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Going Up?

Douglas Appenfcller, student
Kansas Delta

Washbum University
Topeka, Kansas 6662 1

Presented at the 1999 National Convention and awarded
“top four” status by the Awards Committce.

Elevator technology has been evolving for about 4,600 ycars. In 2600
BC, Egyptians uscd hoists to move 200,000 pound blocks that were uscd
to build the pyramids, some of which stand over 500 feet tall. Around 80
AD, crude clevators were used in the coliscum in Rome to lift gladiators
and wild animals up to the arena. The first stream powered clevator was
made in the early 1800s. The first hydraulic elevator was made in 1878,
In 1889 Otis Elevators introduced electric elevators. Today clevators are
everywhere.  Otis Elcvators” web page states that “clevators move the
equivalent of the world’s population every three days.”

The intent of this discussion is to develop a simple modcl of a single
elevator’s travel time within a more complex bank of clevators scrvicing a
medium range, high rise building.

The first step of our process is to develop an acceptable velocity curve
v(t) for an clevator travcling from some starting point to some later stop-
ping point. An appropriatc velocity graph for our elevator might look like
that in Figure 1.
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Uy =clevator maximum velocity.
tyn =time required for elevator to reach maximum velocity.
T =total time from start to stop.

Note that, starting from ¢ = 0, the elevator’s velocity starts out smoothly,
gradually increases, smooths out to a constant where ¢ = ¢,;,, rcmains con-
stant until 7" — ¢,,, and begins its deceleration in the reverse motion of its
acccleration and stops at time 7.

To develop a suitable equation for the velocity function v(¢),0 < ¢t > T
we make scveral assumptions.

1. v(0) = v(T") = 0 The elevator stars from rest and ends at rest scconds
later)

2. As t goes from 0 to ¢, the velocity of the clevator can be effectively
approximated by a cubic equation, v(¢) = bt + ct? + dt + c.

3. v'(0) = v' (t;m) = 0 (To insure a smooth start and a smooth transition
to maximum velocity.)

4. As ¢ gocs from t,, to T — ¢,y the velocity of the clevator remains at the
constant maximum velocity vy,, which equals v (¢,,).

5. As t goes from T — t,, to T the elevator slows down with a motion
which “reverscs” the motion described in (2) above.

Using the cubic velocity equation in (2) and v(0) = +'(0) = 0 we
quickly getd = e = 0. Using v(t;m) = vm and ¢'(¢m) = 0 we get

Accordlngl\ thc cubic equation for v(t) is

v(t) = Z2m 54 3m 2 g <t <t
tms tm?

To detcrmine the “slowing down” velocity function, we necd only re-
ficct the “speeding up™ velocity function across the vertical axis to get
v(—t) and then translate the result 7" units to the right to get v(7" — ¢). The
resulting velocity function is:

= 3 m (g Al
o(t) = v’"(T—t) + ? (T—t)2forT—tm$L5_l.
The first step in our process is complcte. The equation of the velocity
for0 <t < Ly i8:
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P (3 W g? 0<L< b

U(t) = U ) tm <L < ([’ tm)
- Cy g 3 ' s ol y e .
effa“('-t) F 8 (T =) (I —1,)SLST

The next step is developing a position function, s(¢), which cquals the
distance traveled by the clevator at time t scconds, while traveling from
one floor to another. To find s(t) we need only anti-differentiate (¢) while
requiring that s(¢) be continuous on the \vholc interval from 0 <t < T
and thus at the particular valucs ¢, and T - {,,,. Although this proccss is
not difficult, 1t is very messy and the details are excluded

The position function simplifics to:

;TL"‘M + t—v“’:/»;; 0<t <ty
(&) Uppe . JLLJ‘ n by <1< (T - tm)
8 = U q ' e 3
G- 7. — Hu (T . .
gty (1= b — G (=l Vi<

+ (T - Lm) Um

Now that the velocity and position functions have been developed for
the elevator, the running time, (), can now be developed. (D) will
represent the running time, in scconds, for an elevator to move D feet with
the clevator starting and cnding at rest.

The development of #(1)) comes from looking at s(/) and detcrmin-
ing the relationship between the distances traveled by the clevator and the
amount of timg it takes to cover those distances. The first step comes from
finding the distance the clevator travels during its acceleration and decel-
cration times. We first look at the distance traveled while the clevator is
accelerating. To do this we cvaluate s(¢y,,), i.c. plug ¢, into the equation
T 4 f:*;l,"‘ . The answer simplifies to ¥mim | Since the acceleration mo-
tion is equal to the deccleration, the clevator also travels Y feet while
decelerating. The total distance traveled while the clevator speeds up and
slows down is vy, li,. The remaining distance traveled by the clevator is
D - Lmtm Thc time it will take the elevator to travel this remaining dis-
tance is 2 , it 1s divided by v,, because at this point the clevator is
traveling at ns maximum constant velocity, v,,. Now to find the running
time, 7( 1)), we add the time it takes to accelerate (£,,,) to the time it trav-

els at constant velocity (“—jjmﬁm) to the time it takes to decelerate (t,,).
r(D) = D"bff' a4 2¢,, which simplifies to #(D) = ;)Q + L. Now this
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equation will hold as long as the total distance that is traveled by the ele-
vator (D) is at least the distance traveled while the elevator is speeding up
and slowing down (vt ).

If D is less than vy, then there is no period where the clevator is
traveling at its constant maximum velocity. This mecans basically that the
elevator will have a period of acceleration followed immediately by a pe-
riod of deccleration. This change from acceleration to deceleration will
occur at some time 7y where 0 < Tg < ¢, and, in our model, could cause
a slight “jolt” sincc we arc losing our gradual change of acccleration in the
cubic equation. 7j is multiplied by 2 to account for both the speeding up
and slowing down of the clevator. Therefore

T(D) - { % +im  for D2>uu,t,
2To Jor D <unt,

We have now completed the development of our running time formula
(D). Note that (D) will be used to determinc the time it takes for an
elevator to travel D feet, starting and ending at rest. This formula will be
used repeatedly in the remaining analysis.

We retum to the genceral elevator problem.

Recall that we arc considering only a single clevator within a larger
bank of elevators. Accordingly, our elevator will only scrvice a specific set
of N consecutive floors of the building. We will denote the floors beyond
the main floor #1, #2, #3, ctc. If we let # L be the lowest floor served by our
elevator then the NV floors serviced are #L, # L+ 1, #L+2, ... # L+ N —1.
Since not all of those N floors will be served on a given run of the clevator,
we must try to determinc the typical or average total time for the clevator
to complete a passenger run. More particularly, we will detcrmine the time
required to:

1. Pick up the passcngers at the main floor.

2. Move the elevator to the lowest floor being scrved where at least 1
passenger will get off.

3. Continue moving upwards, unloading the passengers as needed.

4. Retum to the main floor aftcr the last passenger has left the elevator.

The methods we use are motivated by Bruce Powell’s work in an article
“Mathematical Modcling of Elevator Systems.” Powell’s article was based
on work done for thc Research and Development Center of the Westing-
house Corporation. Westinghouse is involved in the clevator industry. In
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some cases we will parrot Powell’s approach. In other cases we modify
or extend his results. For cxample, in the development of our clevator ve-
locity function, we uscd a cubic cquation. Powell instcad used a lincar
equation. Our velocity curve was much more difficult to devclop, is likely
more accurate, and is ccrtainly morc mathematically intercsting than Pow-
ell’s. Of course the small differences resulting from the two approaches
would be insignificant in the context of the solution to the whole modcling
problem with which we arc dealing.

The general formula we will develop for the total time required for the
clevator to make a round trip run, loading and unloading passcngers, will
be developed in 5 segments which we will symbolize 11, 1%, 13, Ty, andT5.

Tywill represent the time, in seconds, to load cach passenger at the
main entrance and unload them at their destination floors. We let /2 denote
the number of passcngers that are loaded on a given run; I (scconds) the
loading time for cach passenger; u (seconds) the unloading time for each
passcnger. Since cach passcnger requires ! + u scconds to load and unload
and therc are I passengers, we have:

=P (l+u).

T, represents the running time for the clevator to recach the first floor
say #L + b(b € {0,1,...N — 1}) being served on a given run. Supposc
that the distance between any two consecutive floors in the building is f
feet. Then to reach floor # /. + b the elevator must travel (£ + b) - f feet.
We apply our running time formula to obtain:

Ty=r[(L+b)-f]

T3 1s the time it takes to open and close the doors when unloading
passengers at cach stop. Wc let d (seconds) denote the time it takes to
open and close the doors at the main entrance and on an unloading floor.
We will mirror Powell’s approach, developing an estimate of the number
of stops nceded to unload the P passengers on a given run. Of course the
number of stops will change from run to run.

We list a logical scquence of probabilities:

Prob(a passcnger randomly chooses Floor #L + ¢ out of NV floors
serviced) = 4 .
Prob(a passenger docs not chosc Floor #L +i) =1 — ,\l :

Prob(none of the P passengers choose Floor #L + i) = (1 — ,%)P

Prob(at Icast onc passcnger chooses Floor #L + i) =1 — (l - ﬁ)p
If we introduce the symbol S, to represent the number of stops on a
given run then:
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s,=é[l_(l_%)”]

Since the probability of stopping at a given floor is the same for all NV
floors, we are summing a series of constants, so:

ol ()]

Since S, represents the expected number of stops on a given run, then
(including the main floor) the clevator doors open and closc approximately
Sy +1 times on a given run. If we assume that each stop requirces d scconds
for opening and closing the doors, then:

Ty=d-(S+1)

T4 represents thc running time from the highest floor served, down to
the main floor. Just as thc number of stops varies from run to run, so
also does the highest floor served. We again mirror Powcll’s approach
and estimate the cxpected number of floors (V) reached on a given run
beyond Floor # L, as the I’ passcngers are unloaded. Note 0 < N, < N,
The probability that a singlc passcnger gets off the elevator at or before the
k" fioor serviced is k The probability that all P passcngers get off at or

before the K" floor serviced is (,—ﬁ;)P Keeping this in mind, realize that
N; "is equivalent to the largest value in a sample of size /2 from a discrcte
uniform distribution with replacement,” so:
Prob (N, = k) = Prob(largest value = k)
= Prob(largest valuc < k)— Prob(largest value < (k — 1)

N )
So,N, =Yk [(%)I - (k—,\',—l)P] when we sum over the N floors.
£=1

Recall that the first floor being serviced by this elevator on any run is
Floor #L. There arc an cstimated N, — 1 more floors beyond Floor # /1.
to the top floor being serviced on this run (although the clevator stops at
only S, of these floors). Recall the distance between floors is f fect. Here
the clevator travels [L + (N, — 1)] - f feet as the elevator descends to the
main floor from its highcst point. Accordingly, the running timc formula,
r(D), gives the result:

Ti=r[(L+ (N = 1)) ]
We have one step left in our process. We need to determine the run

time T3 of the elevator as it moves from stop to stop as it unloads passen-
gers. Recall there are an cxpected S, stops over an expected range of N,
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floors. We Ict Floor # L, be the lowest expected floor at which passengers
arc unloaded. The general discussion gets rather involved so we illustrate
with a simplificd cxample. Consider starting floor, Floor # L = #11, 5,=5
and N,=15. On this run our clcvator gocs from Floor #11 to Floor #25
making 5 stops. Onc of thosc stops is at Floor #11 and one is at Floor
#25 and the other 3 are somewhere in the remaining 13 floors. Using the
combination formula C(13,3) we find that there arc 286 different possible
“’stop-configurations.”
Two of these stop-configurations are sketched in Figure 2.

#25
#24
#23
#22 A
421
420
#19
#18
#17
#16
#15
#14
#13
#12
#11

C1 C2
Figure 2

Configuration C1 has the clevator stopping at Floors #11, #12_#13, #14
and #25. Configuration C2 at #11, #15,#19, #22_ and #25.

It can be argued that configuration C1 yiclds the fastest run time of all
286 possiblc configurations and that C2 yiclds the slowest possible run
time. A rcasonable approximation for 75 (cxpected total run time) would
be to average these two extremes.

C1 is a configuration in which the clevator travels the maximum total
distance at maximum vclocity. Although other configurations may involve
the same total run time as C1, nonc of the other 285 run times can be faster
than that of C1.Using our run time formula »(22) with f fect floor distance
we get:

C1Run Time = 37 (f) + r (11f)
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In the general case the fastest possible run-time will occur with a con-
figuration with S, — 2 stops immediately after Floor # L, followed by an
uninterrupted run to the top floor, #L, + (N, — 1).

Fastest un time = (S, = 2) - r (f) +r [(Nr = Sr + 1) - f]

Configuration C2 in Figure 2 is a configuration in which the clevator
travels the minimum total distance at maximum velocity. Although other
configurations may involve the same total run time as C2, nonc of the other
285 configurations can be slower than C2. The key to insuring the slowest
possible run time is to position the stops at floors, which will equalize, as
much as possible, thc number of floors between stops.

C2runtime = 21 (4f) + 2r (3f)

In our gencralization we will use an intcger approximation for our ex-
pected values N, and S,. We let N, = the first intcger greater than or
cqual to N, and S, = the first intcger greater than or equal to S;.

Gencralizing this formula is rather complicated. There arc N, — 1 floors
cach scparated by f fcct. We wish to cqualize our clevator’s stop-to-stop
runs as much as possible. We divide N, — 1 by S, — 1 and get a quoticnt
of ¢ and a remainder of z wherc 0 < 2 < S, — 1 (using the division
algorithm). The quotient ¢ is the number of floors covered between the
last S, — lclevator stops, but there arc 2z floors remaining which must be
“distributed uniformly.” We do so by adding 1 to g, = times.

Shortes trun time = z - (g + 1)~f]+(§;— 1 —Z) rlg- f]

We determine by averaging the two extremes:
T, = (Se - 2)-7(f)47((Ne~ S+ 1) f] 4 z-rl(‘I’H)lelr(Sr -1 ~z)-r[q~j]

2
where N, —1=¢q- (S, - 1) +2and0< 2 < S, - 1.

It is intcresting to note that Powell simply used what we called the
“Fastest Run Time” in calculating his run time when unloading passen-
gers. He ignored the fact that there are many different stop-configurations,
which may producc different run times, all somewhat slower than his run
time. In his defense, it can be argucd that if an clevator could reach maxi-
mum speed in half of the floor-to-floor distance f then all stop-configurations
would yicld cxactly the same total run times - but this is a rather unreal-
istic assumption. It is also truc that the difference between the fastest and
slowest stop-configuration run times is likely insignificant when taken in
the context of all the other simplifying assumptions uscd in the real world
modeling problem.
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Summing up the segments of our formula gives the following:
TotalRunTime =Ty + T+ T3+ T+ Ty
=P-(I+u)+r[(L+b)-f]
+d-(Sr+ 1)+ 7L+ (N = 1)) f]
+(Sr*2)'r(f)'l'rl(Nr~Sr+l)‘fI;z‘rl(q'lrl)JI-P (8e-1-2)-r(a-s)

where Ny —1=gq- (Sr—1)+20<2<5, -1

(D) = running time for the clevator to travel D feet;

P = number of passengers loaded on a given run;

! = loading time for cach passengcr;

1 = unloading time for each passengcr;

J = distance between any two consecutive floors;

Sr- - estimated number of stops on a given run;

S, = the first integer greater than or cqual to S;

N, = cstimated number of floors reachcd beyond Floor #1.;
S, = the first integer greater than or cqual to N,

This concludes our discussion on the development of a model of a sin-
gle clevator’s travel time while scrvicing a specificd number of floors of a
medium range high rise building. Onc can now extend the results of this
model to examine the much more complex modeling problem involving a
scquence, or bank, of elevators, which service all the floors of the building.

Perhaps a new high rise building is being designed. In the extended
model onc can investigate how many elevators would be needed to handle
a peak service time (rush hour). What speeds and capacities would be
nceded?

Perhaps a high risc building is in placc with clevators alrcady instalicd.
In the extended model once could determine an clevator scheduling assign-
ment which would most effectively service the entire building.

The model we have completed is just a small first stcp. An interested
rcader can learn much more about these difficult qucstions by referring to
(1) and (2) in the References.

Acknowledgments. 1 would like to thank Dr. Riveland for his help and
dircction in the rescarch for this paper.
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An Investigation of Elliptic Curves to Find Solutions to
Special Cubic Equations in Three Variables

Sam Blisard, student
Missouri Alpha

Southwest Missouri State University
Springfield, MO 65807

Prescnted at the 1999 National Convention.

Fermat’s Last Theorem states that the cquation @™ + ™ = ¢®where a,bc
¢ has no solutions for n > 3. This result has been proven in general, but
it has been known for quitc some time in the n = 3 casc that there are no
solutions. What if we introduce a constant integer cocfficient, call it f,
for the ¢® term (ie., a® + 6% = f % ¢®)? Does this have any solutions?
That was the motivation for this investigation and it has lcad to quite a
few places that I never would have drcamed of going along with some
unanswered topics for futurc consideration.

Part I: A “Simple” Example
Let’s start off with a simple example:

24yt =7 (1

where z,y ¢ Q. We can sce that (z,y) = (2, —1) is a solution to this
equation, which we shall use in a bit. We now take a look at the graph of
this equation:
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From this, we see two things. First, (2, —1) is on the graph of this curve
and that it is symmetric about the linc y = z.

In gencral, when we draw a tangent line through a point on a cubic
curve, it will cross the curve in at most three places. If we found the
tangent line to our cubic cquation (1), it would cross (probably) in only
two points as we nced to remember that this point will be a double root of
our cquation. The rcason for this comes from calculus as if we imagine a
linc parallcl to the tangent line that cuts the curve in three places. As we
move this line closer and closer to the point of tangency, the points will
merge and we will have a double root, just like in the casc of y=z%at
z=0

Now, we shall find the tangent linc at (2, —1) by doing some differen-
tiation.

We have:

Which, when differentiated implicitly vields

. od
3z? + 3y2—y =0
drx

e o T 2)

The equation of the tangent line at this point is of the form y =mz+b,
therefore,

d
y=ny+b

—(2)2
:—1:%(2)-{-1)
=2b=7

= y=—dz+7 3)
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Let’s look at the graph with the tangent line drawn in now:

2

We now want to find where the tangent linc and the curve intersects.
This is donc by substituting (3) into (1) and solving the equation for z.
This would be hard, but we already know what two of the roots are as at
the point of intcrscction of the tangent line with the curve yields a double
root. Doing this, we now have:

P (473 =7
= 1® + (642" + 3362% — 588z + 343) =7

= —63z> + 33622 — 5882 + 336 =0 4)

I claim that z = 2 is a double root of this equation. To verify this, we
perform synthetic division upon (4):
As a check, by performing a Simplify[ | on (4), Mathematica gives us

(=24 x)2 (=44 32)=0 )

Which tclls us that we do have double roots at z = 2 and that the third
rootis T = ﬁ—} I am going to introducc the notation z to represent this
third root. We now need to find the y coordinate that corresponds to this x
coordinate, call it . Sincc we have a nice equation for y (i.c., (3)),

we shall usc it to determine y. We now have:

()
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Therefore, (x,y) = (3,3). but this point is

going to be part of an

abelian group with the operation @ and in order to preserve associativity,
we must reflect these coordinates in y = . This gives the (z, ) coordinate

of this new point, p@p, of (§, 3)where p was our

first coordinate (2, —1).

Using this new operation, we can gencratc as many solutions as we want

following the same process as before. As a check,
p ( p) is a solution to (1) before proceeding.

AN AN u.)+01
3 3) et

let’s venfy that 2p (i.c.,

-
{

Novs let’s ﬁnd 3p (ie., ((p®p)dp)). Since we have two points,

and (2, 1), the slope is:

)
IR
colen
\_-/

E

3

> y=-Tr+b
Sb=y+ Tz
=>b=',—:+7*5—13
>y=-Tr+13

No“ find the 1ntersccnon onx? 4+ 4% =T
Sa3 4 (-Tz+13)° =
Using M athematzca, we get

2190 — 3549z + 1911x?% — 34223 = 0

Now, we make the cubic term’s coefficient | and we have:

1911 . 1() ‘)(
1,‘3—- 1 2 }dl 190

325 T 32T 3

=)

which becomes (=2 + z) (=5 + 3x) (=73 + 38x) = 0 as we used two of

the roots to generate this equation.
Sz= 2

38
=>y_ ]7

Now, switching the coordinates, we get ((p d p) ® p), which is (- 8.
Let’s check and see if thls really is a solution to our cquation:

17\° | (T3Y\°_ 4913 380017 _
38 38) =572t Bagrs

17

Therefore, 3p is our new addition is (-3, b

). This process can be
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repeated to continually find new solutions to 23 + 3* = 7. Since all of
these solutions are rational and if we clear the denominators of z and v,
we are actually finding solutions to the equation a3 + &* = 7¢% where
a,b,ceZ!

Part II: z° + 4® = L for Generic Points

Let’s now develop the equation for two generic points p and g on the
curve with the @ operator. We shall denote p as the point (z1,1) and ¢

as (z2, y2) where p, geQ. The equation for the tangent line through p and
q will be:

y=mz + bwhere m = -0
Tg — I
At p, b will be:
Uy —
Z2 — T
by = B2TUL
g9 — I
Therefore, the general equation is:
Yo — o —
= Y2 yl:v+y1 _ ylxl
Iz — I I2—T

Plugging this into our original equation (1) yields

3

- Yo — 1

§+(2_ﬂ¢+m_£_£m)=b
To — ) Ty — I

This becomes (with the help of Mathematica).

_ 3 3 _ =% 32%xy?  Bzafy] ziup +
Ltz + % (-zi+22)° T (matz2)® (—zatae) + (-1 +22)3
32y 6zz,y3 3xiy? 3zyd 3z
L T = L 2 z = 1 + —z 4 +
(—$1+1’2) (—x;+m3) (-1’1+$2) I *32 Ty-t+-T2
32%yfys  _ 92%ziuiye + 9zziyiys _ _3ziylys  _ _6z%uiy, +
(—z1+a;)° (—zy+z:) T (CotE) T (mmta)® T (CahEg)?
12029}y, _6zbuiy, ¥ Szyive _ 3wty _ _3xtuud
(—.1.‘1"’22)2 (—31+12)2 2 -Z1+T2 (—-’E1+$2)3
9z?z yy?  9zximy; + 3z y2 .'Bm’y;y%2 _ Gmmlyly,}?_l_
(—z1tx2)®  (~z+x2) | (~xitwe)® | (—oatxa) (—z1+x2)

3ziyiys =y3 3z2z,y8 3zziys  _ _ ziyd
(~z,+z3) + (-z,+z2 ¥ (—z1+=2)° (—z1+22)° (—z)4x,)°
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= (———T;( La} + 223 + 3Latxy — 3adzdx, — 3L:r1:z%+
3z3z 2% + I,mfj - :1:3:n‘:2s + x:’y? — 3z%zoy} + 3112 s -ZJI
3a:"J]J2 + 3xix |7/|J) + 622 L‘ngljl FaJ,I:LgJ]J)_ —J$12J1J2+
3z1z3ytys + 327 1/1112 - 62? 11./1./; + 5“71J1./z — 322 $2J1y2+
6zxlzoyyd — 3xtray v} — 2343 + 322x,y3 — Bxayd + z3y3)

Since y} = L — 2% and yj = L — 3, these are replaced and we get:

Lxl - mr’m, “(L .r:l’) - 'iL.z:'fJ:) + '3.173.1'%1')_ + 3a? (L - z"l;) Tyt
3Lx|.1:2 3z T2} - 3r ([, - .L]).I'z —Lad+x *13-}-

( —z})xd + a3 (L - x3) — 3z? 11 (L —12) + Saxd (L - :1:2) -

z3 (IJ - 12) + 323 JlJz — 32 J’H/l_jz - 622 12J1J2 + 6xx) L2y11/2+

.i.L1:2JlJ2 - J,Ll.x.zyl T 38 ‘IlJz + 6z° J[J)_]Z - JLT]leQT
3ctzoyiys — 6wz ooy yd + 3xdray v

Finally, performing a Factor[%]on this viclds:
(=x +x1) (z — wq) Ly — Liry — xaxdry+-
zx1xy — xytys + w20tys + 143 — niyys

As we can scc, rjand xy arc roots of this cquation and our = will be
where

(L:l:| — Ly — :It.zrfarg + ;x;r].z:.j - :L'_l/f.'/'z + .'lfzyfyg + ;zryly.j - Ty yf)

i1s cqual to zcro. Once again, we use Mathematica and find that:
_ —Lay + Ly — 'rza/f i+ ‘1'|7/|‘l/§
—afay + vl — ylys + n1ys

This mcans that y will be:

y=mr+b
=Ly + Laxy — xoytys + 211 Yo — 1
=2 ( 1 2 = wayTys 1./1/;) - Sk IO
Ty — I —Ilu+!|12 f/|¢/z+l/1Jz Ty — I

Finally, to find the (x, ) coordinates of p (b ¢ we switch = and y and

find that;
— Y2 - Loy ) Ly — .xmlt/z ‘-LIUI?/g b
POI= 5, ( EENERE u.nlyuz T
Y-y, cLlribLra-zayivetaunyd
za-a 1 T T 2 - Ryt 2

Asacheck, let’s pluginp = (2,-1),9= (£,4),and. /. = 7 as we did
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in Part I. By entering these valucs into Mathematica, we get

y2—w L+ Ley-Tayivatxiyyd Y2~ __ 17
T~ ( —zrirztz -yl -ty ) +un - z,-z, Tl = 38
and
—Lx\tLra-zapiva iyl _ 73
—ziza iz -yiyaty; 38

which is precisely what we found in Part I for these two particular points.
Part III : Topics for Future Investigation

1. Fermat’s Last Thcorem states that o™ + b™ = ¢® for n > 3 where
z,¥, 2 € Z has no solutions. Howcever, we have shown that there are
intcger solutions of the form a3 + §* = 7 * ¢3,but this is not the case for
a® + b =3 % 3. Does a® + b* = 3 % 7 » ¢® have any solutions?

2. Show the associativity of the  opceration, ic., (p®q) Dr = p ®
(gdr).

Acknowledgments. | would like to thank the following people for their
help with this paper:
Dr. Les Reid, my main faculty advisor
Dr. Richard Belshoff, Proofrcading
Dr. Liang - Chegn Zhang, Proofrcading and help with the first of the
"Topics for Future Investigation™.
Dr. John Kubicck, Proofrcading and faculty advisor for KME
Michacl Byrd, Motivation

Before you enter on the study of law a sufficicnt ground work must
be laid - - - .Mathematics and natural philosophy arc so uscful in thc most
familiar occurrcnces of life and arc so cngaging and delightful as would
induce evervone to wish an acquaintance with them. Besides this, the fac-
ulties of the mind, likc thc members of a body, are strengthened and im-
proved by exercise. Mathematical rcasoning and deductions are, therefore,
a fine preparation for investigating the abstruse spcculations of the law.

- Thomas Jefferson
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Matrix Multiplication Using Strassen’s Algorithm

Gary Spicler, student
Iowa Alpha

University of Northern lowa
Cedar Falls, IA 50613

Presented at the 1999 National Convention

A common opcration donc in many linear algebra applications is matrix
multiplication. In this paper, 1 will discuss scveral of these methods and
analyze cach. Besides reviewing matrix multiplication as it is defined, |
will also illustrate two divide-and-conquer algorithms. One of these, which
actually has a name, is callcd Strassen’s Algorithm. Although it was first
published in 1969, it has only morc recently been showing up in numcrous
algorithms books and journals.

In order to analyzc thesc methods, I will present a technique for deter-
mining the total number of individual multiplications for cach algorithm.
The total number of additions (and subtractions) can also be calculated in
this way.

Things to keep in mind:

A common notation: lgz = log2x
Property of logarithms; a8t = ploge
Note: log 8% = log blog a = log a log b = log b8 ¢

Defined Matrix Multiplication
Let A = (ay5), B = (by;) be n o n matrices. The product of A ann /3,
let’s call 1t ', is defined as follows:

n
C = (cij) where ¢i; . = ajy = by
ko1
The 2 x 2 case: =

iz | _ [en an | by by
Ca1 €22 ay ax bay by
- [ anbyi +apbiz anbis + aygbyy ]

azn by + axby  az by + aznbyy

A concrete 2 x 2 example:
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7 3 « 1 4 Tx143%x6 Tx44+3x%5 25 43
6 8 6 5 6x1+8x6 6x4+8x%5 54 64

Now that matrix multiplication has been properly defined, I will pro-
ceed to analyze the total number of operations performed for a given n.

First, let T (n) represent the total number of multiplications when
multiplying two nan matrices. Also, let T4(n) be the total number of
additions done during the matrix multiplication.

For the definition of matrix multiplication, Tys(n) can be determined
intuitively. Each entry in the product has n multiplications and the product
consists of n? entries. Hence, the Ti;(n) is equal to n * n? = n3.

Ta(n) can be determined in a similar fashion. Again, there arc n?
entries. This time, however, there are only (n — 1) additions per entry.
Ta(n) is, therefore, equal to n? * (n — 1) = n® — n?.

The total number of operations done with thc multiplication as it is
defined is valid for any positive (or non-negative, if you desirc) integer 7.

Divide and Conquer Matrix multiplication can also be represented by a
recursive divide-and-conquer algorithm (Cormen, Leiserson, Rivest 739).

First take an nzn matrix and divide it into four submatrices. Each sub-
matrix is of size 5z3. These can then be multiplied separately and then
combined to form something strikingly similar to the definition stated pre-
viously. At each step, n must be an even number, so this specific algorithm
works only forn = 2% fork € Z+.

[a b, e g _[lale]+[81f] [alg] + (o1
c d|* f h [cle] + [d1f] [clg] + [dIA]

We can now analyze this particular algorithm.

In order to analyze this problem, we must also keep in mind that when
multiplying two 1z1 matrices, the number of multiplications needed is 1.
Thatis, Trn (1) = 1.

Due to the recursive definition, Ty, (n) must be figured differently than
before. We start with the recursive definition:

T (n) = 8% Ty (n/2) 8 submatrix multiplications
Let n = 2k (Also note that k = log n)

Tm (2¥) =8xTy (2%/2)
= 8% T (2F71)

The next step is to create a recurrence equation from our recursive def-
inition. A recurrence equation is an equation where the value of a function
is determined by the valucs of the function at a smaller . To do this, we
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replace cntries of the form 73, (2¥) by ¢.

tk =8*’,k.|
Lk—8*l,km] =0

We now need to transform our recurrence cquation into a characteristic
equation, so its roots can be found. The basic concept is to replace the
term with the smallest subscript with »* and work vour way up until you
have substituted the term with the largest subscript with 7¢ where d =
(largest subscript-smallest subscript). The actual definition of Neapolitan
and Naimipour is given in Appendix A.

0 =71 —-8xy0
=(r—8)

Solving for r gives us the root of » = 8. Neapolitan and Naimipour
continue and prove that these roots solve the recurrence cquation. The
thcorem is also in Appendix A. The general solution is then given by

I =c) * 8%
Reversing the substitution of 7', (2%) by ¢4 and n by 2% and recalling
that £ = log n gives

71:\] (2‘) = (] % 8&‘
’ :\[(zk) =y * 81()g n
’1:\!(”) =) * Rlogn

We now usc our rule of logarithms stated previously.

Ta(N) =c=nloed

=c) xn’

Our initial value cquation of 73, (1) = 1 is used to solve for the constant

Cy.
Ta(l) =1
Ta(l) =c %13
1 =) * 13
=c¢y x1
=

The particular solution is given by the cquation 7'y (n) = n3. Note this
is the same solution as the defined matrix multiplication algonthm.
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T4(n) is solved in a similar.

Ta(l) =0

Ta(2) =4

Ta(n) =8x*Ty(n/2) +4x(n/2)?
=8+ Tx(n/2) + n?

Letn =2k
Ta(2F) =8 Ty(2%/2) 4 (2%)2
= 8% Tx(25/2) + (2%)*
= 8% Ty(2%/2) + 4*
=8 Ty(25 ) + 4+

Let T4 (2) = &

i =8*Lk_]+"'lk
b — 8%l =4*

Now would be the time to transform our reccurrence equation into a
characteristic cquation. Unfortunatcly, doing it now would not produce a
homogencous characteristic cquation, which is nccessary for finding the
roots. Fortunately, however, we arc able to manipulate our recurrence
cquation into a homogencous cquation.

The first step 1s to “roll back”™ our cquation by replacing cach & by
(k-1).

‘lk-l = t};ﬁ] o 8 * Lk_'z
We also want to divide our original recurrence cquation by 4 giving:
‘l': — t.,—s.l.,...
ﬁc—l _ 1 1 9.
4 =gl — 25l

We now have two cxpressions both equal to 4¥7!, hence we can set

them cqual to cach other.
Tt — 2% by =l = 8* iy
bt — 8%l | =d st | —32%tp 9
b =125t 1 +32%i.9 =0

Now we may successfully do our transformation into the characteristic
equation.

0 =72—12xr' +32% 70
=72~ 12%7 + 32
=(r—4)*(r—8)

Solving for 7 gives us the roots of » = 4 and » = 8. The gencral
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solution is then given by
f,k =Q *41k+C2*8k

Reversing the previous substitutions gives
T 2") =c  *x4¥ 4 ¢y x 8
T, 2k) = ¢y * qlogn + ¢y * glogn
Ta (n) = * 4log n + ¢g % Slng n
We again do our switch with the logarithms.
Ta(n) = cy *nlo8d 4 ¢y x plosd
=) *n2+c2*n3
Initial values arc used to solve for the constants. Since we have two
constants to solve for, we must have two initial valuc cquations.
Ta(l) =0
Ta(2) =4 '
Ta(l) =cyx1? 4 epx13
Ta(2) =c¢p =22 4 ¢y x2?

0 =c; 12 4+eyx13
=cC] + ¢y
4 =c) %22 $ ¢y 2}
=4dxc)+ 8%y
The solution to this system of cquations is ¢; = —1 and ¢ = 1. This

lcaves us with a particular solution of
'1'_.1(2’“) =nt-n?

The solution for divide-and-conquer’s 1’4 is again identical to our first
T4. In this instance, the divide and conquer algorithm offcrs us no benefit.
When used in a different way, however, this method of problem-solving
gives us better results.

Strassen’s Algorithm

Strasscn’s Algorithm is rclated to the previous algorithm of divide and
conquer. Instcad of doing straightforward multiplication and addition, the
submatrices arc manipulated in a special way. Again, we will assume that
n is cqual to a power of 2.

In 1969, Strasscn published his algorithm that is described below (Cor-
men, Leiserson, Rivest 740-3).

a b c g | _
[c d]*[f h]—
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Pb+ P4 - P2+ P6 Pl + P2
P3+ P4 P5+P1—P3—P7}
where P1, P2, ..., P7 arc Jx% matrices defined as:
Pl=ax{g—-h)
P2=(a+b)xh
P3=(c+d)=e
Pi=dx(f —e)

Pi=(a+d)x(e+h)
P6=0b-d)x(f+h)
Pi=(a—c)*(e+yg)

A better way of explaining this algorithm is to work alongside an exam-
ple. We will usc our previously solved example. In this simplc case, cach
submatrix i1s actually a 1z1 matriz. Hence, multiplications and additions
are between two integers.

ab*eg 7 3 1 4 20 43
c d f h G 8 6 5 3 64

Pl=ax(g—h) =T7%(4-5) = -7
P2=(a+b)xh =(7T+3)%5 =50
P3=(c+d)xe =(6+8)x1 = 14
Pi=dx(f —e) =8x%(6—1) = 40
Ps=(a+d)yx(e+h) =(T+8)*(1+5) =90
PG—( d)x(f+h) =(3-8)x(6+5) =-5
=(a-c)x(e+g) =(7T-6)x(1+4) =5

P53+ P4 — P2+ P6 P14 P2

[ P3+ P4 P5+P1—P3-1’7}

C[90440 50+ (=53)  (=T)+350

= [ 14 + 40 90+ (~7) - 14=5

_[25 43
51 64

A proof of Strassen’s algorithm can be accomplished with a few steps.

P34+ P4 — P2+ P6 P14+ P2
P3+ P4 P54+ P1—-P3-P7
(ae + ah + de + dh) +

(df — de) — (ah + bh) (ag — ah) + (eh + bh)
4+ (bf +bh — df — dh)
(ae + ah +de + dh) +
(ce + de) + (df — de) (ag — ah) — (ce + de)
—(ac +ag — ce — cg)
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[ (ae+ ah +de + dh) +
(df — de) + (ah + bh)
+ (bf + bh — df — dh)

(ce + de) + (df - de)

" ae + bf ag+bh
| cc+df cg+dh

(ag — ah) + (ah + bh)

(ac + ah + de + dh)
+ (ag — ah) — (ce + de)
— (ae + ag — ce — cg)

An analysis of Strasscn’s algorithm may now be conducted. We shall

procced similarly to the last analysis.

'/‘,\1(1) =1
Tar(n) =7’11\1(%)

Let n = 2F

Tu(2Y)  =7«Tu(%)

=7

Let Ty (Qk) = .

Ly
by — Tli_

* rl‘x\‘l (2kk l)

=Tl
=0

Transform recurrence into the characteristic cquation.

0 =r'-70
=(r-7)
Solving for 7 gives us r = 7.
The gencral solution is given by
lk =C % 7k

Reversing the substitution for 7, (2%) from above gives

Tu(2¥) = =7*

/l:\«l (25.) = * 7lugu
Tar(n) = cpx7osn

The loganthm switch is donc.

Ta(n)=c *n

log7

Imitial valucs are used 1o solve for ¢;
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Tu(l) =1

Tap(l) =cp = 11087

1 = ¢p * 1lo87
=Cj * 1
=c

Our solution becomes

Ty(n) =nbs7
— 281

The number of additions can be calculated in a similar fashion

Ta(l) =0

TAa(2) =18

Ta(n) =T7Ta(3) +18(3)?
= TTa(3) + gn2

Letn = 2F
Ta(2*) = 7*'1;\(%) +3(2%)2
=T+Ta(%) + 3(2D)*
=7*'1"A(22;)+g* k
=T+ Ta(2* 1) + 2« a
Let 74 (2%) = t.
Ly =Twtpoq+ 5 x4k

br — 7%l =g*4k
“Roll back” and divide our equation to producc 2 cqual expressions.
%*4k—l =1 —Txlg._ 9

and

9 3 Lo —Toty_

(o)1 = st
i*"l*l =Z*tk—z*tk_]
Sctting them cqual to each other, we obtain

M — T xtioy =lk-1—T*lk2
L — Tx b =d %1 —28xtlg_o
b — 1l xig_1 +28%ip_o =0
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Transform the recurrence relation into the characteristic cquation.

0 =72 —11xr! £ 2870
=72 - 11%7+28
I P A

Wenow haver =4andr = 8.

The general solution is
=] *4k+c2*7k
Reversing the previous substitutions gives

Ta(2¥) =cp«dF 4o T

Ta(2F) = c¢p % 418" 4 ¢y 5 Tlogn
Ta(n) =cp = 408" 4 ¢y 5 Tlog7

Do the logarithm switch.

Ta(n) =cy*nlo8d 4 o) x plos?
= ¢ ¥ n? + ¢g = nlo87

Usc initial values to determine the constants ¢; and c¢s.

Ta(1) =0
Ta(2) =18
’[:‘\(l) =Cl*12+02*ll"g7

'1'4(2) =) = 24 Cy % Qlop 7
0 =) *12+c2*llng7
18 =y %22 4 ¢y x 2o87

Solving this small system of cquations vields ¢;
Thus, the particular solution is

Ta(n) =6%n087 —gxn?
7 6xn8l — §xn?

~6and ¢ = 6.
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Results

The results of the analyses are shown in the table below.

Standard Multiplication Strassen’s Algorithm
Size Multiplications  Additions Multiplications Additions
s

121 1 0 1 0

22 8 4 7 18

4z4 64 48 49 198
16z16 4096 3841 2401 12870
64264 262144 258048 117649 681318

nrn n® n® — n? nloe? 6xnlo87 — G xn?

In the simple 222 case, the consequence for eliminating one multipli-
cation step is the tabulation of 14 extra addition steps. Duc to the rclatively
large constant of 6 associated with the numbcr of additions, this algorithm
performs very poorly with a small n.. As 2 grows, however, the usefulness
of the algorithm increascs proportionally.

Various attempts have been made to implement Strasscn’s Algorithm.
Included in this group is my own attempt. Unfortunately, my program
actually ran slower as n increased. One of the tricks to implement this
algorithm is to know when not to use the algorithm and use the straight-
forward approach.

A group of computer scientists associated with the Center for Com-
puting Sciences out of Maryland have successfully implemented this al-
gorithm (Huss-Lederman). Many analyzations were done to incorporate
the best possible algorithm hybrid. The algorithm used uses a variant of
Strassen’s Algorithm known as Winograd’s variant. The Winograd variant
is slightly morc cfficicnt than the original algorithm. Instead of using 18
additions in the 2 x 2 case, only 15 are used. Computing the number of
additions required gives T4 (n) = 5% n'9" — 5 % n2,

Further Comments

Regressing to the beginning of the paper, we made the assumption that
n is a power of 2. This was necessary for our recursive algorithm to be
properly analyzed. In actuality, however, n does not need to be of this
form.

Several ways of fixing this problem exist. The methods I will explain
both are types of padding. The first is the simplest and easiest. The original
nzn matrix is increased in size up to the next power of two. Each new
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space is filled with a zcro. After calculations arc complete, these same
entries arc still equal to zcro and may be climinated.

The sceond and more clegant padding solution is to pad the matrix with
zeros only when nccessary, that is 2 is odd. The advantage to this solu-
tion is the less amount of temporary storage used to save the original and
working matrices.

Acknowledgments. 1 would like to thank Dr. Mark Ficnup of the Com-
puter Science Department at the University of Northen lowa. Dr. Fienup
introduced mc to Strasscn’s Algorithm and helped me along the way. Also,
[would like to thank thc mathematics professors John Cross and Dr. Mark
Ecker. Each gave me uscful feedback which 1 have used to increase the
technicality and readability of the paper.
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Appendix A:
Dcfinitions and Theorems for solving recurrence cquations

Definition:
The recurrence of the form
aplp + by 1+ .ot agl, =0
where £ and the a; terms arc constants, is called a homogenous lincar
recurrcnce equation with constant cocfficients.

Definition:
The characteristic equation for the homogencous lincar recurrence
equation with constant cocflicicnts

aplp +arln_ |+ ... Faply_ =0
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1s defined as
aork + alrk“l + ..+ akro =0
Theorem B.1 in Foundations of Algorithms by Necapolitan and Naimipour
states the following:
Let the homogeneous lincar recurrence equation with constant cocfficicnts
aoln + a1+ ... +apln =0
be given. If its characteristic equation
agr* +ayr* 4 4 a® =0

has k distinct solutions 7,79, ..., 7, then the only solutions to the
recurrence are

tn =1y + 2y + o + CrTR
where the ¢; terms arc arbitrary constants.
The preceding was taken from “Appendix B: Solving Recurrence

Equations: With Applications to Analysis of Recursive Algorithms™ from
Foundations of Algorithms.

KME Website

The national KME website can be found at
http://www.cst.cmich.edu/org/kme_nat/
This is 2 new URL, so please update your bookmarks and links
from chapter pages! Below is a partial list of itcms that arc availablc on
the site:

¢ How to start a KME Chapter
e Information on KME conventions

e The cumulative subject index of The Pentagon

You can get a web page template from the Kentucky Alpha chapter. Its

URL is
eagle.eku.edu/faculty/pjcostello/kme/

When you design a chapter homepage, pleasc remember to make it
clcar that your page is for your chapter, and not for thc national organi-
zation. Also, please include a link to the national homepage and submit
your local chapter webpage’s URL to the national webmaster. By doing
so, other chapters can explore activities of your chapter and borrow some
great ideas from you!
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Terminology, Standard and Otherwise

Throughout this paper, I will usec some terminology and notation that
some of you may not be used to. I have collected the more standard oncs
in this section, roughly in the order they appear in the paper. (The termi-
nology that I made up mysclf I'll introducc as 1 go along.)

Two integers a and b arc said to be congruent with respect to the modu-
lus n, or just congruent mod =, if and only if b — a = kn, for some integer
k. This is also symbolized as « = b (mod n). The least nonnegative num-
ber & such that b = & (mod n) is called the residuc of b mod n. I use
somewhat outdated notation # A to denote the cardinality (or number of
clements) of the set A. If we let # A(n) denote the number of clements of
Aless than or cqual to n, then the natural (or asymptotic) density of the set
Aisequal to lim, .o (#A(n)) /n. Two numbers arc said to be relatively
prime if they have no factors in common other than 1  And, throughout
this paper, whenever I say “number”, I will usually mean “integer”.

Get On With It

Anyway, | happencd to be spcaking with a professor recently when he
remarked to me that a fricnd of his was celcbrating his 71st birthday, and
wondcred if I knew of any “interesting” properties of the number 71. After
a little bit of thought, I replied that since it was between 70 and 72, it was
onc away from a multiple of 2, of 3, of 4, and so on up to 10. | promptly
christened collections of all such numbers, “birthday scts”. For cxample,
71 is an element of the birthday sct of order 10, which I will denote by
Sio.

It is easy to see that for any given n, the S, is infinite; consider numbers
of the form k(n!) £ 1, for any intcger k. The question we shall ask is, for
a given n, what is the natural density of thesc numbers? We shall come
up with a specific answer for the given problem (n = 10) and on the way,
generalize where we can. Our approach will be this: since our set S, will
by definition be a subset of S,, ., we can start with 2 = 2 and trim the set.



32 ] The Pentagon

If a number m is one away from a multiple of 2, then it is fairly clcar
that m is odd. Thus, we have reduced the set of natural numbers to the set
Sy, the set of odd natural numbers, which obviously has density 1/2.

If a number m is one away from a multiple of 3, then it is congruent to
1 or 2 mod 3. If we look at the odd numbers mod 3, we sce that they form
the pattem 1,0,2,1,0,2,. . . . Since all the three possible moduli occur
equally often, the we know that the ones we want (1 and 2) occur 2/3 of
the time; thus we need to multiply the density of our previous sct by 2/3.
(I shall call this the "multiplication factor” for n = 3). Then whenn = 3,
the natural density of our set S3 is 1/2 x 2/3 = 1/3.

If a number m is one away from a multiplc of 4, then it is congruent to
1 or 3 mod 4. But the natural numbers of the form 4k 4 1 and 4% + 3 arc
preciscly the odd numbers, so our entire set S is contained in S;. Thus
the multiplication factor forn =41is 1.

To establish our first generalization, we will need the following techni-
cal result:

Lemma. If @ and b are relatively prime, then the set of intcgers congruent
to a given number ¢ mod e will contain all the possible residues mod b.

Proof. The sct of numbers congruent to ¢ mod a is just ¢ + ka,

where & ranges freely over the integers. Consider the sequence
a,2a,3a,...,ba, (b + 1)a. Clearly a = a (mod b), and (b+ 1)a =

ba + a = a (mod b). Since congruence is an equivalence relation, we
then know that 2a = (b + 2) a (modb), 3a = (b + 3) a (mod b), and

so on through repeated addition. Thus the residues mod b of the first
scquence are cyclic, repeating after at most b terms.  Assume there exists
ak,1 <k <, such that a = ka (modb). But since a is rclatively
prime to b, 1 = & (mod ). (For a proof of this fact, see Corollary 3.3.1 in
(1].) Butthen either & = lor k& > b,neither of which is consistent with

1 < k < b. Then the b numbers a, 2a, 3a, ..., ba all have different residucs
modb. We can add c¢ to cach of these numbers to get the scquence ¢ + a,
¢ + 2a, , ¢ + ba, which must still contain b distinct residucs. Since there
arc only b residues mod b, all of them must be represented, and since the
scquence is cyclic, all of them occur equally often.

This lcads to:
Generalization 1. If p is an odd prime, then the multiplication factor for
n=pis2/p.

Proof. The set Sp—1 is dependent on congruences mod smaller
numbers. By the lemma, these are in some sense independent of residues
mod p. Therefore, all residues mod p occur equally often.
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A number can be congruent to 0, 1,..., p — 2, p — 1 mod p, a total of p
possibilities. Onc and

p — 1 are the numbers we arc interested in, and the set Sp-11s

equally distributed throughout these congruences. Thus the number of
members of S, is 2/p times the number of members of S, ;.

Thus we have that the multiplication factor for 7. = 5 is 2/3, and there-
forc the natural density of Sy is 1/3 x 2/5 = 2/15. Let us now consider
n = 6. But we know alrcady that any clement 2 of Sy is odd, and i 1s
onc away from a multiple of 3. But this multiple of 3, being one away from
an odd number, is cven. Thus it is a multiple of 6. Thus the multiplication
factor for n = G is 1. This rcasoning is clcarly cxtensible to the following:

Generalization 2. If k is odd, then the multiplication factor of n = 2k is 1.

The multiplication factor for n = T is 2/7, so the density of S7 is
2/15 x 2/7 = 14/105. Let us now consider 2 = &. If 71 is an clement of
57, m is odd; henee 1 must be congrucnt to I, 3, 5, or 7 mod 8 (and these
will occur cqually often). We arc only interested in the cases when m is
congrucnt to 1 or 7 thus the multiplication factor for 2 = 8 is 1/2 and the
density of Sg is 4/105 x 1/2 = 2/105. For n = 9, the fact that any rn in
Sg onc away from a multiple of 3 means that m is congrucntto 1, 2, 4, 5,
7, or 8 mod 9. We are interested in the cases when m is congruent to 1 or
8; thus the multiplication factor for n = 9 is 1/3, and the density of Sy is
2/105 x 1/3 = 2/315.

Thesc cases lead us to:

Generalization 3. If p is prime, & > 1. and not both pand k arc 2, then
the multiplication factor for n = p* is 1 /p.

Proof. For a number m to be one away from a multiple of p* !, m must
be congruentto I, p* ! — 1,

AR Nl R P p=1p* "= Lp—-1p* 41, orpf —1;in
other words, all numbers of the form Ip* ! + [, where  ranges from 0 to
p — 1 (remember that p* — 1 is congruent to —1 mod p*). Since we are
interested only in | and —1, 2 out of 2p numbers, the multiplication factor
forn=p*is1/p.

Sincc 10 = 2 x 5 and 5 is odd, the multiplication factor for n = 10
is 1; therefore, the density of our original sct, the sct of all numbers one
away from a multiple of 2, a multiple of 3, and so on up to 10, is 2/315.
Howecver, the generalizations we have so far derived are not complete; for
example, none of them will help us find the multiplication factor for n =
12,



34 The Pentagon

So, let’s look at some simple examples. What if 7 is the product of two
odd primes? For example, 15 = 3 x 5. If m is one away from a multiple
of 3,itiscongruentto 1,2,4,5,7,8, 10, 11, 13, or 14 mod 15. Similarly,
if 7 is one away from a multiple of 5, m is congruentto 1, 4, 6,9, 11, or
14 mod 15. Then since  must be congruent to the same number as itself,
m must be congruent to |, 4,11, or 14. Then the multiplication factor for
n = 15is 1/2. What about 35 = 5 x 7? Then, using 5, m is congruent to
1,4,6,9,11, 14, 16, 19, 21, 24, 26, 29, 31, 34 mod 35; and using 7, m is
congruent to 1, 6, 8, 13, 15, 20, 22, 27, 29, 34 mod 35. They agree atl, 6,
29, and 34. This is not a coincidence, for we can show the following:

Generalization 4. If n = pq, where p and q arc odd primes, then the
multiplication factor for nis 1/2.

Proof. We are essentially looking for solutions to ap + 1 = bg — 1 and
ap — 1 = bq + 1 where both a and b are restricted to keep all the numbers
involved less than n. So cssentially we are trving to solve ap — bg = £2.
But p and ¢ are relatively prime, so there is an entire family of solutions
a = xo + kgand b = x; — kp; ncedless to say, there can only be one
solution (a, b) where both @ < gand b < p. (A discussion of this topic
can be found, among other places, in chapter 2 of [2].)

What if n is the product of (at lcast) three odd primes, say p, g, and
r? Well, we can usc the above technique with pg and », since they are
relatively prime, to come up with four possible moduli that a member of
Sy, -1 could take. But you will find that, except for 1 and —1, neither of
these will handle, for cxample, gr. But you shouldn’t just take my word
for it; here’s a proof.

Generalization 5. The multiplication factor for n = pqris 1.

Proof. Suppose we have found a solution (e, b) to the cquation

apg — 1 = br + 1, where both @ < 7 and & < pg. We know that

{ = apg — 1 = br + | is congruent to 1 mod 7; let us assume that is
congrucnt to 1 mod gr. Thus ! = cgr + 1. This tells us that ! = 1 (mod g).
But by the first cquation, we have that I = —1 (mod g). For this to be
true, ¢ must cqual 2; but we assumed that ¢ was an odd prime. Thus, the
natural numbers corresponding to the solution («, &) will not be found in
the sct Sy, (rn). Therefore the multiplication factor for n = pgr equals
1.

This argument holds as wcll when p = g, as well as when other factors
are thrown in. Thus if the prime factorization of n contains threc odd
primes, at least two of which arc distinct, then the multiplication factor of
nis l.



Fall 2000 35

We arc now left with the cases 2%p and 2%pq, where a is at Icast two.
When a = 2, a proof almost identical to the onc given for Generalization
4 tells us that the multiplication factor for n = 4p is 1/2. Howevcr, the
case for 4pq follows the proof for Generalization 5, using 4 in place of 7.
And, the casc for 8p also follows the proof for Genceralization 5, starting
with 8 in place of pg and p in placc of r, and then considering 47. (Notice
that once we have a Generalization 5-typc result for a certain power of 2,
it holds for all highcr powers of 2.)

Every integer falls into onc of these classcs; therefore we have the mul-
tiplication factor for all 2. Then for any specific ., we can find the density
of the set S, by taking the product of all these multiplication factors for
all natural numbers lcss than or equal to 7. Notice also that this scquence
is strictly nonincreasing (sincc cach set is a subsct of the preceding onc).
Plus, the sequence of multiplication factors has a subsequence converging
to zero (¢.g., whencver n is a prime). Thus, the density can be made as
small as one likes, i.c..

lim ( lim —M) = 0;

n—oo \ m-oo m

but the density of S, for any particular (finite) n is positive.
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The sum of the tenth powers of the first thousand natural numbers is
91,409,924.241,424,243,424,241,924,242 500.

James Bernoulli mentions that it took him rather less than seven and a half
minutes to obtain this result.
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Wavelets

Steven McKinnon, student
New York Lambda
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Presented at the 1999 National Convention

Rescarchers began looking for new ways to analyzc functions after they
found that Fourier Analysis was relatively scensitive to noisc. Fourier Anal-
ysis concentrates on frequency, which makes it sensitive to nois¢. Analysis
that concentrated on scale would be much less sensitive to noisc. This type
of analysis would require the construction of a function that varied in scale.
This is where wavelets came into the picturc. A wavelet is a mathematical
function that can be used to analyze functions at diffcrent scales. Wavelet
Analysis is Icss sensitive to noise because it measurcs average fluctuations
at diffcrent scales.

Bcefore a discussion of what some wavelcts look like or how they work,
it is important to recall a small bit about Fourier Analysis. First, sincs and
cosines arc the basis functions for Fouricr Analysis. A function that is
2=-periodic can be represented by a trigonometrical serics of the form:

J(z) = ap cos (nT) + by sin (nx)

The basis functions are orthogonal. Instead of looking at orthogonality
as having a dot product of two vectors cqualing zcro, it will be looked at
as the integral of the product of two functions cqualing zcro. For example,

2m

fsin:c~cos=0
]
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sin(X)cos(x)
T

fix)

0 X 2=

Wavelcts work in a similar way. A function can be rcpresented as a
lincar combination of a sct of wavclets.

The history of wavelets is vast. The first mention of wavelets came in
the appendix to the thesis of A. Haar in 1909. Paul Levy used wavelets
to investigate Brownian Motion in the 1930s becausc wavelets helped him
study complicated details in the Brownian motion. Between 1960 and
1980, two mathematicians, Guido Weiss and Ronald R. Coifman, uscd
wavelets to reconstruct all of the clements of a function space from its
atoms, the simplest clements of a function space. In 1980, Grossman
and Morlet, a physicist and an engincer, defined wavelets in the context
of Quantum Physics. David Marr developed an algorithm for numeri-
cal image processing using wavelcts during the 1980s. Stephane Mallat
used wavelets for digital signal processing and Multiresolutional Analysis
(MRA) in 1985. Y. Mcyer used Mallat’s work to construct the first sct
of non-trivial wavelets. The derivatives of Shannon’s wavelets exist and
arc continuous, but their support is all of 2. In 1987, Ingrid Daubechics
also used Mallat’s work to construct a sct of wavcelet basis functions that
have become the comerstone of wavelet applications today. Daubechies
Wavclets compromise between the property of compact support of Haar
Wavelets and the smoothness property of Shannon’s wavelets. Daubechies
Wavelets have become the foundation of wavelet applications today.

An important property of wavelets is that they integrate to zcro. The
first set of wavelets that will be investigated arc the Haar Wavelets. Haar
Wavclets have compact support, which mcans they vanish outside of some
desired interval, span the Hilbert Space, 1.2, and arc discontinuous, as are
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its derivatives. Haar’s basic structure is usually called his Mother Wavelet.
The rest of the sct of his wavelets is generated by shifting and scaling the
Mother Wavclet. These generated functions can be called "the children.”
The Haar Mother Wavelet is a step function that takes a value of 1 on [0, 3)
and a valuc of —1 on [% , 1). The following formula can be used to gencratc
the rest of the sct of wavelets:

Yix =c YPgo (ij - k)

wherce ¢ is some constant, j ranges from 110 a — 1, and 2a is the sizc of
our data sct. The subscript j shows how many levels a set of wavelets will
have, and the & gives a clue as to how many sublevels cach level will have.
To relate this to the idcas discussed regarding Fourier Analysis, these
wavelets are the basis functions for Wavelet Analysis. It is important to sce
what happens if the product of two of these basis functions is integrated.

Look at
/wjk : ’/’j'k'

When j # §/, say 7 < 7', then the nonzcro values of Y are containcd
in the set where ¥, is constant. This reveals that Sk - =0

When j = j'and is not satisfied simultancously, [ v, “Pje = 0.

When j = j'and k& # K, at least one of the factors of the product is
zero. This also reveals that [ v,y - ¥ =0

Therefore, the set of wavelets, {3, }, form an orthogonal basis in the
Hilbert Space.

The sct of wavclets, {1}, actually forms an orthonormal basis in the
Hilbert Spacc. To show this, the definition of norm? in the Hilbert Space
is needed:

1=c® f4* (272 — k) dr wherc cis some constant
1=¢c2-277 % (t)dt by achange of variables
1=¢%.277 becausc the integral of 42 = 1

Hence ¢ = 2972, .

This gives the result that the basis is orthonormal by a factor of 29/2,
The following formula that will generatc the rest of the set of wavelcts
from The Mother Wavelet:

Yy = 2i/2y, (2j:1: - k)

makes the wavelet move twice as fast
Y10 (2) = V29 (2) and gives it an amplitude of v/2
Yo () =v(x-1) shifts the wavelet to the right one unit
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One might wonder what some wavelcts look like by now. Plots of
Haar’s wavelets will follow. Mathcad was used to produce these graphs
and for computational purposcs following.

First, a small set of data will be used that allows the performance of
some simple matrix computations. Then, a much larger set of data will
be investigated that consists of hourly tide heights in feet from Bridgc-
port Harbor for approximately a year. Computer software will be used to
perform the actual Wavelct Transform on this larger data set.

The following will show wavclets in action. A scaling function that
lives where the wavelets live is needed to make the wavelet transformation
work. For the Haar Wavelets, it is simple; denote it by ¢gg, and it takes a
valuc of 1 on [0, 1). Then, take some data vector, y = (1,0, 1,2, 1,0, -2,3).
Itis of length 8 or 23, This shows that there are 3 — 1 = 2 different levels
of wavelets: vy, andi,,, where m ranges from 0 to 2! — 1 or 0 tol, and
n ranges from 0 to 22 — 1 or 0 to 3. The complete set of functions used to
transform the data is {Bgo- Voo, ¥ 10,¥11: Vg0, ¥y Ve, Vs b

Scaling Function
T

[

-0l 1 31

Haar Maother Wavelet
T

-01 1 g1
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First Level of Wavelets
T

-0.1 i 81

a1 Second Level of Wavelets

-0 i 81

! 11J§02000 d
0
| lxﬁo-zooo Coo
-\’Z=
! 11 -y2 0 0-20 0 “n
W= C =
0 [
1-1 0 J2 00 20 20
-3
2 110 20020 a
C
1-10-J§0002 2
“n
1-10-J§000-2

y is the data vector; W has the complete sct of functions used to transform
the data as its columns. y = WC.
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augmen{W,y) =

rreflaugmenf{ W, y)) =
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The data function, y, can be expressed as a lincar combination of the
scaling function and wavelets with these coefficients stored in C.

1 1 -1 1 -5

. -1 1 1
Y= S0t Yoot —F Vot —F Wyt Yot T ¥t - Wt — W,
2 LR 4 4 4

For the first mcthod of compression, some of thesc cocfficients and the
inverse of W will be used.
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

0.125 0.125 0.125 0.125 -0.125 -0.125 -0.125 -0.125
0.177 0.177 -0.177 -0.177 0 0 0 0

1 0 0 0 0 0.177 0177 -0177 -0.177

W= 025 -025 0 0 0 0 0 0 '
0 0 025 -025 0 0 0 0
0 0 0 0 0.25 -025 0 0
0 0 0 0 0 0 025 -025
y=Wwc
W-ly=C

W-ly' = C’, where C’' will be the coefficients chosen, and ' will be the
compressed data.

If all of the cocfficients were used, the original data would be given
back.

i N - ] -

>
(S}

C = These are the cocfficients that are being chosen. In other words, only the
scaling function, the Mother Wavelct, and the first level of Wavelets are
being used.

l

’ [
S O © O o
[V
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augmenw Lo

reef augment W l ,C' = '

-0.5

-0.5 |

[().125 0.125 0,125 0.125 025 0125 0.125 0.125 05
0.125 0,125 0.125 0125 -0.125 -0.125 -0.125 -0.125 0.5
0.177 0177 -0177 -0.177 0 0 0 0 -0.354

0 0 0 0 0177 0177 -0.177 -0.177 0.354
025 -025 0 0 0 0 0 0 0

0 0 025 -025 0 0 0 0 0

0 0 0 0 0625 -025 0 0 0

0 0 0 0 0 0 025 -025 0

—
—
E=
o~
-
_—
—
—
~
~
-~
—_
-
—_
L=
—
—
w

010000000
001000001
00010000 13

<
e

W

00001000 05
00000100 05
00000010 -05
(00000001 -05]

This is the compressed data obtained using the first method of compres
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Compressed Data Against Original Data
i I T 1] L] i T

NN e

-31
1 L 1 1 ! I
-01 1 81

Another method that can be used to transform the data is to usc the
transposc of 1. The transpose will now be used to compress the data.

1 | 1 1 | 1 | 1
1 1 1 1 -1 -1 -1 -1
1.414 1414 -1414 -1414 0O 0 0 0
WT= 0 0 0 0 1414 1414 -1414 -1.414 .
2 -2 0 0 0 0 0 0
0 0 2 -2 0 0 0 0
0 0 0 0 2 -2 0 0
0 0 0 0 0 0 2 -2
Wry =¢.
Note that all of the original cocfficicnts will be uscd this time.
I 1 1o ! 1 05 ]
1 1 1 1 -1 -1 -1 -1 0.5

1.414 1414 -1.414 -1.414 0 0 0 0 -0.354
o 0 0 0 0 1.414 1.414 -1.414 -1.414 0.354
augmentW' [ C: = e
0 0 0 0 0 0 0.25
-2 0 0 0 0 -0.25
2 -2 0 0 0.25

2

0 0 2

oo SN
S O W
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rref augment WT, C =

S ©C © © o C© O

(=}
S O O
S o o ©
S O o <o ©
c O o o © ©

0

0
0
0

O e

—

0.125 |

0
0.125
0.25
0.125
0
-0.375

025 |

By using the transposc of 1", a complctely different compressed vector,

y”, 1s obtaincd.

[ 0.125 |
0
0.125
0.25
0.125
0
-0.375
| 0.25 ]

Against Original Data

“
T

Compressed Data
|

¥y
- — —— T e
y . 0 .
- ]
-31
1 L 1 1 1
0 | 2 3 4 5 6 7
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Now that some trivial wavelets with a small data set have becn seen, it is

interesting to observe how a larger data set can be transformed using a sct

of nontrivial wavelets. The Daubechies Wavelet will be used to “denoise”
a noisy mass of tidal data from Bridgeport Harbor.
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Abovc is the plot of Daubechics’ scaling function. A plot of onc of the
Daubcchics Wavelets, namely her four-coefficient wavclct, follows. This
is the wavelet used by Mathcad to perform a wavelct transformation.
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Mathcad’s built-in “wave” function uses the Daubechics wavelet whose
plot is shown above.

W := wavd(S)
In(N)

In(2)

Nlevels= -1 Nlevels= 12

Notice that the only way that a wavelct transformation can be per-
formed on a data vector is if the data vector is of size 2, where & € N,

The above computation reveals that twelve levels of wavelets are used
to transform this data. The following is what the data looks like at levels 4
through 8.

13
1.398 Iﬂ:‘

L
(R YT, :
e 1000 WX 3000 W) SO Hx0) oo 000

° - f 51
Level & coetfivients

Level 5 coetlicients
Level 6 coetlicients
Level 7 coeflicients
Level 8 coeflicients

The "middle” levels arc displayed below because they are the most
practical ones of the set. The lower levels arc rather boring, while the
higher levels are too active to provide a clear picture.

First level at which cocfficients are set to zcro:

L:=6
)= 2L.. N-1 WJ =0 S':= iwavd W)
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Since L = 6, only the first five levels of wavelets are being used to
denoisc the data. These five levels give the following approximation or
denoiscd data set. If one were to use an L less than 6, the approximation
might not be acceptable. On the other hand, if one were to have an [,
greater than 6, there could still be too much noise in the data to obtain a
clear picture.

Denoised Data

1400 T T T T ' T T T

1000

500 -1

1 1 i | ] 1
0 1000 2600 3000 4000 5000 6000 7000 BOOG

&0, 1 N-1

One agency that makes a great use of wavelets is the Federal Burcau
of Investigation. When the FBI digitizes a single fingerprint, it occupics
10 MB of disk space. That is about seven high-density floppy disks. The
FBI has approximately 200 million fingerprint cards. This mcans that the
FBI’s fingcrprint database occupies 2000 tcrabytes of disk space. They use
a process called Wavelet Scalar Quantization which uses a discrete wavelet
transform, as scen earlier, to compress the data with a ratio of 20:1. Not
only docs this transform help them use only 5 % of the disk space that
they would have used, but it also makes transmission of data much faster
if sending via c-mail.

Wavelets can also be used to denoise a signal in signal processing and
“clcan up” images such as x-rays or magnetic-resonance images to give a
clearer picturc of what needs to be seen. Although wavelet compression is
not widcly uscd on the Internet yet, ”.wif” files exist, along with plug-ins
available on the Intemet to help decede them.
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Starting a KME Chapter

Complete information on starting a chapter of KME may be obtained
from the National President. Some information is given below.

An organized group of at lcast ten members may petition through a
faculty member for a chapter. These members may be either faculty or
students; students must mect certain coursework and g.p.a. requircments.

The financial obligation of ncw chapters to the national organization
includes the cost of the chapter’s charter and crest (approximately $50)
and the expenses of the installing officer. The individual membership fec
to the national organization is $20 pcr member and is paid just once, at that
individual’s initiation. Much of the $20 is rcturned to the new members in
the form of membership certificates and cards, keypin jewelry, a two-year
subscription to the socicty’s journal, ctc. Local chapters are allowed to
collect semester or ycarly dues as well.

The petition itself, which is the formal application for the cstablish-
ment of a chapter, requests information about the petitioning group, the
academic qualifications of the cligible petitioning students, the mathemat-
ics faculty, mathematics course offering and other facts about the institu-
tion. It also requests evidence of faculty and administrative approval and
support of the petition. Petitions arc subject to approval by the National
Council and ratification by the current chapters.
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The Problem Corner
Edited by Kenncth M. Wilke

The Problem Corner invites questions of interest to undergraduate stu-
dents. As a rule the solution should not demand any tools beyond calcu-
lus. Although new problems arc preferred, old ones of particular interest
or charm are welcome, provided the source is given. Solutions should
accompany problems submitted for publication. Solutions of the follow-
ing problems should be submitted on scparate sheets before July 1, 2001.
Solutions received after the publication deadline will be considered also
until the time when copy is prepared for publication. The solutions will be
published in the Fall 2001 issuc of The Pentagon, with credit being given
to the student solutions. Affirmation of student status and school should
be included with solutions. Addrcss all communications to Kenneth M.
Wilke, Department of Mathematics, 275 Morgan Hall, Washburn Univer-
sity, Topeka, Kansas 66621 (c-mail: xxwilke @acc.wuacc.edu).

PROBLEMS 540-345

Problem 540. Proposcd by the Robert Rogers, SUNY College at Fredonia,
Fredonia, New York.

Given a quintic polynomial f(x) with exactly one inflection point at x
= 0, one maximum at x = -1, and onc minimum at x = m, what is the
maximum valuc the polynomial can attain? [Notc: For a cubic polynomial,
m=1]

Problem 541. Proposed by the Alma College Problem Solving Group,
Alma College, Alma, Michigan.

Find a closed form for 3~ k°(})
k=0

Problem 542. Proposed by Albert White, St. Bonaventure University, St.
Bonaventure, New York.

Instead of using the correct arc length formula, a student used the for-
mula [;* \/1+ f” (z)dz on a test and obtained the correct answer. Find
all functions f(z) such that this formula will produce the correct answer
for arc length.

Problem 543. Proposed by Carol Browning, Drury College, Springficld,
Missouri.

Let ag be a given positive integer and define the sequence a, by ag) =
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% if 2|lax and a4y = 3agx + 1 otherwisc. For cxample, if ag is 3,
the sequence is 3,10,5,16,8,4,2,1,4,2,1,4,2,1,.... Definc the func-
tion P(n) on the positive integers by 2(n) = j if in the sequence origi-
nated by ag = n, the first power of 2 to appcear is 27

For example, P(3) = 4. If no power of 2 appears in the scquence, we
definc P(n) to bec 0. Prove that P(n) is odd cxactly when 7 is an odd
power of 2.

Problem 544. Proposcd by Robert Stump, Richmond, Virginia.

Given triangle ABC with the lengths of A3 = ¢, AC' = b, and BC =
a respectively,

(@) Let CM; = my be the median to A3 in triangle ABC. Let
MMy = my be the median to AC in AC M. Continuing this process, lct
Mpn M, = my, be the median to AM,,_ 9 in triangle AM, oM, _{. In

termsof a, b, and cfind Y~ my.

Py

(b) Let CHy = hy be the altitude to A3 (or A extended) in triangle
ABC. Let Hy My = hy be the altitude to AC in triangle AC'H|. Contin-
uing this process, let /1,11, = h,, be the altitude to AH,, 3 in triangle

20
DAH,_3H,_). Interms of a, b, and ¢ find 3~ k!
k=)

The editor wishes to acknowledge that a late solution for problem 325
was received from Justin Provchy and a late solution for problem 529 was
received from Kim Goto. Both arc students at California State University,
Fresno, California.

LPleasc help your cditor by submitting problem proposals.

SOLUTIONS 528 and 330-534

Problem 528. Proposed by the cditor.

Consider a paired number p(n) to be formed by concatenating the same
number twice; c.g. p(1234) = 12341234. What is the smallcst integer n
for which p(n) is a perfect squarc? What is the next smallest integer nn
for which p(nn) is a perfect square and nn has more digits than n docs?
smallest square twin?

Solution by the cditor.
Let p(n) = RR where R has & digits. Then p(n) = R(10% + 1) where

! This portion of the problem was submitted without a solution.



52 ’ The Pentagon

k is a positive integer and 10 > R > 10*~! in order for R not to have
zero as a leading digit.
Suppose that p(n) = N2 = R(10* +1). Let (R, 10¥ +1) = d for some

integer d. Then
N\? (RN [10* +1
(3) - () (57 g

where (&, y%ﬂ) = 1. Now sincc ;’f < %ﬂ, by cquation (1) we must
have 1941 s divisible by £ so that 1%t0 = (2) T for some integer 7"

Hence equation (1) becomes (%)2 = (—f’t—‘)2 T so that 7" must be a perfect

square.

Thus 10* 4 1 must have a nontrivial square factor (i.e. a square factor
> 1).

Thus we seek integers & such that 10* 4 1 has a nontrivial square factor.
Using a program like UBASIC, onc can casily test numbers of the form
10* + 1 for nontrivial square factors. The smallest such & is 11.

Then 10M + 1 = 112 % 23 * 4093 * 8779 = 121 = 826446281 and 12
must be a square multiple of 826446281. The two smallest such multiples
of 826446281 which exceed 10'? arc 16 x 826446281 = 13223140496 and
25 x 826446281 = 20661157025. Hence the solutions for part (a) are

1322314049613223140496 = 363636363642

and
2066115702520661157025 = 454545454552

For part (b), the next & which yiclds a nontrivial square factor is k£ = 21
with 102! 41

= 72 % 11 % 13 % 127 x 2689 % 459691 % 909091

= 49 % 20408163265306122449.

Proceeding as before, the next smallest appropriate multiples of

20408163265301 122449 > 10%°

are
9 = 2040816326530122449 = 183673469387755102041
and

16 * 2040816326530122449 = 326530612244897959184
Finally numbers arc
183673469387755102041183673469387755102041
= 428571428571428571429°



Fall 2000 53

and
326530612244897959184326530612244897959184
= 5714285714285714285722

Problem 530. Proposed by Albert White, St. Bonaventurc University, St.
Bonaventure, New York.

Start at the origin, move to the right onc unit, move up % unit, move
to the right & unit, move up § unit, etc. Connect the limiting point of the
path from the origin to the origin by drawing a straight linc connecting
these two points. What is the arca of the figure enclosed by connecting the
origin and the limiting point of the original path?

Solution by Bradley Sward, Benedictine University, Lisle, I1li-
nois.(Revised by the ¢ditor.)

From the information given, wc have an infinite sequence of similar
right triangles connccted in such a way that their hypotenuses form the line
y = z/2. Considering the bases of the right trianglcs, we have an infinite
series 1,1, &, . . . with the basc of the n' right triangle given by 272~ 1),
Hence the = coordinate of the limit point is 1 + 3 Ty ,l(, +...= 1~] T = :
Correspondingly considering the altitudes of thc right tnanglcs we have

the mﬁmte sencs; ,'; ,12 .2-(n-1) Hence the y coordinate of the limit

pointis 3 + & + 5 + ... = 3 - —Ly = Z. Hence the limiting point of the

-3
figure is given by (x,y) = (3, ).
Adding together the arcas of the triangles, we have

)
A= Z% (2~(2n-l)27—2(n— l)) Z 9—(dn-2) _ [l l ] = l;l:
<

16

n=1 ~ 16

Also solved by the proposer. Partial solutions were received from the
Alma College Problem Solving Group and Clayton W. Dodge, University
of Maine. These solutions inadvertently omitted the coordinates of the
limit point.

Problem 531. Proposed by Russcll Euler and Jawad Sadek jointly,
Northwest Missouri State University, Maryville, Missouri.

A bridge in the form of a circular arc spans a river. At a distance of
A feet measured honzontally from the shore, the bridge is B fect above
the surface of the water. At the center of the bridge, the bridge is C fect
above the surface of the water. Assuming that the bridge rests exactly on
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the shores, find the width of the river in terms of A, B, and C. For B > C,
discuss the cases where there are zero, one or two solutions.

Solution by Clayton W. Dodge, University of Maine, Orono, Mainc.

We shall use lower case letters to denote distances and upper casc letters
to denote points. As shown in Figure 1, the banks of the river are located at
points S and T', the midpoint of the bridge is located at M, and O denotes
the center of the circular arch. Let the distance across the river be 2u and
the point on the bridge at which height b is measured be denoted by /. As
shown in Figure 1, two right triangles are formed with hypotenuses OS
and OH, each of length 7, the radius of the circular arch. The legs of these
right triangles are respectively uand » — ¢c,and u — a and b + u — ¢. The
Pythagorean Theorem yields 72 = u? + (r —¢)?2 and 72 = (u —a)? + (b +

r —c)2.

M

Figure 1
After expanding and simplifying each cquation and subtracting the first
equation from the second, the first cquation and the difference become
respectively, 0 = u2 — 2¢r + ¢® and 0 = b2 + 2br — 2bc — 2au + o
Eliminating r from these cquations yields bu? —2acu+ (b2c—bc? +a%c) =

act/c{c—b)(aZ +b7)
5 . The

0. The solution of this equation is given by u =
width of the river is 2u = 222 C(‘-' b)(a®+4%)

There is one other case to consndcr when thc distance a is mcasurcd
from the other side of the river; i.c. from the point 7" rather than from the
point S. Then the only change in the algebra is that the distance v — a
becomes @ — u in the trianglc with hypotenusc OH. Hence the solution
remains unchanged.

For a solution to exist we must have ¢ > b. Then there is always a
solution using the plus sign in the expression for «.. For a second solution to
exist, we must have a?c¢2 > c(c—b)(a?+b%) which reduces to a%+b% > be,
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and in addition © < a, where the expression for u uscs the minus sign,
which reduces to a? > dc(c — b)

Also solve by the proposers.
Problem 532. Proposed by Albert White, St. Bonaventure University, St.
Bonaventurc, New York.

Join consecutively the points
1

(1,0, (5 (9 (G OL G (G (5ms G (g O

with linec scgments, and include the point (0,0) in the resulting graph.
Use the x axis as a basc of the graph which should look like an infinite
serics of triangles. Find the total area of the serics of triangles. (Thisis a
gencralization of Pentagon problem 214.)

Solution by SUNY Fredonia Student Group, SUNY Fredonia, Fredonia,
New York.

Let A dcnotc the desired arca. Then since the area of the i*# trianglc is
givenby A; = 1 ((2‘) ) (ﬁ - ﬁ) we have

101 1 1
A= Zﬁ((‘z«;)"’) (2i—1—2~i+1) )

i1

1 &

= 1252(21'—11)(%“) ()

Using partial fractions to decompose theooﬁght side of equation (1), we
get A = %12! (',?—,1+2£1 2,”) i;, 2(21 T 2:41)
=-12 4+ l(-D+E-H+@E -1 +...] = 0.08776648.

Also solved by the Alma College Problem Solving Group, Alma Col-
lege, Alma, Michigan; Clayton W. Dodge, University of Mainc, Orono,
Maine and the proposer.

Problem 533. Proposed by the editor.

Which of the following quantitics is larger
(31415926535!)20r314159265353 14159265357

Solution by Brock Kremer, Alma College, Alma, Michigan.
We prove that (n!)2 > nn for any integer n > 3.
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nl — ]n M M L k(n- k+l) -2 nl . Each of the

n
first and last factors cach are cqual to 1. lt remains to dctcnmnc the naturc

of the intermediate factors. Each of these factors has the form _(_(un

forintegers nand & such that2 < k < n—1. Suppose that M <1l
Then k(n — (k — 1)) < n which reducesto k(n — k) < (n— k) But since
2 <k <n-1,n-kis positive and we have & < 1, a contradiction.
Hence _lﬁﬁ; > 1 for all integers nand ksuchthat 2 < k < n — 1.
Therefore (n')2 > nn for all integers 2 > 3.

In particular (31415926535!)2 > 3141592653531415926535

Also solved by: Alma Problem Solving Group, Alma Collcge, Alma
» Michigan; Casey Barwell, Centre College, Danville, Kentucky; Clayton
W Dodge, University of Maine, Orono, Mainc; Kensaku Umeda, Eastern
Kentucky, University, Richmond, Kentucky; J. Spencer Wideman, Alma
College, Alma, Michigan; Jessica Little, Alma College, Alma, Michigan;
Mariah Grant, Alma Collcge, Alma, Michigan; Robin Levere, Alma Col-
lege, Alma, Michigan; Chris farmer, Northwestern Missouri State Univer-
sity, Maryville, Missouri.

Problem 534. Proposed by the cditor.

The millennium is fast approaching. Whether it starts on January 1,
2000, as many people believe or January 1, 2001, as the purists argue is
not matenal to this problem. Discover whether or not there is a prime p
such that p! ends in exactly 2000 zeroes. Is there a corresponding prime q
such that ¢! cnds in exactly 2001 zeroes?

Solution by Clayton W. Dodge, University of Mainc, Orono, Maine.

When looking at the number of zeroes in which ! terminates, we ob-
serve that cach zero represents a factor of 10 = 2-5. Since there arc plenty
of factors of 2 available, we need only count the factors of 5, onc of which
is gained cach time we multiply by a multiple of 5. Thus 5! = 120 is the
first factorial which ends in a zero, 10! ends in two zcroes, and so forth.
Multiples of 25 produce two more factors of 5, multiples of 125 produce
threc more factors of 5, and in general multiples of 5% produce & cxtra
factors of 5.

‘Then the number z of zeroes that a positive integer factorial 2! ends in

cquals
(e o

where (2] denotes the greatest integer which docs not exceed . If one
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approximatcs z by dropping the brackets, the problem requires that

z=3+S+E+h+t . =n(GrE St E o )=,—f—_=;‘.

Thus 2 = 8000. For n = 8000, 2 = 1600 + 320 + 64 + 12 4+ 2 = 1998
zeroes. Since we need two more factors of 5, we examinc the range from
8010to 8014. We find that 8011 is primc and 8011! Ends in preciscly 2000
zeroes. Similarly, cxamining the range from 8015 to 8019, we find that
8017 is prime and 8017! ends in preciscly 2001 zerocs. Working down-
wards, we find that 8009! cnds in 1999 zerocs, 7993! ends in 1994 zeroes,
7963! ends in 1987 zcroes and 7951! ends in 1985 zcroes. Working in the
other direction, onc finds that 8039! cnds in 2010 zcrocs, 8059! ends in
2011 zeroes and 8069! ends in 2013 zcrocs.

Also solved by the Alma College Problem Solving Group, Alma Col-
lege, Alma, Michigan and Steven F. Shearer, Winchester, Kentucky.

Editor s Comment: Steven Shearer is a 10 year old student who is being
home schooled.

Chapter Web Sites
Send additions or corrcctions to Amold Hammel at a hammel@cmich.cdu
Alabama Zeta Birmingham-Southern College
hup://www.bsc edw/science/matvkme. htm
Arkansas Alpha Arkansas State University
hitp://mwwv.csm.astate edwstudents/kme/index. himl
Califomia Gamma California Polytechnic State University
http:/Awww.calpoly.cdw/~kappamu/
Colorade Beta Colorado School of Mines
http://magma.mines.edw/Stu_hte/organ/kme/kme hunl
Connecticut Beta Lastem Connecticut State University
htip:/Avwv ecsu cistateu.edw/depts/mates/nhs. himl#kappa
Illinois Delta College of St. Francis
hup:/wwwistitancis.edw/imahonor him
Hlinois Eta Western [linois University
hup:/Awww. wiv.edu/users/mikme/
Indiana Alpha Manchester College
hup://www.manchester.edu/department/MathCptrSei_old/kme. him
Indiana Delta University of Evansville
http://www2 evansville.cdwmathweb/
Iowa Alpha University of Northern lowa
hup:/Avww.math.uni.edw/KME/KME . hunl
Kansas Alpha Pittsburg State University
hup://www.pittstate. edw/math/kme html
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Kansas Gamma Benedictine College
http:/Avww.benedictine. edw/math-cs/kme.html
Kentucky Alpha Eastem Kentucky University
http:/feagle.eku.edw/faculty/pjcostello/kme/
Kentucky Beta Cumberland College
http: //cc.cumber.edw/acad/math/kme.htn
Maryland Beta Western Maryland College
hutp: f/wwwiac.wmdc.edw/HTMLpages/Academics/Math/KME html
Mississippi Beta Mississippi State University
http://www.math.msstate.edw/~pearson/kme-maa htm
Mississippi Gamma University of Southern Mississippi
http://www.math.usm.edu/organizations_html/kme html
Missouri Alpha Southwest Missouri State University
http: //studentorganizations.smsu.cdw/KME/
Missouri Beta Central Missourni State University
http://153.91.1.112/~kme/kme html
Missouri Zeta University of Missouri-Rolla
http://mww.umr.edw~kme/
New Mexico Alpha University of New Mexico
hitp: //www.math.unm.edu/~kme/
New York Eta Niagara University
http:/Awvww.niagara. cdwmath/kme. hunl
New York Lambda C.W. Post Center-Long Island U. Brookville
http://mww.ewpost.liunet edw/ewis/ewp/clas/mathvkme . htm
New York Xi Buffalo State College
hutp:/math.bufTalostate.cdw/~kme/index.huml
Ohio Alpha Bowling Green State University
http://mww.bgsu.edu/departments/math/kme/
Chio Zeta Muskingum College
http://pluto.bsc.muskingum.edw/~kandhari/kme/kme.huml
Ohio Gamma Baldwin Wallace College
http:/Avwvw bw.edw/~wwwkme/
Oklahoma Alpha Northeastern State University
http://arapaho. nsuok.edw/~kme
Oklahoma Gamna Southwestern Oklahoma State University
http://www.swosu.edu/student/stdorg/kine
Pennsylvania Xi Cedar Crest College
hitp://www.cedarcrest.edw/academic/mat/saa.htm
Wisconsin Gamma University of Wisconsin-Eau Claire
http://www.uwec.edw/Academic/Curric/gouletmr/kme/kmehome.html
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Reports of the Regional Conventions

Report of the South Central Regional Convention

The Oklahoma Delta Chapter at Oral Roberts University hosted the
South-Central Regional Confecrence on April 14 and 15, 2000. The con-
ference included the chapter initiation, a banquet, featured spcakers, and
student presentations. In attendance werc members from Colorado and
Oklahoma. The chapter initiation on Friday cvening welcomed twenty-
two new mcmbers. A banquet of Mexican fare highlighted the cvening.
Saturday morning Dr. Dominic Halsmer dclivered the Keynote Speech
regarding his work on spinning spacccraft for NASA. Six student presen-
tations followed. Topics included the Lorenz cquations, lincar transfor-
mations, and Markov chains. Regional director Dr. Donna Hafner, who
also closed the conference with words of thanks to the OK Dclta chapter
sponsor, Dr. Vincent Dimiccli, presented awards.

Report of the North Central Regional Convention

The KME North Central Regional Convention was held on April 7 and
8, 2000, at Benedictine Collcge in Atchison, KS. Nincty-four pcople at-
tended from 17 diffcrent chapters. The host chapter, KS Gamma, cele-
brated its 60th Anniversary at the convention. Scven student papers were
presented, with awards going to the top two papers. The award winners
were Micah James from lowa Delta and Lindscy Crain from Tennessce
Gamma. Bryan Dawson gave an afier-lunch talk titled "KME Student
Scholarship - 1931 to the Present.” At the closing scssion it was notcd
that threc corresponding sccretarics from our region are retiring at the cnd
of this school year. They are: Mary Elick from MO lota, Mary Suc Becrs-
man from MO Eta, and John Atkinson, MO Lambda.

Report of the Great Lakes Regional Convention

The Great Lakes Region of the Kappa Mu Epsilon Mathematics Honor
Society held a regional convention on March 24 and 25, 2000. The Ohio
Zeta chapter at Muskingum Collcge hosted the convention. Ohio Zeta
President Jeff Shocmaker and Professor Andy McHugh organized the cvent.

Pizza and beverages were served at a reception on Friday evening in the
Boyd Science Center. Registration was held on Friday cvening and Satur-
day moming in the same location. A total of 24 members attended repre-
senting Michigan Beta, New York Eta, Ohio Alpha, Ohio Zcta, Pcnnsylva-
nia My, and Gary Sherman who is now a faculty member at Rose-Hulman
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Institute of Technology. Also in attendance was Professor Leo Schncider
from John Carroll University who was representing Pi Mu Epsilon.
Five student papers were presented on Saturday moming including:

Entropy Properties of 2x2 Games
Benjamin Otto, Ohio Alpha, Bowling Green Statc University

A Method for Deriving the Principal Unit Normal Vector for Two-Space
Vectors
Nicholaos John Joncs, Pennsylvania Mu, St. Francis College

From Snowflakes to Lobsters
Jeff Shoemaker, Ohio Zcta, Muskingum College

A Content Analysis of Gender Representation in Algebra Textbooks
Katherinc Wallace, Pennsylvania Mu, St. Francis College

Expected Value of Randomly Generated Triangles
Courtney Fitzgerald New York Eta, Niagara University

Jeff Shoemaker was sclected for presenting the outstanding paper and
awarded a TI-83 graphing calculator. A speccial presentation was also
made by National President-Elcct Robert Bailey to past National President
Arnold Hammel. It was a Certificatc of Distinction from the Association
of College Honor Socictics.

The guest speaker was Dr. Gary Sherman of the Rosc-Hulman Institute
of Technology. His talk entitled "How Long Docs it Take to Shuffie A
Dceck of Cards?” was well reccived. A fine buffet lunch preceded the
adjournment.
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Kappa Mu Epsilon News

Edited by Don Tosh, Historian

News of chapter activitics and other noteworthy KME cvents should be
sent to Don Tosh, Historian, Kappa Mu Epsilon, Mathematics Department,
Evangel College, 1111 N. Glenstone, Springficld, MO 65802, or to
toshd@ecvangel.cdu.

Installation of New Chapters

Georgia Gamma
Piedmont College, Demorest

The Installation of the Georgia Gamma Chapter of Kappa Mu Epsilon
was held on April 7, 2000, in the Conference Room of Picdmont College’s
Corner Cafc. Dr. Joe Sharp, Corresponding Secretary of the Georgia Al-
pha Chaptcr of KME at the State University of West Georgia, scrved as the
Installing Officer at the Installation Ceremony. Mr. Tony McCullers served
as the conductor dunng the ccremony. There were 3 charter members of
Georgia Gamma: Heather Knight, Tony McCullers, and Amie Mills. Fol-
lowing the Spm Installation Ceremony, a reception was held in honor of
the charter members of the Georgia Gamma Chapter.

Chapter News

AL Gamma Chapter President—Chris Harmon
University of Montevallo, Montevallo 18 actives, 9 associales

Other spring 2000 officers: Tommy Fitts, vice president; Jared Phillips,
sccretary, Don Alexander, corresponding sccretary.

AL Zeta Chapter President—Mclanic Stycrs
Binningham Southern College, Birmingham 20 actives

Other spring 2000 officers: Kelly O’Donnell, vice president; Eliza-
beth White, sccretary/trcasurer; Mary Jane Tumer, corresponding secre-
tary; Shirley Brannan, faculty sponsor.

AR Alpha Chapter President—Michacl Mott

Arkansas State University, Jonesboro 7 actives, 5 associates
Other spring 2000 officers: Laura Firestone, secretary; Jacob Hamilton,

treasurcr; William Paulsen, corresponding secretary/faculty sponsor.

CA Gamma Chapter President—Andrew Oster
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Cal Poly, San Luis Obispo 14 actives, 5 associates
Other spring 2000 officers: Jeff Mintz, vice president; Jonathan Shapiro,
corresponding sccretary/faculty sponsor.

CO Delta Chapter President—Natalie Todd
Mesa State College, Grand Junction 23 actives

Twenty-two members attended a pizza party at Big Cheese Pizza on
April 10. Pins and certificates were presented to members initiated in
the fall, and new chapter officers were elected for 2000-01. Other spring
2000 officers: Valeric Coniff, vice president; Richard Hascnauer, secre-
tary; Sylvia Myhre, trcasurcr, Donna Hafner, corresponding sccretary;
Kenneth Davis, faculty sponsor.

GA Alpha Chapter President—Karen Jones
State University of West Georgia, Carrollton 20 actives, 11 associates

GA Alpha held its annual Initiation Meeting on April 19 and initiated
11 new members. New officers for 2000-2001 were then ¢lected. Follow-
ing the Initiation Ceremony, a reception was held in honor of the new initi-
ates. At the reception, the names of the students who reccived mathematics
scholarships and/or awards this ycar were announced (most of whom are
KME members): Karen Jones won both the Boyd Award and onc of the
two Marion Crider Awards, Blake Smith won the Burson Calculus Award,
Chnistin Phillips won the other Marion Crider Award, Bryan Crawford won
thc Whatley Scholarship, Mike Maycumber won the Cooley Scholarship,
and Natalic Young won thc Martin Scholarship. Other spring 2000 offi-
cers: Chnstin Phillips, vice president; Kaitlin Lewis, sceretary; Daemon
Whittenburg, treasurcr; Joc Sharp, corresponding sccretary; Mark Faucctte
and Joe Sharp, faculty sponsors.

GA Beta Chapter President—Billie Jo Matkovitch
Georgia College and State University, Milledgeville 15 actives

Other spring 2000 officers arc Michelle Blay, vice president, Robert
Stepowany, sccretary/treasurer; Craig Tumcr, corresponding sceretary; Hugh
Sanders, faculty sponsor.

GA Gamma Chapter President—Tony McCullers
Piedmont College, Demorest 4 actives

The Georgia Gamma Chapter of Kappa Mu Epsilon was installed on
Apnl 7.

Other spring 2000 officers: Tony McCullers, vice president; Heather
Knight, secretary; Amie Mills, treasurer; Shahryar Heydan, corresponding
secretary/faculty sponsor.

IL Theta Chapter President—Rcbecca Wagner
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Benedictine University, Lisle 15 actives, S associates

Together with the Math Club, the KME chapter was very active this
spring. There were several mectings with math videos/games and refresh-
ments. Student speakers practiced their talks for local conferences. Other
spring 2000 officcrs: Ripul Panchal, vice president; Natasha Brasic, sccre-
tary; Lisa Townslcy Kulich, corresponding secretary/faculty sponsor.

IA Alpha Chapter President—Gary Spicler
University of Northern lows, Cedar Falls 45 actives

Student member Brad Rolling presented his paper “Investigation into
Buffon’s Needlc” at our February meeting. John Neely presented his pa-
per "Impossible? Provc It! A Treatise on the Impossibility of Trisccting
an Angle using a Compass and Straightedge” at the March mceting whilc
Douglas Kinney prescnted “Dyscalculia, More Than Not Being Able to
Do Math™ at the April mecting.  Student member Teresa Grothus ad-
dressed the spring initiation banquet with “The Mobius Strip”. In addi-
tion, we were privileged to have honorary guest Lester Artherholt, a 1931
Charter Member, at our April banquet where we initiated three new stu-
dent members. Lastly, Douglas Kinney presented his paper “Dyscalculia,
More Than Not Being Able to *Do Math™ at the KME Regional Conven-
tion at Benedictine College in Atchison, KS on April 8. Other spring 2000
officers: Allysen Edwards, vice president; Kamilla Guseynova, sccretary;
Barbara Meyers, trcasurcr; Mark Ecker, corresponding secrctary/faculty
sponsor.

IA Gamma Chapter President—A. G. Kruger
Momingside College, Sioux City 11 actives, 12 associates

Our only activity this scmester was the initiation. Othcer spring 2000
officers: Mary Curry, vice president; Michelle Harvey, sceretary; Kyle
Kolander, treasurcr; Doug Swan, corresponding secretary/faculty sponsor.

IA Delta Chapter President—Paul Scberger
Wartburg College, Waverly 58 actives, 2 assoclales

The January mecting resulted in final sclection of the chapter T-shirt de-
sign, plans for the Mathcmatical Scicnces Explorations event co-sponsored
by the Mathematics, Computer Science and Physics Department and our
KME chapter, and recruitment of tcam members for the math modcling
contest sponsored by the lowa MAA. During the February mecting, T-
shirts were distributed and plans were made for the Initiation Banquet
and other future mectings. We initiated 19 new members into our chap-
ter during our March mecting. Jerrod Staack, a mathematics teacher in the
Waverly-Shell Rock school system and former KME officer, was our ban-
quet speaker. Micah Jamcs, a scnior member of our chapter, presented the
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paper he had prepared for the KME Regional at a special meeting in April.
Micah’s paper was selected as one of the two top papers presented at the
Regional KME Meeting in Atchison, Kansas on April 8. The ycar-end
activity for our chapter was a picnic on May 15 where members partici-
pated in scveral yard games and enjoyed an evening picnic mcal together
with the computer science and physics clubs. Other spring 2000 officers:
Robyn Brent, vice president; Janelle Young, secretary; Daniel Bock, trca-
surer; August Waltmann, corresponding sccretary; Mariah Birgen, faculty
Sponsor.

KS Beta Chapter President—Katrina Penncr
Emporia State University, Emporia 16 actives, 7 associates

Other spring 2000 officers: Leah McBride, vice president; Mclinda
Bom, sccretary; Thad Davidson, treasurcr; Connie Schrock, correspond-
ing secrctary; Larry Scott, faculty sponsor.

KS Gamma Chapter President—Lance Hoover
Benedictine College, Atchison 12 actives, 15 associates
In early February threc KS Gamma members participated in the COMAP
Modecling Contest. In late February, for the North Central on-site visit, the
chapter had a display showing the various chapter activities. Initiation of
four national members and ninc associatc members took place on March
1. After the initiation, all shared in pizza and conversation. In mid-March
Dr. Ve Ostdiek spoke in the Faculty Colloquium Serics on his sabbat-
ical work in atmospheric sciencc. On March 29 Brett Herbers, Janclle
Kroll, and Angcla Shomin received Sister Helen Sullivan Scholarships at
the Honors Convocation. Kansas Gamma celebrated its 60th anniversary
this spring. This was highlighted at the luncheon during the North Cen-
tral Regional Convention hosted by Kansas Gamma on April 7-8. Scv-
eral alumni attended including two of the charter members. Five Kansas
Gamma members presented during the April 12 Discovery Day activitics.
Lance Hoover and Davyeon Ross took sccond place in the Business Plan
Competition with their project called "AlumConnect.” On May 1, the fac-
ulty cntertained the senior graduates with a dinner at Marywood, home
of Sister Jo Ann Fellin. Other spring 2000 officers: Curtis Sander, vice
president; Jo Ann Fellin, corresponding secretary/faculty sponsor.

KS Delta Chapter President—Laurie Paycur
Washbum University, Topeka 28 actives

On Fcbruary 28, the chapter had its annual spring initiation banquct
with President Laurie Payeur presiding. Nine new members were initi-
ated into KME. On April 8 five students and thrce faculty attended the
Regional KME Convention at Benedictine College in Atchison, Kansas.
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Dr. Kevin McCarter served as a judge for the presented papers. Addi-
tionally, on three occasions we mct with the university mathematics club,
"Mathematica”, for a speaker and lunch and/or picnic. Other spring 2000
officers: Stephanic Adclhardt, vice president; Milissa Mikkelsen, secre-
tary/treasurer; Allan Riveland, corresponding secretary; Ron Wasserstein
and Donna LaLonde, faculty sponsors.

KS Epsilon Chapter President—Adam North
Fort Hays State University, Hays 15 actives, 10 associates

Other spring 2000 officers: Wendy Scott, secretary/treasurer; Chenglic
Hu, corresponding secretary; Lance Young and Greg Force, faculty spon-
sors.

KY Alpha Chapter President—Shannon Purvis
Eastern Kentucky University, Richmond 23 actives
The spring scmester began with floppy disk sales (together with the
ACM chapter) to students in the computer literacy class and the "Math-
ematica” class. At a meeting in carly February we madec plans for initi-
ation and discusscd travel plans. On March 15, there were twenty-three
students initiated as national members. Dr. John Wilson from Centre Col-
lege gave an interesting talk entitled “Mathematics with the Lights Out
(Puzzle).” Tiger Elcctronics markets a game called Lights Out that has
25 push-button switches that can be sct initially on or off. Then when a
switch is flipped, all adjacent lights arc changed. Thc object is to push a
sequence of switches that turns off all lights. Dr. Wilson had students stand
and sit to illustratc the 3x3 version of the puzzle. In late March, the KY
MAA meeting was held at EKU and Shannon Purvis (KY Alphas Pres-
ident) gave a talk on "Lincar Programming: From Stcel to Wall Street.”
Apnl is Math Awarcness Month and cvery day lists of scveral interesting
facts about that day’s number were placed all over the Wallace Building.
For cxample, 13 is prime, part of a twin prime pair, a Fibonacci number, a
Wilson Prime, and a Lucky number. The number facts were also available
on the department web site. At the meeting in May, Dr. Costello gave a
talk on “Fibonacci numbers and the Golden Ratio.” Included in the talk
were a few minutes from the video, ”"Donald in Mathemagic Land.” Other
spring 2000 officers: Katy Fritz, vice president, Jennic Campbell, secre-
tary; Kensaku Umcda, treasurer; Pat Costello, corresponding secretary.

KY Beta Chapter President—Velma Birdwell
Cumberland College, Williamsburg 44 actives

On March 7 at the atrium, KY Beta held an initiation and a joint ban-
quet with Sigma Pi Sigma, the physics honor society. The chapter inducted
seven new student members. Members inducted last year and graduating
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seniors were also recognized during the banquet, presided over by outgo-
ing president, Velma Birdwell. The department gave Senior awards at the
banquet. Jointly with the Mathematics and Physics Club, KY Beta hosted
Dr. Carroll Wells from David Lipscomb University on April 13. He spoke
on "Michelangelo to Japan by Way of Grandma’s-The Trail of a Geometric
Construction.”” On April 14, members also assisted in hosting a rcgional
high school math contest, held annually at Cumberland College. On April
24, the entire department, including thc Math and Physics Club, Sigma
Pi Sigma, and the Kentucky Beta Chapter, held the annual spring picnic
at Briar Creck Park. Other spring 2000 officers: Simeon Hodges, vice
president; Amanda Kidd, sccretary; Melanic Maxson, treasurer; Jonathan
Ramey, corresponding secretary; John Hymo, faculty sponsor.

MD Alpha Chapter President—Kristen Balster
College of Notre Dame of Maryland, Baltimore 12 actives, 5 associates

On May 7 the annual induction ceremony for new permancnt members
was held with a picnic lunch followed by a presentation by Dr. Melissa
McGrath of the Space Telescope Science Institute. She gave a very inter-
csting and informative talk cntitled Ten Years of Science with the Hubble
Telescope. Other spring 2000 officers: Francesca Palek, vice president;
Jane Orcutt, sccretary; Jennifer Crawford, treasurer; Sister Marie Augus-
tinc Dowling, corresponding sccrctary; Joseph Di Rienzi, faculty sponsor.

MD Beta Chapter President—Christina Addco
Western Maryland College, Westminster 11 actives

Five new members were inducted this spring. At a Career Night Din-
ner, which was open to all math majors, four alumni spoke about carcer
opportunitics in mathcmatics and computer science. The chapter provided
free tutoring scrvice for mathematics and computer science courses. For
"Movic Night” we showed “Cube™. We paid a visit to the National Cryp-
tologic Muscum at Ft. Meade. We also elected new officers and sponsored
an end-of-year picnic for all math majors. Other spring 2000 officers:
Kevin Worley, vice president; Amy Bittinger, sccretary; Michael Morgan,
treasurer; Linda Eshleman, corresponding sccretary; Harry Rosenzweig,
faculty sponsor.

MA Alpha Chapter President—Laura Small
Assumption College, Worcester 7 actives, 6 associates

On May 2, 2000, the Massachusetts Alpha chapter held an initiation
and dinner for 5 new student and faculty members. Dr. Malcolm Asadoo-
rian, of the Assumption faculty, spoke on "Calculus and Economics: Ap-
plications to Environmental Issues.” Other spring 2000 officers: Christic
Gaulin, vice president; Mcredith Tebbetts, secretary; Charles Brusard, cor-
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responding sccretary/faculty sponsor.

MI Epsilon Chapter President—Martin Przyjazny
Kettering University, Flint 25 actives, 49 associates

During the Winter Term of 1999 our chapter by-laws werc approved
and there was a second showing of "The Proof”, the movie about Fermat’s
last theorem. We held our initiation ceremony and banquet in March, initi-
ating 49 ncw members at that time. Profcssor Gary Johns of Saginaw Val-
ley State University was the guest speaker. His talk, entitled "Taking the
High Road Through Garbage, Tobacco, and Politics™, included a survey of
mathematics as applicd to everyday life. The movie “John Von Neumann”
about the 20th century giant in applicd mathematics was shown during
Summer Term. New A-section officers were elected and a pizza party was
held. Kettering Professor Boyan Dimitrov spoke at the party about his ca-
recr in mathematics as he moved from Bulgaria to Russia to Canada and
finally to the United States. Other spring 2000 officers: David Murphy;
vice president; Erik Poppe, secretary; Jamey Howard, treasurer; Jo Smith,
corresponding secretary; Brian McCartin, faculty sponsor.

MS Alpha Chapter President—Chris Sansing
Mississippi University for Women, Columbus 10 actives, 1 associate

We held the March meeting on the 12th, and had the Initiation on the
28th. On Apnl 10 we sponsored “Kite Nite”, and on April 28th we co-
sponsored “Scicnce/Mathematics Game & Fame Day”. Other spring 2000
officers: Mindy Hill, vice president; Jennifer Kimber, sccretary; Kent
Smith, trcasurer; Shaochen Yang, corresponding secretary; Beate Zimmer,
faculty sponsor.

MS Epsilon Chapter President—Eric Carpenter
Delta State University, Cleveland 17 actives

Mississippi Epsilon held an initiation ccremony on Sunday, April 2.
Five ncw members were initiated.  Other spring 2000 officers: Audrey
Stewart, vice president; Sallie Bodiford, sccretary/treasurer; Paula Norris,
corresponding secretary; Rose Strahan, faculty sponsor.

MO Alpha Chapter President—Sam Blisard
Southwest Missouri State University, Springfield 20 actives, 12 associates

During the Spring semester the Missouri Alpha Chapter held monthly
mcetings. Presentations at the mecting included two faculty presentations
and a student presentation. The president of KME hosted the annual math-
ematics department banquet. Two students along with the faculty sponsor
attended the Regional Convention at Benedictine College. Other spring
2000 officers: Rachel Netzer, vice president; Erin Stewart, sccretary; Sheri
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Puestow, treasurcr; John Kubicek, corresponding sccretary/faculty spon-
SOT.

MO Beta Chapter President—Beth Hilbish
Central Missouri State University, Warrensburg 25 actives, 5 associates

KME mecting programs for this semester included a video on chaos,
a presentation by Drs. Cooper and Edmondson on the Great Internet
Mersennc Prime Search, and a presentation by Steve Shattuck on RATS se-
quences. Students voluntecred in the Math Clinic and at Math Relays. Six
students and two faculty attcnded the North Central Regional Convention
in Atchison, KS on April 7-8. Andrew Fecist presented a paper. The April
meeting consisted of a pizza party and election of officers for next vear.
The Claude H. Brown Mathematics Achievement Award for Outstanding
Senior was presented to Andrew Feist. The last cvent of the semester was
a trip to a Royals bascball game on April 28. Other spring 2000 officers:
Brichan Larson, vice president; Becky Stafford, sccretary; Jeff Callaway,
treasurer; Beth Usher, historian; Rhonda McKee, corresponding secretary;
Steve Shattuck, Phocbe Ho, and Larry Dilley, faculty sponsors.

MO Gamma Chapter President—Laura Cline
William Jewell College, Liberty 21 actives, 12 associates
The spring initiation and banquet were held on March 21 with 12 new
members. In April, Chapter President Josh Stephenson and Faculty Spon-
sor Tructt Mathis attended the Regional convention at Benedictine. Other
spring 2000 officers: Shane Price, vice president; Joel Campbell, secre-
tary; Truett Mathis, treasurer/corresponding secretary/faculty sponsor.

MO Epsilon Chapter President—Sarah Moulder
Central Methodist College, Fayette 6 actives, 6 associates

Other spring 2000 officers: Amy Ketchum, vice president; Beth Kurtz,
sccretary/treasurer;, William Mclntosh, corresponding secretary; Linda Lem-
bke & William Mclntosh, faculty sponsors.

MO Zeta Chapter President—Sarah Taylor
University of Missouri, Rolla 8 actives, 11 associates

Other spring 2000 officers: Matt Swenty, vice president; Suzanne Minicr,
secretary; Laura Edmonds, trcasurer; Roger Hening, corresponding secre-
tary; llene Morgan, faculty sponsor.

MO Theta Chapter President—David Bush
Evangel University, Springfield 5 actives, I associate

We had monthly meetings, and voted for and installed our new officers
in our February Meeting. We initiated three members during a social at
Dr. Tosh’s home. Amanda Wachsmuth, past president, presented a paper
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at the regional mecting in Atchison in April. John Gale, Joel Elliot, and
Dr. Tosh also attended the convention. Other spring 2000 officers: John
Gale, vice president; Don Tosh, corresponding sccretary/faculty sponsor.

MO Iota Chapter President—Douglas Osborne
Missouri Southern State College, Joplin i 12 actives

In observancc of 25 years as a chapter of KME, Missouri hosted two
Anniversary cvents. The first, the 25th annual spring initiation banquct
featured a presentation by the charter president of the chapter, Dr. Cyn-
thia Carter Haddock, currently of University of Alabama, Birmingham.
Her address, centitled "Time Flies,” centered on lessons she has leamed in
the past 25 ycars. The second event was a Carcers Seminar; eight Mis-
souri lota alumni rctumed to campus to sharc with students and faculty
their cducation and career activitics since lcaving MSSC. Four students
and three faculty attended the Regional Convention held at Benedictine
Collcge in Atchison, KS. One student and onc faculty member served on
the convention Awards Committee. Programs for the monthly mcctings
held throughout the semester were presented by faculty and students. Af-
ter serving as corrcsponding secretary of Missouri Iota since its inception
in 1975, Mary Elick will be retiring from full time teaching after this aca-
demic year. Dr. Charles Curtis will be assuming the roll of corresponding
secretary at that time. Other spring 2000 officers: Christin Mathis, vice
president; Dondi Mitchell, secretary; Ted Walker, treasurer; Mary Elick,
corresponding sccretary; Chip Curtis, faculty sponsor.

MO Lambda Chapter President—Shawna Smith
Missouri Westem State College, St. Joseph 37 actives

Ninc new members were initiated on March 5. Dr. John Atkinson, the
retiring Corresponding Sccretary, presented the program on “The History
of Kappa Mu Epsilon - Nationally and Locally”. Other activities included
a cookout at Dr. Atkinson’s home. Other spring 2000 officers: Shane Tay-
lor, vice president; Charisa Greenficld, secretary; Byron Robidoux, trca-
surer, Donald Vestal, corresponding sccretary; Jerry Wilkerson, faculty
Sponsor.

MO Mu Chapter President—Cheryl Moonier
Harris-Stowe State College, St. Louis 15 actives, 5 associates

Missouri Mu helps sponsor the Mathematics Club. At our most recent
club meeting we looked at the mathematics behind several magic tricks
and number puzzles. We are also in the process of setting up a web site.
Our initiation ceremony was held on April 8. Five students were initi-
ated. Other spring 2000 officers: Jack Behle, corresponding secretary;
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Ann Podleski, faculty sponsor.

NE Beta Chapter President—Brenna Knott
University of Nebraska at Kearney, Kearney 14 actives, 4 associates

Craig Mcrihew was awarded a $200 scholarship. Six members of NE
Beta attended the regional convention in Atchison, KS. Other spring 2000
officers: Jenny Gier, vice president; Jenny Rutar, secretary; Scott Barber,
treasurer; Stephen Bean, corresponding secretary, Richard Barlow, faculty
SpoNSsor.

NE Delta Chapter President—Chad Parker
Nebraska Wesleyan University, Lincoln 15 actives, 6 associates

Other spring 2000 officers: David Sovey, vice president; Thor Es-
bensen, secretary/treasurer; Gavin LaRose, corresponding sccretary/faculty
sponsor.

NH Alpha Chapter President—Nancy Peratto
Keene State College, Keene 18 actives, 8 associates

KME sponsorcd a trip to the Hudson River Undcrgraduate Math Con-
ference at Vassar College on the 8th of April. Five students, Nancy Peratto,
Lisa Phillips, Rebecca Batchelder, Scott Price, and Tim Hall and two fac-
ulty members, Vincent Ferlini and Ockle Johnson, gave talks. KME also
co-sponsored, with the Math Club, a day trip to thc Boston Scicnce Mu-
seum and a scrcening of the PBS video “Lifc by thc Numbers, Part I1”.
Other spring 2000 officers: Kate Doyle, vice president; Karrie Hibbard,
sccretary; Kate Dorio, treasurer; Vincent Ferlini, corresponding secretary;
Ockle Johnson, faculty sponsor.

NM Alpha Chapter President—William Tiemey
University of New Mexico, Albuquerque 110 actives, 22 associates

Information about the New Mexico Alpha Chaptcr may be found on the
WWW at http://math unm.edu/~kme. Other spring 2000 officers: Jennifer
Gill, vice president; Tony Malerich, secretary/treasurer; Bill Stanton, web
master; Archic Gibson, corresponding secretary/faculty sponsor.

NY Alpha Chapter President—Patricia Scavuzzo
Hofstra University, Hempstead 10 actives, 4 associates

We had a student/faculty basketball game. Other spring 2000 officers:
Rosemary Escobar, vice president; Kimberly Bleier, secretary; Vincent
Pemiciaro, treasurcr; Aileen Michaels, corresponding secretary/faculty spon-
sor.

NY Eta Chapter President—Chnis Laden
Niagara Universily, Niagara University 20 actives, 10 associates
Our chapter was represented at the Great Lakes regional convention
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held March 24-25 at Muskingum College in New Concord, Ohio. One of
our members, Coumney Fitzgerald, presented a paper cntitled "Expected
Value of Randomly Generated Triangles.” Other spring 2000 officers:
Courtney Fitzgerald, vice president; Amanda Everts, scerctary/treasurer;
Robert Bailey, corresponding sccretary; Eduard Tsekanovskii, faculty spon-
SOr.

NY Kappa Chapter President—Monica Mitrofanoff
Pace University, New York 20 actives, 5 associates

Our Spring induction dinncr was held on May 1 at 1 Pacc Plaza, Pace
University. Prof. Roman Kossak of the CUNY system gavc a talk on
“Goldstein’s Sequences™. Other spring 2000 officers: Svetlana Kolomeyskaya,
vice president; Ilya Kats, sccretary; Tim Zihharev, treasurcr; Geraldine Ta-
iani, corresponding secrctary; Robert Cicenia, faculty sponsor.

NY Lambda Chapter President—Rence des Etages
C. W. Post Campus of Long Island University, Brookville 28 actives

Eleven students were initiated by the chapter officers during our an-
nual banquet at the Greenvale Town House restaurant on the cvening of
March 27th, bringing the Chapter membership to 205. After dinner, Dr.
Nicholas Ramer spoke on “Designing New Complex Ferroclectric Mate-
rials” Dr. Ramer recently completed his Ph.D. in chemistry at the Uni-
versity of Pennsylvania and is now an assistant professor of chemistry at
C. W. Post. He graduated summa cum laude in 1994 with B.S.’s in both
chemistry and mathematics, as wcll as a minor in art history, and is New
York Lambda member number 112. The cvening concluded with the an-
nouncement by Dean Paul Shenwin of the 1999-2000 department awards:
the Clairc Adler Award to Charissa Vercillo, the Lena Shamey Memo-
rial Award to Rosclla Viscome, the Joseph Panzeca Memorial Award to
Charissa Vercillo, and the Hubert Huntley Memorial Award to Elizabeth
Kcating. Other spring 2000 officers: Stephanie Calzetta, vice president;
Suzann Weaver, sceretary; Steven McKinnon, treasurer; Andrew Rockett,
corresponding sccretary: John Stevenson, faculty sponsor.

NY Nu Chapter President—Nathan Preston
Hartwick College, Onconta 12 actives, 8 associates

The induction ceremony was held May 6. Other spring 2000 offi-
cers: Stephanie Schreckengost, vice president; Amanda Reed, sceretary;
Christopher Laidlaw, treasurer; Ronald Brzenk, corresponding sccretary/faculty
sponsor.

NC Gamma Chapter President—Brooklyn Tester
Elon College, Elon College 20 actives, | 1 associales
We held our annual induction ccremony on Thursday, April 20, at 7:00
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p-m. We inducted 11 new members as well as installing the officers for
next year. Dr. John Swallow from Davidson College gave a very good talk
called "Fermat’s Last Theorem: A Coat of Many Colors” describing some
of the things about mathematics that makes it such an interesting profes-
sion or hobby. Other spring 2000 officers: Hilary Shannon, vice president;
Jessica Pollard, secretary; Brian Neiberline, trcasurer; Skip Allis, corre-
sponding secretary/faculty sponsor.

OH Gamma Chapter President—Anila Xhunga
Baldwin-Wallace College, Berea 14 actives, 8 associates

Again this semester our chapter sponsored Monday aftemoon talks with -
pizza provided. These talks were quite well attended and much appreci-
ated by the students. Other spring 2000 officers: Duke Hutchings, vice
president; Jeff Smith, secrctary; Corina Moisc, trcasurer; David Calvis,
corresponding secretary/faculty sponsor.

OK Alpha Chapter President—Aaron Lee
Northeastern State University, Tahlequah 38 actives, 2 associates

The initiation of 9 new members, including our Department of Mathe-
matics chairman, was held in the banquet room of a local restaurant. For
the third year in a row, we designed and sold new “original” KME T-shirts.
The front of the shirts containcd our KME and NSU logos. Calculus, com-
puter science and physics cquations were skillfully displayed on the back
of the shirts. We sold over forty shirts this semester. One of our spring
speakers was Dr. Bill Warde, Head of the Department of Statistics, Ok-
lahoma Statc University. The title of his seminar was "How to samplc if
you must - problems with polling”. Also presenting at our campus this
spring was Dr. Mark Arold, Department of Mathematics, University of
Arkansas. He spoke of "The Lifc and Times of a Graduate Student”. Dr.
Joan Bell, Dr. Julia Sawyer, and Miranda Halc, our vice-president clect,
attended the KME regional mecting at Oral Roberts University in April.
We sponsorcd Math Awarcness Month by wearing our awesome KME
shirts at the annual Ice Cream Social. Other spring 2000 officers: Rhonda
Cook, vice president; Chris Burba, secretary; Gregg Eddings, treasurer;
Joan Bell, corresponding sccretary/faculty sponsor.

OK Gamma Chapter President—Kory Hicks
Southwestem Oklahoma State University, Weatherford 20 actives, 3 associates

Other spring 2000 officers: Christy Koger, vice president; Shelly Dav-
enport, sccretary; Wayne Hayes, corresponding sceretary; Gerry East, fac-
ulty sponsor.

OK Delta Chapter President—Brandon Randleman
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Oral Roberts University, Tulsa 20 actives, 22 associales

The Oklahoma Dclta Chapter at Oral Roberts University hosted the
South Central Regional Conference on Friday, April 14 and Saturday,
April 15. The conference included the chapter initiation, a banquet, fea-
tured speakers, and student presentations. ‘In attendance were members
form Colorado and Oklahoma. The chapter initiation on Friday evening
welcomed twenty-two new members. A banquet of Mexican fare high-
lighted the cvening. Saturday moming Dr. Dominic Halsmer delivered
the keynote speech regarding his work on spinning spacccraft for NASA.
Six student presentations followed. Topics included the Lorenz equations,
lincar transformations, and Markov chains. Awards were presented by re-
gional dircctor Donna Hafner, who also closed the conference with words
of thanks to thc OK Dclta chapter sponsor, Vincent Dimiceli. Other spring
2000 officers: Jennifer Randleman, vice president; Arvid Ligard, secre-
tary/treasurcr; Dorothy Radin, corresponding sccretary; Vincent Dimiceli,
faculty sponsor.

PA Delta Chapter President—Susan Carlo
Marywood Universily, Scranton 4 aclives, 3 associates

Other spring 2000 officers: Susan Kulikowski, secretary/treasurer; Robert
Ann Von Ahnen, corresponding sceretary/faculty sponsor.

PA Kappa Chapter Co-Presidents—Linda Bruce & Lindsay Janka
Holy Family College, Philadelphia 6 actives, 8 associales

On March 13 the members and pledges had a Pizza party to celebratc Pi
Day (3/14). On March 17 the annual induction ceremony was held (jointly
with the Tri-beta (Biology) honor socicty.) Dr. Duckyun Kim, a biolo-
gist/statistician from MCP Hahncman University gave a presentation on
spinal cord injurics. Eight new inductees were initiated into KME. Sis-
ter Marcclla Louise gave a bricf biography of each of the new inductecs.
On April 8 the members hosted the sixth annual grade school math com-
petition. Ninc local clementary schools participated in individual mathlcte
cvents including arithmetic computation, algebra, geometry, problem solv-
ing and mathcmatical rcasoning and two tcam events. A planning mect-
ing for thc 2000-2001 academic year is scheduled for the summer at Joc
Coll’s family home down the shore in Occan City, NJ. Members also met
for problem solving scssions and submitted solutions to problems in Math
Horizons. The chapter continued publishing its monthly newsletter "KME
News”. Each Monday a "Problem of the Wecek™ was posted. This activity
was open to all faculty, staff and students. Those who correctly solved
these problems were cligible for a drawing for a twenty-dollar gift cer-
tificate to Franklin Mills Mall. Other spring 2000 officers: Shannon Mar-
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czely, secretary; Sister Bencdykta Mazur, treasurer; Sister Marcella Louise
Wallowicz, corresponding secretary/faculty sponsor.

PA Mu Chapter President—Glenn Eckenrode
Saint Francis College, Loretto 30 actives, 9 associates

Nine new members were inducted in a ceremony held February 15,
bringing the total number of members to 180, including 30 active mem-
bers. Dinner preceded the induction ceremony. Two students and corre-
sponding secretary Pete Skoner attended the Great Lakes regional conven-
tion held on March 24 and 25 at Muskingum College in New Concord,
Ohio. Five student papers were presented including two by Saint Fran-
cis College students: ”A Method for Deriving the Principal Unit Normal
Vector for Two-Space Vectors,” by Nicholaos John Jones, scnior philoso-
phy major, and ”A Content Analysis of Gender Representation in Algcbra
Textbooks,” by Katherine Wallace, senior mathematics/cducation major.
Other spring 2000 officers: Chrissy Petrarca, vice president; Jason Low-
mastcer, secretary; Kate Wallace, treasurer; Pete Skoner, corresponding scc-
retary; Amy Miko, faculty sponsor.

PA Omicron Chapter President—Andrew Stumpf
University of Pittsburgh at Johnstown, Johnstown 28 actives, 17 associates

The annual induction ccremony for new KME initiates was held March
30 at the UPJ Whalley Chapel. Sixteen new student initiates and onc new
faculty initiate were added to our chaptcr membership. Outgoing officers
(who were all graduating seniors) were honored and new officers were
also clected and bestowed. Other spring 2000 officers: Todd McDowell,
vice president; Christopher Wain, secretary; Chad Long, trcasurcr; Nina
Girard, corresponding secretary/faculty sponsor.

SC Gamma Chapter President—Sheri Alderman
Winthrop University, Rock Hill 12 actives, 4 associales

Other spring 2000 officers: Allen Plyler, vice president; Andrew Dean,
secretary; Andrew Lanier, treasurer; Frank Pullano, corresponding secre-
tarv; Jim Bentley, faculty sponsor.

TN Alpha Chapter President—Ryan Fulkerson
East Tennessee State University, Johnson City 24 actives, 11 associates

Other spring 2000 officers: Kristin Pierce, vice president; Jimmy Nel-
son, secretary, Amy Brown, treasurer; Jeff Norden, corresponding secre-
tary; Michacl Allen, faculty sponsor.

TN Beta Chapter President—B. J. Smith
East Tennessee State University, Johnson City 24 aclives, 11 associates
The Tennessee Beta Chapter held its annual initiation service April 18.



Fall 2000 75

The service was conducted by officers B. J. Smith, president, and Susan
Hosler, secretary. There were 11 initiates. Following the initiation, a talk
on the mathematics of space flight was given Dr. Jeff Knisley, Dept of
Math, ETSU. The outstanding graduating scnior was Susan Hosler. Susan
will attend graduate school at ETSU. Jason Osbome and Justin Christian
were recognized as the most promising mathematicians. Jason will attend
graduate school at NC Statc University and Justin will attend graduate
school at the University of Wyoming. Those being recognized for receiv-
ing scholarships were: Elizabeth Hyder and Lora Hart, Depew Scholar-
ship; Austin Howcey, Ed Stanley Scholarship; Jamic Howard, Ree’l Street,
and Jason Lewis, Faber-Neal Scholarship.  Other spring 2000 officers:
Mark Taylor, vice president; Susan Hosler, sccretary; Tabitha Taylor, trea-
surer; Lyndcll Kerley, corresponding secretary.

TN Gamma Chapter President—Lindsey Crain
Union University, Juckson 24 actives

TN Gamma’s first mecting of the semester was held on February 29.
Dr. William Dembski, a Fellow of the Discovery Institute’s Center for
the Renewal of Science and Culture, spoke on his experiences and gave
some remarks on the philosophy of mathcmatics. Three students (Lind-
sey Crain, Cathic Scarbrough, and Andy Nichols) and two faculty (Drs.
Dawson and Lunsford) attcnded the KME North Central Regional Con-
vention in Atchison, KS on April 7-8. Lindscy Crain presented her paper
“The Mathcmatics of Music” and was awarded one of two “best paper”
awards. Dr. Dawson was the luncheon speaker. His topic was "KME
Student Scholarship - 1931 to the Present”. Eight students were initiated
this spring. The initiation banquet was held April 11 at the Casey Joncs
Old Country Store, with Mike Adams (*98) as speaker. An cnd-of-thc-year
celebration was held jointly with our student ACM chapter at the home of
Dr. Jan Wilms, chair of the department. Other spring 2000 officers: Cathic
Scarbrough, vice president; Melissa Culpepper, sccretary; Sarah Shaub,
treasurer; Bryan Dawson, corresponding sccrctary; Matt Lunsford, faculty
sponsor.

TN Epsilon Chapter President—IJennifer Dowdy
Bethel College, McKenzie 7 actives

In addition to monthly meetings, the chapter gathered for special movie
nights and participatcd with the Gamma Beta Phi honor socicty in campus
events. Other spring 2000 officers: Belinda Thompson, vice president;
Christina Hill, secretary/trcasurer; Russell Holder, corresponding secre-
tary; David Lankford, faculty sponsor.

TX Alpha Chapter President—Charla Newlon
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Texas Tech University, Lubbock 3 actives

Other spring 2000 officers: Collin McCurley, vice president; Jeffrey
Hood, secrctary; Thomas Mullen, treasurer; Victor Shubov, corresponding
secretary.

TX Eta Chapter President—Crystal Cookscy
Hardin-Simmons University, Abilene 11 actives, 5 associates

The 25th annual induction ceremony for Texas Eta was held March
22. Therc were five new members. With the induction of these members,
membership in the local chapter stands at 202. Lcading the induction cer-
cmonices were Vice-President Sarah McCraw and Treasurer James Martin.
Assisting them was KME member Crystal Cooksey. Following the induc-
tion ccremony, membership shingles and pins were presented to the 1999
inductces. In addition, the Bumam Award was presented to James Mar-
tin, an outstanding senior mathematics major. Changing the format of our
induction ceremony, KME then adjoumcd, and the members, inductees,
and chapter sponsors enjoyed pizza and cold drinks. Other spring 2000 of-
ficers: Brooke Motheral, vice president; Katic Smith, sceretary/treasurer;
Frances Renfroe, corresponding secrctary; Edwin Hewett, Andrew Potter,
and James Ochoa, faculty sponsors.

VA Gamma Chapter President—Bobbi Heim
Liberty Umversity, Lynchburg 28 actives, 6 associates

Other spring 2000 officers: Fan Shum, vice president; David Justa-
mente, sccretary; Derck Culp, treasurer; Glyn Wooldridge, corresponding
secretary; Sandra Rumore, faculty sponsor.

Cumulative Subject Index

The Cumulative Subiect Index for The Pentagon is up and running!
Check it out at www.cst .cmich.edu/org/kme_nat/, the national
KME homcpage, or dircctly at www . ¢st . cmich.edu/org/kme_nat
/indpent .htm. N

Mostly organized by standard coursc titlcs, there are 25 topics to choosc
from. This can bc a great resource for your courscs, whether you arc a
student or faculty! Literally hundreds of articles arc listed, on an incredible
varicty of fascinating topics. Check it out today!
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Kappa Mu Epsilon National Officers

Patrick J. Costcllo President
Department of Mathematics, Statistics and Computer Science
Eastern Kentucky University, Richmond, KY 40475
matcostcllo@acs.cku.edu

Robert Bailcy President-Elect
Mathematics Department
Niagara University, Niagara, NY 14109
rbl@niagara.edu

Waldemar Weber Secretary
Department of Mathcmatics and Statistics
Bowling Green State University, Bowling Green, OH 43403
kme_nsec@mailserver.bgsu.edu

Al Allan Riveland Treasurer
Department of Mathematics and Statistics
Washbum University, Topeka, KS 66621
zzrive@acc. wuacc.cdu

Don Tosh Historian
Department of Scicnce and Technology
Evangel College, 1111 N. Glenstone Avenue, Sprningficld, MO 65802
toshd@ecvangcl.edu

Kappa Mu Epsilon, Mathematics Honor Society, was founded in 1931.
The object of the Society is fivefold: to further the interests of mathematics
in those schools which place their primary emphasis on the undergraduate
program; to help the undergraduate rcalize the important rolc that mathe-
matics has played in the development of westem civilization; to develop an
appreciation of the power and beauty possessed by mathematics due to its
demands for logical and ngorous modes of thought; to provide a Society
for the recognition of outstanding achicvement in the study of mathematics
at the undergraduate level; and to disseminate the knowledge of mathemat-
ics and familiarize the members with the advances being made in mathe-
matics. The official journal of the Socicty, 7he Pentagon, is designed to
assist in achieving these objcctives as well as to aid in establishing fraternal
tics between the Chapters.
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Active Chapters of Kappa Mu Epsilon

Chapter

OK Alpha
1A Alpha
KS Alpha
MO Alpha
MS Alpha
MS Beta
NE Alpha
KS Beta
NM Alpha
IL Beta

AL Beta
AL Gamma
OH Alpha
MI Alpha
MO Beta
TX Alpha
TX Beta
KS Gamma
1A Beta

TN Alpha
NY Alpha
MI Beta

NJ Beta

IL Delta
KS Delta
MO Gamma
TX Gamma
WI Alpha
OH Gamma
CO Alpha
MO Epsilon
MS Gamma
IN Alpha
PA Alpha
IN Beta

KS Epsilon
PA Beta
VA Alpha
IN Gamma
CA Gamma
TN Beta
PA Gamma
VA Beta
NE Beta
IN Delta

Listed by date of installation

Location

Northeasten State University, Tahlequah
University of Northern lowa, Cedar Falls
Pittsburg State University, Pittsburg
Southwest Missouri State University, Springfield
Mississippi University for Women, Columbus
Mississippi State University, Mississippi State
Wayne State College, Wayne
Emporia State University, Emporia
University of New Mexico, Albuquerque
Eastem Illinois University, Charleston
University of North Alabama, Florence
University of Montevallo, Montevallo
Bowling Green State University, Bowling Green
Albion College, Albion
Central Missoun State University, Warrensburg
“Texas Tech University, Lubbock
Southern Methodist University, Dallas
Benedictine College, Atchison
Drake University, Des Moines
Tennessee Technological University, Cookeville
Hofstra University, Hempstead
Central Michigan University, Mount Pleasant
Montclair State University, Upper Mentclair
University of St. Francis, Joliet
Washbum University, Topeka
William Jewell College, Liberty
Texas Woman's University, Denton
Mount Mary College, Milwaukee
Baldwin-Wallace College, Berea
Colorado State University, Fort Collins
Central Methodist College, Fayette
University of Southern Mississippi, Hattiesburg
Manchester College, North Manchester
Westminster College, New Wilmington
Butler University, Indianapolis
Fort Hays State Universily, Hays
LaSalle University, Philadelphia
Virginia State University, Petersburg
Anderson University, Anderson

California Polytechnic State University, San Luis Obispo

East Tennessee State University, Johnson City
Waynesburg College, Waynesburg
Radford University, Radford
University of Nebraska—Kearney, Keamey
University of Evansville, Evansville

Installation Date

18 April 1931
27 May 1931
30 Jan 1932
20 May 1932
30 May 1932
14 Dec 1932
17 Jan 1933
12 May 1934
28 March 1935
L1 April 1935
20 May 1935
24 April 1937
24 April 1937
29 May 1937
10 June 1938
10 May 1940
15 May 1940
26 May 1940
27 May 1940
5 June 1941

4 April 1942
25 April 1942
21 April 1944
2] May 1945
29 March 1947
7 May 1947
7 May 1947
11 May 1947
6 Junc 1947
16 May 1948
18 May 1949
21 May 1949
16 May 1950
17 May 1950
16 May 1952
6 Dec 1952
19 May 1953
29 Jan 1955

5 April 1957
23 May 1958
22 May 1959
23 May 1959
12 Nov 1959
11 Dec 1959
27 May 1960
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OH Epsilon Marietta College, Marietta 29 Gct 1960
MO Zeta University of Missouri—Rolla, Rolla 19 May 1961
NE Gamma Chadron State College, Chadron 19 May 1962
MD Alpha College of Notre Dame of Maryland, Baltimore 22 May 1963
IL Epsilon North Park College, Chicago 22 May 1963
OK Beta University of Tulsa, Tulsa 3 May 1964
CA Delta California State Polytcchnic University, Pomona 5 Nov 1964
PA Delta Marywood University, Scranton 8 Nov 1964
PA Epsilon Kutztown University of Pennsylvania, Kutztown 3 April 1965
AL Epsilon Huntingdon College, Montgomery 15 April 1965
PA Zeta Indiana University of Pennsylvania, Indiana 6 May 1965
AR Alpha Arkansas State University, State University 21 May 1965
TN Gamma Union University, Jackson 24 May 1965
WI Beta University of Wisconsin—River Falls, River Falls 25 May 1965
1A Gamma Momingside College, Sioux City 25 May 1965
MD Beta Western Maryland College, Westminster 30 May 1965
IL Zeta Rosary College, River Forest 26 Feb 1967
SC Beta South Carolina State College, Orangeburg 6 May 1967
PA Eta Grove City College, Grove City 13 May 1967
NY Eta Niagara University, Niagara University 18 May 1968
MA Alpha Assumption College, Worcester 19 Nov 1968
MO Eta ‘Truman State University, Kirksville 7 Dec 1968
IL Eta Westemn [llinois University, Macomb 9 May 1969
OH Zeta Muskingum College, New Concord 17 May 1969
PA Theta Susquehanna University, Selinsgrove 26 May 1969
PA Iota Shippensburg University of Pennsylvania, Shippensburg 1 Nov 1969
MS Delta William Carey College, Hattiesburg 17 Dec 1970
MO Theta Evangel University, Springfield 12 Jan 1971
PA Kappa Holy Family College, Philadelphia 23 Jan 1971
COBcla Colorado School of Mines, Golden 4 March 1971
KY Alpha Iiastemn Kentucky University, Richmond 27 March 1971
TN Delta Carson-Newman College, Jeflerson City 15 May 1971
NY Ilota Wagner College, Staten Island 19 May 1971
SC Gamma Winthrop University, Rock Hill 3 Nov 1972
1A Delta Wartburg College, Waverly 6 April 1973
PA Lambda Bloomsburg University of Pennsylvania, Bloomsburg 17 Oct 1973
OK Gamma Southwestern Oklahoma State University, Weatherford 1 May 1973
NY Kappa Pace University, New York 24 April 1974
TX Eta Ilardin-Simmons University, Abilene 3 May 1975
MO Iota Missouri Southemn State College, Joplin 8 May 1975
GA Alpha State University of West Georgia, Carrollton 21 May 1975
WYV Alpha Bethany College, Bethany 21 May 1975
FL Beta Florida Southemn College, Lakeland 31 Oct 1976
WI Gamma University of Wisconsin—Eau Claire, Eau Claire 4 Feb 1978
MD Delta Frostburg State University, Frostburg 17 Sept 1978
IL Theta Benedictine University, Lisle 18 May 1979
PA Mu St. Francis College, Loretto 14 Sept 1979
AL Zeta Birmingham-Southern College, Birmingham 18 Feb 1981
CT Beta ILastern Connecticut State University, Willimantic 2 May 1981
NY Lambda  C.W. Post Campus of Long Island University, Brookville 2 May 1983



80 The Pentagon
MO Kappa Drury College, Springfield 30 Nov 1984
CO Gamma Fort Lewis College, Durango 29 March 1985
NE Delta Nebraska Wesleyan University, Lincoln 18 April 1986
TX lota McMurry University, Abilene 25 April 1987
PA Nu Ursinus College, Collegeville 28 April 1987
VA Gamma Liberty University, Lynchburg 30 April 1987
NY Mu St. Thomas Aquinas College, Sparkill 14 May 1987
OH Eta Ohio Northem University, Ada 15 Dec 1987
OK Delta Oral Roberts University, Tulsa 10 April 1990
CO Delta Mesa State College, Grand Junction 27 April 1990
NC Gamma Elon College, Elon College 3 May 1990
PA Xi Cedar Crest College, Allentown 30 Oct 1990
MO Lambda Missouri Westem State College, St. Joseph 10 Feb 1991
TX Kappa University of Mary Hardin-Baylor, Belton 21 Feb 1991
SC Delta Erskine College, Due West 28 April 1991
SD Alpha Northern State University, Aberdeen 3 May 1992
NY Nu Hartwick College, Oneonta 14 May 1992
NH Alpha Keene State College, Keene 16 Feb 1993
LA Gamma Northwestem State University, Natchitoches 24 March 1993
KY Beta Cumberland College, Williamsburg 3 May 1993
MS Epsilon Delta State University, Cleveland 19 Nov 1994
PA Omicron University of Pittsburgh at Johnstown, Johnstown 10 April 1997
MI Delta Hillsdale College, Hillsdale 30 April 1997
MI Epsilon Kettering University, Flint 28 March 1998
KS Zecta Southwestern College, Winfield 14 April 1998
TN Epsilon Bethel College, McKenzie 16 April 1998
MO Mu Harris-Stowe College, St. Louis 25 April 1998
GA Beta Georgia College and State University, Milledgeville 25 April 1998
AL Eta University of West Alabama, Livingston 4 May 1998
NY Xi BufTalo State College, Buffalo 12 May 1998
NC Delta High Point University, High Point 24 March 1999
PAPi Shippery Rock University, Slippery Rock 19 April 1999
TX Lambda Trinity University, San Antonio 22 November 1999
GA Gamma Piedmont College, Demorest 7 Apnl 2000

Back Issues

Is your joumnal collection complete? Copies of most back issucs of 7he
Pentagon arc still available for $5.00 per copy. Please send inquiries to:

The Pentagon Busincss manager

Division of Mathecmatics and Computer Science

Emporia Statc University
Empona, KS 66801 USA



