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Introduction

Suppose you were handed the following table of data and were asked
to pick out any unusual values corresponding to <p(k) ([4]; see figure 1).

k *ikj
0 4.04

1 5.31

2 6.64

3 8.06

4 9.46

5 10.80

6 12.19-

7 13.46

8 14.41

9 16.10

10 17.41

11 18.89

13 22.55

14 25.19

Figure 1

Based solely on the above information, you might conclude that none of
the values for Jt are unusual since <f>{k) seems to be consistently increasing
with k.

Suppose now that you were handed the following graph, and were asked
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4»(k)

Figure 2

the same question as above (see figure 2).
What can you conclude now that perhaps you were not able to conclude

from the table alone? The graph makes it clear that the value for k = 14
deviates from the straight line that the other data points follow, whereas
such a deviation is not so obvious in the table. Not only did the graph
allow a straightforward detection of the discrepant point, but it was almost
instantaneous. It is much easier for our eye-brain system to conclude results
about a data set from a graph of the data points than from a corresponding
listing of the data points ([2]).

Because graphs give such a proficient visual representation of relation
ships within a particular data set, they often are used to construct or to
verify statistical models. However, within a given data set, one cannot
just plot any two quantities against each other and look for a straight line
because the quantities might not be linearly related. Such an expectation
would be an unproven assumption about the data. So, before beginning
data analysis, one needs to understand basic characteristics of the data set.
In other words, the data needs to be fit to a particular distribution.

There are several different distributions, all of which fall into one of
three categories: discrete, continuous, or mixed. The type of distribution
that will be focused on in this paper is a discrete distribution.

Discrete distributions arise from counting techniques, which means that
there is a correspondence between the observed discrete data and the set
k = {0,1,2,...}. These correspondences are obtained by counting the
number of occurrences, n*, in the observed data that are equal to the
outcome k. In this notation, no of the observations pertain to the outcome
0, ni are associated with the outcome 1, and so on (as in [5]). Sometimes,
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however, the outcomes ofan experiment are not initially in numerical terms.
Such is the case with studies on hair color, gender, nationwide location,
etc. Therefore, in order to perform statistical analysis, one needs to define
a random variable, which is a function that assigns a real number to each
outcome of a particular event (c. f. [1]).

Since random variables allow all the outcomes of an experiment to
be considered for statistical analysis, one can define a probability density
function (p.d.f.). Every distribution has an associated p.d.f., which assigns
probabilities to each possible value of a random variable. P.d.f.s are usually
denoted by P(k), which is the probability of outcome k occurring.

Not only does every distribution have a p.d.f., but each depends on one
or more associated parameters. A parameter is an unknown quantity that
describes its distribution. If the parameter changes, so does the shape of
the distribution. Since a researcher would like to have a completely defined
distribution so that certain properties for a data set could be revealed,
which in turn would allow the researcher to begin verifying assumptions
about the data set, he/she needs to know the value for the parameter of
the distribution. However, since parameters are unknown quantities, then-
true values can never be known. Thus, parameters need to be estimated.

Several methods for parameter estimation exist. In the beginning of
this paper, graphs were praised as excellent statistical tools. One addi
tional benefit of graphs that should now be introduced is that a carefully
constructed graph can yield an estimate for an unknown parameter of a
probability distribution. A graph of a linear equation whose slope and in
tercept are functions of the parameter of interest would yield a fitted line.
The slope and intercept of this fitted line would in turn reveal something
about the value of the unknown parameter. A researcher could therefore
estimate a parameter of a distribution by plotting an appropriate graph.
This estimated value would replace the unknown value of the parameter,
thus describing its distribution. The researcher would then have all the nec
essary pieces to calculate any desired probability pertaining to the specified
distribution.

Because each distribution has distinct characteristics, a researcher usu
ally has a pretty good idea about which distribution a given data set follows.
Therefore, he/she has an idea as to which associated parameter needs to
be estimated. However, such assumptions must be verified. Several sta
tisticians have proposed different graphical techniques that will show how
closely a sample of data follows a particular distribution, but one such
technique that is of particular interest is the "Poissonness plot."

A Poissonness Plot

As was stated before, there are many different kinds of discrete distri
butions. One that comes up quite often is the Poisson distribution, which
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counts the occurrence of rare events such as the number of misprints on a
page of text, or the number of tornados per year in a particular area. The
Poisson distribution has only one parameter, A, which measures the "rate"
of the occurrence. The p.d.f. for a Poisson distribution is

c-AA*P\(k) = —j-r, A>0and* =0,l,2,....

This means that if a researcher thinks that the outcomes of a particular
event are from the Poisson distribution, then he/she could find the proba
bility that an outcome of, say, 3 would occur by calculating

W) =̂ p,
provided that the value of A is known.

In order to be able to calculate a probability for any of the outcomes
in the sample from the above equation, one needs to estimate the value for
A. Recall that an estimate of a desired parameter can be found by plotting
a function of the parameter. So, one would want to determine the function
of A that would be useful.

Thus far, the only information that is known is that the outcomes of
a particular event are assumed to be from the Poisson distribution. In
order to estimate A, one would first have to verify that the data being
worked with is in fact Poisson. Now, either the outcomes are from a Poisson
distribution, or they are not. Since the assumption is that the outcomes
are from a Poisson distribution, one would expect a collection of observed
frequencies of the event to be equal to the expected frequencies calculated
from the Poisson p.d.f. Therefore, it would seem reasonable to set the two
frequencies equal to each other in the following manner:

(1) nk=NPx(k) =£!1k-r-,
where n* is the observed frequency of outcome k, P(k) is the probability
of k occurring, and N = no + ni + «2 H is the sample size of the data
set ([3]).

A function has now been derived that contains the parameter of inter
est. However, it was initially stated that we could get information about
a parameter from the slope of the fitted line, indicating that a linear func
tion would be preferred over the one previously stated. To obtain such an
equation, David Hoaglin, in his article "A Poissonness Plot" [4], proposes
taking the natural logarithm of both sides of the above equation, which
yields

(2) lnn*=lnJV-A + fclnA-ln*!.
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Rearranging this equation gives

(3, !.($!)--A + AlnA.

The left-hand side of this equation is referred to as the count metameter,
denoted <£(n*), and its value is known from the sample information. So
<p{nk) = —A+ fclnAis an equation whoseslope and intercept are functions
of A, the parameter of interest. Then, if the observed data are actually from
a Poisson distribution, a plot of 0(n*) against k should produce a straight
line with a slope of InAand an intercept of -A ([3]).

However, in practice a researcher would never see a plot that precisely
follows a straight line. So, for practical purposes, we call a line "straight"
if it appears relatively so, with only a few exceptions. A researcher can
then fit the observed line by whatever means he/she prefers (least squares
estimate, fitting the line by eye, etc.). Calculating a slopefor the fitted line
is an easy task, and the value of the slope, call it m, is set equal to In A.
Then em = elnA = A, so em is an estimate for A, where m is the slope of
the fitted line of the Poissonness plot.

If, on the other hand, the points on the derived Poissonness plot deviate
significantly from a "straight" line, then a Poisson distribution is probably
not an ideal fit to the data. Extreme outliers, definite curvature, or unex
plained gaps in a plot are all strong indications that the observed data are
from a distribution other than the Poisson ([2, p. 203]).

*(k)
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Figure 3

For an example, consider the Poissonness plot in figure 3, whose data
pertain to the occurrences of the word "may" in the Federalist Papers. Each
point on the plot corresponds to an observed data value that was inserted
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into the Poissonness plot equation to output the appropriate point. The
curvature of the graph indicates that the Poisson distribution does not
provide a good fit for the data. In fact, Moesteller and Wallace propose
using the negative binomial distribution for this particular example (see
[4])-

A Generalization of the Poissonness Plot for Other Distributions

The previous example brings to light a feature of the Poissonness plot:
its concept is not restricted to only the Poisson distribution. A generaliza
tion of the Poissonness plot has been derived that includes certain other
distributions, such as the binomial. Because of this, it would be more nat
ural, not to mention less confusing, to simply call the plots "distribution
plots." Then one could refer to the plotting process for the binomial distri
bution as a distribution plot for the binomial, and a Poissonness plot could
be referred to as a distribution plot for the Poisson, which makes it clearer
as to which distribution is being plotted.

To derive the generalization, refer back to equation (2) for the Poisson
ness plot and note that it is equivalent to

bnjb = ln(JV/fc!)-A + fclnA.

Now, the generalization proceeds by letting o* = N/k\, a general term
whoseonly constraint is that it depends on k; 6(0) = —A, a general func
tion of the parameter of the distribution; and c(0) = InA, another general
function of the parameter. Note for future reference that 6(0) = -A is
equivalent to —e'W = ex and that c(0) = InAis the same as ecW = A.
Now, the above substitutions result in the following generalized plotting
equation:

(4) Innk - Inak = 6(0) + kc(6).

So fitting a theoretical distribution to a particular data set would entail
plotting Inn* —Ina*, the count metameter, against k and looking for a
straight line with slope c(0) and intercept 6(0). Just like with the Poisson
distribution, a plot which reveals a relatively straight line indicates that
the distributionin question is a good fit to the observed data ([5, p. 376]).

But again, one runs into the problem of which functions of the para
meter should be chosen. In other words, one would want to find values for
6(0) and c(0). Recall that for the Poisson distribution we have 6(0) = -A
and c(0) = InA, but these particular functions might not work for another
distribution whose parameter(s) and p.d.f. differ from the Poisson. So, it
would be in order to further generalize equation (4) by finding equations
for 6(0) and c(0).
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To do this, one can regroup equation (1) and then replace A and e*
with the appropriate quantities mentioned above in the following manner:

nk = ——A* =ak * eeW

Note that the middle portion of this equation represents the p.d.f. of N
trials of a Poisson experiment, while the right-hand side corresponds to the
p.d.f. of a theoretical distribution. Since A is the parameter of the Poisson
distribution, it follows that ecW represents the parameterof the theoretical
distribution; for simplicity's sake, call the quantity 0. In addition, because
eA is a function of the parameter A, -eb^ is a function of the parameter of
the theoretical distribution; call this quantity /(0). Solving the equations

0 = e'W

and

/(0) = -e"W

for c(0) and 6(0), respectively, gives

c(0) = ln0

and

6(0) = -ln(/(0)),

so that generalized functions of the parameter of the theoretical distribution
have been found.

It is important to note that the above substitutions give rise to the
following:

(5) nk =ak-±e*.

Any distribution whose p.d.f. can be fit into the form of equation (5) can
offer values for 6(0) and c(0) which can be substituted into equation (4),
thereby yielding a corresponding plot which will show how closely observed
data points follow the proposed distribution.

To see that the generalized method works for distributions other than
the Poisson, consider the binomial distribution. The binomial distribution
measures such things as the number of heads that will come up in any given
number of fiips of a coin. Thus, it is often used in games of chance where
only two outcomes (usually denoted success or failure) are possible. Its
p.d.f. is

P(k) =(£)pfc (1 -p)n"fc, k=0,1,2,... n,
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where n is the number of trials performed and p is the probability of ob
taininga "success" (forthe coin-flipping problem, the probability of getting
a head, ora success, is §).

The above p.d.f. is algebraically equivalent to

m = n „w,.

which makes it easier to see that the binomial p.d.f. fits into equation (5),
where

o* •'©'
0 = p/(l-p); and

/(0) = (l-p)-».

So,
c(0) = ln0 = ln(p/(l-p))

and

6(0) = -ln(/(0)) = -In((l -p)"n) = nln(l -p).

Substituting these values into equation (4) gives

lnnfc - In (m(?\) =nln(l -p) +fcln(p/(l -p)),

so that a plot of^(n*) = Inn* - In (#(£)) against k would beexpected to
yield a straight line with a slopeof ln(p/(l -p)) = c(0) and an intercept of
nln(l -p) = 6(0). Thus, a distribution plot for the binomial distribution
has been constructed, proving that the Poissonness plot method extends to
distributions other than just the Poisson, provided that their p.d.f.s can fit
into equation (5).

Now, recall that the Poisson distribution relies on only one parameter,
A. In general, for any discrete distribution with only one parameter, a
plot of 4>{nk) against k produces a straight line where the slope identifies
the parameter of the theoretical distribution ([5, p. 347]). However, some
distributions, such as the binomial, rely on two parameters. In these cases,
at least one of the parameters needs to be held constant, or assumed known.
So, in order to do the above distribution plot for the binomial distribution
whose two parameters are n and p, one of the parameters needs to be held
constant. Since n is usually known, it is chosen as the constant parameter,
sop is the parameter to be estimated([5, p. 377]). Eventhoughthe binomial
distribution relies on two parameters, we see that the distribution plot
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method works when n is known. Thus, a distribution doesn't have to
have only one parameter for equation (4) to work; it could have several
parameters, provided it has only one unknown parameter. Also, its p.d.f.
must fit into the form of equation (5). If a particular distribution meets
these conditions, then such a plot can be constructed for that distribution.

Applications of Distribution Plots

To help clarify the usefulness of distribution plots, consider the fol
lowing situation: a researcher just received two data sets, shown in figure
4.

4>(k) k <t>(k)

0 93

1 65

2 34

3 7

4 1

5 0

DATA SET A

0 43

1 69

2 50

3 31

4 6

5 1

DATA SET B

Figure 4

Both data sets were constructed by a random number generator; one was
generated according to the Poisson process with parameter A, and the other
corresponding to the binomial process with parameters n and p. The re
searcher wants to analyze the data, but is unsure as to which data set befits
which distribution. In order to solve the problem, he/she decides to fit both
data sets into the distribution plot for the Poisson distribution. Since one
of the data sets is actually Poisson, the researcher knows that out of the
two graphs that will be produced by the distribution plot procedure, one
should reveal a relatively straight line (indicating the Poissondata set), and
the other should stray significantly from a straight line (implying a data
set from a distribution other than the Poisson).

Fitting each data set into equation (3), the researcher finds correspond
ing count metameters and produces the plots shown in figure 5. Notice
that plot A reveals a relatively straight line, whereas plot B conveys a
curve. This would strongly suggest to the researcher that data set A is
from the Poisson distribution. Doing an analysis of variance on the above
plots reveals the following slope and intercept for each of the fitted lines:

data set A data set B

slope -0.315 0.227

intercept -0.701 -1.269
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PLOT A

PLOT B

Recall that the distribution plot for the Poisson distribution should reveal
a straight line with a slope of InA and an intercept of —A. Since plot A
conveyed a straight line, and since values of the slope and intercept of the
fitted line were found, the researcher can estimate the value of the unknown
parameter, A, as follows:

slope = -0.315= InA=» A= e-0316 = 0.730.
intercept = -0.701 = -A =*• A = 0.701.

The researcher can now conclude that data set A is from the Poisson dis
tribution with A « 0.715. (Data set A was actually generated from the
Poisson process with A = 0.8, indicating that the distribution plot should
produce a straight line with a slope of In0.8 = —0.223 and an intercept
of —0.8. Note that these values are very close to what was observed from
the data of plot A. In contrast, the data from plot B reveals an estimate of
approximately 1.26 for A, which is not nearlyas accurate.)
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The researcher could conclude, then, that the other data set is the
binomial set. But, just to make sure, he/she should plug the values of data
set B into the distribution plot for the binomial distribution, which would
yield the plot in figure 6.

*(k)

0
T 1 I 1 l r

-2

•

•

-4 •
•

•

•

-6 •

a

-8
' i i l i i

Figure 6

The straight line in the plot of figure 6 confirms the researcher's belief
that the second data set is, in fact, binomial. Computing an analysis of
variance for this plot reveals a slope of -1.103 and an intercept of -1.684,
which gives way to an estimate of approximately 0.245 for the binomial
parameter p. The value for the parameter n is fixed at 6, because there
are six values for k in data set B. (Data set B was actually generated by a
binomial process with n = 6 and p = 0.25, implying a value of -1.0986 for
the slope, and -1.726 for the intercept.)

By employing distribution plots, the researcher was not only able to
figure out which data set was from which distribution, but was also able
to estimate the values for their corresponding parameters. Analysis of the
data can now be performed.

Advantages of Distribution Plots

When working with graphs, it would be useful to be able to "incorpo
rate resistance." That is, it would be advantageous to work with a graph
that would enable a person to easily detect unusual data points. This would
be beneficial because sometimes there is a reasonable explanation for stray
data points. For example, consider the Poissonness plot in figure 7, whose
original observed data points correspond to the number of incidents of in
ternational terrorism over a period of about six years.

Note that the first five points seem to be following a relatively straight
line, but that the point at k = 12 is discrepant. However, examining this
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4>(k)

Figure 7

particular data point more closely reveals that the point corresponds to
the month of July, 1968, and that 11 of the 12 terrorist incidents were
tied to a certain anti-Castro group ([5, p. 351]). Since this unusual data
point can be explained, it could be omitted from the other data points,
thereby preventing misleading results. One wants to be sure, however, not
to complicate matters by choosing a graph that draws unnecessary attention
to good data points. Just as a researcher doesn't want a "bad" point to
go unnoticed, he/she doesn't want to waste time checking a "good" point
that only appears discrepant. Such a possibility might occur if a particular
plot were to incorporate two different observed values, say nk and nk-i,
into its count metameter. Then a discrepant nk would affect two points on
the plot. Even if n*_i were not a discrepant point, it would appear so on
the plot due to its dependence on the discrepant nk. This would make the
data seem to be more discrepant from a straight line than it actually is,
possibly causing a researcher to disregard a plausible distribution.

The advantage of distribution plots is that they satisfy the above re
quirements. A distribution plot incorporates only one observed value, nk,
into its count metameter, which means that each point on the plot is inde
pendent of all the others. Therefore, if n* is a discrepant point, it will affect
only one point on the plot. Moreover, distribution plots are constructed so
that discrepant points often will be obvious enough to be easily detected.

Drawbacks of Distribution Plots

Refer back to the distribution plot of the Federalist Paper data (figure
3). The data points were plotted under the assumption that the Poisson
distribution was a good fit to the data, but the plot indicated otherwise.
Now, if a researcher has an idea as to an alternative distribution that might
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provide a better fit (such as the negative binomial), then if its p.d.f. fits into
equation (1), the assumption can be tested using Equation (2). But what if
the person doing the plotting has absolutely no idea as to which distribution
might fit the data? Theoretically, the person could try one distribution
plot after another until one is found which yields a straight line, but this
method would be both monotonous and extremely time-consuming. So,
the disadvantage of distribution plots is that if the calculated plot does not
reveal a straight line for the distribution of interest, it gives no indication
as to which distribution might give a better fit.

Conclusion

The advantages of distribution plots are that they tell how closely a
given set of data follow a particular distribution, they give an estimate of
the unknown parameter of a distribution, and they incorporate resistance.
However, the main disadvantage of a distribution plot is that if the plot
does not reveal a straight line, it gives no indication as to a distribution
that possibly would provide a fit to the data. One possible solution to this
drawback is the Ord plot, which can suggest a fitting distribution to a set
of data. Such a task is accomplished by examining the shape of the derived
line on the plot; interested readers are encouraged to explore this idea in
Ord's article [6].

Acknowledgements. I would like to acknowledge Dr. James Guffey, asso
ciate professor at Truman State University.
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The rainbow is one of nature's most breathtaking sites. After a storm,
the rainbow provides a calm peace to the sky. However, it is not only the
rainbow's beauty that appeals to man. There is a great mystery behind the
rainbow. What could cause a band of colors to suddenly appear in the sky?
Many theories, ranging from Biblical to mythological, have been given in
attempt to explain the rainbow. Interestingly, the formation of the rainbow
can be explained mathematically.

Early Fascination with the Rainbow

Man's fascination with the rainbow can be traced back for centuries.

The most familiar explanation of the rainbow can be found in the Bible.
In Genesis 9, God promises Noah that He will never destroy the earth by
flood again. He creates the rainbow to remind Noah and the people of His
promise. Other early explanations of the colorful bow can be found in Greek
mythology. The Greeks believed the goddess Iris "used the rainbow as a
sign both of warning and of hope" [3,p. 42]. What was a symbol of beauty
to the Greeks, was seen in African mythology as a deadly "snake coming out
to graze after the storm" [3, p. 42]. American Indians viewed the rainbow
as a bridge leading from one world to the next. Since the rainbow seems to
touch the earth, many say there is a pot of gold at the end of the rainbow.
There are many theories explaining the rainbow. However, we will explore
the mathematical reasoning behind this colorful arc.

Early Mathematicians and the Rainbow

To many, the early explanations of the rainbow were not satisfying. It
was not long before great minds began to observe relationships between
the sun, rain, and rainbow. In fact, in 578 BC, a Greek scholar named
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Anaximenes theorized that clouds bent the sun's light to form the rainbow.
Aristotle theorized that geometric reasoning lay behind the circular arc.
Although his reflection laws were incorrect, his idea was valid [3, p. 42].
However, it was not long until scholars realized that the reflection and
refraction of light played an important role in the formation of the rainbow.
Then in the fourteenth century, Theodoric of Freiburg and the Persian
scholar Kamal al-Din al Farisis independently decided that drops of rain
were the key [3, p. 42].

However, it was the mathematicians of the seventeenth century that
put all of these pieces together. Fermat theorized about the path of light.
Descartes traced light rays to demonstrate how light is reflected and re
fracted in water, which led to explanation of the circular arc. Then, Isaac
Newton finalized the explanation in his book, Optics, which discussed the
distinct colors of the rainbow [5, p. 68]. We will use many of these mathe
matical ideas as we explore the formation of the rainbow.

The Path of Light in Water

Descartes knew the path of light was essential to the formation of the
rainbow. To understand the path light rays follow when they encounter
water, one must first understand the principles of reflection and refraction.
When light encounters a water droplet, a portion of the light rays bounce
off the drop's surface, while the remaining rays enter the drop.

To understand the idea of reflection, examine the rays which bounce off
the water's surface. Consider the following diagram where P is the source
of light rays such that at least one light ray passes through point Q after
reflecting off the surface at some point R (figure 1).

Fermat's principle states, "Light follows a path which minimizes the
total travel time." Thus, the ray will travel from P, bounce off the surface
at R, and pass through Q in the least amount of time possible. In order
to do so, R should be positioned so the path PRQ has minimum length,
assuming the speed of light is constant [3, p. 43].

Now, the length of path PRQ is equivalent to the length of path PR
plus the length of path RQ. These lengths can be calculated using the
Pythagorean theorem for the triangles in figure 1. We can represent the
entire path length as a function of x. Then,

L(x) = y/pt + x2 + s/q2 + {d-x)2.
The minitnum length is found by setting the derivative, L'{x), equal to
zero. Now,

L'i*) =\tf+a2)-* (2s) +1(92 +(d- x)2)"* (2)(d - x)(-l).
Thus, we want

|(p2+x2)-i(2x) +^(g2 +(d-a:)2)-i(2)(d-x)(-l)=0.
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Simplifying,

or

k-

Figure 1

d-x

y/jfi + x2 y/q2 + {d-x)2

x d — x

= 0,

y/jPTrf V92 +(d-x)2*

Looking at figure 1,

sina =

y/pt + x2

and

sin/7 =
d — x

N/g2 +(d-x)2'

The Pentagon

M

Thus, sina = sin /? for L'(x) = 0. Since these two angles are between 0 and
f, the angles must also be equal. So, a = /?.

We must verify that this is a minimum, for it could be a maximum or an
inflection point. To do so, we will solve the first derivative for x and plug
the root into the second derivative. Since the computations can become
rather intense, Mathematica is an excellent tool to aid in this process.

For L'(x) = 0, we previously derived

d-x

VpT+i2 vV + (<*-x)2
= 0;
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solving yields
J-jt + q2

x =
2d

Now,

L"(x) =x(^) (p2 +x2)-§ (2x) +-=L

- (d-x) (=i) (g2 +(d-x)2)-*(2)(d-s)(-l) +

(P2 +x2)W T VpM7^5 («2 +(d - x)2)3/2)
1

V'92 + (d-x)2

x2 , 1 (d-x)2

+ •
^2 +(d-x)2

Plugging x = d"2^^ mto this equation, we have

All of the values in this equation are positive, because each of the quantities
is squared. Thus, the entire expression is positive. This means that the
graph is concave up. Hence, this is a minimum.

Since this is a minimum, the light ray travels the least distance when
a = 0. Fermat's principle guarantees the light ray will travel this path
when coming from a source, P, reflecting off the surface at some point
R, and continuing to pass through Q. Using Fermat's principle, we have
derived the iaw ofreflection: for reflection, the angle of incidence is equal
to the angle of reflection (c.f. [3, p. 44]).

However, not all light rays are reflected from the water's surface. Some
rays enter the water drop. These light rays are said to be refracted. We can
also determine the path of these refracted rays. Consider figure 2, where P
is the source of light. Notice that the light ray passes through some point
Q, which is in the water, so that the ray crosses into the water at some point
R. In the diagram, a will represent the angle of incidence, the angle the
path PR makes with the line perpendicular to the water's surface. Also, 0
will represent the angle of refraction, the angle between the path RQ and
the perpendicular (c.f. [3, p. 45]).

Again, consider Fermat's principle, which claims that the point R is
positioned so as to make the total time of travel a minimum. To find this
minimum, we will not represent this path as a function of length as we did
in the derivation of the law of reflection. To do so would be to assume that

the speed of light in air is equivalent to the speed of light in water, since
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Figure 2

distance = rate x speed. Since the speed of the ray changes when it crosses
into water, we should considerboth speeds. Let a be the speed of light in
air and w be the speed of light in water. Because time is distance divided
by speed,

yV + x2

represents the time it takes to travel path PR. Likewise,

y/q2 + (d-x)2
w

represents the time it takes to travel path RQ. Thus, the total time can be
represented as

TIX) =V^+^ +Vff2 +(d-x)2

To find the minimum, set the derivative of T(x) equal to 0 and solve,
i.e.,

or

yielding

lxl d—x

o y/p2 +X2 ~ v> y/q2 +(d-x)2

sin a sin^

w
= 0,

sma

sin/9 w'

= 0
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To verify that this is a minimum, let's examine the second derivative:

„ 1 (d-x)2
{X) " wy/{q2 +{d-x)2) v>(q2 +(d - x)2)3/2

x2 1

a(p2+x2)3/2+ay/pTTx2
_1_ q2 + (d-x)2-(d-x)2 1 x2-(p2H-x2)
~ to * (q2 + [d - x)2)3/2 a' (p2 + x2)3/2
-I g2 , 1 P2
~1tf'(g2 +(d-x)2)3/2 0 (p2 +I2)3/2-

Because the variables are squared and a and w have positive values, T"{x)
will always be positive. Thus, no matter what value we examine for x > 0,
T(x) will be concave up. In other words, the graph will be concave up no
matter what the distance the ray must travel. Thus, this equation reflects
the minimum time it takes to travel from P to Q. Therefore, path PRQ is
the shortest path.

Since this is the minimum time it takes to travel path PRQ, Fermat's
principle guarantees that the light ray travels this path so that the ratio of
the incidence angle to the angle of refraction equals some constant. This
constant, £, is the ratio of the speed of light in air to the speed of light
in water. Furthermore, this constant can be calculated. Data has been
gathered that gives the ratio of the speed of light in an vacuum to the
speed of light in various media. Now, the ratio of the speed of light in
a vacuum, v, to the speed of light in water is approximately 1.33. So,
— = 1.33. This is called the index of refraction for water. Similarly, the
ratio of the speed of light in a vacuum to the speed of light in air is close
to 1. Thus, * = 1, where 1 is the index of refraction for air. It follows that
I = 1-33.

Therefore, we have derived the law of refraction: the ratio of the sine
of the angle of incidence to the sine of the angle of refraction is a constant.
Although we used Fermat's principle to obtain the law of refraction, Wille-
brord Snell experimentally discovered this law in 1621. Understandably,
the law of refraction is often referred to as Snell's law [3, p. 46]. However,
Descartes also discovered this result when he traced rays of light through a
water drop. He published his work before Snell, who died before his work
was published. Many were angered when Descartes claimed this discovery
and refused to give recognition to his accomplishment. However, the law
of refraction is referred to as Descartes' law in his home country of France
[2, p. 2].

Notice that the derivation of this law is independent of direction. So,
it does not matter if the source of light comes from P or from Q. With
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this in mind, once again consider what we have proven, fj^| = ^. If the
light travels from one medium to another, where the second medium has a
higher index of reflection, the light is bent toward the line perpendicular to
the surface between the two mediums. This perpendicular is often referred
to as the normal. Remember, the index of refraction of a substance is
the ratio of the speed of light in a vacuum to the speed of light in that
particular substance. So, if the second medium has a higher refraction
index, the numerator will be greater than the denominator. Thus, sin a
must be greater than sin/9. Since both angles are between 0 and f, it
follows that a must be greater than 0. Thus, it appears that the light ray
bends toward the normal. Similarly, if light travels from one medium to
another with a lower index of reflection, the light ray bends away from the
normal. Knowing the index of refraction for both mediums will enable us
to predict the path of the light rays.

Formation of the Primary Bow

In discussingthe formationof the rainbow, we will utilize the principles
of reflection and refraction. For a rainbow to be visible, the sun must be
positioned behind you, such that its light shines on droplets of water in the
atmosphere in front of you. This could be compared to a movie theater,
where the sun acts as the film projector and the water droplets act as the
movie screen [1, p. 47]. Rainbows form when the light interacts with these
water drops in the atmosphere. Each time the light rays strike the surface
of the drop, a portion of the rays are reflected, while the remaining rays
are refracted. For clarification, examine figure 3.

Figure 3
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Now, the shape of a raindrop depends on several factors, but for a
good approximation, it is fairly safe to assume that it is spherical [3, p. 46].
Thus, the circlecentered at O will represent a cross-section of the drop of
water. Suppose the sun is on the left side of this water drop. Then, light
enters the drop at some point A. Some of the light rays are reflected off
of the drop and do not interact with the water. Since those rays play no
part in the formation of the rainbow, we will not consider them. We want
to focus on the remainingrays that are refracted into the water. Since the
refraction index of water, 1.33, is largerthan that of air, approximately 1,
these light rays will be bent toward the normal. We know from geometry
that a circle's radius through a point on the circle is perpendicular to the
circle's tangent at that particular point. Thus, radius OA represents the
normal. We will again refer to a as the angle of incidence and 0 as the
angle of refraction. After these rays are bent toward OA, they continue
to travel through the circle until they encounter the other side of the drop
at some point B. Again, a portion of the rays are reflected back into the
drop, while the remaining rays are refracted into the air. We will not see
the light that is refracted backinto the atmosphere, because we are on the
left-hand side of the drop. So, we will follow the reflected rays. From the
lawof reflection, the angle of incidence equals the angleof reflection. Thus,
LABO is equal to LOBC. The light continues until it strikes the drop
again at point C. Once again, part of the light is reflected back into the
drop and part is refracted into the air. The rays that are refracted into
the atmosphere are bent away from the normal, OC, since air has a lower
refractive index than water.

This is only one of the many paths light rays travel inside the water
drop. The rays could continue to bounce around inside the sphere. How
ever, each time the rays strike a surface, part of the rays are reflected and
part arerefracted. After each interaction, the light is less intense than the
original ray. Thus, we want to consider the rays that strike the interface
the least amount of times to examine the brightest light. Therefore, we
have traced the simplest path that contributes to the rainbow.

If any light ray that wasreflected once inside the waterdrop produced
a rainbow, we wouldsee an infinitenumber of rainbows in the sky. In fact,
we will see that a light ray which enters the drop at a special angle will
contribute to the formation of the rainbow. To explore this issue, we should
examine the deflection of the light ray.

We have said that the light enters the drop at some point A. Now,
since we picked the sun to be on the left side of the drop, point A couldbe
anywhere on the left halfof the circle. If the ray enters on the upper half
of the circle, it will exit on the lowerhalf. Likewise if it enters on the lower
half, it will exit on the upper half. Because the upper and lower halves of
the circle are symmetrical, we can focus on only the upper half. For rays
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that enter on the upper-left quadrant of the circle, a will range from 0 to
90 degrees.

We are interested in how much the ray is deflected once it exits the
drop. The idea of deflection is illustrated in figure 4. The ray enters the
drop at S and emerges at some point E. Angle D represents the angle of
deflection, or the measureof deviationof the emergentray from its original
direction [4].

s

Figure 4

To demonstrate the idea of deflection, consider the drop that enters
along the diameter of the circle. Its angle of incidence is zero. By the law
of refraction, its angle of refraction is also zero. Now, this ray continues to
be reflected directly off the back of the drop. Thus, the rayexits along the
same diameter that it entered on [3, p. 48]. The total deflection would be
180 degrees.

As point A moves around the circle, the angle of incidence changes. As
the angle of incidence changes, the deflection angle also changes. Thus, the
angleof deflection can be represented as a function of the incidence angle.
Once again, consider the path this ray follows.

We see from figure 3 that once the ray enters the drop, it does not
continuein a straightline. We know from the lawof refraction that the ray
is bent. If we consider the angle vertical to be a and subtract angle 0, we
can see the ray has rotated clockwisea—0 degrees. The ray continues until
it is reflected off the backof the drop. If we imagine the ray continuing in a
straight line and subtract 20, the angleof incidence and angle of refraction,
we are left with 0. In short, the ray is rotated 9, or 180 - 20 degrees. At
point C, the ray is again refracted. Following the law of refraction, the ray
is bent away from the normal. If we consider the angle a and subtract the
angleverticalto 0, we seethe ray hasbeen rotatedclockwise a—0 degrees.
Now, consider the deflection angle as a function of the angle of incidence
where D(a) = a - 0 + 180- 20 + a - 0, or D(a) = 180+ 2a- 40. As
D(a) is written here, it is a function of both a and 0. However, 0 can be
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expressed as a function ofa. Recall the law ofrefraction, where §jj[4 = ±,
or HH = 1-33.

We have already said when a = 0, D(a) = 180. As a increases, the
angle of deflection at first decreases. But, we will see that D(a) has a
minimum. After it reaches that minimum, the angle of deflection increases.
We can determine this minimum by taking the derivative of D(a) with
respect to a:

Recall that
sin a _ a
sin/3 w'

Let's represent & by k. So,

sin a = fcsin/?.

Again, differentiate with respect to a to get

u *&cosa = A: cos/?—.
da

Thus,
d0 cosa

da kcos0'

Substituting into D'(a), we have

cosa
D'(a) = 2-4

fccos/3'

To find the critical value, we will set the first derivative equal to zero.
Thus,

2-4^=0,
k cos/?

or

k _ cosa
2 ~ cos/9'

We are solving for a and want to eliminate 0, which can be expressed in
terms of a. Squaring both sides of the equation yields

A:2 _ cos2 a
4 cos2/?'

From trigonometry, cos2 0 = 1—sin2 0. Substituting this into the equation
gives us

k2 _ cos2 a
T~ 1-sin2/?'
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But, remember sin/? = £sina. Substituting,

k2 _ cos2 a
4 i sin3o "

Now, multiplying this equation by -p gives us

1 _ cos2 a
4 fc2 —sin2 a

Again, substitute the trigonometric identity sin2 a = 1 —cos2 a to get

1 _ cos2 a
4 ~ k2 - (1 - cos2 a)'

Now, cross-multiply to get

k2 - 1 + cos2a = 4cos2 a.

To solve for a,

Thus,

3cos2a = fc2-l.

/jfe2^!cosa =y——.

This gives us the cosine of a critical incidence angle. In the formation
of the primary bow, we have said k = 1.33. So, cosa « .5063. Thus,

a w 59.58°.

Now, if a « 59.58°, then

sin 59.58°

sin/?

So,

= 1.33.

0 » 40.42°.

Now, we can substitute these values into D(a):

0(59.58) = 180+ 2(59.58) - 4(40.42) = 137.48.

So, when a light ray enters a raindrop at an angle of 59.58°, the ray is
deflected 137.48° when it leaves the drop. To prove this is the minimum
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Figure 5

deflection, and not a maximum or inflection point, we should plug the
critical values into the second derivative of D{a).

Using Mathematica 3.0, we can determine

„. ._ 4cos2 a sin a 4sin a
^ ~ ft3 cos3 0 + fccos0'

When we substitute a = 59.58°, 0 = 40.42° and ft = 1.33, then D"{a) =
2.55513. Notice that this value is positive, thus the graph is concave up. At
a = 59.58° the first derivative of D{a) is zero while the second derivative
is positive. Thus, this represents the minimum of D(a).

Examine the graph of D(a) in figure 5. The graph is in radians. By
looking at the graph we can tell that the minimum occurs at approximately
1.04 radians or a = 59.58°.

Thus, any ray that enters the droplet at 59.58° is deflected from the
droplet the least, and D'(a) = 0 at a = 59.58°. Thus, the difference
equation Aff£*^ is small in magnitude for all a near ao = 59.58°. This
means that there is not much change in the deflection angle of the rays
whose incidence angles are near 59.58°. In other words, the light rays that
enter the raindrop near 59.58° get deflected by about the same amount [3,
p. 49]. Rays that are not near this specialangleare spread out more when
they exit the drop. It makes sense that these rays with a near 59.58° are the
brightest and most visible, since these are the highest concentration of rays
deflected from the drop. Now, these rays together are called the rainbow
ray. When the observer looks at the rainbow, he actually sees these special
rays that enter the drop near 59.58° and are deflected 137.48°. Together,
these rays form the rainbow's band of light.

The rainbow ray is often referred to as the Descartes' ray for Rene'
Descartes, who discovered it in 1637[2, p. 3]. In his laboratoryexperiments,
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Descartes followed each of these rays. He was aware that rainbows could be
made artificially in sprays of water and that small water drops are spherical
[6, p. 42]. Figure 6 illustrates Descartes' findings. The lines represent the
paths the rays of light follow when they enter a drop of water. Notice the
concentration of deflected rays. These rays form the rainbow ray.

i e

Figure 6

If the observer looks up at an angle of 42.52°, his eyes should meet the
rainbow ray. Examine figure 7. Now, a few of these rays will enter the
drop near 59.58°. These rays will be deflected 137.48°. Consider the sun's
rays to shine horizontally. Now, if the sun could shine directly through the
diameter of the drop, the rays would form a straight line. However, we are
examining the rays that are deflected 137.48°. Thus, the supplementary
angle of 42.52° is formed. This angle is called the rainbow angle. The
rainbow angle is the angle between the rainbow ray and the rays entering
the drop directly from the sun. Since the light rays entering the drop
are parallel to the ground, alternate interior angles are formed. Thus, the
rainbow angle is congruent to the angle formed by the rainbow ray and the
ground. Therefore, the observer should look up at an angle of 42.52° to see
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the rainbow. For clarification, examine figure 7.
It may be surprising that the drops inclined 42.5° from the observer

are the only drops that contribute to the rainbow. However, as long as the
rays are horizontal, the drops which are inclined 42.5° will appear brighter
than drops viewed from a lower angle. For the observer to view the light
deflected from drops inclined at a lower angle, the angle of deflection must
be greater than 137.5°. As we have already discussed, rays that are deflected
more than 137.5° are not as bright as those deflected near 137.5°. Now,
drops higher in the sky must have an angle of deflection less than 137.5°.
However, 137.5° is the minimum deflection for rays deflected once internally.
Therefore, no such rays exists unless they were not reflected or reflected
more than once inside the drop.

Experience tells us that not every rainbow is viewed 42.5° from the
ground. This is because the sun's rays are not always horizontal. Thus,
they are not always parallel to the ground. Suppose we view a rainbow at
an angle of 25° degrees from the horizontal. This scenario could easily take
place if the sun is inclined. The rays we see are still deflected from the drops
at an angle of 137.5°; the rainbow angle is still 42.5°. The question remains
— what is the sun's inclination? We can still consider the horizontal line

parallel to the ground to form alternate interior angles. Since we see the
rainbow at an angle of 25°, the angle between the horizontal and rainbow
ray is 25°. We are left with an angle of 17.5° between the sun's rays entering
the drop and the horizontal. Thus, the sun is inclined 17.5°.

We know that if the sun's rays are parallel to the ground, we should
look up at an angle of 42.5° to see the rainbow. However, even if the sun is
inclined, we can still easily find a rainbow if it exists. We must simply look
at an angle of 42.5° away from the antisolar point. The antisolar point lies
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on the line from the sun passing through the eye of the observer. Since the
sun is behind us, it will cast our shadow onto the ground. The shadow of
the observer's head marks the antisolar point. If we look at this point, our
line of vision will be almost parallel to the sun's rays. We must simply look
42.5° away from the antisolar point for our eyes to catch the rainbow ray
and see the rainbow. For clarification, examine figure 8.

•poini

Figure 8

Perhaps there is still confusion why the rainbow is in a circular arc.
To illustrate, imagine a cone with vertex angle equal to twice the rainbow
angle. Now, if you stand at the vertex of the cone and a plane is cut
perpendicular to its axis, you will see a circular cross-section. It is the
drops on this cross-section that form the rainbow [3, p. 50]. You could
also consider yourself a painter. Now, suppose your hand had to stay in
a fixed position and the brush had to remain at a 42.5° angle. The only
figure you could draw would be a circle. Note, in this illustration, your
hand represents the antisolar point [1, p. 48]. In actuality, the rainbow is
a circle. However, the horizon usually intercepts the bow so that all the
observer sees is the arc.

Colors of the Rainbow

We have discussed the rays that form the bow and the shape of the
bow. We have yet to explain the origin of the colors of the bow. Light
is actually an "electromagnetic wave" [3, p. 50]. It is made up of many
wavelengths. However, our eyes are only sensitive to wavelengths ranging
from 7000 to 4240 angstroms. Red light has a wavelength of about 6470 to
7000 angstroms; light with 4000 to 4240 is perceived as violet. All other
colors fall between these two. Since the wavelengths of these light rays are
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different, the refractive index of water varies depending on which color of
light passes through it [3, p. 50].

The refractive index is around 1.3318 when red light with wavelength
6563 angstroms travels from air to water. We can calculate the angle of
deflection and rainbow angle for this ray of light. First, we must calculate
a. Recall that ,

We have said k = 1.3318. Thus cosa = .5078, and a = 59.48°. We
also need the value for /?. Since fj^a = ft, we have gi"a^^8° = 1.3318,
sin/3 = .6468, and 0 = 40.3°. We can use these two values to find the angle
of deflection:

D(a) = 180+ 2a - 4/? = 180 + 2(59.48) - 4(40.3) = 137.75.

Thus, the rainbow angle is (180 - 137.75)° or 42.25°.
Now the refraction index for violet light with wavelength 4047 ang

stroms is about 1.3435. We can also determine the angle of deflection and
rainbow angle for these rays. We have cosa = .518, and a = 58.8°. Also,
sin/? = .6367, and 0 = 39.54°. We substitute these values to compute the
angle of deflection:

D(a) = 180+ 2a - 40 = 180 + 2(58.8) - 4(39.54) = 139.42.

So, the angle of deflection is 139.42°. The rainbow angle is (180 -139.42)°
or 40.58°.

In short, the observer must look at an angle of 42.25° from the horizon
tal or antisolar point to see the red ray of the rainbow. However, he must
look at an angle of 40.58° to see the violet ray of the rainbow. Obviously,
the red ray is above the violet ray. The other colors of the rainbow have
refractive indices that cause them to fall between these two rays. Thus,
the colors of the primary rainbow are always ordered red, orange, yellow,
green, blue, indigo, and violet. It is interesting to note that Isaac Newton
was the first to make these calculations to explain the systematic order of
the colorsof the rainbow [3, p. 51].

The Secondary Bow

Occasionally, a second rainbow,calledthe secondary bow, is visible just
outside the primary bow. Its colors are much fainter than the primary
bow and appear in reverse order. This bow is formed when light rays are
reflected twice inside the water drop. When we traced the path of the light
ray in the primary bow, we only allowed one reflection off the back of the
drop. We said that this ray would produce the brightest light ray to form
the rainbow. However, light rays that are reflected twice within the water

-1
COSOi
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drop are occasionally visible. These rays form the secondary bow. Let's
track this ray; see figure 9.

Notice the light ray enters the bottom of the drop. This is the ray
that will reach the observer. We can again express the total deflection as
a function of a. The path this ray travels is very similar to the primary
rainbow's ray. However, there are a few differences. This ray is reflected
twice within the drop. So, when we derive the formula for D(a), we must
add another 180 - 20 to compensate for the second reflection. Thus, the
total deflection is represented by

(a - 0) + (180 - 20) + (180 - 20) + (a - 0)

or

360 -2a -60.

Since a deflection of 360 degrees sends the ray in the same direction it
started, we can disregard this term and represent the total deflection as

2a - 6/3.

The second difference between the paths of light in the formation of the
primary and secondary rays is that the light travels clockwise in the water
drop of the primary bow, while it travels counter-clockwise in the drop
of the secondary bow. In order to compare this ray with the original ray
we examined, we can multiply the total deflection by -1 which will cause
the deflections to occur clockwise. Thus, the deflection function can be
represented by

D2(a) =60- 2a.
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Again, when a = 0, the ray enters the drop and is reflected. The law
of reflection says that in this case a = 0. So, 0 = 0. Thus, £2(0) = 0.
However, as a increases £2(0:) also increases. To determine if D2 increases
infinitely with a, we should find the critical points by setting the derivative
equal to zero:

Recall that

Substituting, we have

D'2(a) =6^-2 =0.
d0 cos a

da ftcos/?'

_., . 6 cos a
D2(°) = TZ^Ti - 2 = °-

To solve for a, we obtain

ftcos/?

6 cosa
= 2fc,

Cos/?

cosa

cos/?
ft

~ 3'

cos2 a ft2

or

Squaring both sides,

cos2/9 ~ 9 '

Substituting the trigonometric identitycos2 0 = 1 —sin2 0 implies

cos2 a ft2

1-sin2/?"" 9'

ovnjver, sin/? = j sina. Substituting,

cos2 a ft2
1 sin2 a —
1 "S3-" : 9'

cos2 a ft2
k'-sin'a ~ 9'

we multiply both sides of this equation by -t

cos2 a 1

ft2 - sin2 a ~9'
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Now, substitutesin2 a = 1- cos2 a to get

cos* a

ft2-l + cos2a 9'

We can cross-multiply to get

9cos2 a = ft2 - 1 + cos2a.

When we simplify we find

/ft2^!cosa =y——.

The Pentagon

We should determine if this critical value is a minimum, maximum or
inflection point. Since ft = 1.33, cosa = .3100. Thus, a = 71.94°. It
follows that sin0 = —gfe—• Thus, 0 = 45.63°. Now, we can substitute
these values into the second derivative of D(a). Using Mathematica S.0,
we find

D'iia) =
6 cos2 a sin a 6 sin a

ft3 cos3/? ftcos/?'

When we substitute a = 71.94°, 0 = 45.63°, and ft = 1.33, we find that
D%(a) = -5.4519. This tells us that the graph of -D2'(a) is concave down
at the critical value a = 71.94°. Thus this point is a maximum. We can
graph 2?2'(a) (see figure 10). Again the graph is in radians. Notice the
maximum appears to occur at 1.26 radians or 71.94°.

1.5

0.5 •

0.25 0.5 0.75 1

Figure 10

1.25 1.5
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When we substitute these values into D2, we find

£>2(71.94) = 6(45.63) - 2(71.94) = 129.9.

This gives us the maximum angle of deflection.
Thus, the rainbow ray of the secondary rainbow is deflected about

129.9°. Notice in figure 10 that the maximum deflection is about 2.3 radians
or 130 degrees. Thus, the rainbow angle is (180 - 129.9)° or 50.1°. To see
the secondary rainbow, the observer should look up at an angle of 50.1°
from the antisolar point.

Colors of the Secondary Bow

We have proven that D2 is concave down. Thus we are discussing
maximums instead of minimums. We will And that the red light rays of the
secondary bow are deflected more than the violet light rays instead of less.

Recall that the refraction index for the red light ray is 1.3318. Thus,

, ..33182 -1cosa = a/-^-? = .3109.

Thus, a = 71.88°. Also,

. _ sin 71.88°
sin p = ,

p 1.3318 '

and 0 = 45.53°. We should substitute this into D2(a) to find the angle of
deflection:

D2(a) = 6(45.53) - 2(71.88) = 129.43.

The angle of deflection for red light is 129.43°. Thus, it can be seen at an
angle of (180 - 129.43)° or 50.57°.

We can do a similar computation to determine the reflection angle of
the violet ray. If ft = 1.3435, we will find a = 71.5055° and 0 = 44.9°.
Substituting these values into D2(a), we find that the angle of deflection
is approximately 126.4°. It follows that the angle the observer should look
to see the violet ray of the secondary bow is 53.62°. Since the observer
must look at a greater angle to see the violet ray in the secondary bow, it is
obvious that the violet ray appears higher than the red ray in the secondary
bow. Again, the other colors fall between red and violet. Thus, the colors
of the secondary bow appear in reverse order than those of the primary
bow.

Rays with n Internal Reflections

As stated earlier in the paper, light rays can be reflected any number
of times inside the water drop. Theoretically, each of these classes of rays
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forms anotherrainbow [3, p. 53]. Unfortunately, these bowsareusuallytoo
dim to be seen unless in a special laboratory set-up. However, we can still
derive the deflection function and critical points for these rays.

First, let's trace the path of these rays. Experience, along with common
sense, tells us any ray will be deflectedby an angle ofa-0 when it enters
and exits the drop. Also, each time the ray is reflected off the drop, the ray
is deflected by 180° - 20. This gives us the deflection function,

Dn = 2{a -0) + n(180 - 20).

Obviously, this function holds true for the two cases with which we have
worked, one internal reflection and two internal reflections. We can also
find the critical points of this function:

D'n(a) =2-2(n +l)^
- _, ,. cosa

= 2 - 2(n + !)•:
fccos/3'

Again, we should set this derivative equal to zero:

2-2(n + l)
cosa

0,
ftcos/?

When we simplify, we see that

ft cosa

n + 1 cos/9'

Squaring both sides,
ft2 co^a

(n + 1)2 cos2 0'

Recall that cos2 0 = 1 -- sin2 0\ thus

ft2 cos2 a

(n + 1)2 1-sin2/?'

However, sin/3 = £sina. Substituting,

or

ft2 cos2 a

(«>+ l)2 1 sin* a
1 HE*-

ft2 cos2 a

("i+ l)2 — *»-sinaa*
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Multiply through by jt, and we get

1 cos2 a

(n + l)2_ ft2 —sin2 a'

Now, substitute sin2 a = 1 —cos2 a to get

1 cos2 a

(n + 1)2 ft2-l + cos2a'

We can cross multiply to get

(n + l)2cos2a = ft2 - 1+ cos2a.

When we simplify we find

/ ft2-l
a=V(n +l)2-l-cos

Again, we can see that this holds for the examples we have worked where
n = 1 and n = 2.

Conclusion

We have seen that rainbows are the amazing result of an interaction
between sunlight and water. In fact, the path light follows when it en
counters a water droplet is essential to the formation of the rainbow. Each
time light interacts with water, a portion of the light is reflected, while the
remaining rays are refracted back into the water drop. We developed and
examined the laws of reflection and refraction. Then, we used these laws to
determine the path of light in a water drop. We found the first and second
derivatives of this path. We were then able to find the ray with the mini
mum angle of deflection. These rays contribute to the rainbow ray, which
forms the rainbow's band of light. Knowing the rainbow ray, we found the
rainbow angle, which gives rise to the bow's circular arc. We then finalized
our exploration of the primary bow by examining the separation of light
into distinct colors. Finally, we followed these same procedures to explore
the formation of the secondary bow. It is fascinating that a phenomenon
that has intrigued mankind for years can be explained with mathematics
such as calculus, geometry, and trigonometry.

Acknowledgements. I would like to thank Dr. Matt Lunsford for his advice
on this project.
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In Memoriam: Sister Helen Sullivan

Sister Helen Sullivan, former KME national historian and editor of
Kappa Mu Epsilon News from 1943 to 1947, died December 22, 1998
at the age of 91. She earned many honors in her life, including being
named a "Distinguished Member" at the fiftieth anniversary celebra
tion of Kappa Mu Epsilon in 1981. Sister Helen was founding faculty
sponsor of the Kansas Gamma chapter of Kappa Mu Epsilon at what
was then called Mount St. Scholastica College (now Benedictine Col
lege) in 1940, and remained active with the chapter for several decades.

Sister Helen Sullivan was born Monica Elizabeth Sullivan on April
10, 1907, in Effingham, Kansas. She obtained an AB degree from St.
Benedict's College, and a master's degree in physics and doctorate in
mathematics from the Catholic University of America. Though she
served most of her career at Mount St. Scholastica, she was very well-
traveled and spent leaves in several different positions around the coun
try and the world, including a sabbatical at the University of Minnesota
as part of a geometry writing team. She was active in many profes
sional organizations, and was honored by the Smithsonian Institution
for being one of the first women to earn a doctorate in mathematics.
She also spent three of her later years working in the Jesuit School of
Theology in Berkeley, California.

Sister Helen Sullivan's name can be found in the very first issue of
The Pentagon, Fall 1941, as faculty sponsor of Kansas Gamma. Besides
serving as editor of KME News 1943-1947, she also served as associate
editor for installation of new chapters, 1961-1970. A great number
of her students had papers published in this journal in the 1950's and
1960's as prize-winners at KME national conventions, including a sweep
of the top three prizes in 1965.

A picture of Sister Helen can be found on page 22 of the Fall 1990
issue of The Pentagon.
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Boundary Value Problems in Hollow
Rectangular Beams

Jeffrey D. Blanchard, student

Kansas Gamma

Benedictine College
Atchison, KS 66002

Presented at the 1998 Region IV Convention and
awarded "top three" status by the Awards Committee.

In this paper, we examine the mathematics in the vibration problems
developed in Samuel French's paper entitled "Beam Vibration Problems in
Hollow Rectangular Towers" [1]. There are three cases which have been
investigated.

The first case is the simplest case in which only the effects of flexure
are considered, neglecting the effectsof the physicallypresent rotary inertia
and shear. The partial differential equation for this caseas presented in [2]
and slightly altered for consistency is:

(1) Wxxxx + £JJ«>H = 0.

(The subscript notation is usedto denotethe partial derivative with respect
to the subscript.) This simple case is only an approximation of the actual
behavior. To improve this approximation, one would include the effects of
rotary inertia in additionto flexure. This complicates the partial differential
equation by adding an additional term, namely,

(2)
mr m

Vxxxx 7?rVXxtt + -S7«M = °-
EI EI

This, too, is just an approximation. The most accurateequationis also the
most complex. The inclusion of shear along with flexure and rotary inertia
gives the most accurate results. The equation again has an additional term
and becomes

(3)«* ' EI L
2(1 + u) [mr2 2(1 + M)., , n» _n

K Eil
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The simplifications required for the first case (equation (1)), that in
cluded only the effects of flexure, are limiting. The case involving both
rotary inertia and flexure (equation (2)) is a more accurate approximation.
Also, the solution of equation (3), which includes the effects of flexure, ro
tary inertia, and shear, is contingent upon the results of solving equation
(2). Therefore, the focus of our examination is the second case considering
the effects of both flexure and rotary inertia.

The positive constants in the equations are as follows:

m = mass per unit length;

fi = Poisson's Ratio;

E = Young's modulus;

k = shear conversion factor (5/6 for rectangles);

I = inertia;

r = radius of gyration.

The variable x is used to describe the spatial displacement of the tower
while t is used for time.

The solution of the partial differential equation (2) is obtained by uti
lizing the technique of separation of variables. In order to do so, we assume
that the function u(x, t) can be written as the product of two single-variable
functions Y(x) and T(t); that is, v(x, t) = Y(x)T(i). This assumption al
lows us to take the partial derivatives more freely. Equation (2) requires
three distinct partial derivatives:

Vxxxx = YM(x)T(t)
vx*tt = Y"(x)T"(t)

vtt = Y(x)T"(t).

The primes are used to denote the derivative with respect to the variable in
parentheses. The Y^4\x) denotes the fourth derivative of Y with respect
to x. Inserting these forms of the partial derivatives into equation (2) gives
us

YW(x)T(t) -^Y"(x)T"(t)+jjY(x)T"{t) =0.
Moving two terms to the right side of the equalityand dividing through by
the time function gives

In order to separate the variables, we isolate the time function by dividing
through by the spatial portion within the large parenthesis. The separa
tion of variables techniques requires that the two isolated portions of the
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separated equation be equal to a separation constant. Here we define this
separation constant as —u>2 for convenience. This results in the equation

y«>(x) = T"(t) = ,
*&Y»(x)-%Y(z) T(t)

This provides us with two distinct, ordinary differential equations. First
we set the time functions ratio equal to the separation constant. Then we
multiply both sides by the denominator and subtract the right side of the
equation from both sides creating the familiar ordinary differential equation

T"(t)+u>2T(t) = 0.

Thus we have

T(t) = GcosM) + Hsm(wt)

as the general solution. However, our interest lies in the spatial differential
equation.

Using the same procedure, we arrive at the following fourth-order, or
dinary differential equation governing the spatial aspects of the vibration
problem:

(4) Y^(x) +̂ r2Y"(x)-^-Y(x) =0.
In order to simplify the mathematics, we let

A=^r2.
EI

This leads to the simplified form of the ordinary differential equation

(5) y<4>(x) +XY"(x) - ±Y(x) =0.
r*

The next issue is the boundary conditions that complete our problem.
Using French's analysis based on Timoshenko's text [3], we have both the
deflection and slope equal to zero at the end where x is equal to zero. At
the top of the tower, or in our case when x is equal to one, the moment
is also zero. The final condition (when the shearing force is equal to zero)
involvesa relationship between the third and first derivatives of Y. Hence,
we consider the following boundary conditions:

F(0) = K'(0) = 0
y"(l) = 0

(6) y'"(l) + AK'(l) = 0.
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Equation (5) andthe boundary conditions (6) are in the special class of
boundary value problems known aseigenvalue problems. Consequently, the
eigenvalue problem describing the spatial portion of the vibration problem
for a hollow rectangular tower when neglecting the effects of shear and
considering only flexure and rotary inertia is:

r(0) = y'(o) = 0

(7) yw (x) +ak"(x) - \y{x) =o, y"(i) =0
T Y'"(l) +AK'(l) = 0.

We shall refer to A as the eigenvalue. It is interesting to note that the
eigenvalue appears in two of the terms in the differential equation as well
as in one of the boundary conditions.

For the eigenvalue problem (7), we first prove that the eigenvalues are
both positive and real. To prove that the eigenvalues must be positive
and real we assume that the function is complex and multiply equation (5)
through by the conjugate of the function (V(x)) and integrate both sides
over the interval [0,1]:

LY(x)Y<4>(x) +Ay(x)y"(x) - ±Y(x)Y(x) dx =0.
o r

Integrating by parts twice, applying the boundary conditions, and solving
for A, we see that A must be both positive and real since

/„• |r"W|' dx mx)f-Y(x)7M
A-/0V(*)|'<fc +M,;in*)l'<k'

By taking A equal to zeroin (7), we obtainonly the trivial solution and so
A must be positive and real.

We let the characteristic equation for (5) be denoted by

s4 +As2-4=0.
r2

Using the quadratic formula to solve for s2, we get

s2 =\{-^f^)
and

•=±. j(-A±^J)-



Spring 1999 J3

Using the fact that A is positive and real, we define ft and I in terms of A
to be

ft =

N
\(*+f^£)

• and

/ =

A\(-^f^Pj-
The general solution for the differential equation (5) is then

Y(x) = Acos(ftx) + flsin(ftx) + Ccosh(Zx) + £>sinh(/x),

where ft and / are as defined above and A, B, C and D are arbitrary
constants. By taking the first three derivatives of Y(x), we obtain

Y(x) = Acos(ftx) + Bsin(ftx) + Ccosh(Zx) + £>sinh(/x);

y'(x) = -Aksm(kx) + Bftcos(ftx) + CIsinh(Zx) + Dl cosh(Zx);
r"(x) = -Ak2 cos(ftx) - 5ft2sin(ftx) + CI2 cosh(Zx) + Dl2 sinh(Zx);
Y'"(x) = 4ft3sin(fcx) - Bft3 cos(ftx) + CI3 sinh(Zx) + Dl3cosh(/x).

Applying the boundary conditions results in the following algebraic system
of equations for the constants A, B, C, and D:

A + C = 0

Bk + Dl = 0

-Ak2 cos ft - Bk2 sin ft + CI2cosh I + Dl2 sinh I = 0

A(k3 - Aft) sinft - B(ft3 - Aft) cos ft + C(l3 + XI) sinh/
•rD{l3 + XI) cosh/ = 0.

We use a matrix format to write this system as

1 0 1 0

0 ft 0 /

-ft2 cos ft -ft2 sin ft J2cosh/ /2sinh/
.(ft3-Aft) sinft -(ft3-Aft) cos ft (/3 + A/)sinh/ (Z3 + A/) cosh/.

rAi r°i
B

C
=

0

0

Id! LoJ

Using cofactor expansion and setting the determinant of the coefficient
matrix equal to zero, we obtain the eigenvalue equation, namely

(8) 2 - rv/AsinftsinhZ + (2 + r2A)cosfccosh/ = 0
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or

!-rv^sinJi^A+v/A2+4A^3inh i(-X+Jx2+4^j
+(2+r2A)cos J^A+v/A2+4Ajcosh. \ (-X+]jx2+4±\
= 0.

Equation (8) allows us to find the values of A for which the coefficient
matrix is not invertible. If the coefficient matrix is not invertible, then
there exists solutions of this matrix equation that are non-trivial. At this
point we have found the eigenvalue equation in terms of A and r. From
Dr. French, we have learned that r realistically falls in the interval of real
numbers from 8 to 16, inclusive.

Using Mathematica, we defined the eigenvalue equation by means of
the function f [p,r], where p = A. By doing so, we can use the Plot
function to generate a graph of the eigenvalue equation for any value of
r. These graphs can be utilized to obtain initial estimates of the roots of
the eigenvalue equation. Mathematical built-in function FindRoot, which
utilizes Newton's method, was used to numerically approximate the value
of A. We can then solve the matrix equation for the constants A, B, C
and D. The method implemented in this situation was that of substitution
in the general case which was transformed into a Mathematica program.
Therefore, once a value of r is chosen and a value for A found, they can be
applied to this program that will return the eigenfunction. This function,
EigenFunctionCp.r], returns the solution in its simplest form. It is simple
and quick to find the eigenfunction using Mathematica and the programs we
have written. The functions can then be easily plotted using Mathematica.

The eigensolutions of the eigenvalue problem (7), when flexure and
rotary inertia are present, are solved in this manner. We note that when A
is known, the value for w can be readily found as

2 XEI
w =—2mr2

and can be used in the time-dependent equation as well. The Mathematica
programs developed through the work done for this paper have reduced the
solution of this problem to a single question: "What is the value of r?"

The methods used in the other two cases are similar. As mentioned

previously, the approximation considering only the effects of flexure is intu
itively inaccurate and therefore is ignored. The final case including flexure,
rotary inertia, and shear is contingent upon the results of the solution of
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the approximation we have discussed. The boundary conditions require the
results of solving problem (5) and thus becomes a boundary value problem.
With the substitution of

2(1 + u)
a =

K

and allowing A to be defined as above, we solve this boundary value problem
in an analogous procedure. Using similar Mathematica functions, it is easy
to compare the two sets of solutions.

The concern of the accuracy of the approximation of the second case
for the third is definitely important. If it is unreasonable to neglect shear,
then one can only use the situation which includes flexure, rotary inertia
and shear as defined by equation (3). If we are able to graphically view the
two situations simultaneously, we will be able to visualize the differences
between each of the cases. However, this does not seem to correspond with
the findings of Dr. French. This may be due to a normalization of the ver
tical scale that was not done in our analysis. It appears in our graphs that
the case which only includes flexure and rotary inertia is not a good approx
imation for the case also including shear. A more thorough investigation
into the proper values for r could lead to more definitive results. It is un
clear what values of r were used by Dr. French in his appendix. The results
of this paper rely heavily on the value or values of r. Thus the concern of
the accuracy of the approximations requires a deeper investigation.

Acknowledgements. The author was directed by Dr. Philip Schaefer of
the University of Tennessee, Knoxville throughout this project. The work
was a project for the Research Experience for Undergraduates sponsored
by the National Science Foundation and the Tennessee Science Alliance.
The program was directed by Dr. Suzanne Lenhart of the University of
Tennessee, Knoxville. The author thanks Dr. Schaefer for his direction and
professionalism and Dr. Lenhart, the National Science Foundation, and the
Tennessee Science Alliance for the opportunity.
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A Ratio Proof of the Pythagorean Theorem

Lucinda Williamson, student

University of North Florida
Jacksonville, FL 32224

This is a research project in the courseModern Geometry. A new proof
of the Pythagorean theorem has been found. This proof is not included in
the collection of 370 proofs in [1].

Put two congruent right triangles ABC and A'BC in position as in
figure 1 suchthat B, C, and A' arecollinear and A, C, and B arecollinear.
Let P be the intersection point of AC and A'C. Let BC = a = BC,
AC = b = A'C, AB = c = A'B and AP = x. Then AC = A'C = c-a
and PC = b - x.

B

and

C

Figure 1

Since triangle ABC is similar to triangle APC, we have
c —a_x

~b~~"c

x =
c2- ac

b '

A'

Since triangle A'BC is similar to triangle A'PC, we have
b—x c—a
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and

Thus,

b =

and

- X-
ac -a2

b '

ac — a2
+

c2-

b

ac

b

b2 + a2 _ c2.

Acknowledgements. The author sincerely thanks professor Jingcheng Tong
for his help in preparation of this project.
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Two Proofs of the Pythagorean Theorem using Area

LeTitia L. Silas, student

University of North Florida
Jacksonville, FL 32224

In doing research projects for Modern Geometry last year, Tu and
Tuan Tran [3] and S0ren Poulsen [2] found three proofs of the Pythagorean
theorem using ratio and area combined together. Here I give two proofs
usingareaonly. These proofs arenot included in ElishaLoomis' book [1].

Proof 1. Let ABC and ECD be two congruent right triangles in a po
sition as in figure 1 such that D is on AC and DE is perpendicular to
AC. The intersection points of AB with ED and EC are F and G, respec
tively. Through point E, draw EH perpendicular to DE and meeting the
extension of CB at H. Draw AI parallel to DE and meeting HE at I.

V\
\

\ F

\

$-"7
B

Figure 1

I

H

It is easily seen that AG is perpendicular to EC because the sum of
angles ECD and DAG is a right angle. Let BC = CD = a, AC = ED = b
and AB = EC = c. Then AI = CH = b, HI = b, EH = o, EI = b - a
andBH = b-a.
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The following equality involving areas is trivial:

Axea{ACHI)= Axe&(AEI) + Are&(BHE) + Aiea.(ACE) + Area(EBC).

Therefore,

Thus,

62
6(6-

2

o) a(b —a)
1 2 + 2

+BC

b2-

2

a2 EC(AG -i
1 2

-BG)

62-

2

a2 c2

+ 2'

o2 + 62 = c2.

Proof 2. We discuss two cases, one for scalene right triangles and one for
isosceles right triangles.

Case 1. Let ABC and A'B'A be two scalenecongruent right triangles
as in figure 2 such that B' is on AC and AA' is perpendicular to AB' and
P is the intersection point of AB and A'B'. Connect A'B and BB'.

A'

It is easily seen that AB is perpendicular to A'B'. Let BC = a, AC = 6
and AB = c. Then AB' = a, A'A = b, A'B' = c and B'C = 6 - a.

The following equality involving areas is trivial:

Area(ACBA') = Aiea(A'B'A) + Area(A'B'B) + Area(B'BC).
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Therefore,

and

thus
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(a+ b)b_ AP-A'B' PBA'B' (6-0)0
2 ~ 2 2 2

b2 + a2 = A'B'(AP + PB);

o2 + 62 = c2.

Case 2. Let ABC and A'CA be two congruent isosceles right triangles
as in figure 3, where P is the intersection point of AB and A'C. Let
BC = AC = a and AB = c. Then AA' = o and A'C = c. It is easy to see
that ACBA' is a square and A'C is perpendicular to AB.

The following equality is obvious:

Xiea.{ACBA') = Area(A'CA) + Area(A'CB) = 2At&x(A'CA).

Hence,
o2 = 2((c2/2)/2),

and

c2 = 2o2.

By the discussion of these two cases, we know that the Pythagorean
theorem is true.

Acknowledgements. The author thanks her advisor Dr. Jingcheng Tong
sincerely.
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A Rose by Any Other Name ...

In the middle ages, the Pythagorean theorem went by the name of
"Magister Matheseos."
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An Algorithmic Method for the Construction
of a 4x4 Magic Square

Consisting Only of Prime Numbers

Clarence E. Davis, graduate student

Kentucky Alpha

Eastern Kentucky University
Richmond, KY 40475

Presented at the 1997 National Convention

Introduction

Last spring I had the pleasure to take number theory, and the class
was exciting, interesting and challenging. One topic that we discussed was
magic squares. However, the magic squares that we will be discussing here
are slightly different than just ordinary magic squares. We shall discuss an
algorithmic method for constructing 4x4 magicsquares in which all of the
entries are unique prime numbers.

The Chinese were the first to record magic squares; the story goes "a
Man was brought a magic square by a turtle from the River Lo in the days of
the Emperor Yii." This was one of the leading factors in the development
of a method to solve simultaneous linear equations [1, p. 197]. Albrecht
Durer, in 1514, was regarded as the first to use magic squares in art in his
engraving Melancholia [1, pp. 296-297]. In Melancholia, the magic square
is in the upper-right-hand corner.

What is a magic square? A magic square is a square array of numbers
with the property that the rows, columns, main diagonal and anti-diagonal
all sum to the same number. The following theorem is also helpful (c.f. [2,
P- 51]).

Theorem. IfM and N areaddition magicsquares, so are (1) M + N; (2)
kM for anyk; and (3) MT.

The Algorithm

Step 1. Arrange the integers 1, 3, 7 and 9 on the main diagonal in any
order (Why 1, 3, 7 and 9? Because all primes longer than one digit end in
either 1, 3, 7 or 9). See figure 1.
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1

3

7

9

.53

Figure 1

Step 2. In either of the interior two positions on the anti-diagonal,
put the two numbers that appear in the corner positions (figure 2).

1

1 9

1 7

9

Figure 2

Step 3. Continue entering the numbers 1, 3, 7 and 9 so that each
numberappears onceand onlyoncein eachrow,columnor diagonal. When
finished this is our original square (figure3).

1 9 3 7

7 3 9 1

9 1 7 3

3 7 1 9

Figure 3. Original square.
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Step 4. Transpose the original square(figure 4). This is the transposed
square.

1 7 9 3

9 3 1 7

3 9 7 1

7 1 3 9

Figure 4. Transposed square.

Step 5. Examine a list of primes and find sets of twin primes such that
each set shares the same digits in all positions except for the ones place.
Now that we have found the sets of twin primes, change the last digit in the
numbers to zero. We need four of these numbers (i.e., repeat three times).
Example:

11 13 17 19 =*-10

101 103 107 109 =*>100

191 193 197 199 =>• 190

821 823 827 829 =• 820

Step 6. Substitute the four numbers that we found in step 5 for the
numbers 1, 3, 7, 9 in our transposed square (figure 5). This is our second
square.

10 «* 1

190 •* 7

100 -* 3

820 «* 9

1 7 9 3

init

io 190 820 100

9 3 1 7 820 100 10 190

3 9 7 1 100 820 190 10

7 1 3 9 190 10 100 820

Transposed Square Second Square

Figure 5
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Step 7. Add the original square and second square, as pictured in
figure 6.

1 9 3 7

7 3 9 1

9 1 7 3

3 7 1 9

10 190 820 100

820 100 10 190

100 820 190 10

190 10 100 820

Original Square Second Square
Figure 6

Result (figure 7): a 4x4 magic square consisting of unique prime num-
bers!

11 199

103

821

17

823 107

827

109

193

19

197

101

191

B

829"

Figure 7

Additional examples of the result are given in figures 8 and 9. The
magic number of each square, i.e. the sum of the entries of each row, column,
and diagonal, is listed for each square.

Conclusion

How I came about this method was truly by mistake. My instructor,
Dr. LeVan, asked as a homework problem to make either a 3x3 or 5x5
magic square consisting of unique primes. I tried and tried and thought
that I could compromise by doing a 4x4 and get credit, but it didn't work.
I still got no credit.
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3463 5659 9431 13007

13001 9437 5653 3469

5657 3461 13009 9433

9439 13003 3467 5651

"Magic"Number is 31560

1489 1871 2083 3257

3253 2087 1879 1481

1877 1483 3251 2089

2081 3259 1487 1873

"Magic"Number is 8700

5657 1489 3251 9433

9431 3253 1487 5659

1483 5651 9439 3257

3259 9437 5653 1481

"Magic"Number is 19830

Figure 8

The Pentagon
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21017 19429 18911 18043

18041 18913 19427 21019

19423 21011 18049 18917

18919 18047 21013 19421

"Magic"Num ber is 77400

15649 15737 16061 22273

16063 22271 15647 15739

22277 16069 15733 15641

15731 15643 22279 16067

"Magic"Number is 69720

21019 16061 15733 19427

19423 15737 16069 21011

16067 21013 19421 15739

15731 19429 21017 16063

"Magic"Number is 72240

Figure 9

_5Z
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All Digits of Largest Known Prime

The current record for the largest known prime number is 23021377 -1.
This number has 909,526 digits in base 10. Unfortunately, that is too large
to print in this journal, even if the entire volume was dedicated to the
project. Hence, if we wish to print all the digits, we need a different base.
Instead of moving to octal or hexadecimal, neither of which give a great
improvement on printability, the natural choice is to print it in base 2503563
(of course!). Then, since the digit for 2503562 -1 in that base is X and the
digit for 2503863 - 1 is Y (you mean you didn't already know that?), all
digits of the largest known prime can be printedas

XYYYYY.

Using AU Nine Digits

There is an interesting property of the following two numbers, their
sum, and their difference. Can you name the property? The numbers are
371294568 and 216397845. Their sum and difference are:

371294568 + 216397845 = 587692413

371294568 + 216397845 = 154896723.

Back Issues

Is yourjournal collection complete? Copies of most backissues of The
Pentagon are still available for $5.00 per copy for individuals, $10.00 per
copy for libraries. Please send inquiries to:

The Pentagon Business Manager
Division of Mathematics and Computer Science

Emporia State University
Emporia, KS 66801 USA
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The Problem Corner

Edited by Kenneth M. Wilke

The Problem Corner invites questions of interest to undergraduate stu
dents. As a rule the solution should not demand any tools beyond calculus.
Although new problems are preferred, old ones of particular interest or
charm are welcome, provided the source is given. Solutions should accom
pany problems submitted for publication. Solutions of the following prob
lems should be submitted on separate sheets before January 1, 2000. Solu
tions received after the publication deadline will be considered also until the
time when copy is prepared for publication. The solutions will be published
in the Spring 2000 issue of The Pentagon. Address all communications to
Kenneth M. Wilke, Department of Mathematics, 275 Morgan Hall, Wash
burn University, Topeka, Kansas 66621 (e-mail: xxwilke@acc.wuacc.edu).

PROBLEMS 525-529

Problem 525. Proposed by Pat Costello, Eastern Kentucky University,
Richmond, Kentucky.

Determine the last two digits of the number

N = 1919* + 2929" + 3939B + 4949' + 5969° + 6969<> + 7979° + 8989" + 99"".

Problem 526. Proposed by Bryan Dawson, Union University, Jackson, Ten
nessee.

Given AABC and its image AA'B'C under an unknown glide reflec
tion, give a compass-and-straightedge construction that determines both
the line of reflection and the vector of translation parallel to that line that
constitute the unknown glide reflection.

Problem 527. Proposed by Carol Collins, Drury College, Springfield, Mis
souri.

Prove that in the expansion of (x2 + x + 1)™, the coefficient of the x
term is n and the coefficient of the x2 term is n(n + l)/2 for all integers
n>l.

Problem 528. Proposed by the editor.
Consider a paired number p{n) to be formed by concatenating the same
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number twice; e.g. p(1234) = 12341234. What is the smallest integer n for
which p(n) is a perfect square? What is the next smallest integer nn for
which p(nn) is a perfect square and nn has more digits than n does?

Problem 529. Proposed by Bryan Dawson, Union University, Jackson, Ten
nessee.

Let BC be a fixed linesegment, I a line parallel to 2?C\ and A an arbi
trary point on I. Describe (with proof) the path followed by the orthocenter
of AABC as A moves along I.

Please help your editor by submitting problem proposals.

SOLUTIONS 515-519

Problem515. Proposed by Bob Prielipp, University of Wisconsin—Oshkosh,
Oshkosh, Wisconsin.

Consider the following equation:

(*) 4(x2 - x +1)3- 27(x - l)2x2 = (x- 2)2(2x - l)2(x + l)2.

Either (a) prove that the equation (*) holds for each real number x using
elementary algebra or (b) find a real number x such that the left side of (*)
does not equal the right side of (*).

Solution by Russell Euler and Jawad Sadek (jointly), Northwest Missouri
State University, Maryville, Missouri.

Notice

4(x2 - x + l)3- 27(x - 1)V = 4(x2 - x + l)2 - 27 ((x2 - x + l)2 - l)
= 4y3 - 27y2 + 54y - 27.

Using the rational root theorem, it is easy to show that the roots of the
polynomial f(y) = 4y3 - 27y2 + 54y - 27 are f, 3 and 3 sothat

4j/3 - 27y2 + 54y - 27= (4y - 3)(y - 3)2 = (4x2 - 4x+ l)(x2 - x - 2)2
= (2x-l)2(x-2)2(x + l)2.

Also solved by: Ben Ault, Eastern Illinois University, Charleston, Illi
nois; Karl Bittinger, student, Austin Peay State University, Clarksville,
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Tennessee; Phil Carden, student, Florida Southern College, Lakeland, Flor
ida; Carol Collins, DruryCollege, Springfield, Missouri; Kristi Karber, Mis
souri Southern State College, Joplin, Missouri; Matthew Zhou, student,
California State University, Fresno, California and the proposer.

Editor's comment. Most solutions involved expanding both sides of
the given equation and showing that the results were equal. The featured
solution (and the proposer's) avoided that by artfully using one side of the
given equation to derive the other.

Problem 516. Proposed jointly by Underwood Dudley, DePauw Univer
sity, Greencastle, Indiana and Russell Euler and Jawad Sadek, Northwest
Missouri State University, Maryville, Missouri.

For every positive integer n, prove that there exists a prime p with n
digits.

Solution by M. Ysabel Cervantes, student, California State University,
Fresno, California.

Bertrand's Postulate states that for any natural number Jfc > 2, there
is always a prime number between k and 2k. Taking Jfc = 2 we have 3 is
the prime between 2 and 2*2 = 4. Hence we have a one-digit prime which
satisfies the condition of the problem. Now for n > 2 we take k = 10n_1.
Then 2k = 2 • 10n_1 and both k and 2Jb have exactly n digits. But by
Bertrand's Postulate there is always (at least) one prime number p such
that k < p < 2k, and by our choice of k, p has exactly n digits. This
completes the proof.

Also solved by: Bob Prielipp, University of Wisconsin—Oshkosh, Osh
kosh, Wisconsin and the proposers.

Problem 517. Proposed by the editor.
Consider a rectangular piece of paper ABCD where AB = CD = 24

inches and BC = DA = 10 inches. Next bring point A into coincidence
with point C and fold the sheet, creating a crease from AB to CD. How
long is the crease?

Solution by Rosa V. Huerta, student, California State University, Fresno,
California. (Revised by the editor.)

Let MV denote the crease as shown in the figure on page 62. Draw
AC and BD and let R denote the intersection of AC and MV. Since C
folds onto A, triangle AMC is isosceles. Also since angles MRA and MRC
fold onto each other, they are right angles. Hence MR bisects AC and
R is the midpoint of AC. Furthermore, the crease MRV is perpendicular
to diagonal AC. Draw BD. Since the diagonals of a rectangle bisect



62 The Pentagon

each other, BD passes through the point R. From R draw a line which
is perpendicular to CD which intersects CD at H. Right triangles RVH
and CVR are similar; so are CVRandCRH. Let x denote the length RV.
Then x/fltf = -RC/CH. Clearly AD = BC = 10, AB = CD = 24, AC=
DB = 26,RH= 5, Ctf = 12 and RC= 13. Then x = (13 •5/12) = 65/12.
Finally MV = 2x = 65/6.

Also solved by: Scott H. Brown, Auburn University, Montgomery, Al
abama; Aaron Peters, Liberty University, Lynchburg, Virginia; and Russell
Eulerand Jawad Sadek (separately), Northwest Missouri State University,
Maryville, Missouri.

Editor's comment. One can easily verify that MV = 2x by drawing a
line through M perpendicular to CD. Let J be the point of intersection
with lineCD. Then triangles MVJ and RVHaresimilar, with MJ = 2RH.
Then MV = 2x.

Problem 518. Proposed by Russell Euler and Jawad Sadek, jointly, North
west Missouri State University, Maryville, Missouri.

Let x beapositive integer greater than 1. Prove thatx20fc+4+x10*+2+l
is composite for all nonnegative integers k.

Solution by Bryan Chaffe and Jeanette Pires (jointly), students, California
State University, Fresno, California.

Note that

x20k+i +x10*+2 + j = (a.10*+2 +x5k+l + ^j.Wk+2 _ j.Bk+1 + y

It remains to be shown that xl0fc+2 - x5fe+l +1 > 1. Since x is an integer
greater than 1 and Jk is a nonnegative integer, then xsfc+1 is an integer
greater than 1 and

,5*+lKx; 5*+ll2 _ _10fc+2<(X5*+1)2=X
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so that

x10*+2-x5*+1 + l>l.

Also solved by: Bob Prielipp, University of Wisconsin—Oshkosh, Osh
kosh, Wisconsin and the proposers.

Problem 519. Proposed by the editor.
Define a sequence of integers 01,02,03,... where a- is an arbitrarily

chosen positive integer and for k > 1 , at = (3a*_i/2) + 1. Can one find a
value for ai such that a-.ooi is odd and a* is even for all integers k < 1001?

Solution by Carol Collins, Drury College, Springfield, Missouri.

We shall prove the following claim: If ai = 3' • 2n —2 for any positive
integer q, then am is even for all integers m < n + 1 and an+i is odd. As
a result of this claim, if it is true, the value 01 = 3 •21000 —2 satisfies the
conditions of the problem.

For n = 1, we have ai = 3* • 2l —2 which is even since q > 0 is an
integer. Then

a2 = 3(oi/2) - 2 = 3(3« •2 - 2)/2 + 1 = (3«+1 •2 - 2 •3)/2 + 1 = 3«+1 - 2,

which is an odd integer.
Now assume that the claim holds for an arbitrary integer k and proceed

by mathematical induction; i.e.- for any sequence bi defined for any positive
integerp by 61 = 3? • 2* - 2 and bi = 36{_i/2+ 1 for i > 1 where t is a
positive integer, then bm is even for all integers less than k +1 and bk+i is
odd. We take a\ = 3* •2*+1 —2 and we will show that om is even for all
integersm < k + 2 and that 0^+2 is odd. Since ai = 3* •2k+1 - 2, then

02 = [3(3« •2*+1 - 2)/2] +1 = [(3»+1 •2k+l - 3•2)/2] + 1
_ 3,+i. 2* - 3 + 1 = 3»+1 • 2* - 2.

Now let &i = 02 and p = q + 1. Then bj = aj+i for all j > 1. By the
induction hypothesis, bm is even for all integers 1 < m < k +1 and 6^+1 is
odd; i.e. am is even for all integers 2 < m < k + 2 and a*+2 is odd. Since
ai is even, the proof of our claim is complete and taking ai = 3 •21000 —2
satisfies the conditions of the problem.

Also solved by: Rodrigo Miguel, student, California State University,
Fresno, California and Russell Euler and Jawad Sadek (separately), North
west Missouri State University, Maryville, Missouri.



g4 The Pentagon

Kappa Mu Epsilon News

Edited by Don Tosh, Historian

News of chapter activities and other noteworthy KME events should be
sent to Don Tosh, Historian, Kappa Mu Epsilon, Mathematics Depart
ment, Evangel University, 1111 N. Glenstone, Springfield, MO 65802, or to
toshd@evangel.edu.

CHAPTER NEWS

AL Gamma Chapter President — Dorthy Gearhart
University ofMontevallo, Montevallo 18 actives

Other Fall 1998 officers: John Woodruff, vice president; Ginger Hand,
secretary; Pauline Kennard, treasurer; Larry Kurtz, corresponding secre
tary; Michael Sterner, faculty sponsor.

AL Zeta Chapter President — Melanie Styers
Birmingham Southern College, Birmingham 26 actives, 13 associates

The fall program included the installation of new members. Other
Fall 1998 officers: Kelly O'Donnell, vice president; Elizabeth White, secre
tary/treasurer; Mary Jane Turner, corresonding secretary;ShirleyBranan,
faculty sponsor.

AL Eta Chapter President — Justin Smith
University ofWest Alabamba, Livingston 11 actives

Other Fall 1998 officers: James Zimlich, vice president; Jaime Shutt,
secretary; Jason Overstreet, treasurer; Michael Reekie, corresponding sec
retary; Julia Massey, faculty sponsor.

CA Gamma Chapter President — JeffMintz
California Polytechnic State University, SanLuis Obispo 22 actives, 2 associates

We have meetings every other week. Weheld a book sale of mathemat
ics, statistics, and computer sciencetextbooks. We had a sessionfor gradu
ate school advising for mathematics and related fields. Other Fall 1998 of
ficers: Carrie Mortensen, vice president; Judy Fetcho, secretary/treasurer;
Kent Morrison, corresponding secretary/faculty sponsor.
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CO Delta Chapter President —John Bright
Mesa State College, Grand Junction 23 actives, 9 associates

We started this year with a bagel party/meeting on September 9. Pins
and certificates were presented to those initiated last April, and members
discussed possible activities for the year. On November 18, 1998, we held
our first Fall initiation. Thirty-five initiates, members, and guests attended
the initiation reception. At the business meeting which followed, students
voted to order pink/silver honor cords for graduation and decided to work
with the Math Club in hosting area high school math students for a day of
problem solving and competition. This "Math Extravaganza" will be held
in January. Other Fall 1998officers: Amanda Widel, vice president; Sarah
Kennedy, secretary; David Wing, treasurer; Donna Hafner, corresonding
secretary; Kenneth Davis, faculty sponsor.

GA Alpha Chapter President —Nancy Bryson
State University of West Georgia, Carrollton 25 actives

Once again, Georgia Alpha sponsored a food and clothing drive for
the needy with the proceeds being delivered to the Salvation Army in De
cember. We also had our Fall Social at a local Mexican restaurant in
early December. The social was well-attended and a fine time was had
by all. Other Fall 1998 officers: Tonya McElwaney, vice president; Nancy
Boyette, secretary; Roger Huffstetler, treasurer; Joe Sharp, corresponding
secretary/faculty sponsor; Mark Faucette faculty sponsor.

IL Zeta Chapter President — Karen Jarosz
Rosary College, River Forest 15 actives

Fall activities included math tutoring and twomeetings which wereheld
to discuss activities for the school year. Other Fall 1998 officers: Christa
Lee, vice president; Heather Wasielewski, secretary; Anna Cantal, treas
urer; Paul Coe, corresponding secretary/faculty sponsor.

IL Theta Chapter President — Julie Deroche
Benedictine University, Lisle 20 actives

The main event for the fall was a Calculus Competition. Three dif
ferent levels were featured, with one-hour, multiple choice exams for each.
Prizes included bookstore certificates for winners and pencils (engraved
with "Reach Your Limits with Calculus") for honorable mention. Over 70
students from current calculus courses participated. Other Fall 1998 offi
cers: Dennis Wozniak, vice president; Lisa Townsley Kulich, corresponding
secretary/faculty sponsor.

IA Alpha Chapter President — Suzanne Shontz
University of Northern Iowa, Cedar Falls 38 actives

The KME Homecoming Coffee hosted by emeritus professors Carl and
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Wanda Wehner in October was quite successful in spite of rather inclement
weather conditions. Students presenting papers at local KME meetings in
cluded Gary Spieler on "Strassen's Algorithm for Matrix Multiplication,"
Douglas Stockel on "Ideal Membership and GrobnerBases," Brooke Brillon
"Hypatia: The WomanBehind the Philosopher, the Astronomer, the Math
ematician" and Manuel Chapa on "Population Growth Models." Tanya
Sperry addressed the Fall initiation banquet on "The Origins of Graph The
ory: Euler's Representation of the Konigsberg Bridge Problem." Dr. Mark
Ecker is providing additional faculty leadership for Iowa Alpha chapter.
Other Fall 1998 officers: Gary Spieler, vice president; Beth Koch, secre
tary; Mary Noga, treasurer; John Cross, corresponding secretary/ faculty
sponsor.

IA Delta Chapter President — Emily Bailey
Wartburg College, Waverly 40 actives

The September meeting consisted of establishing three committees for
our club's participation in Homecoming 1998. We also established a com
mittee to develop ideas for a new KME t-shirt. In October, Katie Straub
talked about her summer internship at Rockwell Collins Engineering For-
casting. The November program was jointly presented by Dr. Olson, Dr.
Birgen and Will Smith, director of the Career Development Center. Grad
uate school and job application processes were discussed. Our December
meeting was a Christmas pizza party. Other Fall 1998officers: Christine
Morrissey, vice president; Joel Nelson, secretary; Keith Cummer, treas
urer; August Waltmann, corresponding secretary; Marian Birgen, faculty
sponsor.

KS Alpha Chapter President — Mandy Fritz
Pittsburg State University, Pittsburg actives 52, associates 10

The first meeting of the fall semester was held on September 2. Fund-
raising activities were discussed and President Mandy Fritz gave an inter
esting presentation on "The Lo Shu Magic Square." During the month
of September, the chapter ran a "Kiss the Cow" contest with collection
jars for people to deposit money for their choice of which faculty mem
ber or teaching assistant should get to kiss one of professor Tim Flood's
calves. The second meeting was held on October 8. Pictures were taken
for the university yearbook, an initiation ceremonywas conducted, and the
winner of the "Kiss the Cow" contest, graduate assistant Amy Ferguson,
collected her "prize." A pizza party followed. The third meeting was held
on November 4. Graduate assistant Jennifer Laswell enlightened those in
attendance about "Probabilities and Wild Card Poker." The final meeting
of the semester took place on December 2. KME member Erin Reavley
gave an excellent PowerPointpresentation on "Three Wise Women (Grace
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Chisholm Young, Sophie Germain, and Sonya Kovalevsky)." The annual
KME Christmas party was held that evening at the home of Mathematics
Department chair Elwyn Davis. Other Fall 1998 officers: Catherine El
lis, vice president; Lisa Collier, secretary; Jeremy Dill, treasurer; Cynthia
Woodburn, corresponding secretary; Yaping Liu, faculty sponsor.

KS Beta Chapter President — Melanie Kurtz
Emporia State University, Emporia 28 actives, 6 associates

We had a very good semester. One of the new activities we decided to
be involvedin this semester was making a float for the homecomingparade.
The theme was "Hat's off to ESU" so we decided to built a pyramid of
hats. Computers were placed at the bottom. All went well until the day of
the parade. It started raining and before it was over it was pouring. KME
members had fun but wegot wet through and through. Our shield and sign
may never be the same. Other Fall 1998officers: Phillip Jost, vice president;
Tracy Kitson(fall) and Jason Robben(spring), secretary/treasurer; Brian
Albright, historian; Connie Schrock, corresponding secretary; Larry Scott,
faculty sponsor.

KS Gamma Chapter President — Kevin Slattery
Benedictine College, Atchison 5 actives, 15 associates

On September 10, Kansas Gamma members gathered for their fall pic
nic at Schroll Center on campus. At the end of September two seniors gave
presentations on their summer employment experiences. Donnie Eason told
about creating database software at NASA's space station. President Kevin
Slattery described electronic note taking, a project in his Research Expe
rience for Undergraduates at DePauw University in Greencastle, IN. In
mid-October many KS Gamma members gathered for the afternoon recep
tion honoring Dr. Mary Gray of American University. That evening Dr.
Gray gave the second lecture in the Mary L. Fellin Lecture Series. She
spoke on "Justice by the Numbers: Pensions, Prisoners, and Ice Hockey."
The Christmas Wassail party was again hosted by faculty moderator Sis
ter Jo Ann Fellin at Marywood. Alum and former KS Gamma president
Matt Mcintosh completed the Ph. D. degree in statistics at the University
of Missouri where commencement was held on December 18. Sister Helen

Sullivan, OSB, former professor and chair of the mathematics department
at the college and foundress of KS Gamma, died on December 22 at the age
of 91. Recipient of the fourth George R. Mach Distinguished Service Award
and active professionally, she is fondly remembered by many. Other Fall
1998 officers: Curtis Sander, vice president; Jo Ann Fellin, corresponding
secretary/faculty sponsor.
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KS Delta Chapter President — Laurie Payeur
Washburn University, lopeka 30 actives

The Kansas Delta chapter met in tandom with the Washburn math
ematics club, Mathematica, for two afternoon meetings throughout the
semester. Lunch was enjoyed and mathematical games were played. Other
Fall 1998 officers: Stephanie Lambert, vice president; Justin Freeby, secre
tary/treasurer; Allan Riveland, corresponding secretary; Ron Wasserstein,
Donna LaLonde, faculty sponsors.

KS Epsilon Chapter President — Mariam Riazi
Fort Hays State University, Hays 24 actives

Monthly meetings wereheld and featured variousspeakers. Some mem
bers attended the KATM Conference in Hutchinson, KS. Other Fall 1998
officers: Adam North, vice president; Drew Heiman, secretary/treasurer;
Chenglie Hu, corresondingsecretary; Linda Kallam, faculty sponsor.

KS Zeta Chapter President — Thyrza Mucambe
Southwestern College, Winfield 11 actives

Other Fall 1998 officers: Jeff Rahm, vice president; Tary Helmer, secre
tary; Tory Helmer, treasurer; Mehri Arfaei, corresponding secretary; Reza
Sarhangi, faculty sponsor.

KY Alpha Chapter President — Brandy Smith
Eastern Kentucky University, Richmond 24 actives

The semester began with floppy disk sales (together with the ACM
chapter) to students in the computer literacy class and the Mathematica
class. At the September meeting, we made paper versions of the Instant
Insanity Cube and tried to solve the puzzle. The second event was a joint
KME/ACMpicnic with faculty. The picnicwasheld at Lake Reba Park on a
nice Sunday in October. At the late October meeting Brandy Smith gave a
talk on "Hyperbolic Tesselations." In December we had our white elephant
gift exchange at the Christmas party. During the fun, we were visited by
three faculty members who shared a rousing rendition of the song "Math
Exams" to the tune of "Santa Claus is Coming to Town." Other Fall 1998
officers: Charles Woolum, vice president; Amy Brewer, secretary; Shannon
Purvis, treasurer; Pat Costello, corresponding secretary.

MD Beta Chapter President — Jenny Addeo
Western Maryland College, Westminster 26 actives

In September we held a picnic for mathematics majors and had a busi
ness meeting at which we elected new officers. In the October meeting
we inducted three new members and heard a presentation about career
opportunities by a recent alumnus, Jason Barr. At the November meet-
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ing we showed the movie "Good Will Hunting." Ongoing weekly activities
include tutoring sessions for lower-levelmathematics classes. Our vice pres
ident, Tom Lapato, was named the Burger King Division EH Scholar Ath
lete of the Year and also received an NCAA Graduate Scholarship. Other
Fall 1998officers: Tom Lapato, vice president; Christina Addeo, secretary;
David Meckley, treasurer; Linda Eshleman, corresponding secretary; Harry
Rosenzweig, faculty sponsor.

MD Delta Chapter President— Sean Carley
Frostburg State University, Frostburg 27 actives

Our chapter held several "get-acquainted" meetings open to all stu
dents, and explored the possibility of forming a math club on campus. In
October, the group enjoyed a picnic at Rocky Gap State Park. Other Fall
1998 officers: Julie Robison, vice president; Katherine Taylor, secretary;
Andrew Adam, treasurer; Edward White, corresponding secretary; John
Jones, faculty sponsor.

MI Epsilon Chapter President — Martin Przyjazny
Kettering University, Flint 27 actives

MI Epsilon's first full academic year began with the election of Martin
Przyjazny as president, replacing recent graduate Michael Fisackerly. Sheri
Houston volunteered to coordinate the design and creation of a KME dis
play case to highlight our activities and members. Term activities included
a showing of the movie "Mathematical Mystery Tour" and a pizza party.
Retiring professor Duane McKeachie spoke at the pizza party on "50 Years
of Mathematics at 1700 West Third Avenue," giving us some highlights of
his many years on our faculty, from the school's days as General Motors
Institute, then as GMI Engineering & Management Institute, and finally
as Kettering University. Other Fall 1998 officers: Joel Pfauth, vice pres
ident; Derek Fisackerly, secretary; Jeremy Plenzler, treasurer; Jo Smith,
corresponding secretary; Brian McCartin, faculty sponsor.

MS Alpha Chapter President — Gordona Bauhan
Mississippi University for Women, Columbus 12 actives, 5 associates

Monthly meetings were held during the fall. Additionally, an initia
tion was held in September and a bake sale was held in December. Also
in December, Ms. Cecily McNair, a teacher recruiter with the Mississippi
Department of Education, gave a talk about scholarship opportunities for
education majors in Mississippi. Other Fall 1998 officers: Julie Torrent, vice
president; Jaime Rickert, secretary; Jacqueline Tharp, treasurer; Shaochen
Yang, corresponding secretary; Beate Zimmer, faculty sponsor.
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MS Gamma Chapter President — Jason Haight
University ofSouthern Mississippi, Hattiesburg 20 actives, 4 associates

Other Fall 1998officers: Paula Thigpen, vicepresident; Adrienne Davis,
secretary; Alice Essary, treasurer/correspondingsecretary; Bill Horner and
Jose Contreras, faculty sponsors.

MS Epsilon Chapter President — Ken Byars
DeltaState University, Cleveland 12 actives

Other Fall 1998 officers: Chad Huff, vice president; Amanda Seward,
secretary/treasurer; Paula Norris, corresponding secretary; Rose Strahan,
faculty sponsor.

MO Alpha Chapter President — Angie Horton
Southwest Missouri State University, Springfield 20 actives, 5 associates

In the fall of 1998, the Missouri Alpha chapter of KME hosted the
mathematics department picnic and held monthly meetings. Other Fall
1998 officers: Michael Byrd, vice president; Samual Blisard, secretary; Jes
sica McDonnell, treasurer; John Kubicek, corresonding secretary/faculty
sponsor.

MO Beta Chapter President — Darin Tessier
Central Missouri State University, Warrensburg 20 actives, 10 associates

The Missouri Beta chapter of KME held monthly meetings during the
fall semester. In September, the group watched the first "Life By the Num
bers" video. Initiation was held in October. Seven full and six associate
members were initiated, after which Scotty Orr gave a demonstration of
the new electronic classroom. Jachin Misko was presented the 1997-98
Claude H. Brown Mathematics Acheivement Award for Freshmen. At the
November meeting, Dr. David Ewing presented "Bubble, Bubble, Toil and
Trouble ... or Determining Minimum Surface Area of 3-D Frames." In
December, KME hosted a Christmas party and invited all of the other
student organizations in the Department of Mathematics and Computer
Science. Other Fall 1998 officers: Aaron Shaefer, vice president; Andrew
Feist, secretary; Warren Christensen, treasurer; Tammy Surfus, historian;
Rhonda McKee, corresponding secretary; Larry Dilley, Phoebe Ho, Scotty
Orr, faculty sponsors.

MO Epsilon Chapter President — David Bates
Central Methodist College, Fayette 8 actives

Other Fall 1998 officers: Christina Miller, vice president; Sheryll Rec
tor, secretary/treasurer; William Mcintosh, corresponding secretary; Linda
Lembke and William Mcintosh, faculty sponsors.
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MO Eta Chapter President — Shawn Logan
Truman State University, Kirksville 8 actives, 6 associates

We held meetings every other week. The main business discussed was
our math expo to be held in February for area high school students. We
held initiation in October. Other Fall 1998 officers: Bryan Bischel, vice
president; Angela Kell, secretary; Chad Muse, treasurer; Angela Kell, cor
responding secretary; Mary Beersman, faculty sponsor.

MO Theta Chapter President — Jeremy Osborne
Evangel University, Springfield 8 actives, 1 associate

Monthly meetings were held. The fall social was held at the home of
Don Tosh. Other Fall 1998 officers: Mandy Wilson, vice president; Don
Tosh, corresponding secretary/faculty sponsor.

MO Kappa Chapter President — Nathan Ratchford
Drury College, Springfield 13 actives, 5 associates

The chapter started the semester off by watching a video on Fermat's
Last Theorem. The winners of the annual Math Contest this year were
Kristen Hannah for the Calculus II and above division and Steven Gradney
for the Calculus I and below division. Prize money was awarded to the
winners at a pizza party held for all contestants. The chapter participated in
the Annual Exploration in Mathematics and the Physical Sciences, which is
a recruitment workshop designed for high school students. Sub sandwiches
were served to the chapter at the Senior Talk given by Dennis Powell. The
Math Club has also been running a tutoring service for both the day school
and the continuing education division (Drury Evening College) as a money-
making project. The semester ended with a Christmas party at Dr. Reich's
house. Other Fall 1998 officers: Kristen Hannah, vice president; Dena
Wisner, secretary; Billy Kimmons, treasurer; Charles Allen, corresponding
secretary; Pamela Reich, faculty sponsor.

MO Lambda Chapter President — Robert Horton
Missouri Western State College, St. Joseph 38 actives

Ten new members were initiated on September 20. Elaine Hauschel,
a faculty member who was one of the initiates, was the speaker for the
program. Mrs. Hauschel described her work as a statistician in estimating
groundwater contamination. Other fall activities of the Missouri Lambda
chapter included participation in Family Day activities, hosting a Thanks
giving carry-in dinner for mathematics and computer science students and
faculty, and participation in departmental colloquia. Steve Saffell, senior
mathematics major and KME member, gave a colloquium talk entitled
"Hypocycloids and Other Fascinating Curves." Other Fall 1998 officers:
Stephanie Tingler, vice president; David McCay, secretary; Shaun Piatt,
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treasurer, John Atkinson, corresponding secretary; Jerry Wilkerson, fac
ulty sponsor.

NE Alpha Chapter President — Stacie Olmer
Wayne State College, Wayne 33 actives, 7 associates

The Nebraska Alpha chapter initiated seven new members this semester
and competed in many of the homecoming activities. They won second
place in the Organization Olympics. It was the first year they had com
peted. Other Fall 1998officers: Emily Negus, vice president; Gina Vaselaar,
secretary; Dave May, treasurer; Matt Jansen, historian; John Fuelberth,
corresponding secretary; Jim Paige, faculty sponsor.

NE Beta Chapter President — Kala Devi Ramalingam
University of Nebraska at Kearney, Kearney 12 actives, 3 associates

Other Fall 1998 officers: Michael Sullivan, vice president; Tisha Maas,
secretary; Peter Okumah, treasurer; Stephen Bean, corresponding secre
tary; Richard Barlow, faculty sponsor.

NE Gamma Chapter President — Andy Boell
Chadron State College, Chadron 14 actives, 6 associates

Other Fall 1998 officers: Shaun Daugherty, vice president; Craig Bruner,
Jr., secretary; Kendra Pedersen, treasurer; James Kaus, corresponding sec
retary; Robert Stack, faculty sponsor.

NH Alpha Chapter President — Allen Barriere
Keene State College, Keene 19 actives

Other Fall 1998 officers: Melissa Shepard, vice president; Laura De
void, secretary; Travis Wakefield, treasurer; Vincent Ferlini, corresponding
secretary; Ockle Johnson, faculty sponsor.

NM Alpha Chapter Co-Pres. — Dolores Gabaldonand Jennifer Gill
Universityof New Mexico, Albuquerque 90 actives, 15 associates

News about our meetings and the Fall 1998 banquet is available on the
NM Alpha WWW pages at math.unm.edu/kme. Other Fall 1998 officers:
Holly Dison, vice president; Merlin Decker, webmaster; Archie Gibson, cor
responding secretary/faculty sponsor.

NY Alpha Chapter President — William D'Angelo
Hofstra University, Hempstead

Fall activities included a volleyball game and a social and dinner for
faculty and students. Other Fall 1998 officers: Michael Dallal, vice presi
dent; Drew Batkin, secretary; Andrea Genzale, treasurer; Aileen Michaels,
corresponding secretary/faculty sponsor.
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NY Eta Chapter President — Brett Richner
Niagara University, Niagara 20 actives

Our chapter has combined meetings with the campus math club. Fu
ture plans include a career day with alumni participating, fundraising ac
tivities, presentations by faculty members, and a possible trip to the na
tional convention in Florida. Other Fall 1998officers: Mike Simons, vice
president; Kristen Grimm, secretary; Alan Hunt, treasurer; Robert Bailey,
corresponding secretary; Wendy Duignan, faculty sponsor.

NY Lambda Chapter President — Jill Kahan
C. W. Post Campus of Long Island University, Brookville 16 actives

Other Fall 1998 officers: Nicole Garofalo, vice president; TanyaPala-
cio, secretary; David Joseph, treasurer; Andrew Rockett, corresponding
secretary; John Stevenson, faculty sponsor.

NYMu
St. Thomas Aquinas College, Sparkill 66 actives, 9 associates

Other Fall1998 officers: JosephKeane, correspondingsecretary/faculty
sponsor.

OH Gamma Chapter President —Anila Xhunga
Baldwin-Wallace College, Berea 12 actives

The chapter, in conjunction with the campus computer club, spon
sored a fall picnic for students and faculty. Other Fall 1998 officers: Duke
Hutchings, vice president; Mary Guinn, secretary; Corina Moise, treasurer;
David Calvis, correspondingsecretary/faculty sponsor; ChungsimHan, fac
ulty sponsor.

OK Alpha Chapter President —Melina Weigle
Northeastern State University, Tahlequah 32 actives, 6 associates

Our fall initiation ceremonies for seven students were held in the ban
quet room of Roni's Pizza. It was well attended by many faculty, their
families, and other students. We sponsored a booth at the Halloween Car
nival sponsored by the Northeastern State Government Association. The
children of Tahlequah are invited to attend this annual free "trick-or-treat"
event. KME officers and math professors Joan Bell and Darryl Linde con
tributed their assistance at the 87th annual technical meeting of the Okla
homa Academy of Science which was held at NSU in November. The annual
book sale was held in November. We extend our thanks to the faculty who
donated old texts to us for this sale. In December, we sponsored a visit
from Jeff Lazalier, chiefmeteorologist of the 2-NEWS/NBC Storm Team in
Tulsa, Oklahoma. He showed a weather video, which included his 5-second
performance in the movie "Twister." We provided pop and pizza to the
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more than sixty students attending. It was great! We continue to have
joint activities with NSU's student chapterof the MAA and participate in
The Problem Solving Competition, sponsored by the MAA. Our Christmas
party in December ended our fall activities. Other Fall 1998 officers: Tina
Wolfe, vice president; Tera McGrew, secretary; GreggEddings, treasurer;
Joan Bell, corresponding secretary/faculty sponsor.

OK Delta Chapter President — Daniel Gregory
OralRoberts University, Tulsa 15 actives

Other Fall 1998 officers: Vidar Ligard, vice president; Vince Dimiceli,
treasurer; Dorothy Radin, correspondingsecretary; Vince Dimiceli, faculty
sponsor.

PA Alpha Chapter President — Shannon Mack
Westminster College, New Wilmington 13 actives

The chapter sponsored an ice cream social for all first-year students.
Other Fall 1998 officers: Stephanie Tangora, vice president; Dena Streit,
secretary; Mike Leiper, treasurer; Warren Hickman, corresponding secre
tary; Carolyn Cuff, faculty sponsor.

PA Iota Chapter President — Donald Miller
Shippensburg University, Shippensburg 22 actives

We held a number of meetings and co-sponsored activities with the
SU Math Club. In the fall we inducted nine new members, bringing our
current total to 22 (not including faculty members). Other Fall 1998 of
ficers: Thomas Ruffner, vice president; Jaymie Kenny, secretary; Michael
Seyfried, treasurer/corresponding secretary; Cheryl Olsen, faculty sponsor.

PA Kappa Chapter Co-Pres. — Linda Bruceand Lindsay Janka
Holy Family College, Philadelphia 5 actives, 3 associates

The PA Kappa chapter met on the first Wednesday of each month dur
ing the fall to work on problems for submission to The Pentagon, Math
Horizons and The College Journal of Mathmatics. On October 20, the
chapter sponsored and hosted a math competition for local high school stu
dents. On December 3, co-presidentLindsay Janka and secretary/treasurer
Brian Minster presented their seminar papers to the math faculty and
upper-division math majors. Lindsay's topic was map coloring and graph
theory. Brian spoke on non-orientable two-dimensional manifolds. Other
Fall 1998 officers: Brian Minster, secretary/treasurer; Marcella Wallowicz,
corresponding secretary/faculty sponsor.

PA Mu Chapter President — Troy Mohney
Saint Francis College, Loretto 16 actives

We participated in the Adopt-a-Highway program and picked litter in
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October along our two miles of adopted highway. Several KME members
and faculty took part in the college's annual Science Day, which brought
more than 300 high school students to campus for interesting presentations,
a science bowl, poster and video competitions, a public speaking compe
tition, and a library scavenger hunt. Among the presentations were "The
Year 2000 Problem" by KME member and alumnus John Miko and "The
Tacoma Narrows Bridge Collapse" by KME member and faculty mem
ber John Harris. KME student members served as session moderators,
registration helpers, Science Bowl moderators, scorekeepers, timers, and
judges. Other Fall 1998 officers: Tracy Paxon, vice president; Rebecca
Espenlamb, secretary; Kourosh Barati-Sedeh, treasurer; Pete Skoner, cor
responding secretary; Amy Miko, faculty sponsor.

SC Gamma Chapter President — Leslie Hogan
Winthrop University, Rock Hill 8 actives

Other Fall 1998officers: Kelly Ann Clardy, vice president; Kortnee Bar-
nett, secretary; Stephanie Boswell, treasurer; Donald Aplin, corresponding
secretary; James Bentley, faculty sponsor.

TN Beta Chapter President — Shannon Gosnell
East Tennessee State University, Johnson City 21 actives

During our fall meeting, an election of officers was conducted. A so
cial at the Olive Garden Restaurant was held. Plans are being made for
attendance at the regional meeting of the Southeastern Section of the Math
ematical Association of America in Memphis in March. Other Fall 1998 of
ficers: Ken Proffitt, vice president; Susan Hosier, secretary; Justin Hyder,
treasurer; Lyndell Kerley, corresponding secretary/faculty sponsor.

TN Gamma Chapter President — Lori Davis
Union University, Jackson 15 actives

The chapter sponsored two social events during the semester. A joint
back-to-school pizza party with ACM was held on September 29 and the
annual KME Christmas pot-luck party was held on December 4. Both
events occurred in the McAfee Commons building on campus. The chapter
also sponsored a needy child from the community for Christmas through
the Carl Perkins Center. Other Fall 1998 officers: Mandy Davidson, vice
president; Lindsey Crain, secretary; Cathie Scarbrough, treasurer; Don
Richard, corresponding secretary; Matt Lunsford, faculty sponsor.

TN Delta Chapter President — Robert Johnson
Carson-Newman College,Jefferson City 13 actives, 6 associates

Other Fall 1998 officers: Melissa Holland, vice president; Sarah Mont
gomery, secretary; Brian Renninger, treasurer; Catherine Kong, corre-
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sponding secretary/faculty sponsor.

TJV Epsilon ChapterPresident — Jennifer Dowdy
Bethel College, McKenzie 10 actives, 2 associates

Other Fall 1998 officers: Jonathan Lankford, vice president; Christina
Hill, secretary; James Wiggleton, treasurer; Russell Holder, corresponding
secretary; David Lankford, faculty sponsor.

TX Alpha Chapter President — Jeffrey Braidon Hood
Texas Tech University, Lubbock 5 actives, 5 associates

Other Fall 1998 officers: Deanna Burns McLendon, vice president; Car
rie Lee Bates, secretary; Charles "Lance" Cowey, treasurer; Victor Shubov,
corresponding secretary.

TX Kappa Chapter President — Mary Bruton
University of Mary Hardin-Baylor, Belton 12 actives

Other Fall 1998 officers: Alicia Kuehl, vice president; Belinda Smith,
secretary; Peter Chen, correspondingsecretary; MaxwellHart, faculty spon
sor.

New Editor

Steven D. Nimmo of Morningside College (Iowa Gamma) has been
named the next editor of The Pentagon. Any correspondence for the editor
arriving after June 1, 1999should be sent to the following address:

Steven D. Nimmo

Morningside College
P. O. Box 6400

Sioux City, IA 51106
email: sdn001@alpha.morningside.edu

Dr. Nimmo will be the tenth editor of this journal. Previous editors
were C. V. Newsom (NM Alpha) 1941-1943; Harold D. Larsen (NM Alpha
and MI Alpha) 1943-1953; Carl V. Fronabarger (MO Alpha) 1953-1959;
Fred W. Lott, Jr. (IA Alpha) 1959-1965; Helen Kriegsman (KS Alpha)
1965-1971; James K. Bidwell (MI Beta) 1971-1979; Kent Harris (EL Eta)
1979-1989; Andrew M. Rockett (NY Lambda) 1989-1995; and C. Bryan
Dawson (KS Beta and TN Gamma) 1995-1999.

More information about Steve Nimmo can be found at http://www.
mornmgside.edu/acad/math/nimmo.htm. As of the date of press, the next
business manager had not been named.
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Kappa Mu Epsilon National Officers

Patrick J. Costello President
Department of Mathematics, Statistics and Computer Science

Eastern Kentucky University, Richmond, Kentucky 40475
matcostello@acs.eku.edu

Robert Bailey President-Elect
Mathematics Department

Niagara University, Niagara University, New York 14109
rlb@niagara.edu

Waldemar Weber Secretary
Department of Mathematics and Statistics

Bowling Green State University, Bowling Green, Ohio 43403
kme-nsec@mailserver.bgsu.edu

A. Allan Riveland Treasurer
Department of Mathematics and Statistics

Washburn University, Topeka, Kansas 66621
zzrive@acc.wuacc.edu

Don Tosh Historian
Department of Science and Technology

Evangel University, 1111 N. Glenstone Ave., Springfield, Missouri 65802
toshd@evangel.edu

Kappa Mu Epsilon, Mathematics Honor Society, was founded in 1931. The
object of the Society is fivefold: to further the interests of mathematics
in those schools which place their primary emphasis on the undergraduate
program; to help the undergraduate realize the important role that mathe
matics has played in the development of western civilization; to develop an
appreciation of the power and beauty possessed by mathematics due to its
demands for logical and rigorous modes of thought; to provide a Society for
the recognition of outstanding achievement in the study of mathematics at
the undergraduate level; and to disseminate the knowledge of mathematics
and familiarize the members with the advances being made in mathemat
ics. The official journal of the Society, The Pentagon, is designed to assist
in achieving these objectives as well as to aid in establishing fraternal ties
between the Chapters.
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Active Chapters of Kappa Mu Epsilon
Listed by date of installation.

Chapter

OK Alpha
IA Alpha
KS Alpha
MO Alpha
MS Alpha
MS Beta

NE Alpha
KS Beta

NM Alpha
IL Beta

AL Beta

AL Gamma

OH Alpha
MI Alpha
MO Beta

TX Alpha
TXBeta

KS Gamma

IA Beta

TN Alpha
NY Alpha
MI Beta

NJ Beta

IL Delta

KS Delta

MO Gamma

TX Gamma

WI Alpha
OH Gamma

CO Alpha
MO Epsilon
MS Gamma

IN Alpha
PA Alpha
IN Beta

KS Epsilon
PA Beta

VA Alpha
IN Gamma

CA Gamma

TNBeta

PA Gamma

VA Beta

NE Beta

Location Installation Date

Northeastern State University, Tahlequah 18 April 1931
University of Northern Iowa, Cedar Falls 27 May 1931

Pittsburg State University, Pittsburg 30 Jan 1932
Southwest Missouri State University, Springfield 20 May 1932

Mississippi University for Women, Columbus 30 May 1932
Mississippi State University, Mississippi State 14 Dec 1932

Wayne State College, Wayne 17 Jan 1933
Emporia State University, Emporia 12 May 1934

University of New Mexico, Albuquerque 28 March 1935
Eastern Illinois University, Charleston 11 April 1935
University of North Alabama, Florence 20 May 1935
University of Montevallo, Montevallo 24 April 1937

Bowling Green State University, Bowling Green 24 April 1937
Albion College, Albion 29 May 1937

Central Missouri State University, Warrensburg 10 June 1938
Texas Tech University, Lubbock 10 May 1940

Southern Methodist University, Dallas 15 May 1940
Benedictine College, Atchison 26 May 1940
Drake University, Des Moines 27 May 1940

Tennessee Technological University, Cookevilie 5 June 1941
Hofstra University, Hempstead 4 April 1942

Central Michigan University, Mount Pleasant 25 April 1942
Montclair State University, Upper Montclair 21 April 1944

University of St. Francis, Joliet 21 May 1945
Washburn University, Topeka 29 March 1947

William Jewell College, Liberty 7 May 1947
Texas Woman's University, Denton 7 May 1947

Mount Mary College, Milwaukee 11 May 1947
Baldwin-Wallace College, Berea 6 June 1947

Colorado State University, Fort Collins 16 May 1948
Central Methodist College, Fayette 18 May 1949

University of Southern Mississippi, Hattiesburg 21 May 1949
Manchester College, North Manchester 16 May 1950
Westminster College, New Wilmington 17 May 1950

Butler University, Indianapolis 16 May 1952
Fort Hays State University, Hays 6 Dec 1952
LaSalle University, Philadelphia 19 May 1953

Virginia State University, Petersburg 29 Jan 1955
Anderson University, Anderson 5 April 1957

California Polytechnic State University, San Luis Obispo 23 May 1958
East Tennessee State University, Johnson City 22 May 1959

Waynesburg College, Waynesburg 23 May 1959
Radford University, Radford 12 Nov 1959

University of Nebraska—Kearney, Kearney 11 Dec 1959
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IN Delta University of Evansville, Evansville 27 May 1960
OH Epsilon Marietta College, Marietta 29 Oct 1960
MO Zeta University of Missouri—Rotla, Rolla 19 May 1961
NE Gamma Chadron State College, Chadron 19 May 1962
MD Alpha College of Notre Dame of Maryland, Baltimore 22 May 1963
IL Epsilon North Park College, Chicago 22 May 1963
OK Beta University of Tulsa, Tulsa 3 May 1964
CA Delta California State Polytechnic University, Pomona 5 Nov 1964
PA Delta Marywood University, Scranton 8 Nov 1964
PA Epsilon Kutztown University of Pennsylvania, Kutztown 3 April 1965
AL Epsilon Huntingdon College, Montgomery 15 April 1965
PA Zeta Indiana University of Pennsylvania, Indiana 6 May 1965
AR Alpha Arkansas State University, State University 21 May 1965
TN Gamma Union University, Jackson 24 May 1965
WI Beta University of Wisconsin—River Falls, River Falls 25 May 1965
IA Gamma Morningside College, Sioux City 25 May 1965
MD Beta Western Maryland College, Westminster 30 May 1965
IL Zeta Rosary College, River Forest 26 Feb 1967
SC Beta South Carolina State College, Orangeburg 6 May 1967
PA Eta Grove City College, Grove City 13 May 1967
NY Eta Niagara University, Niagara University 18 May 1968
MA Alpha Assumption College, Worcester 19 Nov 1968
MO Eta Truman State University, Kirksville 7 Dec 1968
IL Eta Western Illinois University, Macomb 9 May 1969
OH Zeta Muskingum College, New Concord 17 May 1969
PA Theta Susquehanna University, Selinsgrove 26 May 1969
PA Iota Shippensburg University of Pennsylvania, Shippensburg 1 Nov 1969
MS Delta William Carey College, Hattiesburg 17 Dec 1970
MO Theta Evangel University, Springfield 12 Jan 1971
PA Kappa Holy Family College, Philadelphia 23 Jan 1971
CO Beta Colorado School of Mines, Golden 4 March 1971
KY Alpha Eastern Kentucky University, Richmond 27 March 1971
TN Delta Carson-Newman College, Jefferson City 15 May 1971
NY Iota Wagner College, Staten Island 19 May 1971
SC Gamma Winthrop University, Rock Hill 3 Nov 1972
IA Delta Wartburg College, Waverly 6 April 1973
PA Lambda Bloomsburg University of Pennsylvania, Bloomsburg 17 Oct 1973
OK Gamma Southwestern Oklahoma State University, Weatherford 1 May 1973
NY Kappa Pace University, New York 24 April 1974
TX Eta Hardin-Simmons University, Abilene 3 May 1975
MO Iota Missouri Southern State College, Joplin 8 May 1975
GA Alpha State University of West Georgia, Carrollton 21 May 1975
WV Alpha Bethany College, Bethany 21 May 1975
FL Beta Florida Southern College, Lakeland 31 Oct 1976
WI Gamma University of Wisconsin—Eau Claire, Eau Claire 4 Feb 1978
MD Delta Frostburg State University, Frostburg 17 Sept 1978
IL Theta Benedictine University, Lisle 18 May 1979
PA Mu St. Francis College, Loretto 14 Sept 1979
AL Zeta Birmingham-Southern College, Birmingham 18 Feb 1981
CT Beta Eastern Connecticut State University, Willimantic 2 May 1981
NY Lambda C.W. Post Campus of Long Island University, BrookviUe 2 May 1983
MO Kappa Drury College, Springfield 30 Nov 1984
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CO Gamma Fort Lewis College, Durango 29 March 1985
NE Delta Nebraska Wesleyan University, Lincoln 18 April 1986
TX Iota McMurry University, Abilene 25 April 1987
PA Nu Ursinus College, Collegeville 28 April 1987
VA Gamma Liberty University, Lynchburg 30 April 1987
NY Mu St. Thomas Aquinas College, Sparkill 14 May 1987
OH Eta Ohio Northern University, Ada 15 Dec 1987
OK Delta Oral Roberts University, Tulsa 10 April 1990
CO Delta Mesa State College, Grand Junction 27 April 1990
NC Gamma Elon College, Elon College 3 May 1990
PA Xi Cedar Crest College, Allentown 30 Oct 1990
MO Lambda Missouri Western State College, St. Joseph 10 Feb 1991
TX Kappa University of Mary Hardin-Baylor, Belton 21 Feb 1991
SC Delta Erskine College, Due West 28 April 1991
SD Alpha Northern State University, Aberdeen 3 May 1992
NY Nu Hartwick College, Oneonta 14 May 1992
NH Alpha Keene State College, Keene 16 Feb 1993
LA Gamma Northwestern State University, Natchitoches 24 March 1993
KY Beta Cumberland College, Williamsburg 3 May 1993
MS Epsilon Delta State University, Cleveland 19 Nov 1994
PA Omicron University of Pittsburgh at Johnstown, Johnstown 10 April 1997
MI Delta Hillsdale College, Hillsdale 30 April 1997
MI Epsilon Kettering University, Flint 28 March 1998
KS Zeta Southwestern College, Winfield 14 April 1998
TN Epsilon Bethel College,McKenzie 16 April 1998
MO Mu Harris-Stowe College, St. Louis 25 April 1998
GA Beta Georgia College and State University, Milledgeville 25 April 1998
AL Eta University of West Alabama, Livingston 4 May 1998
NY Xi Buffalo State College 12 May 1998

KME Website

The national KME website can be found at:

www.cst.cmich.edu/org/kme-nat/

Below are just a few of the things that can be found on the site:

• How to start a KME chapter
• Information on KME conventions

• The cumulative subject index of The Pentagon
• Lists of KME chapters
• How to contact national officers

• KME History

Please remember to submit local chapter URLs to the national webmaster!


