discuss the theory
and computational methods used in the calculation of saddle points,
separatrices (or manifolds), tangencies, and bifurcations. At the end
of this paper, we summarize our method and discuss several possi-
bilities for further research.

Saddle Points

We begin our analysis of homoclinic bifurcations by first com-
puting the saddle points for a given mapping. To that end, consider
an iterated mapping from R2 — %2 of the form

(5)=(27)

We wish to find the fixed saddle points of the mapping. In order to
do this, we first find the set of all fixed points for the mapping, since
they obviously form a superset of the fixed saddle points. In order to
find the fixed points, we simply solve the equations z = f(z,y) and
y = g(z,y) using Newton’s Method for nonlinear systems. This is a
desirable algorithm to use for solving this system of equations since
it guarantees super-convergence for most cases.

After finding the set of all fixed points for the mapping, we deter-
mine M, the matrix of partial derivatives for each fixed point. This is
accomplished by solving the system of equations Mz = Az. Here,

= fx(Zo, o) fy(m‘o,yo)
M= [gw(’”‘hyo) 9y(Z0), o)

Since M is a 2 by 2 matrix, this system can easily be solved.
Many mathematical software packages have built-in subroutines to
solve this particular system.

Let \; and ), denote the two eigenvalues of M for a given fixed
point such that |A;| > |Ag|. Then, (o, yo) will be a saddle point of
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the mapping iff |A;] > 1 and |A3] < 1. As mentioned previously,
saddle points locate the region of the homoclinic tangle.

Separatrices (Manifolds)

Atasaddle point, there are two particular curves of interest called
separatrices or the stable and unstable manifolds. These curves are
defined in N2 as follows:

e Stable manifold
{z|f*(z) — (z0,50) as n — oo}
e Unstable manifold

{z|f7"(z} — (%0, %) as n — oo}

Note that this definition can be changed to " by simply changing
the notation for the fixed point.

Thus, we see intuitively that the stable manifold is the set of all
points such that when the mapping is iterated forward, the fixed sad-
dle point is approached. Similarly, the unstable manifold is the set
of all points such that when the mapping is iterated backward, the
fixed saddle point is approached. This is illustrated in Figure 4.

N @ saddle

= unstoble

(@'\. ll:wmi*ﬁo\d
. '\ . :’-S"ﬁb\&

monifold

Figure 4

Separatrices are computed by first locating the saddle point. In
order to compute the points on the unstable manifold, the mapping
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is iterated forward along the eigenvector with eigenvalue |[A| > 1.
The points on the stable manifold are then computed by iterating
the mapping backward along the eigenvector corresponding to the
eigenvalue |A| < 1.

Although this point will not be emphasized in the paper, it is im-
portant to add a “midpoint” between two consecutive points if the
angle or distance between two consecutive points or vectors is too
large. Otherwise, very odd, erratic behavior will be observed when
interpolation is done between consecutive points on a manifold.

Once all the points on a manifold have been calculated, interpo-
lation is done between all pairs of successive points. In order to do
this, we used parametrized parabolas that are computed as follows:

1. Identify two successive points on a manifold between which to
interpolate.

2. Identify their corresponding vectors which represent the direction
of the next iterate. (Note that these are computed by applying the
matrix of partial derivatives, M, to the original vector at the fixed
point.)

3. Determine where the two vectors cross and label that point.

4. Compute and then draw in the arc of parabola that has as its end-
points the two points on the manifold and follows the two vectors.

See Figure 5 for an example of a parametrized parabola.

Figure 5
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The blue dots in Figure 5 correspond to two successive points on
the unstable manifold. The green vectors represent the direction of
the next iterate at each point. The red lines are drawn to determine
where the vectors cross. The black dot is the intersection of the
two vectors. The blue arc of parabola is drawn by the interpolation
scheme described above. In this manner, all successive points on a
manifold are connected by interpolation.

Lastly, the triangles stemming from the two consecutive points
on the manifold and the third point where the oriented line segments
crossed are stored. This is an important data structure in the pro-
gram.

Tangencies

At this point, we have computed the fixed saddle points and have
calculated the stable and unstable manifolds. We have also interpo-
lated between successive points on the two manifolds for visual aid
in recognizing points on each manifold. The next step in computing
homoclinic bifurcations is determine where the stable and unstable
manifolds are tangent. Recall that this is important because tangen-
cies determine where homoclinic tangles come into existence, and
this is the phenomenon that we are interested in studying.

The specific goal then is to determine for each arc of parabola on
the stable manifold and each arc of parabola on the unstable mani-
fold if there exists a point on each parabola such that the manifolds
will be tangent for some values of the parameters.

There are three possible cases for which the arcs of parabola on
the stable and unstable manifolds will be tangent for some value of
the parameters. All three cases are illustrated in Figure 6. The most
obvious case is when the stable and unstable manifolds are tangent.
This is illustrated by the diagram in the middle of Figure 6. The sec-
ond case is when the stable and manifolds are separated by a positive
distance for all points on the manifolds, but the tangent vectors at
points on each manifold are parallel. This case is illustrated by the
first diagram in Figure 6. The final case is when the two manifolds
are overlapping but again the tangent vectors at points on each man-
ifold are parallel. This is illustrated by the last diagram in Figure 6.
Notice that in all three of these cases, the tangent lines and the line
connecting them form an “H.” For the purposes of this paper, this
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condition will be called the H-condition.

Figure 6

In order to determine where the H-condition occurs, we must
first determine which system of equations must be satisfied for the
set of parametric parabolas. To this end, let v(¢) represent an arc
of parabola on the unstable manifold and 6(s) represent an arc of
parabola on the stable manifold be given by the following equations:

v(t) = ayt’+axt+az0<t<1
5(s) = bi1s? +bas+bs,0<s< 1
Note herg that the a; and the b, are vectors.

Then in order to determine when the H-condition is met, we must
solve the following system of equations:

det(v'(t),6'(s)) =0 (1)

(+(t) - 8(s)) -~/ (1) =0 @)

When these equations are solved simultaneously, a fifth-degree
polynomial in s results. Because of its great length, the polynomial
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is left out of this paper. For simplicity’s sake, we just call is f(s).
Then, in order for the H-condition to be satisfied, we wish to mini-
mize f(s). This is done using Sturm’s Algorithm.

Sturm’s Algorithm

Sturm’s Algorithm is an algorithm that is very useful for classi-
fying the roots of a polynomial with real coefficients. A description
of the algorithm is included because of the interesting mathematical
theory behind it. The algorithm’s input is as follows:

Input:
o f(z)=as+a1z+ -+ apz™, a;eR
o ieR.

The output for Sturm’s Algorithm is as follows:
Output:

e p, the number of real roots > ¢
e g, the number of real roots < ¢

e 2r, the number of complex roots of f.

Sturm’s Algorithm works by taking the polynomial f(z) and the
real number ¢ as input. An associated polynomial g(z) is then de-
fined as follows:

9(z) = (z — t)f'(=)

Next, L(f; z, y), a symmetric expression in = and y is defined as
follows:

f(@)g(y) — f)g(z)

L(f;z,y) pra—
n-1 n-1
= 2D Ama"yt
h=0 k=0

Because L(f; z, y) is symmetric, it can be used to define the fol-
lowing quadratic form:
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n-1n-1
Q(f, Up, Uy, * un—l) = Z Z Ahkuhuk.
h=0 k=0
As with all quadratic forms, Q(f; uo, 41, -, Un—1) can be writ-

ten in matrix form. Let M be the matrix of coefficients of Q). Then,
we need to compute what is known as the signature of M.

The signature is simply equal to the two numbers that represent
the number of positive and negative eigenvalues of a matrix. Thus,

Signature = (number of A > 0,number of A < 0)
= (p+mnq+r),
where p, q, and r are as defined above.

For our purposes, we wish to minimize f(s). Thus, we must run
Sturm’s Algorithm twice with £ = 0 and ¢t = 1 in order to determine
when one real root between these two values has been obtained.

Bifurcation

After the arcs of parabola satisfying the H-condition have been
selected via the above method, we must bifurcate the system in or-
der to determine the exact values of the parameters for which the
tangencies occur. We now give the definition of a bifurcation.

Bifurcations are changes in the structure of the curves of a nonlin-
ear system as a parameter passes through a critical value (bifurcation
point).

Figure 7 is used to illustrate the concept of a bifurcation. The
diagram on the left in this figure is for two arcs of parabola, one on
each manifold, and the value of a generic parameter a is set to ayp.
Notice that in this picture, the two arcs of parabola are separated
by a positive distance. In the second diagram, the value of the pa-
rameter has been changed from a = ag to a = a;. Now, the two
arcs of parabola have passed the tangency and are now overlapping.
Because the structure of the curves has significantly changed, the
system is said to have undergone a bifurcation.
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Figure 7

Recall that bifurcations are important to this research because we
are looking for the exact value of the parameters such that the man-
ifolds are tangent. In the example above, this would occur for some
value of the parameter a between ag and a;.

In order to compute the homoclinic tangencies, we follow the
four-step procedure outlined below:

1. Locate the region for the tangency. (Note that this can be done
by first determining where the triangles described earlier in the
paper overlap.)

2. Determine two values of the parameter that correspond to the
cases before and after the tangency.

3. Use Bisection to determine the value of the parameter correspond-
ing to the minimum distance between the parabolas.

4. Trace out the curve in the parameter space where the tangencies
occur.
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An example of what such a curve in the parameter space might
look like for the Hénon mapping is given in Figure 8. Notice that
this curve looks very much like a phase diagram. We feel that un-
derstanding how these curves develop in the parameter space may
help chemists understand phase transitions.

Figure 8

Conclusion

In summary, this implementation allows us to compute and vi-
sualize planar iterated mappings in 2. This model could easily be
extended to higher dimensions; however, this is not investigated in
this paper.

Possibilities for Further Research

There are many other possibilities for further work. We list three
such possibilities here.

1. How do such curves in the parameter space start and end?
2. Investigate mappings in C2.

3. Visualize differential equations in 13, particularly to determine
the tangencies of stable and unstable surfaces.
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The Stable Marriage Problem

Jill H. Kahan, student
New York Lambda

C. W. Post Campus of Long Island University
Brookville, NY 11548

Presented at the 1999 National Convention.

In 1962, David Gale and Lloyd Shapley published a paper in
which they introduced and solved The Stable Marriage Problem.
Many years later, it was discovered that this algorithm had been in
use since 1952 by The National Intern Matching Program to match
graduating medical students (residents) with hospitals. The Na-
tional Intern Matching Program is now call The National Resident
Matching Program, and it still uses this algorithm.

There are two sets in The Stable Marriage Problem. M is the
set of men and W is the set of women. The number of elements
in M equals the number of elements in W. Both sets are finite.
Associate to each man, m € M, and ordered list of all women,
w € W, from most favorable to least favorable. Similarly associate
to each woman, w € W, an ordered list of all men, m € M, ranked
from most favorable to least favorable. In other words, each man
ranks the women in a preference list from most favorable to least
favorable and each woman ranks the men from most favorable to
least favorable. There are no ties in these preference lists.

A matching is a 1 — 1 correspondence between the men and the
women. Under a matching f: M — W, m is paired with f(m)
and w is paired with f~!(w). Let f: M — W be a matching,
and let m € M and w € W. If m prefers w to his mate and w
prefers m to her mate, then (m, w) is called a blocking pair for f. A
blocking pair will separate from their matches to better themselves.
If f admits at least one blocking pair, then the matching f is called
unstable. Otherwise f is called stable.

The following are two basic questions about the stable marriage
problem:

1. Must there exist a stable matching f that maps A to W?
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2. Is there an efficient algorithm for finding a stable matching (if
one exists)?

The answer to both of these questions is yes. The efficient al-
gorithm is called The Gale-Shapley Algorithm (or propose-dispose).
By efficient, I mean it terminates in polynomial time, after n? itera-
tions, where n is the number of men or women.

The Gale-Shapley Algorithm

Each man and woman starts unmatched. If a man, m, is un-
matched, then he “proposes” to the most favorable woman, w, on
his list to whom he has not already proposed. If that woman is un-
matched, then she must accept. If that woman is matched to some
other man, m’, then she compares m and m' on her list. If she
prefers m to m' then she “disposes” of m’, who then becomes un-
matched, and she accepts m. If she prefers m’ to m, then she rejects
the proposal of m and remains matched to m’. The above process
continues, one proposal at a time, until everyone is matched. In this
algorithm, order does not matter. This algorithm can be executed
in two ways: one being where the men propose and the other being
where the women propose. The following is an example using this
algorithm where the men propose:

1 4123 1 4132
2 2314 2 1324
3 2431 3 1234
4 3142 4 4132
Men’s Preferences Women'’s Preferences

M, proposes to W;;she is unmatched, so she must accept.
M, proposes to Wh; she is unmatched, so she must accept.

M3 proposes to Wj; she is already matched with Ms, so she
compares M, to M3. She prefers Mj, so she accepts M3 and
disposes M.

M, proposes to Wj; she is unmatched, so she must accept.

M, proposes to Ws; she is already matched with My, so she
compares M, to M. She prefers M,, so she rejects M, and stays
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with M.
M), proposes to Wy; she is unmatched, so she must accept.

Therefore, the matching is f = {(1,4),(2,3),(3,2),(4,1)} Itis
stable because it has no blocking pairs.

Now I will prove the Gale-Shapley Algorithm always terminates
with a stable matching.

Theorem: The Gale-Shapley Algorithm always terminates with
a stable matching.

Proof: Define f : M — W by letting f(m) equal the women
with whom m is matched with at the end of the algorithm. We will
show that no pair (m,w) can be a blocking pair for f. This means
either m prefers his mate to w or w prefers her mate to m. If m
prefers w to f (m), then w must have either rejected or disposed m
at some point earlier in the algorithm. Hence, w was either already
matched with, or later was proposed to by and accepted, a man who
is higher on her list than m. In either case, since a woman’s situa-
tion can only improve during execution of the algorithm, we have w
preferring her mate to m so that (m, w) cannot block f. Therefore,
f is a stable matching.

I found many interesting facts about The Stable Marriage Prob-
lem. [ will introduce some of them here. All possible executions
of the Gale-Shapley Algorithm (with the men proposing) lead to the
same stable matching. If f : M — W is a matching resulting from
an execution of the Gale-Shapley algorithm (with the men propos-
ing), then for each man, f (m) is the best possible partner that m can
have under any stable matching. It is surprising that, if each man is
paired with his best stable partner, the result is a stable matching. It
is not even clear that this should even give a matching, let along a
stable one.

The matching that results from the Gale-Shapley Algorithm with
the men proposing is called the man optimal stable matching. De-
note the man optimal stable matching by f,,, : M — W. The match-
ing that results from the Gale-Shapley Algorithm with the women
proposing is called the woman optimal stable matching. Denote the
woman optimal stable matching by f,, : M — W.
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Theorem: The man optimal stable matching is worst possible for
the women because under f,,, each woman is paired with the worst
possible partner she can have under any stable matching.

Proof: We are to show that for all women and all stable match-
ings g : M — WV that w prefers her mate under ¢ to her mate under
[, the man optimal stable matching or she is indifferent between the
two matchings. Assume for contradiction that w prefers her mate
under f, the man optimal stable matching to her mate under g for
some stable matching g and some woman w. Since g is stable, it
has no blocking pairs. In particular ( f,,-1 (w),w) cannot block g.
Now, w does prefer her mate under f,, over her partner under g,
this is what our assumption says. It follows that f,,-1 (w) prefers
his partner under g over w. his partner under f,,. This contradicts
the fact that f,,-1 (w) has no stable partner he prefers to w. This
shows that, under the man optimal stable matching, each woman is
paired with the worst possible partner she can have under any stable
matching.

Another interesting fact is that if f,,, = f,, then there exists only
one stable matching.

Theorem: If f,, = f,. then there exists only one stable match-
ing.

Proof: Let g : M — W be a stable matching. We have for
each man that he prefers his partner under f,, to his partner under
g, and he prefers his partner under g to his partner under f,, or m
is indifferent between all of them. But f,, (m) = f, (m) which
implies g (m) = f,, (m) = f, (m). Therefore g = fr, = fo.

This shows that if f,, = f,, then there exists only one stable
matching.

There are also many questions about deceit in The Stable Mar-
riage Problem. When this algorithm is executed from the male
standpoint, no man acting along can falsify his preferences so that
he does better then he would otherwise if he reported his true pref-
erences. If any subset of men falsify their preferences, it is not
possible for all of them to wind up with better partners than their
male-optimal partners. However, when the algorithm is executed
from the female standpoint, the men, by falsifying their preferences,



20 The Pentagon

can force the algorithm to produce the man optimal matching. Much
research is still being done on The Stable Marriage Problem. An-
other approach to The Stable Marriage Problem was in the May 1998
issue of the Mathematics Monthly, Vol. 105, No. 5, pp. 430-445, by
Michel Balinski and Guillaume Ratier.

Acknowledgments. 1 would like to thank Professor Jozef Loson-
czy for his guidance and patience during the preparation of this pre-
sentation.
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Twentieth Century Student Scholarship:
Student Papers in The Pentagon

Bryan Dawson, Associate Professor of Mathematics
Tennessee Gamma

Union University
Jackson, Tennessee, 38305

From remarks given at the banquet address of the
North Central Regional Convention of KME
April 7-8, 2000, in Atchison, KS

I will begin with a word about what this article is not. It is not an
article about the advances made in mathematics during the twentieth
century or about the state of mathematics at the end of the twentieth
century. If such information is desired. a good article to read is
one by Phillip A. Griffiths that appeared recently in The American
Mathematical Monthly [18]. Professor Griffiths, having taught at
institutions such as Harvard, Princeton, and UC Berkeley and having
served as provost at Duke, is much more qualified to give such a
perspective than [ am. However, all professors were once students;
Griffiths is no exception. As a student at Wake Forest College, he
was awarded second place for his presentation at the 1959 National
Convention of KME, and his paper was published in The Pentagon
[17].

This article is about students and their projects, in particular those
that have been published in The Pentagon, established in 1941 as
the official journal of the Kappa Mu Epsilon national mathemat-
ics honor society. We will, therefore, be concerned only with the
last six decades of the twentieth century. In particular, we wish to
ask ourselves the following questions: How has student scholarship
changed? How is student scholarship the same? What were student
papers like 10, 25, or 50 years ago? We shall discuss this in six parts.

Part 1. Applications of Mathematics

Applications have always been of interest to students, although
they seem to be a little more popular lately. The changes seen in this
area have been in the type of applications that were of interest. What
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was interesting 50 years ago is not necessarily interesting now, and
vice versa.

Consider, for instance, a 1947 paper by Thomas Selby [28], who
had served as a captain in the field artillery. The paper was titled
“Computation of Firing Data for Field Artillery” As we will do
often, let’s look at some quotes from the article to get some of its
flavor:

“The mathematics involved in the computation of firing data for the Field Ar-
tillery is very simple. We were told when we started the study of gunnery that
all that was necessary to compute firing data was a knowledge of “grocery store”
arithmetic. First is the understanding of the mit which is the unit of angular mea-
surement used. The mil is defined as the amount of angle subtended by an arc one
unit long at a distance of 1000 units from the vertex. the number 6,400 is used in-
stead. The discrepancy is negligible when angles of not over 300 or 400 mils are
used and can be ignored in larger angles when great accuracy is not cssential.”

Did you notice that issues of ease of computation were important?
We shall return to this theme later as well. Selby did not ignore that
issue, either as evidenced by the following:

“Most people accustomed to five-place tables think the above computations
are rather crude, but they should bear in mind that the method is designed to be
used under adverse conditions where speed with some degree of accuracy is the
important consideration. Onc artillery shell (105 mm.) covers an area 0 15 yards
in depth and 50 yards in width, making the first calculation accurate enough.”

Cryptography was a popular application long before the modern
RSA codes and other public key cryptosystems. One such article
was “Modern Trends in Cryptography: The Fractionated Cipher,”
by S. H. Sesskin [30]. Sesskin’s paper discussed the German Field
Cipher of 1918 using the key word PENTAGON, one of many ref-
erences in student projects over the years to KME or to its journal. I
find the following comment interesting:

“discussion will be limited strictly to paper and pencil ciphers, and, of course,
will not include ciphers coming from the newer electronic devices. (Despite these
new devices paper and pencil ciphers will be studied as long as there are spies and
criminals who cannot have access to such devices, and as long as wars are fought in
the ficid where such devices not only would prove cumbersome, but would require
the maximum protection from capture.)”
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Of course, hindsight is 20-20! Another of Sesskin’s quotes, how-
ever, seems much more on the mark.

“Practical ciphering has always been a compromise between space and time in
an effort to obtain the maximum security in time at a minimum cost in words. And
today it is more so than cver. In fact, today the balance is even more delicate, for
the experts seck not so much an insoluble system, as one that will give security for
a stated time.”

Another timely application was discussed in Charles Trauth’s pa-
per “Motions of a Space Satellite” [36]. The article appeared in the
Fall 1957 issue; however the presentation was awarded second prize
at the 1956 National Convention, the year before Sputnik’s October
4, 1957 launch. The figure below, from Trauth’s article, shows the
“preliminary schematic trajectory” of a rocket to launch a satellite.
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Figure from Fall 1957, p.24

In the 1960’s, communication was an application of interest to at
least one student. In a paper presented at the 1967 National Con-
vention in Atchison, Kansas, April 7-8 (exactly 33 years before this
regional convention, with the same dates and place!), Judy Kalden-
berg discussed “Communication Networks Using Matrices” [21].

Finally, as an example of a more recent timely application, con-
sider the paper of Michelle Biggers-Beach, whose presentation “The
Orbit of Hale-Bopp” [3] was given at the 1997 National Convention
during the time that the Hale-Bopp comet was visible in the sky. Her
video presentation at that meeting was something that the authors of
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the previously mentioned papers could only dream of

Part 2. Computation

Another past interest was in methods of computing things that are
now commonly done on a computer algebra system or calculator.
These computations were carried out in many different ways; the
variety of approaches may surprise you.

How many of today s students could extract a square root without
a calculator? For that matter, how many of today’s younger mathe-
matics faculty could do so quickly? Just how much our perspectives
have changed is illustrated by the following quote from an article by
Judith Enos entitled **Methods of Extracting Square Roots” [14].

“The average person knows but one or two ways of extracting square roots. The
long division method is commonly taught in the junior high school. and if a person

is lucky he is introduced to the logarithmic method of extracting square roots in the

high school. Actually there are many distinctly different methods for finding square

roots, and for cach different method there are variations and generalizations.”

Enos goes on to describe a dozen different methods!

Once upon a time, calculations fascinated many a person. That
was true of Harvey Fiola, whose article “Integral Right Triangles
of Equal Area” [15] appeared in the same issue as Enos’ article.
One example from his article is the three integral right triangles, i.c.
Pythagorean triples, (339252715200, 2066690884801, 2094350404801).
(4143735357600, 169202527102, 4147188470398),and
(966871583440, 725153687580, 1208589479300), all of which have
the same area! The editor’s note explains the situation further:

“Adapted by the Editor from notes received from the author. The author is 19
years of age and works on his father’s farm. He says. ‘I have computed so many
right triangles that [ see them in the heavens.’ ™

Even today, most students learn how to graph simple functions

by hand. But when it comes to curves such as
o+ Py + 2%y +y’r+zy+z+y =0,

we now run to the computer. How would one carefully graph
the above equation by hand, if one wanted more than just a rough
sketch? Dale Schoenefeld spent an entire article answering that very
question and graphing that equation in “The Use of the Analytical
Triangle in Curve Tracing” [31].
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Figure 14 from Fall 1964, p.16

In “Nomography” [9], Eddie Dixon combined the two above ideas,
using graphs to facilitate numerical computations. Nomograms were
custom-created for specific computations; it is an art that is now
mostly forgotten, as evidenced by my spell-checker failing to even
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recognize the word!

“Often in science courses a student is required 10 solve the same equation over
and over again. Because of a similar situation occurring in industry, there developed
a need for a rapid and simple method of solving these equations. The answer was
nomography.

“A nomogram is an arrangement of two or more scales in such a manner that the
value of an unknown variable may be determined by the use of a straight edge. The
scales of the nomogram may be cither straight or curved, uniform or nonuniform.”
While many students worked on computations by hand, others

worked on computation by mechanical devices. One of the most
fascinating student efforts of this type appeared in the same issue as
Dixon’s nomography article: “Mechanical Solution of Cubic Equa-
tions” by John Couch [6]. Couch illustrated the solution of any cubic
by means of the device pictured below (solution to z® — 422 + 3z —
2 = 0). Of course, an exact solution could be found by hand using
equations known for centuries; the idea, then, was not so much for
practical use as it was for the pure fun of it. Couch’s presentation
won second place at the 1955 National Convention.

There were much more practical computing problems tackled,
however. Consider “Solving a Differential Equation on a Differen-
tial Analyzer,” by Joseph Weizenbaum [39], a paper awarded third
place in 1953. Under the heading “Functional Description of an
Analogue Machine,” we find the following:

“An analogue computing machine performs its mathematical operations by
measuring certain physical components or certain changes in certain components.
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This is as opposed to a digital machinc . The Wayne University differential ana-
lyzer - which is the original instrument built by Vannevar Bush of the Massachusetts
Institute of Technology - measures rotations of shafts. [t is entirely mechanical.”

Although such devices were once rivals of electronic computers,
we eventually see their mention in student papers totally disappear.
The rise of the computer in student projects began in a Spring 1966
article entitled “Computer Application to Symmetric Double Inte-
gration by Hypercubes” by Jerry L. Lewis [23] with the following
introduction:

“In this article we shall derive and apply to the digital computer a method for
computing the numerical approximations to the double integral of a function of two
variables over a two-dimensional hypercube.”

Lewis’ article contains the first student-generated code to appear
in The Pentagon, written in FORTRAN. Six examples are given, the

last of which is
11 8

[ [ (1-2?) dzdy,
3 2

for which an answer of —10270096.1000 is given. Mathematica
gives an answer of —9696357.1009 instead; assuming Mathemat-
ica’s answer is accurate, Lewis’ answer had an error of just under
6%. Not bad for one page of code in 1966!

Part 3. Computers

Besides being of interest in computations, computers themselves
have been objects of interest. In 1958 a pair of articles about com-
puters were published. One, by a faculty member, described digital
computers. The other, “Electronic Analogue Computers” by Louis
Kijewski [22], was by a student. Here are some interesting quotes
from the introduction and conclusion of the article:

“An clectronic analogue computer is a general-purpose problem-solving ma-
chine which is composed chiefly of ¢lectronic components but which may also
include mechanical components. Variables of a problem are represented in the ma-
chine by voltages and mechanical displacements. the use of an analogue computer
is particularly suitable for handling the more intricate problems involved in design-
ing electronic brains for missiles and gun directors, where there may be ten param-
eters which will affect the speed of response to the target. the lower cost of the
analogue, as compared to the cost of the digital, warrants its use in this field. Ana-
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logue computers are excellent tools which perform tedious calculations for man
and leave him with extra time to do more creative work.”

Analogue machines died a quick death in student use. Another
interesting coincidence is that the first article in that same issue was
an exposition of a classic problem that was eventually solved on the
computer, namely the four color problem [26].

Eventually, focus shifted to applications of computer usage, and
what can be done on a computer. We have already discussed that
somewhat, but one more example is in order. The third-place pa-
per at the 1981 convention was "Computer Graphics: Three Di-
mensional Representation of Spheres” by David Harris [19]. Harris
writes:

“At the beginning of the summer of 1979 I received a research participation
award from the Clark Foundation. I modified a computer program that drew spheres
on a high-resolution graphics terminal. The program ran on a PDP 11/45 computer
coupled with a Genisco processor that controlled the graphics CRT. The primary
use of the program was to draw molecules. illustrated with a series of prints repro-
duced from images on a CRT. The originat slides were taken in a dark room with a
camera mounted on a tripod at a distance of 18 [in] from the CRT display screen.
The camera was set at a shutter speed of %second and the F-stop was set at 4.”

Wow! That’s a lot different than clicking on the “print” icon! The
original slides were in color, but The Pentagon printed them in black
and white. Below is an example of what Harris had achieved.

Figure 8 from Fall 1981, p.9
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How far we have come in just a couple of decades! Yet, consider
the following quote from the conclusion of Harris’ paper:

“With the advent of faster computers, computer graphics is becoming better

and easier.”

Yes, that was better and easier at the time. A large number of
such papers on computers followed, but have lately tapered off as
computer science became its own field, with its own conferences
and student groups.

Part 4. Ideas

Ideas have always driven mathematics. The same is therefore
true of student research projects, and I suspect that fact will never
change. Most of the ideas seem to come from geometry and precal-
culus mathematics.

Our first example of an idea comes from a paper by Thomas Potts
entitled “Conic Sections with Circles as Focal Points” [25]. Potts’
ideas was to use circles instead of points for the foci of the con-
ics. An ellipse, along with its foci, is reproduced below from Pott’s
article.
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Figure 6 from Spring 1966, p.83

A similar idea was used previously by Morris Rosen in “Taxicab
Geometry” [27]. Rosen’s article looks at what the conic sections
would be like if given their usual definitions but using the taxicab
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metric. Full of very interesting figures, his presentation won first
place at the 1955 convention.

Another example of an idea driving a student project is “Pascal’s
Tetrahedron and the Trinomial Coefficients” by Janet Shorter and
F. Max Stein [33]. Shorter participated in an Undergraduate Re-
search Participation Program at Colorado State University under the
direction of Stein. Stein and his students produced a good number
of papers that appeared in The Pentagon, as well as other journals.
This makes another point: most student research is, at least to some
extent, directed by a faculty member. Although Stein preferred to be
listed as co-author with his students, it has been more common for
faculty members’ contributions to be acknowledged in other ways,
such as by a “thank-you” at the end of the article.

“Square Trigonometry” by William Georgou [16] was the 1971
convention winner. The idea of this paper was to use the unit square
instead of the unit circle in defining the trigonometric functions.
Georgou came upon the idea from a 1967 article in The Mathematics
Teacher [2]. Again, I should digress momentarily to say that often
the ideas undergraduate students use in research projects or papers
are not their own original ideas, but ideas borrowed from others and
expanded upon. That’s not a bad trend in the opinion of this author,
and it is a trend that [ would expect to continue.

The functions in Georgou’s article are named san, cus, tin, nas,
suc, and nit, and an example of the graphs given by Georgou is be-
low.
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Figure 4 from Fall 1971, p.
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Myron Effing gave the winning presentation in the 1963 conven-
tion titled “Biangular Coordinates” [11]. Myron begins as follows:

“The two most commonly used coordinate systems for locating points in a
plane form a progression which leads to a third coordinate system. In the Cartesian
systems, two distances are measured to locate a point, while in the polar coordinate
system, a distance and an angle are measured. The third system is one in which
two angles determine a point.”

As with the previous four papers, the idea is simple yet interest-
ing. Many questions within the reach of an undergraduate present
themselves quite easily. The diagram showing the coordinates of
a point is reproduced below, followed by a graph Effing calls an
“arachnid” (spider).

(£) Tho dractmid = ;’ ¢
Figure 1 from Fall 1963, p.3
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Pv9

A B
Figure 5(f) from Fall 1963, p.11

“The Four-Dimensional Cube” by Normal Sellers [29] discusses
the tesseract, which is the extension to four dimensions of our two-
dimensional visualization of a three-dimensional cube (confused?).
Sellers’ drawings are some of the best examples of hand-drawn fig-
ures [ have seen, and the article is well worth a look just for those
illustrations.

A final, more recent example of the same type is “Lengths of
Generalized Rose Curves” by Ismat Hasan Shari [32]. Shari inves-
tigates graphs of the form r () = cos (26), as opposed to those of
the form r (6) = cos (m#f).

Part S. Trends

We have discussed several trends among student papers in the
previous sections. What I would like to discuss here is the idea that
mathematics, not unlike clothing, music, and entertainment, has its
fashions as well. I have attempted to determine the “hot” topics of
each decade of The Pentagon’s existence. The following list isn’t
perfect, but it’s my best shot:

1940’s: history, geometry, and philosophy

1950’s: cryptography

1960’s: matrices, linear algebra and vector spaces
1970’s: graph theory

1980’s: games and game theory

1990’s: fractals, chaos and dynamical systems

Notice that these are more in line with “popular” mathematics
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than with “serious” mathematical research, although not completely
disjoint from the latter. An illustration of the trend of the 1990’s
and another example of a paper’s reference to KME is the winning
presentation from the 1991 convention, “What’s the Fractal Dimen-
sion of KME?” by Mary Wilson [42]. The KME Fractal, reprinted
below, appeared in her article.
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Figure 5 from Fall 1991, p.11

Another recent trend is that of the “catchy” title. While such ti-
tles somehow relate to their subject, in many it is not at all clear
what the paper is about. Examples from the 1990’s include “I Think
Knot” [7], “Magical Minimal Mania” [1], “Even the Least of These”
[41], “Let’s Be Seated” [38], “When Intuition Fails” [5], “Choices,
Choices, Choices” [4], “The Bobcat That Lived in a Polygon” [24],
“As the Water Swirls” [20] (from 1988), “Fore!!!” [40], “I’ve Got
a Secret” [37] and “Princess Diana, Paul Revere, and Group The-
ory???” [8]. Although a few older titles are this way, they are much
fewer and farther between. The 1957 paper “Paradox Lost - Paradox
Regained” by (Peggy) Steinbeck [34] has a nice literary sound to it,
even though the title and author clash.

Part 6. Others

Of course, there have been many student articles that do not fit
the types mentioned previously. Many are real “mathy,” like “The
Second Order Linear Differential Equation with Constant Coeffi-
cients and the Corresponding Ricatti Equations” [10]. Others were
of mathematical exposition, e.g. “The Cantor Mapping” [13]; ex-
position is still a common theme of many of today’s papers. Some
were historical exposition (which is enjoying renewed interest) like
“From Alice to Algebra™ [12].

Our final example is a historical exposition written in the 1940’s,
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an example of the hot topic of that decade as well. “The Newton-
Leibniz Controversy” [35] was written by an alumnus (1942) of the
host institution when it was still separate from the boy’s college and
called Mt. St. Scholastica College. Muriel Thomas was in atten-
dance at the banquet [the banquet for which this address was given],
more than half a century after her article was written, but unfortu-
nately had to leave before the end of this presentation.

Conclusion

Kappa Mu Epsilon student scholarship will continue to see changes
while remaining basically the same. “Hot topics” will come and go.
Our interests will change and our applications of mathematics will
change with them. We’ll still see expository papers. We’ll still see
“ideas” as motivations for papers. But in the end, it will always
come down to students with a curiosity about mathematics being led
by faculty to discover the wonderful world of mathematical schol-
arship. As Solomon wrote, “There is nothing new under the sun”
[Eccl. 1:9b].
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Game theory has been examined and exploited in many ways.
However, no attempt has been made to rate the value of specific
games. That is, there is no way to explicitly describe how “interest-
ing” a game is. This will be the subject of our discussion here. In
order to accomplish this task, we will review some relevant concepts
from game theory and borrow an idea from the seemingly unrelated
field of information theory. After describing the manner in which
we will judge games, the properties of this rating system will be ex-
amined, culminating in a theorem describing a function that serves
as a lower bound for the value of the “quality” of any two-player
game where at least one player has exactly two strategies and the
other has at least two strategies (that is, any 2 x n matrix where
n22).

First, a few assumptions should be introduced. Throughout the
text, the work “game” will be understood to mean a contest between
two or more players where each has two or more strategies. Each
player will choose one strategy with no prior knowledge of the other
players’ choices. These strategies, when considered in conjunction
with each other, will result in a “payoff” for each player that can be
described with a real value (it is convenient to think of the payoffs
monetarily). The function that describes the relation between the
various strategies and the resulting payoffs is commonly introduced
visually as an n-dimensional array, where n is the number of players.
So, for example, consider the array

P
Q L2 -1,3 0,0
0,0 3,2 2,-1
Here, the game is played by two players, P and Q. P’s strate-
gies correspond to the array’s columns, and while Q’s are the rows.
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Notice that each entry in the array has two numbers. The first is P’s
payoff and the second Q’s (in keeping with the money analogy, we
will assume that each player is attempting to maximize their pay-
off). So, suppose that P had chosen the second strategy, while Q
had chosen the first. Then, we see from the entry in the first row
and second column that P gains -1 (or loses one dollar, if you like),
while @ gains 3 (or receives three dollars). It should furthermore
be noted that the scope of this paper is completely limited to two-
person games (thus justifying the use of the word “game matrix™)
where each player’s payoff is the negative of the other player’s cor-
responding payoff (such a game is usually referred to as a “zero-sum
game,” since the sum of the values in every entry of the game matrix
will be 0). The reason for this restriction will readily become appar-
ent as the process of rating a game is introduced. Because we are
only addressing zero-sum games, we can now streamline our nota-
tion a bit so that there is only one value in each entry of the matrix.
This value will represent the amount the row player gains and the
amount the column player loses. So, we can now write

P
1,-1 —1,1 0,
Q| 0,0 3,-3 2-2
-2,2 -2,2 1,-1
as
P
-1 1 0
Ql 0 -3 -2
2 2 -1

Note that by rewriting our matrices in this fashion, the entries
are the row player’s payoff. (Here it is handy to think of P paying
whatever payoff results to ).)

One last subject from game theory must be addressed before we
tackle the heart of our problem. It is a very simple task to create
a game where, using only the tools we have thus far introduced,
neither player could find a satisfying optimal strategy. Consider
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Here, suppose that player P had a rational “best” choice that
would optimize his payoff. Arbitrarily, let us assume it is the first
column. But then @, knowing P to be a rational sort, could antic-
ipate this move and would undoubtedly choose the first row as his
strategy. P, being rational and thus anticipating this thought pro-
cess, would have instead chosen the second row, thus minimizing
the payoff. But ), anticipating this, would have chosen the second
row, and so on. This is not a wholesome way to look at the game.
So, we now introduce the idea of mixed strategies. That is, P will
choose the first column with a probability p,and the second with a
probability p,. Similarly, Q will choose the first row with proba-
bility q;and the second row with probability g,. We assume a large
number of games have been played, and it is a simple task to cal-
culate the expected payoff (as the sum of the product of each entry
and the probability it will occur). It is this expected payoff that P
must now minimize and @ must maximize, for obvious reasons. An
invaluable theorem of game theory guarantees the existence of an
equilibrium point for each player’s mixed strategies. This describes
the payoff for the optimal strategy of both players. Specifically, if
one player plays the optimal strategy, the other loses all control of
the game; the outcome is the same regardless of the second player’s
choice of strategies. Conversely, not playing one’s optimal strategy
gives the other player the possibility of worsening one’s payoff. Cal-
culating these optimal strategies is relatively uncomplicated. View-
ing the probabilities of choosing each (both player’s) strategy as free
variables (but noting that if a player has n strategies, there will be
only n — 1 corresponding variables, as the various probabilities must
sum to 1), find the multi-variable function describing the expected
value (the sum of the product of each entry and the probability it
will occur). Differentiating this function with respect to each vari-
able and setting each result to 0 leads to a series of equations that can
be solved, thus giving the optimal probabilities (this corresponds to
maximizing or minimizing the value of a function as one learned to
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do in a first semester calculus course). For more information, refer to
Owen’s Game Theory [2](Chapter contains a proof of the Minimax
Theorem described above) or Rapaport’s Tivo-Person Game Theory
[3], for a bit more elementary approach.

We now turn our attention to information theory (or thermody-
namics, if you prefer) in order to acquire our “interestingness” mea-
sure. In information theory, one refers to the entropy or measure
of uncertainty of a finite set of probabilities corresponding to mutu-
ally exclusive events in order to describe how difficult it is to predict
which one will occur. Explicitly, the entropy is defined as

n
H (PI,PL ---’pn) = sz log2pia
i=1

where p;is the probability of the i** event occurring. Note that
throughout the discussion, we adopt the common convention that
0log, 0 is defined to be 0. The properties of the uncertainty measure
and the justification of the above formula as a suitable description
should be available in any introductory information theory text, for
those who are interested. Most of the author’s reading came from
the opening chapter of Ash’s Information Theory [1].

In order to apply this to a game (recalling that we have limited
our attention to two-person, zero-sum games), define a game G with
players P and Q and respective strategies z,, ..., 2,, and y,, ..., Y.
Calculate the optimal strategies of each player and let p;be the prob-
ability with which P chooses z;, defining ¢; similarly. Then, we
define the entropy associated with G as the arithmetic average of the
entropy associated with each player’s strategies, or

H() = HP -..,pm)2+ H(q1, ...qn)

In this way, we can determine the “value” of the game. That
is, those with small entropies (near 0), have fairly predictable out-
comes, while those with large entropies (near 1) are about as unpre-
dictable and random as possible. Accordingly, games with larger
entropies are more “interesting.”

Having found a way to describe the uncertainty inherent in a
game, we can now examine the entropic properties of the game. We
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begin by noting that any game (recalling we have limited ourselves
to those with which at least one player has exactly two strategies)
can be “reduced,” without changing the optimal strategies, to a 222
matrix. The proof of this statement will not be given here, but it is
not difficult to understand. In essence, it shows that the player with
only two strategies can limit the game’s payoff to linear combina-
tions of a fixed number of values (actually, the number of values is
equal to the number of strategies the other player can choose to play)
in such a way that the other player can only suffer by ever consid-
ering the possibility of playing more than two strategies. In other
words, the probability of choosing a strategy will be 0 for all but at
most two strategies, or else the payoff will improve in favor of the
player with only two strategies. Thus, when one player has exactly
two strategies, the matrix can be reduced to a 2 x 2 matrix, and it is
this situation that will occupy the remainder of the paper.

In order to describe our general game, arbitrarily fix four real
values 7, s, t, and uz and order them in ascending order. So, without
loss of generality, we have

These will be the payoffs in our game. Thus we must consider
only 24(4!) matrices (that is, there are 24 possible ways to enter
these payoffs into our game). However, it should be apparent that
switching the order that the rows or columns (or both) appear will
have absolutely no effect on the game itself or the game’s entropy.
Thus, we can always rearrange the game matrix so that the upper left
entry has the greatest value, v. Now we need consider but six (3!)
matrices. Of these six, four can immediately be eliminated by simple
inspection, since the column player will have a dominant strategy in
two, and the row player will have a dominant strategy in two others.
In each case, the result is a trivial entropy of 0. (Note that these four
matrices may not be bound by the inequality described near the end
of the paper. However, having found that each has an entropy of
exactly 0, there is no need to further explore the uncertainty of the
game.) This process leaves us with but two matrices to be examined,
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and

u r
o]
Now, for ease of computation and clarity, we introduce a scaling
function S. Define S as

r—r

S(z) =

u-—-r

applying S to each payoff in the above matrices gives

P
dtH
and
P
o[e ]
where
a=3S5(s)
b=2S5(t)
Notice,
0<a<b<l

In order to see that this does not alter the entropy of the game,
it is a simple task to calculate the optimal strategies of the two new
matrices, substitute in the ‘definition of @ and b, and note that this
result matches the optimal strategies for the two old matrices. (The
only time this scaling will not be possible is when all of the payoffs
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are exactly equal, but then we can assume each player picks one
strategy at all times, since they are identical, giving an entropy of 0.)

Armed with our new matrices, it now becomes clear that they
are equivalent to each other (an argument similar to the one that
follows could have been applied before the scaling function S was
introduced): Notice that our second matrix,

P
o]
can be viewed as
P
o[v =]

(One way to think of this is to remember our money analogy. In
this new matrix, @ is simply paying P instead of the other way
around.) Applying S to each entry gives that the previous matrix is
equivalent to

Q
P[0 1]
and thus
Q
Plo 1]

by swapping rows (recall this could be done as each player’s
strategy is still the same, they only appear in different orders). It is
clear that

0<1-b6<1-a¥<l
But these were the only limitations placed on our first matrix,

P
1l a
o[o 3]
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and so the analysis that follows is equally valid for either game.
Henceforth, we will refer only to this last matrix.

Having found a succinct way to describe every game where at
least one player has two strategies, we now turn our attention to in-
creasing our understanding of this matrix. To accomplish this task,
we will explicitly calculate H(G), and find a pair of curves that al-
ways bound this entropy. In order to do so, we now introduce a
few constants. We will denote the probability with which player P
chooses the first column while utilizing the optimal strategy as p (so
the second column will be chosen with a probability of 1 — p). Sim-
ilarly, g will be the probability that Q) chooses the first row. And
finally, in anticipation of the final result, define

m=b—-a

Simply following their definition, it is straightforward to show that

b—a
p=1+b—a
b
q=1+b—a
Hence,
H(p,1—p) = logy (1+b - a) — ——%log, (b - a)
1+b—-a
and
b

H(q1-4q) = log; (146~ a) — y————1log, ()

l1—-a
BETE R

and so
H(G) = log,(1+b-a)

_(b—a)log, (b—a) +blog, (b) + (1 — a)log, (1 — a)
2(1+b-a)

And, finally, it becomes time for our final result. Note

H@OG) <1
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since H(p,1 — p) and H(q, 1 — q) are, individually, always less than
or equal to 1. (While we have not previously discussed this fact, it
is a consequence of our definition of entropy.) However, finding a
lower bound is not quite so straightforward. As it will turn out,

Al L \<we
( )<#©

m+1'm+1

To see this, first note that

m 1 m
H{ — —— = +1) - 1 m
( wE : 1) log, (m + 1) 1 og, ( )

a
= log2(1+b—a)—mlog2(b—a)

So, the problem becomes to show that

1og2(1+b-a)—1—j’r—b—f—alog2(b—a)
< logy(1+6—a)
(b— a)log, (b— a) + blog, (b) + (1 — a)log, (1 — a)
B 2(14+b—a)

or, equivalently, that

0 < (b—a)log, (b —a)+blogy (b) — (1 — a)log, (1 — a)
(Here we just subtract the left side of the inequality from both sides

and multiply by 2(1 + b — a).) First note that if b = a, then the
inequality does hold. So, let a < b and define the function A as the
right side of this new inequality:

h(a,b) = (b —a)log, (b — a) + blog, (b) — (1 — a)log, (1 —a).
Noting that

dh a

@ =n(1-3).

one realizes that ‘;—2‘ < 0, since a < b. Thus it is clear that k& is
decreasing for a fixed a. But,
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h{a,a) = —log, (a) — (1 —a)log,(1 —a) >0

h{(a,1)=0
Thus, for any value of a between 0 and 1 and any b between a and 1,

ha,b) >0

as required.

To reiterate what we have found,

H(L —I—)SH(G)SI

m+1 m+1

for any non-trivial game G where one player has exactly two
strategies.

Before we end, one is certainly entitled to examine this cryptic
inequality a bit. The portion on the right is not mysterious. It simply
reminds us that, as a direct consequence of our definition of a game’s
uncertainty, 1 describes the most uncertain game possible. The left
inequality, however, is bit overpowering. To appreciate what this
means, notice that we have found a lower bound for the average of
two entropies (recall H(G)’s definition) in terms of the definition
of entropy itself and the scaled entries of the game matrix, not the
probabilities associated with the optimal strategies, as seems most
natural. This undoubtedly deserves more than passing interest, how-
ever, for now, the matter must be postponed. I leave you with a
picture of what we have been exploring.
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Figure 1

The horizontal axis is m. as defined above, and the vertical is the
entropy of the general game we found above. For various values of
m, ten values of « were chosen, thus uniquely defining a game. The
circles correspond to these games. Along the bottom lies the graph

m 1

of our lower bound. H (4. =1} .

m~1"me-1
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The Problem Corner
Edited by Kenneth M. Wilke

The Problem Corner invites questions of interest to undergrad-
uate students. As a rule the solution should not demand any tools
beyond calculus. Although new problems are preferred. old ones
of particular interest or charm are welcome, provided the source is
given. Solutions should accompany problems submitted for pub-
lication. Solutions of the following problems should be submitted
on separate sheets before January 1, 2002. Solutions received af-
ter the publication deadline will be considered also until the time
when copy is prepared for publication. The solutions will be pub-
lished in the Spring 2002 issue of The Pentagon, with credit be-
ing given to the student solutions. Affirmation of student status
and school should be included with solutions. Address all commu-
nications to Kenneth M. Wilke, Department of Mathematics, 275
Morgan Hall, Washburn University. Topeka, Kansas 66621 (e-mail:
xxwilke@acc.wuacc.edu).

PROBLEMS 545-549

Problem 545. Proposed by the editor.

The sequences Ay, = 8%10%* +4%10%, B, = 8% 10%* +-4%x10F+1
and Cy = 4%10*+ 1 where & is a positive integer generate an infinite
set of Heronian triangles in which the area of the triangle is 10*
times the perimeter of the triangle. These sequences allow automatic
generation of an infinite list of these particular Heronian triangles
through the use of a calculator or computer. Find another set of
similar sequences which has the same property; i.e. the sequences
generate an infinite set of Heronian triangles in which the area of the
triangle is 10* times the perimeter of the triangle and B). — A;. = 8.

Problem 546. Proposed by Adrian C. Keister, Grove City College,
Grove City, Pennsylvania.

Prove or disprove the following theorem:
Suppose a function f is three times differentiable on the interval
(a,b). Suppose there exists a point c in (a, b) such that f”(c) = 0
but f”(c) is not equal to zero. Then c is an inflection point of f.
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Problem 547. Proposed by the editor.

Evaluate the sum
€0s9° +c0s49° + cos 89 ° + ¢0s 129 ° + cos 169 °
+ 05 209 ° + ¢0s 249 ° + cos 289 ° + cos 329 °
A solution which does not use a calculator or computer is preferred.

Problem 548. Proposed by Jose Luiz Diaz, Universitat Politecnica
de Catalunya, Terrassa, Spain.
Let n be a positive integer. Prove that
B} Pl Fho
Eu+2 Fn RH—l

where F, is the n'* Fibonacci number. That is, F; = 0. F; = 1 and
forn > 2,F,=F,.+ F, .

21:11—{»—‘2 <

Problem 549. Proposed by Bryan Dawson, Union University,
Jackson, Tennessee.

A soft rain falls vertically at a speed of 12 miles per hour. You
are in your car stopped at a stoplight. As the light turns green, you
accelerate to 45 miles per hour and notice, of course, that more water
now hits the windshield. If your windshield is inclined 60 ° from the
horizontal, what is the ratio of the water hitting your windshield at
45 miles per hour compared to water hitting your windshield at rest
ignoring any possible aerodynamic effects of the vehicle?

Please help your editor by submitting problem proposals.

SOLUTIONS 535-539

Problem 535. Proposed by the editor.
Determine the smallest value of |18” — 79| where p and q are pos-
itive integers and || denotes absolute value.

Solution by Rozy Brar, California State University, Fresno,
California.

Looking at possibilities for p and ¢, we notice that 187 = 18, 24,
32, 68 and 72(mod100) and 79 = 1,7, 43 and 49(mod100). Consid-
ering possible differences, the smallest difference, in absolute value,
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between 187 and 77 is 11 = |18 — 7| = |32 — 43|. Thus the smallest
value of |18” — 79| is 11 whenp = ¢ = 1.

Problem 536. Proposed by the editor.

Let P(n) denote the product of the divisors of n (including 1 and
n) Find, with proof, the smallest integer n such that P(n) = n8
where:

(a) n is an integer;

(b) n is a perfect square; and

(c) nis a perfect cube.

Solution by Daniel Springer, California State University, Fresno,
California.

Let the prime decomposition on » in canonical form be

n=10") (1
i=1

From (1), we use the number theoretical function 7(n) which
denotes the number of positive divisors of the positive number n;
i.e.

r

() =[] (ki + 1) )

=1

where the prime decomposition of n in canonical form is given by
(1).
By (2), the product of the positive divisors of n is given by
P(n) = n(*)
Then, by (3), P(n) = n® so that 7(n) = 16. Thus

3)

r) =[[(ki+1)=16=8%2=dxd=4%2%2=2+2%2%2
i=1

and the possible forms for n in part (a) are pi°, plp2, ppops, or

P1p2p3ps. Taking py = 2,p; = 3,p3 = 5 and p; = 7, and testing the

possibilities shows that n = 23 x 3 5 = 120 is the smallest solution
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for part (a).
For part (b), since n is a perfect square, by (1), (2), and (3) we have
and

7(n) =] (2ki +1) =16
i=1
which is impossible since 2k; + 1 is odd for all choices of ;. Hence
there are no solutions for part (b).
For part (c), since n is a perfect square, by (1), (2), and (3) we have

n= [T (™)

=

and

7(n) = [] (3k; + 1) = 16
i=1
so n must have the form p1° or p}p3. Taking p, = 2 and p, = 3 and
checking the possibilities, we find the smallest solution for part (c)

toben = 2% x 3% = 216.
Also solved by Clayton Dodge, University of Maine, Orono, Maine.

Editor’s comment. Dodge correctly pointed out that n = 1 triv-
ially satisfies all conditions of the problem and then found the same
solutions as found by our featured solver. Sources for the results
relied on by our featured solver are:

1. Oystein Ore, Number Theory and its History, McGraw-Hill Book
Company, Inc., New York, 1949, p86. {Ore uses v(n) instead of
the more often seen 7(n).}

2. Oystein Ore, Number Theory and its History, McGraw-Hill Book
Company, Inc., New York, 1949, p87. Theorem 5-2.

Problem 537. Proposed by the editor.

Let r,s,t,u and v be integers such that both their sum and the
sum of their squares are divisible by an odd prime p. Prove that p
also divides the quantity 7° + s% + ¢5 4 4% 4+ v5 — 5rstuv.

Since no solutions have been received, this problem will remain
open for another issue.
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Problem 538. Proposed by the editor.

An cccentric gardener with a mathematical penchant has a group
of gardens which have the following common properties: each gar-
den has a triangular shape such that the area of the garden is twice
the perimeter; each side is an integral number of feet; and in each
garden two sides are consecutive integers. How many gardens does
the eccentric gardener have and what are the dimensions of each
garden?

Since no solutions have been received, this problem will remain
open for another issue.

Problem 539. Proposed by the Albert White, St. Bonaventure
University, St. Bonaventure, New York.

For points ., y, 2, let [z, y, 2] denote the area of the triangle formed
by the points z,y and z. Let a, b and ¢ be the vertices of a right tri-
angle. Find the point z such that [a,b,x)? + [a,c,z]* + [b,c,2)° is
a minimum. For the purposes of this problem assume that all points
lie in the same plane.

Solution by Carol Browning, Drury College, Springfield, Missouri.

Without loss of generality, we may situate the right triangle in the
plane with the right angle ¢ at the origin, the vertex a at the