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Groups on Elliptic Curves

Kelli Polotaye, student
New York Lambda

C. W. Post Campus of Long Island University
Brookville, NY 11548

Presented at the 1997 National Convention and
awarded “top four” status by the Awards Committee.

In the seventeenth century, the French mathematician Pierre de Fermat
proposed that there exists no positive integer solutions to the equation
X?4+Y" = Z" for n > 2. Over the past three and a half centuries numerous
mathematicians have tried to prove this theorem and, in doing so, have
created entire branches of mathematics. Among the ideas that have been
explored are ellipic curves, whose general form is y? = Az%+ Bz24+Cz+ D,
and specifically Frey curves. Frey curves are a special kind of elliptic curve
with the form y? = z(z — A)(z + B), and they look like the example in
figure 1.
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Figure 1. Example of a Frey curve.
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It has been shown that the coeflicients, A and B, of a Frey curve could
be determined by the properties of the solutions, X" and Y”, of Fermat’s
equation, if they exist. Mathematicians conjectured that if a counterexam-
ple to Fermat’s Last Theorem actually did exist, the X™ and Y™ of the
counterexample would determine coefficients, A and B, of a related Frey
elliptic curve. Then, they proceeded to show that these Frey curves can-
not actually exist because they would possess certain impossible properties.
This, of course, is a conclusion that has been reached after three hundred
and fifty years of work by some of history’s greatest mathematicians using
the most modern and powerful theory available. Along the way, mathe-
maticians explored many preliminary properties of elliptic curves to better
understand the nature of Frey curves. One such property is the group the
rational points on an elliptic curve form under a special addition operation.
A rational point of the elliptic curve has both coordinates, z and y, as
rational numbers. Mathematicians have shown that the rational points of
an elliptic curve which does not contain singularities are closed and asso-
ciative under a specific addition operation and contain identity and inverse
elements, forming a group.

In order for the rational points of an elliptic curve to form a group, an
addition operation which is closed and associative must be defined. To do
so, form the chord between any two points, P and @, and then extend it to
its third point of intersection, R, with the curve (see figure 2). Then, if R
has coordinates (z,y), R’ will have coordinates (z, —y), and the addition
operation of the group is defined as P+ Q = R'.
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Figure 2. Frey curve addition; P+ Q = R'.
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For an example, consider the elliptic curve
V) ¥ = z(z - 3)(z + 15)

and the two points P(—15,0) and Q(-5,20), both of which are on the
elliptic curve. The slope of the chord between these two points is 2, making
the equation of the chord

(2) y = 2(z + 15) = 2z + 30.

Both sides of this equation must be squared so it can be equated to (1) to
determine the third point of intersection. Squaring both sides of (2) yields

(3) ¥ = 4z% + 120z + 900.
Setting (1) equal to (3) and solving for z yields
0 = 2> + 82? — 165z — 900.

Dividing this synthetically by the two z-coordinates, —15 and =5, the result
is the z-coordinate of the third point of intersection. For this example,
the z-coordinate of the third point of intersection is 12. To find the y-
coordinate for this point, substitute z = 12 into (2), giving y = 54. This
point, R(12,54), is the third point of intersection of the line and curve,
yielding R'(12,-54). Therefore, P(—15,0) + Q(-5,20) = R'(12,-54), as
in figure 2.

In order to add a point P to itself, use the equation of the line tangent
to the curve at the point P instead of the chord. Extend the tangent line to
its intersection point, R, with the curve and again, the addition operation
yields P4 P = R'. It has been proven that each of the chords and tangents
intersect the elliptic curve at three points which are not necessarily distinct.
In the chord example the three intersection points were P, Q and R. In the
tangent example there only seems to be two points of intersection, P and
R. In order to understand where the third point of intersection lies in this
case, think of the tangent “as the limiting case of a chord that gets shorter
and shorter until finally its end points coincide,” and then “the tangent
is a chord that passes through the same point twice” (Ribet [1], p. 149).
Therefore, the tangent case does indeed have three points of intersection,
namely P, P, and R.

For example, we can add P(9, 36), which lies on the elliptic curve

(4) ¥ = z(z - 3)(z + 15),
to itself. To determine the equation of the tangent line, first differentiate
(4) using the chain rule, giving
= 3z% 4 24z ~ 45
"~ 2423+ 1227 — 45z
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and then evaluate (4) at P(9,36). This gives a slope of 23/4, and the
equation of the tangent line is

Squaring both sides of this equation and setting it equal to (4), we have

337 2178 3969
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Since P(9,36) represents two of the points of intersection of the line and
the curve, divide (5) synthetically by 9 twice. This division gives the third
point of intersection R(49/16,119/64), and therefore P(9,36)+ P(9,36) =
R'(49/16,-119/64) (see figure 3).

40 |

-0 |

Figure 3. Frey curve addition; P+ P = R'.

Another case that needs to be considered is the addition of a point
to itself which happens to yield a vertical tangent line and seemingly no
third point of intersection. To accommodate this case, an extra point at
infinity, called the origin, is added to the curve. Now if the tangent line,
which contains two of the intersection points, is extended up, it will strike
this point at infinity, giving the third point of intersection. Therefore, this
point at infinity must also be included in the group (see figure 4).

In order for the rational points of an elliptic curve to be a group, they
must have identity and inverse elements. For this group, the identity el-
ement is the origin, O, and for any point P, P 4+ O = P. This can be
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Figure 4. Frey curve addition; P+ P yields the point at infinity.

shown by drawing the vertical chord between P(z,y) and O; O can be rep-
resented by a horizontal line at the top of the graph. This chord can then
be extended to its third point of intersection with the curve, which is in-
sured to be P/(z, —y) because of the curve’s symmetry to the z-axis. Then,
P+0 = (P')Y = P. Similarly, the inverse of any point P is P’. This can be
shown by constructing the (vertical) chord between P(z,y) and P/(z, —y).
Extend this chord to its third point of intersection, Q. Since 0’ = O,
P+P =0=0.

The rational points of the elliptic curve must also be shown to be
associative if they are to form a group, that is P+(Q+R) = (P+@Q)+ R for
all rational points P, @, and R on the curve. By choosing any three rational
points on the elliptic curve and performing the additions in the prescribed
order, it can be shown that the result of each side is the same. For example,
choose P(—5,20), Q(—15,0) and R(0,0). Then P+(Q+ R) = P+(3,0) =
(—15/4,~135/8) and (P + Q) + R = (12,-54) + R = (—15/4,~-135/8),
thus proving the associative nature of the curve for one example.

Thus far, the addition operation on the rational points of an elliptic
curve has been defined and shown to be associative. The group also pos-
sesses an identity and inverse elements for each point on the curve. The
only unfounded assumption made thus far is that a third rational point
of intersection always exists for any chord or tangent construction. This
is necessary to prove that the group is closed. To prove this assumption
choose two general points, P(h,n) and Q(r, 5), and a general Frey curve of
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the form

(6) ¥ = z(z — a)(z + b).

As before, form the chord between the two points giving

™) y=mz —mh+n,

where m = (s — n)/(r — h) is the slope. Squaring both sides of (7) gives
€] y? = m?z? 4+ m?h? - 2m?hz + 2mnz — 2mnh + n?.

Equating (6) and (8) and rearranging yields

0 = 2° — z%(a + b) + abz — m?2z? — m?h? 4 2m?hz — 2mnz + 2mnh — n2.

Dividing this equation by the z-coordinates of our two general points, A
and r, yields a quotient of

z+h4+r—a-b—m?
and a remainder of

z(ab+2m?h —2mn —rh+ (h+r)(h+r—a—b—m?))
—m?h? 4 2mnh —n? = rh((h+r1) —a - b—m?).

Substituting m = (s—n)/(r—h) and n? = h3—h?(a+b)+abh, the remainder
can be reduced to a sum of fractions which cancel one another out, proving
the remainder equals zero and that the two z-coordinates divide evenly
into the equation. The quotient is rational considering 4 and r are rational
z-coordinates, a and b are the roots of the elliptic curve and m is the slope
of the chord. This number represents the third point of intersection of the
general chord and the general curve, thus proving that it must exist and
that it is rational. Therefore, the rational points on a Frey elliptic curve
form a closed group under this addition operation.

References

1. Ribet, Kenneth A. and Hayes, Brian, “Fermat’s Last Theorem and Modern
Arithmetic,” American Scientist 82 (March-April 1994), 144-156.

“Mathematicians are like Frenchmen; whatever you say to them they
translate into their own language and forthwith it is something entirely
different.” —QGoethe



Spring 1998 )

A Simple Venn Diagram for Four Sets

Subhash C. Saxena, faculty
Paige Adams, student

Coastal Carolina University
Conway, SC 29526

It was in 1880 that John Venn (1834-1923) published his first paper [6)
on “The Diagrammatic and Mechanical Representation of Propositions and
Reasonings,” which popularized diagrams named after him. In textbooks,
they almost always show Venn diagrams for three or fewer sets, since for four
or more sets circles cannot be used to display all possibilities. Moreover,
any diagram illustrating four or more sets becomes complicated. In recent
years, many have given ingenious schemes for representing four or more
sets. We reference some of them: Margaret Baron (1] published a paper
in Mathematical Gazeite; Branko Grunbaum (4] discussed them in Math-
ematics Magazine in 1975; Shoeleh Mutameni [5] published an algorithm
for generating Venn diagrams for an arbitrary number of sets in Mathemat-
ics Teacher. Kiran Chilakamarri, Peter Hamburger, and Raymond Pippert
[2,3] have published a series of papers connecting Venn diagrams to planar
graphs and Hamiltonian cycles.

The second author of this note, a student of the first author, came up
with an idea of depicting four sets with a design which is easy to visualize
and is simple in its construction. We use a 4 x 4 grid of regions represented
by gi; (1 =1,2,3,4; j = 1,2,3,4). Each cell represents one of the sixteen
areas needed in the Venn diagram for four sets. They identify sixteen
mutually exclusive regions. Let R; (i = 1,2,3,4) and C; (j = 1,2,3,4)
represent rows and columns of four cells each, respectively. Let Ay, 43, As,
and A4 be the four sets, and A}, A%, A§, and A} be their complements.
Welet Ay = RjU Ry, A2 = RaUR3, A3 = C3UC3, and A4 = C3UCy. See
figure 1.

Since each row intersects with every column, we immediately arrive
at the conclusion that 4; N A2 N A3 N Ay = R2 N Cs = ga3, which is the
intersection of the second row (common to A; and A,) and the third column
(part of Az and A4).

The beauty of this construction lies in its simplicity of visualization
and comprehension. Starting with gss, if we move left, we leave Ag; if
we go right, we are out of Agz; going up takes us out of Az; and shifting
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Figure 1. The diagram.
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downwards gets us out of A,. Figure 2 displays all sixteen possibilities.
It is easy to identify any cell. For example, g34 lies in the 3rd row and
4th column, belonging to A; and A4 but not in A; nor in As. Hence,
g34=A'lnAznA'3nA4.

ANALNALNAY, [ADALNANA, [ANALNANA, |ANA,NALNA,
ANANALNNA, [ANANA NA, [ANARANA,  [ANANA,NA,
ALNANALNAY, | ALNANANA, |ALNANANA, |ANANAYNA,
A NALNALNAY (A NALNANAY, A NALNANA, A, NA,NALNA,

Figure 2. Representations of sets.

On the other hand, we can easily place any of the sets and/or their
union or intersection in appropriate cells. The set Az N A3 consists of four
boxes: g3, g23, 932, and gsz. Furthermore, it is easy to remember and
reconstruct this. Each of the original four sets has to occupy two adjacent
rows or two adjacent columns. The following observations make this scheme
pedagogically sound: The first set gets the first row, and it contains the
second row also, and no more. The second set has to contain second row,
and gets the third row and no more. The last two sets take up columns.
Naturally, the third set uses the third column, and it contains the second
column also, and no more. The fourth set contains the fourth column, and
includes the third column also, and no more.

The set A; N A; is the second row consisting of 4 cells. The set A3N A4
is the the third column. The set A3 N A3 consists of four cells, g22, g23, gs2,
and gas. We illustrate intersections of two sets in figure 3 and intersections
of four sets in figure 4.

The simplicity of these diagrams makes the solution of a complicated
inclusion-exclusion problem involving four sets uncomplicated, as shown by
the following example.
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Figure 3. Intersections of two sets.

Problem situation. In a state university along the east coast, there are
100 mathematics majors; 45 of them are taking Advanced Calculus (A, )
44 are taking Abstract Algebra (A3); 49 are registered in Modern Geome-
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ANANA,
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Figure 4. Intersections of three sets.

try (A3); 48 are enrolled in Linear Algebra (A4); 22 are taking Advanced
Calculus and Abstract Algebra (A) N Ay); 25 are registered for Advanced
Calculus and Modern Geometry (A1NAs); 23 are enrolled in Advanced Cal-
culus and Linear Algebra (A; N Ay); 26 are taking Abstract Algebra and
Modern Geometry (A2NAs); 23 are enrolled in Abstract Algebra and Linear
Algebra (A2NA,); 24 are registered for Modern Geometry and Linear Alge-
bra (A3 N Ay); 15 are registered for Advanced Calculus, Abstract Algebra,
and Modern Geometry (Ay N A2 N Ag); 14 are taking Advanced Calculus,
Abstract Algebra and Linear Algebra (AN A2NAy); 12 are enrolled in Ad-
vanced Calculus, Modern Geometry, and Linear Algebra (A1 NA3NA4); 13
are registered in Abstract Algebra, Modern Geometry, and Linear Algebra
(A2 N A3 N Ay); and 10 are enrolled in all four (A; N A2 N A3 N Ag).

With this information, we can answer any quantitative question about
the cardinality of any set involving these four sets. We pose a few of them.
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(a) How many are taking Advanced Calculus, Modern Geometry, and Lin-
ear Algebra, but not Abstract Algebra? (b) How many are taking Abstract
Algebra and Modern Geometry, but not the other two? (¢) How many are
enrolled in Modern Geometry only out of these four? (d) How many are
not registered for any one the four courses?

To answer these questions, we draw the diagram, and start with the
last piece of information for 4; N A2 N A3 N A4, and go sequentially back-
ward, using the numbers for shaded diagrams shown earlier. The complete
diagram is shown in figure 5.

45- 25-(5+10+=§ 12-10= 2 23-(4+10+2)
(8+2+744+10+5+3)= 6 =7

22.¢5+10+4)=3 1S-10=§ 10 14.10=4

44. 26-(3+10+39) 13-10=3 23.(6+10+3)=6
(8¢3+6+4¢10+5+3)= 5 =8

100 - 49- 24-03+10+2)=9 8-
(6+8+2+74345¢10+445

(8+5+8+2+10+3+9)= 4 . _

sBesegedsgey = 13 (6+3+742+10+3+9)= 7

Figure 5. Diagram for the problem.

To answer (a), we use the number for A; N A5N A3N A4, which is given
in g13, and is 2. For (b), we need the cardinal number for A{NA2NA3N A4,
and g3z, which is 8. For (c), we have to look for the cell for A{NASNA3NAL,
and the solution is 4. For (d), we use A} N A5 N A; N A}, which is in g4y,
and the answer is 13.

This example has illustrated the relative simplicity of the procedure in
the solution of a tedious problem dealing with four sets.

References
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Pinochle Probability

Crystal Vacura, student
Kansas Epsilon

Fort Hays State University
Hays, KS 67601

Presented at the 1996 Region IV Convention

When I was growing up, my grandparents taught me how to play
pinochle. At that time, I just kept hoping the dealer would pass a queen
of spades and a jack of diamonds my way. I never stopped to consider the
probability that a hand contained a pinochle. In the contents of this paper,
the focus will be directed at the above question — the probability that a
hand contains a pinochle. To answer this question, permutations will be
used.

Before examining the method of permutations, let me explain a little
about the card game. The game of pinochle starts with a deck that con-
sists of 48 cards. We divide these 48 cards into four suites: hearts, clubs,
diamonds and spades. Within these suites, we have six different pairs of
cards: 9, 10, jack, queen, king and ace. The dealer deals each of the four
players 12 cards from the aforementioned deck. These 12 cards are referred
to as a hand, which we will refer to later.

The purpose of the game is to get the most points. There are many
different ways of accomplishing this. The one we will focus on today is the
pinochle. A pinochle is what we call the combination of the queen of spades
and the jack of diamonds.

Now, let us move back to our discussion of probability. To compute
the probabilities of certain hands, simply dividing the number of distinct
hands is not correct. Some hands occur more often than others. Consider,
for example, the hand containing all 12 of the clubs. There is only one way
to obtain this hand — each and every club must be included. Modify this
hand by switching one of the 9 of clubs with a 9 of diamonds, while leaving
the rest of the hand intact. The second hand will occur more frequently
(four times as often) than the first, because the second hand can contain
either of the two 9’s of clubs and either of the two 9’s of diamonds.
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The probability of obtaining all clubs is
12-11-10-9-8-7-6-5-4-3-2-1
48.47-46-45-44-43-42-41-40-39-38-37
_ 4.7900- 108
~ 3.3371-101°

With the first card a player is dealt, they have 12 ways to place that club
in the hand. With the second card, there is only 11 ways and so forth down
to one way. The denominator denotes the total number of ways. The first
card can be any of the 48 ways. The second is 47 ways, etc. to the 12th
card which can be placed 37 different ways.

The number of ways that a hand contains only clubs, represented by
the numerator, is 4.7900-108. From the denominator, we see that there are
3.3371 - 10!° ways to get any hand. Both of these are correct assuming the
deck contains all the cards and the deck was well shuffled. Therefore, the
probability that a hand contains all clubs is 1.4354 - 10~11.

Modifying the first hand to include one 9 of diamonds gives us an
occurrence of

= 1.4354. 10711,

12-11-10-9-8-7-6-5-4-3-2-1-2.2
48.47-46-45-44-43-42-41-40-39-38-37
_1.9169-10°
~ 3.3371- 1019

We use the same process as before in determining the probability of the
modified hand. The numerator again shows that the first card has 12
positions it can fill or can be placed in 12 ways. This continues till the last
position is filled. The extra 2’s at the end of the expression represent the
two 9’s of clubs and diamonds. When choosing the cards, we can pick either
one of these 9’s. The numerator, when computed, shows 1.9160 - 10° ways
this hand can occur. The denominator still represents the total possible
ways. Therefore, the probability of the modified hand is 5.7415 - 10~11.

When looking at the ratio, we do see that the second hand does occur
four times more frequently than the first:

5.7415 - 10~ 11
1.4354-10-12

Keeping this idea in mind, we can determine the probability that a hand
contains a pinochle. The method examined in this process is permutations.
A permutation is defined as any (linear) arrangement of a given collec-
tion of n distinct objects which cannot be repeated. In general, if there are
n distinct objects and r is an integer with 1 < r < n, then by the rule of
product, the number of permutations of size r for the n objects is

n-n-1)-n—=2)---(n—r+1),

=5.7415- 10711,

= 4.,0000 times.
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where there are n choices for the object to be put in the 1st position, n — 1
choices for the object to be put in the 2nd position, etc., ending with n—r+1
choices for the object to be put in the rth position.

The basic idea of a permutation can be thought of as filling » slots in
a line with one object in each slot by drawing these objects one at a time
from a pool of n distinct objects. The first slot can be filled in n ways.
Extending this reasoning to r slots, we have that the number of ways of
filling all r slots is

m-r)-n—-r-1)-.-3-2-1
n-r)n-r-1)..-3.2.1

n-(n—-1)-(n—-2)---(n=r+1)-

_ nl
= o

The expression above is commonly referred to as P(n,r) and called the
number of permutations of n objects taken r at a time.

We can derive the probability of a pinochle by using permutations. In
this case, we assume that the order in which the cards are received matters,
so that the two hands {jack of diamonds, queen of spades, ... } and {queen
of spades, jack of diamonds, ... } are regarded as different. We must select,
in order, 12 cards to complete a hand.

Let s; denote the index (from 1 to 11) of the first selected card that
is a jack of diamonds or a queen of spades. Let s; denote the index (from
8§+ 1 to 12) of the first selection that completes the pinochle. Thus, if the
index s, corresponds to choosing a queen of spades, then s, corresponds to
the index of the first jack of diamonds that is selected.

With this information, we can now determine the probability of s,.
Because cards 1 through s; — 1 are not jacks of diamonds or queens of
spades, their probability of selection are

443 42 44-5+2
8'47T° 46" B -5 +2’

with product

P(44, 81 — 1)
P(48,81 - 1) )

The s;st card can be any of four (two jacks of diamonds and two queens
of spades) out of the remaining 48 — 51 + 1 cards. Once this card is chosen,
its twin must be included in the allowed choices for selections s; + 1 to
82 — 1. Similarly, we figure the probability of s, given that the first of the
pair was drawn at s; as

P(46 - 81,82 — 81 — 1)
P(48 - 81,80 -8 — 1)’
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PROGRAM PINOCHLE (INPUT, OUTPUT);

{PRE: NOTHING. }
{POST: THE PROGRAM FIGURES THE SUM OF PINOCHLE PROBABILITY. }
{USES: NOTHING. }
VAR $1, {FOR THE SUMMATION OF OUTSIDE LOOP)
82, {FOR THE SUMMATION OF INSIDE LOOP}
A, B,D,E, {FOR THE PERMUTATION LOOPS}
NUM1, NUM2, {FOR THE NUMERATORS OF MAJOR LOOPS}
DENOM1, DENOM2, {FORTHE DENOMINATORS OF MAJOR LOOPS)
SUM, {FOR THE SUM OF INSIDE LOOP}
TOTSUM: INTEGER; {FOR THE FINAL PROBABILITY}
BEGIN {MAIN PROGRAM}
NUM1T = 1;
DENOM1 :=1;
TOTSUM =0;

FOR S1:=1TO 11 DO
BEGIN

FOR A := 44 DOWNTO (44-(S1-1)) DO
NUM1 := NUM1 * A;

FOR B := 48 DOWNTO (48-(S1-1)) DO
DENOM1 := DENOM1 * B;

SUM :=0;
FOR S2 := (S1+1) TO 12 D0
BEGIN
FOR D := (46-S1) DOWNTO ((46-51)-(S2-S1-1)) DO
NUM2 := NUM2 * D;
FOR E := (48-S1) DOWNTO ((48-51)-(S2-S1-1)) DO
DENOM2 := DENOM2 * E;
SUM := SUM + ((NUM2/DENOM2) * (2/(49-S2)));

END;
TOTSUM := TOTSUM + ((NUM1/DENOM1) * (4/(49-S1)) * SUM);
END;
WRITELN (‘'THE PROBABILITY IS: *, TOTSUM:10:6);
END. {MAIN PROGRAM}
Figure 1. PASCAL program.

The s2nd card must be one of the two possibilities to complete the pinochle,
and the rest of the hand is unrestricted.
Thus, we obtain the following expression for the probability of a pi-



Spring 1998 19

nochle by combining the probabilities of 8; and s,:
i P(44,5-1) 4
P(48,51 —1) 49-35

81:1
) f: P(46-sl,sz—sl—l). 2
R P(48—81,32—31—l) 49—32 )

a=s1+1

Each part of the expression is disjoint from the others. Therefore, the
probability of the whole is the sum of the probability of each part.

In order to solve this problem, I wrote a PASCAL program utilizing
the “for loop” process. The program is listed in figure 1.

From running this program, we discover that the probability that we
will actually be dealt a pinochle is approximately .185708 or 18.57% of the
time.

In the span of about 15 minutes we have solved the problem of proba-
bility of a pinochle. In order to do this, we used the method of permutation.
There are other combinatorial methods that could be utilized for this prob-
lem such as combinations, complements, and generating functions. I choose
permutations because it is the basis for the other three.

The next time you play pinochle, I hope you don’t depend on that
pinochle because the odds are against you.
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Chaos is a branch of science, mostly mathematics and physics, that
suggests an odd order and pattern exist in what was formerly seen as ran-
dom and unpredictable behavior. Because this behavior was often erratic
the study became known as chaos. At times the study of chaos itself seems
wild and unpredictable, but it is just as fascinating as it is puzzling. And it
is precisely this combination that has granted chaos such a broad audience.

The exploration and development of chaos theory is apparent in the be-
havior of the weather, of an airplane in flight, of cars grouping on a freeway,
and of water flowing in underground pipes. Because of its universal benefit,
distinguished scientists say that 20th century science will be remembered
for just three things: relativity, quantum mechanics, and chaos ([2], pp.
5-6).

Ancient philosophers in Greece used the term chaos to describe the
“mysterious and unorganized material which was used by the gods to fabri-
cate the visible universe.” In modern English, chaos came to mean “a com-
pletely unorganized, turbulently unpredictable state” ([3], p. 1). During the
middle ages, matters of complexity were debated by “natural philosophers.”
These people were scientists and philosophers simultaneously. With the en-
trance of Sir Isaac Newton (1642-1727), complexity theory would come to
rely more on science. Newton contributed differential calculus and the laws
of classical mechanics. With these tools it was possible to calculate and thus
determine the dynamics of an object by straightforward equations. More
and more, complexity was being explored and seemed to form a closed uni-
versal system, able to produce the answer to any question asked. When a
question could not be answered by classical dynamics it was considered a
“psuedoproblem ... that was devoid of fundamental significance” ([5], p.
3). In 1986, Sir James Lighthill, speaking to the Royal Society, said this

([1], pp. xii—xiii):
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“The enthusiasm of our forebearers for the marvelous achieve-
ments of Newtonian mechanics led them to make generalizations in
this area of predictability which indeed, we may have generally tended
to believe before 1960, but which we now recognize were false.”

For hundreds of years the predictability of classical mechanics was un-
challenged. After all, mechanics was the essential element of the scientific
world. In the last three hundred years there has been a slow movement
toward both deterministic concepts and chaotic concepts playing the es-
sential role. During the climax of Newtonian physics, scientists believed
future events were determined by past states of an object/situation. It was
thought that Newton’s three laws of motion were enough to predict the
planets’ paths as well as future events. Eighteenth-century thinking could
be summed up with the following: with the correct equation anything could
be determined. Thus determinism became the focus of scientific philosophy.

Determinism can be traced back to the time of Socrates (470-399 B.C.),
and has always been attractive to many sectors of society, not just scien-
tists ({1}, p. 7). Determinism provided one with the power to give lengthy
dictation without challenge because one could simply invoke the authority
of the laws of science! Pierre Simon Laplace (1749-1827) developed his own
theory of determinism. “Laplacian determinism” asserted future events as
predictable when complete knowledge of the present state was acquired ([3],
p. 4). Laplace’s book Celestial Mechanics continued to spread his deter-
ministic philosophy. Laplace was not a religious writer, but oddly, his book
also reinforced the religious belief of a god that never interferes with the
progress of a predetermined plan. Although Newton related his work to a
creator, Laplace did not. His intention was to show a universe functioning
rationally according to the laws of mechanics. Napoleon chided Laplace for
not mentioning a god in connection with his “rationally functioning uni-
verse.” Laplace replied that he had no need for such a hypothesis ([4], p.
210). In Laplace’s deterministic world there would be no chance, no choice,
no free will, no uncertainty; everything would be predetermined.

Mathematicians and physicists of the nineteenth century took aim at
identifying the tiniest level to which application of dynamics and its deter-
ministic qualities could apply. This would in turn serve as the foundation
for explaining all observable phenomena. Scientists began to reconsider
the concepts of determinism when in 1927 Karl Heisenberg put forward his
thoughts of uncertainty. The Heisenberg Uncertainty Principle stated that
both position and velocity of an object could never be known simultane-
ously with absolute certainty ([3], p. 4). Several members of the scientific
community took this in terms of the physical universe being “... a manifes-
tation of swirling changes in an underlying soup of uncertainty” ([3], p. 4).
Incidentally, many other scientists, Albert Einstein among them, took issue
with this impression. Over the years, many of those scientists who scoffed
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at Heisenberg’s theory (firm believers in Laplacian determinism) continued
to claim impending success in capturing knowledge of future events. The
newest sensation, computers, were used to gather the so-called “knowledge
of the present state” which would be used in solving the mysteries of the
universe. Surprisingly it was these computations that began to disprove
Laplace’s determinism and give credence to Heisenberg. The computers
produced large numbers of physical systems that appeared deterministic
but were so sensitive to initial conditions that any hope of predictability,
although theoretically possible, was fundamentally impossible ([3], pp. 4-
5). This surprising discovery was dubbed deterministic chaos because of
the complex behavior exhibited by such sensitive deterministic systems.

Where chaos begins classical science stops. The number of determin-
istic chaotic systems produced by computers soon became infinite. With
every gain in science there is always loss. In this situation it was the retire-
ment of deterministic predictability: life’s sequence of events is part of an
equation and that once that equation is discovered we can see the events
of the future. Chaos theory inserts the existence of “sensitive dependence
on initial conditions.” This means that one or more constants in the equa-~
tion will suddenly change, causing the outcome to be different than the
original equation would predict. Chaos brings the predictability back into
perspective with the suggestion that the sudden change(s) is determined
by yet another equation that can be solved and so on and so on. One can
now realize the depth of this science is in the infinite number of dependent
equations produced.

Today most scientists still hold on to deterministic theory in varying
degrees. These individuals define deterministic chaos as a retreat from full
determinism rather than a defeat of all determinism. It is true that while
objects can no longer be described in a predictable manner, their behavior
can be anticipated in degrees of certainty. As years of studying chaos went
on, it became clear that statistical probability theory and deterministic
chaos theory are closely related subjects.

In everyday speech, “chaos” can be used when referring to noise and
commotion. Its technical meaning, however, is quite different. In this sense
it refers to randomness that arises in a deterministic system. As mentioned
previously, chaos possesses a “sensitive dependence on initial conditions.”
This means that although in principle it should be possible to predict the
future dynamics of a system as a function of time, in reality it is impossible
because the error in describing an initial condition (and there is always an
error in varying degree) leads to an erroneous predicted outcome.

Edward Lorenz, a meteorologist at MIT, was interested in mathemati-
cal models for the behavior of the earth’s atmosphere. In the early 1960’s
he studied the use of three ordinary differential equations to define the state
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of the atmosphere in terms of z, y, and z:

z=—0z+o0y
y=-—-zz+rr—y
z=zy—bz

When the parameters o, r, and b are changed, the characteristics of the
system are changed. In Lorenz’s system this would represent physical prop-
erties of the atmosphere’s air. The new computers of his day carried out
the integrations for a typical solution to the system. Lorenz had this to say
regarding his findings: “It implies that two states differing by imperceptible
amounts may eventually evolve into two considerably different states” ([2],
p. 12).

Phase space is the center court of dynamic phenomena. Systems occu-
pying this space will behave in strange patterns, move wildly, and sometimes
stop altogether. An example of this is a wound-up yo-yo. When allowed
to unwind from the hand it will wind itself back up for successively shorter
distances. Ultimately, it will come to rest at the lowest point allowed by the
length of the string. This stable equilibrium point is called a fixed-point
attractor ([1], p. 59). The word atiractor is used because of the behavior
of a system in phase space. Specifically, when a system in phase space is
in the vicinity of an attractor, it tends to assimilate the state exhibited by
that attractor.

Strange attractors are a second type of attractors operating in phase
space. Unlike fixed-point attractors, these involve aperiodic dynamical sys-
tems and appear extreme in fluctuation. All of the different types of at-
tractors are related to patterns, even the strange attractors associated with
chaos. This relation to pattern contributes greatly to the understanding
of phenomena that appears random but has aspects of organization within
([1], pp. 72-73). An example of this would be the weather. In 1963, Profes-
sor Lorenz wrote a paper about his three-dimensional equations, now called
the Lorenz equations. In his paper he asserts long-term weather prediction
to be impossible due to the sensitivity to initial conditions. This sensitive
dependence on initial conditions is representative of what Lorenz called
“the butterfly effect.” If the earth’s weather is a chaotic system, then “the
flap of a butterfly’s wings in Brazil today may make the difference between
calm weather and a tornado in Texas next month” ([1}, p. 12).

T. Y. Li and J. A. Yorke published a paper in 1975 entitled “Period
Three Implies Chaos.” It was the first time the term deterministic chaos,
as we know it today, appeared in the scientific literature. Their article
described certain deterministic flows as chaotic. Then in 1976 Robert May,
a prominent mathematical biologist, referred to the Li-Yorke paper in his
own publication. May’s paper discussed seemingly simple equations that
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can produce complicated dynamics ([1], p. 16). May’s paper was widely
read and contributed to the acceptance of the term deterministic chaos.

Technical terms used by the scientific community tend to become less
precise when the general public becomes active participants. As chaos be-
came accessible to the public through magazines and television it became
known as “chaos” rather than its original “deterministic chaos.” And once
the media began to catch on, they were finding chaos everywhere. Publica-
tions and television series utilized the following examples: a running faucet
with a flow that breaks into pattern and then returns to a united stream,
a flag snapping in the wind, and a column of smoke rising into swirls ({2],
p. 5).

The study of deterministic chaos exploded. Articles ranged from tech-
nical wording to vibrant visuals. One example of a visual picture of chaos is
the Mandelbrot set. In 1975 Benoit B. Mandelbrot (born in 1924) created
a new subject called fractal geometry. Fractal comes from the Latin fractus
meaning “broken.” This new branch of mathematics studied “rough and
fractured systems in materials science” ([3], p. 5). Fractal dimension, the
measure of ruggedness and space-filling ability, has become one of the most
important aspects in chaos studies today.

In order to explain the benefits of the Mandelbrot set, it is necessary to
g0 back to some earlier challenges in mathematics. One such challenge was
a puzzling value that continued to reappear; the solutions of 22 +1 = 0 in-
cluded a quantity (—1)*/2, or the square root of negative one. In 1645, Ital-
ian mathematician Girolamo Cardano described numbers involving (—1)/2
as “imaginary numbers.” The symbol i was used to denote this previously
unseen value. By the early 1800’s, German mathematician Karl Friedrich
Gauss showed that a physical meaning could be assigned to i if one looked
at how numbers in a two-dimensional plane could be represented in two-
dimensional space using: P, = (a + ib), where a is the z-coordinate, b is
the y-coordinate, i is the directional measurement of 4 at right angles to a,
and P, is the object’s site (pixel location) ([3], p. 87). P; is known today
as ¢ for a “complex number” that includes both real and imaginary parts.
Repeating these equations for successive values is called iteration. Creating
computer images from several iterations leads to astonishing movements of
the pixel location and results in the magnificent Mandelbrot set. The very
first picture of a Mandelbrot set was generated at Harvard in 1980. As
with many scientific discoveries, it was not intentional. The creation was
the result of experiments focusing on pixel size ([3], p. 100). Today, com-
mercial software generates images of hundreds to thousands of iterations.
One important point to be made is that photos give only two dimensions
to these sets. Many books, too, neglect to mention that Mandelbrot sets
can exist in three-dimensional space. In this dimension the images viewed
should be considered cross-sections of a three-dimensional Mandelbrot set.
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In the 1970’s, a few scientists in the United States and Europe began to
look at the erratic and unpredictable sides of nature. Individuals from dis-
ciplines that were previously separated were brought together by the study
of chaos theory. Mathematicians, physicists, biologists, chemists and others
searched to find links in the many forms of discontinuity. The cooperation
among different fields has developed into a cycle. Scientists continue to
discover new initial conditions. Engineers then design mechanisms to use
the information. Sociologists contemplate how society can benefit. And
finally, artists express what has or may occur as a resuit.

Within ten years of its start, an abundance of conferences and journals
were highlighting the progress of chaos. In the 1980’s, government program
managers in charge of military research, the CIA, and the Department of
Energy soon set up bureaucracies to handle the financing for their chaos
research. Today, nearly every major university researches chaos, as does
nearly every major corporation ([2], p. 4). Upon recognizing the benefits
of chaos, changes were seen in the way business executives make decisions
about insurance, the way astronomers look at the solar system, and also
the way sociologists discuss stresses that lead to armed conflict ([2], p. 5).

Chaos and fractals have become buzzwords. They are the subjects of
motion pictures, wall calendars, and political strategies. The overwhelming
popularity of the term “chaos” does cause confusion between its scientific
meaning and its everyday use. Nevertheless, the publicity serves to educate
the public about a scientific concept that benefits everyone.

Science is about studying cause-and-effect relationships and the pre-
dictions that can be drawn from them. Chaos seems to undermine this
effort. This does not, however, mean advance planning is in vain. It simply
reinforces what is already known; a degree of uncertainty is normal. Once
this is accepted, improvements in forecasting can be studied. This is what
chaos theory is all about — improving the accuracy of predictions.
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When the parents of Sir William Rowan Hamilton conceived this ge-
nius, they did not have the slightest notion that the product of their union
would become a legend in mathematics. Nowhere is it noted that they
decided one day to produce a master of science. The creation of Hamilton
can be expressed in mathematical terms:

Let all the human bodies that ever existed or will ever exist
be domain B, and all the souls that exist be domain S. Define a
function f from B x S to H, the set of all humans ever born or
ever to be born. Take a unique element b from B and a unique
element s from S and map the pair to a unique element h in H.
Creation of a unique human can be represented mathematically
as f(b,s) = h.

Sometimes such a union is the making of a genius. Just such a union
occurred at the creation of William Rowan Hamilton. Hamilton was born
into an affluent Dublin, Ireland family in 1805. At a young age he went
to live with an uncle. He was a child prodigy and was home schooled. At
18 years old he entered Trinity College. At the tender age of 21 and as an
undergraduate he became a professor of astronomy at the college. When
he was 27, he received the Cunningham Medal of the Royal Society and
was elected into the society. He served as its president between 1837 and
1845 ([1], p. 693). Hamilton was knighted at age 30.

In 1843, Hamilton made what has been called his greatest discovery,
quaternions. Hamilton struggled for many years with the problems whose
answers were “the algebra of quaternions” ([4], p. 468). This was the first
ring to be discovered in which the commutative property does not hold ([4],
p. 468). Hamilton turned his attention to a search for a generalization of
complex numbers, that is, numbers of the form a + ib (where i = +/=1).
He hoped that such generalized complex numbers would serve to represent
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rotations in three-dimensional space in much the same way as ordinary
complex numbers serve to represent rotations in the plane ([5], p. 137).

For Hamilton, the vector product in quaternion four-space is a rotation
in a plane. Depending on the order of the vectors being operated on, the
rotation is either counterclockwise (positive rotation) or clockwise (negative
rotation). It took many years for Hamilton to find a solution to this problem
of multiplying triples. It took a walk to Dublin for him to find the answer
to his puzzle.

We can look at our own lives to see how a revelation can occur when
least expected. Have you ever struggled with a mathematical problem?
No matter how hard you sought the answer as you struggled, the solution
never came out of hiding. Then you left your studying environment and
found other distractions only to have a vision. This phenomenon has also
occurred among those we label as geniuses. William Rowan Hamilton is
one of these geniuses that experienced a mathematical revelation while
occupying himself in other than academic pursuits. Hamilton’s disclosure
in mathematical terms:

If we define G as the set of all geniuses that have lived and
K as the set of all ideas, we can define a function h from G x K
to D, the set of discoveries. Take a unique element g (Hamilton)
from G and a unique element k (quaternions) from K and map
to a unique element d (the algebra of quaternions) from D. This
new algebra can be represented mathematically as h(g, k) = d.

Eves ([2], p. 102) describes the event this way:

Hamilton has told the story that the idea of abandoning the
commutative law of multiplication came to him in a flash, after fif-
teen years of fruitless meditation, while walking along the Royal Canal
near Dublin with his wife just before dusk. He was so struck by the
unorthodoxy of the idea that he took out his penknife and scratched
the gist of this multiplication table into one of the stones of Brougham
Bridge. A cement tablet embedded in the stone of the bridge tells the
story:

Here as he walked by
on the 16th of October 1843
Sir William Rowan Hamilton
in a flash of genius discovered
the fundamental formula for
q;laternion multiplication
P=2=k=ijk=-1
& cut it in a stone of this bridge.
The Brougham Bridge was affectionately named by his children the
Quaternion Bridge.

The thought of a system that was not commutative was unheard of.
The possibility that given two elements @ and b, ab not equal to ba was a
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violation of a fundamental law of algebra.

There are many daily activities that illustrate that actions are not
always commutative. What about moving left and right? If I first turn left,
walk one mile then turn right and walk another mile, I will be in a different
location than if I first turn right, walk one mile, turn left and walk another
mile. This operation in mathematical terms:

If L is a one unit move to the left and R is a one unit move
to the riibt, a left followed by a right does not equal a right
followed by a left. This can be expressed RL # LR. This is a
noncommutative operation. See figure 1.

School Toy Store
1 unit 1 unit
Right Left
1 unit 1 unit
Left Right
Start

Figure 1. A noncommutative operation.

Look around in the natural world. There are many such examples in
life. So if mathematics describes the natural world, why was it impossible to
conceive of a system in mathematics being noncommutative? The discovery
of just such a system was possible for Sir William.

Hamilton’s view of algebra helped free him from its constraints. He
wrote “The study of Algebra may be pursued in three very different schools,
the Practical, the Philological or the Theoretical, according as Algebra it-
self is accounted an Instrument or a Language, or a Contemplation” ([3], p.
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257). Hamilton studied his quaternions without being tied down to the cur-
rent mindset governing algebra. Hamilton modeled “complex numbers by
pairs of ordered numbers, which can represent rotation in a two-dimensional
space, and from here he went on trying to represent rotations in a three-
dimensional space by triplets” ([1], p. 693). He realized that he needed a
four-tuple to master his new discovery. Quaternions became “ordered real
number quadruples (a, b, ¢, d) having both the real and complex numbers
embedded within them” ({2], p. 102).

Hamilton’s view of complex numbers as ordered pairs where the com-
plex number a + bi (a and b are real numbers) could be seen as the ordered
pair (a,b) led to his discovery. The a would be mapped onto the hori-
zontal axis and the imaginary component b mapped onto the vertical axis.
Hamilton extended this into ordered quadruples, (a,b,c,d), where a is a
real component and b, ¢ and d are coefficients of the imaginary components
i, j and k. The vectors (0,1,0,0), (0,0,1,0) and (0,0,0, 1) are unit vectors
with magnitude 1 and directions represented by ¢, j and k in this system.

We now picture the quaternion components i, j and k as vectors in
three-dimensional space. They are unit vectors with direction. Using the
right hand-hand rule, the vector product of { with j is k. That is, ixj = k.
This is a 90 degree rotation in the counterclockwise direction. The vector
product of j with i is the opposite of k, namely j x § = —k. This is a 90
degree rotation in the clockwise direction. A geometrical representation of
i, j and k is in figure 2.

k.
'\

-

t

Figure 2. The vectors ¢, j, and k.

All the quaternion relations can be formed by using figure 3. The clock-
wise rotation of the group taking the first element cross product with the
next clockwise element produces the third element. The counterclockwise
rotation, one element cross product with the next counterclockwise element,
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produces the negative of the third element. For example, clockwise rotation
produces ij = k, and counterclockwise rotation produces ji = —k. There
are various ways to visualize the quaternion relations. Tinkertoys can be
utilized to build a three-dimensional representation similar to that shown
in figure 2.

k J

Figure 3. Triangular relationship of i, j and k.

Using Hamilton’s bridge notation, a Cayley graph can be created. We
will use the following relations in the quaternions for the graph:

i2=j2=k2=—1
ij=kjk=iki=j;
ji=—k,kj=—iik=~j.

The elements of this system can be generated with ¢, j, and &, by (i) =
{1: '.: "'1: —i}) (.7) = {lij’ _1’ _j}) and (k) = {ls k: _1’ _k}

These relationships can be used to fill in a Cayley table. Using the
definition of quaternions as an expression a 4+ b¢ 4 ¢j - dk, where a, b, ¢
and d are real numbers and 1, j and k are unit vectors, and the operation
on the elements as cross product of vectors, we can use the right-hand rule
to create a Cayley table. The operations on 1 and —1 are the same as
multiplying vectors by scalar multiples. See figure 4 for the Cayley table.

Hamilton’s quaternion group can also be represented by a Cayley di-
graph. Using the quaternion relationships ¢ = j2 = k? = (ij)? = -1,
t=j4=kv=1,ij = k and ji = =k, 7 and j can generate all elements of
the quaternion group. See figure §.

What can we learn from the life of Hamilton? We can learn more than
just how to manipulate a four-tuple. When faced with a difficult problem
for what seems like too long of a time, get away from your work area.
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Figure 4. Cayley table.

Find an enjoyable diversion. Go for a walk. Play with tinkertoys. Spend
time with a loved one. You may make that once-in-a-lifetime discovery.
Mathematics can answer many questions about our natural world and our
natural world can help us discover a lot about mathematics.

Acknowledgements. 1 wish express a special thank you to Sister Jo Ann
Fellin, Q.S.B., Ph.D. for her patience and faith in this student. She kept
me focused when I was ready to give up.
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Twisted Tic-Tac-Toe

Have you ever wanted to play tic-tac-toe on a torus or on a Klein bottle?
Try this web site by Jeff Weeks:

www.northnet.org/weeks/TorusGames/TorusGames.html
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If a child found a small sphere of gold weighing 12 ounces, his parents
may choose to have it sold and the proceeds of this discovery placed in a
savings account to earn interest until the child attends college. This could
lead to a rather fine amount of money to be put towards education. On
the other hand, using mathematics in their favor, the parents could choose
to take this small amount of gold to a man in South America who claims
to have performed the first real-world application of the Banach-Tarski
paradox. He claims that, using a pair of tweezers, a small jeweler’s saw,
and a computer program that can perform the Banach-Tarski paradox, he
has taken a twelve-ounce sphere of gold and created a sphere of twice the
diameter, weighing 49.58 ounces. It took almost seven months according to
his claims ([1], p. 119). If the child’s twelve ounces of gold can be increased
fourfold every seven months, then his parents have certainly made a better
financial choice.

The Banach-Tarski paradox of 1924 is the most famous of arguments
surrounding the acceptance of the axiom of choice. The paradox is a math-
ematical truth when we accept the axiom of choice. However, controver-
sies such as the success of this anonymous South American mathemati-
cian/alchemist, who now claims to create five pounds of gold a week out of
nothing ([1], p. 119), have created a heated debate surrounding the axiom
of choice.

First we must understand exactly what the axiom of choice means in
order to discuss the controversy surrounding it. We will use the following
definition of the axiom of choice in this discussion:

Axiom of choice. For any set A, there is a function, f, such that for any
non-empty subset B of A, f(B) € B.

The function f is referred to as the choice function for A. The domain
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of the function is the family of non-empty subsets of A, and the range is A.

In order to clarify what a choice function actually does, Suppes offers
a wonderfully simple example in (8] (p. 239). In the following example the
axiom of choice is not needed. Let there be a set A and all of the non-empty
subsets of A defined as

A=1{1,2}, Bi={1}, B.={2}, Bs={1,2).
Let fi and f, be distinct choice functions for A. Then

fi(B1) =1

and
fz(Bl) =1.

These two are equal because the choice functions f; and f; must return
exactly one element of the subset. Since there is only one element, they
must return the same element. Therefore, it follows that

fi(B2) = f2(B2) = 2.

We now see where the two functions become distinct. In order for them to
be distinct they must not create an identical set of outputs. Therefore, it
follows that

fi(Bs) =1

and
f2(B3) =2,

or vice versa. From this demonstration we obtain a formal definition for
the choice function as postulated by the axiom of choice ([8), p. 239):

Definition. We say f is a choice function for A if and only if f is a function
whose domain is the family of non-empty subsets of A and for every BC A
with B # 0, f(B) € B.

This seems to be exceptionally similar to the axiom of choice. This
does not occur accidentally. While we can simply define a choice function
for a finite set, the axiom of choice postulated the existence of the choice
function for infinite sets.

Let us look at a simple theorem that does not require the axiom of
choice, but is more like an argument for the existence of choice functions.

Theorem. Every finite set has a choice function.

n
This, too, is obvious in that if a set has n elements then it has [] k(™)

k=2
distinct choice functions. These distinct choice functions must only follow
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the behavior of the choice functions in the previous example. Although
these can be easily defined for the finite, the choice functions for the in-
finite, said to exist by the axiom of choice, have created the controversy
mathematicians discuss today.

We now must look at the applications of the axiom of choice in order
to further the knowledge base necessary to make accurate arguments about
the validity of the axiom. We first examine a proof that requires the axiom
of choice. We shall use the simple proof of the following theorem:

Theorem. If a set is infinite then it has a countably infinite subset.

Proof. Let A be an infinite set and let f be a choice function for A as
postulated by the axiom of choice. First we define a function g on the
non-negative integers such that

9(0) = f(4)

and
9(n) = f(A—{g(k) [ E < n}).

From this definition we obtain

9(1) = f(A - {g(0)})
9(2) = f(A - {9(0),9(1)})
9(i) = f(A - {9(0),9(1),...,9(i — D}).

We can see from the behavior of the function g that g assigns zg = f(A) to
0, 2z, = f(A— {z0}) to 1, z2 = f(A — {z0,21}) to 2, etc. Since f(B) € B
is always true, then g is a one-to-one function.

Now suppose there is an n such that

A—{g(k) |k <n}=6;
then A has n elements. This is contrary to the hypothesis that A is an

infinite set, so
A—{g(k) |k <n}#0.

Therefore, the range of g is a subset of A with a one-to-one correspondence
with the non-negative integers. Therefore g creates a countably infinite

subset ([8], p. 241).

As we can see from this proof, the axiom of choice provides the choice
function which is used to show the existence of the subset that we now see
to be countably infinite. However, it gives no method by which the subset
is constructed, creating one of the problems with the axiom of choice.

Now let us turn our attention to the arguments surrounding the accep-
tance of the axiom of choice. First of all, can the axiom of choice be derived



Spring 1998 37

from the other axioms of Zermelo-Fraenkel set theory? There is absolutely
no controversy surrounding any of the other axioms of Zermelo-Fraenkel
set theory. For several sets, even infinite sets, these axioms can be used to
show the existence of a choice function. Yet in 1963, Paul Cohen proved
that there exist sets that require the axiom of choice to show the existence
of a choice function ([7]). Therefore, the axiom of choice can not be derived
from the other six axioms of Zermelo-Fraenkel set theory. This answers
the first of three questions, all of which must be true for the mathematical
world to accept the axiom of choice as an axiom.

The second question was answered in 1938 by Kurt Gédel. The question
can take two equivalent forms: “Is the axiom of choice consistent with the
other six axioms of Zermelo-Fraenkel set theory?” or “Does the axiom of
choice lead to a contradiction? Godel proved in 1938 “that the axiom
of choice is relatively consistent, that is, if the other axioms of [Zermelo-
Fraenkel] set theory are consistent, the addition of the axiom of choice will
not lead to a contradiction” ([8], p. 250). This proof is the second of three
necessary steps to accepting the axiom of choice.

The final question is the one still debated today. Should we accept the
axiom of choice as an axiom? Mathematics Dictionary defines the term
axiom as “a self-evident and generally accepted principle” ([4], p. 25). Let
us first look at the second part of the definition: “generally accepted.” Since
the axiom of choice is not accepted by everyone, the question becomes an
interpretation of the word “generally” and the argument continues. Does
“generally” have an exact quantity that can be used as a measuring tool?
Do ninety-nine percent of the mathematicians have to accept it, or does it
just need to be over fifty percent? There is no numerical quantity assigned
to the word “generally.” However, another dictionary defines an axiom as
“a proposition, principle, role, or maxim that has found general acceptance
or is thought worthy thereof on the basis of an appeal to self-evidence”
([2], p. 153). This leads back to the first half of the original definition, an
argument of the self-evidence of the axiom of choice.

The arguments for the acceptance of the axiom of choice do not attempt
to show self-evidence of the axiom; they argue that the axiom simply pro-
vides the existence of something self-evident, which is a choice function.
They contend a choice function is self-evident because it merely selects an
element from each set ([5], p. 59). The remaining arguments are more along
the lines that we must accept it because it is useful and necessary to prove
a large portion of set theory. If we do not accept the axiom of choice, then
we cannot accept any of its equivalents. A secondary part to this argument
is that without the axiom of choice, we cannot accept any mathematical
statement which requires the axiom for its proof. These arguments for ac-
cepting the axiom are weak. Simply because it is useful does not allow us
to accept it as a mathematical truth. It does, however, pose new ques-
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tions: what mathematics do we get with the axiom of choice, and what
mathematics do we get without it?

There are four main arguments against the acceptance of the axiom of
choice. First, it is obvious that the axiom of choice is non-constructive; that
is, it creates a set of elements which it has chosen using a choice function,
without providing any sort of procedure in doing so. Many mathematicians
believe that if we cannot show how the set is formed or how we obtained the
choice function, then the axiom of choice is invalid on the grounds that it is
useless. The second argument is that the axiom of choice is confusing and
not as aesthetically pleasing as the other axioms of Zermelo-Fraenkel set
theory ([7]). This is a matter of opinion and not an acceptable argument in
a mathematical debate. These first two arguments are no better than the
arguments for the acceptance of the axiom of choice. These could be easily
dismissed and the debate would be over. It is the final two arguments that
keep the controversy alive today.

The third argument is that the axiom of choice is equivalent to many
statements that are not self-evident, the first argument to address the def-
inition of an axiom. However, it is the fourth argument that receives the
most attention. The final argument is that the axiom of choice can be
utilized to derive many results that are not self-evident. The most famous
derivation is the Banach-Tarski paradox. In 1924, Banach and Tarski, two
Polish mathematicians, proved that any two bounded sets in Euclidean
space R" are equidecomposable if they contain interior points and if n > 2
([6], p. 973). This allows us to state that a “pea may be cut up into in-
finitely many pieces which can be rearranged to yield the sun (in volume
if not in substance)” ([6], p. 973). They go on to tell us that these pieces
cannot be obtained “using scissors or other cutting devices. They are ob-
tained using the axiom of choice” ([6], p. 973). To further this argument I
will now prove the following:

Theorem. Any object in Euclidean space R3 can be composed into a
volume greater than any given volume.

Proof. Let n = 3 in the Banach-Tarski theorem of 1924 that any two
bounded sets in Euclidean space R™ are equidecomposable if they contain
interior points and if n > 2. Let the given volume be 10® meters3. Let the
first object be any object in three-space, say a normal casino die. Let the
second object be a cube with each side measuring 10("+1)/3 meters. The
two objects do not necessarily need to be the same shape. This is done for
simplicity. The two objects are equidecomposable according to the Banach-
Tarski theorem of 1924. Now the die has been decomposed and rearranged
into a cube with a volume of 10®+! meters3. Therefore, if the given volume
is 10® meters®, the original object can be composed into an object with the
volume 107+! meters®.
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It doesn’t actually stop there. There is no volume that is unachievable
according to this theorem. If the volume is continually increased for the
second object, then the volume created by the original object can always
be greater, using the Banach-Tarski paradox.

This is obviously not self-evident, that a die, or any object for that
matter, can be decomposed and rearranged into a volume greater than any
given volume. Yet if we accept the axiom of choice, we must accept the
Banach-Tarski proof of 1924 and therefore we must accept this theorem.
This is only one example of the many apparent contradictions that can be
derived using the axiom of choice. This argument along with the third ar-
gument against the axiom of choice are the two best arguments surrounding
the acceptance of the axiom of choice.

Unfortunately, the debate does not stop there. This proof I have just
shown cannot be proven to be invalid, however, it can be dismissed as
a philosophical interpretation of mathematical truths. That is to say, it
can be used as the basis to dismiss the axiom of choice according to con-
structivism, the leading school of thought among applied mathematicians.
Constructivists believe that the only valid proofs are constructive proofs
and that anything that cannot be constructed is invalid, for it is useless.
Mathematicians have not yet been able to apply the Banach-Tarski para-
dox, nor construct a method used by the choice functions postulated by the
axiom of choice. There are, however, two other main schools of thought in
mathematics today: Platonism and formalism. A Platonist believes that
all mathematics is either true or false and will accept the axiom of choice
if and only if they believe it to be true. The formalist will accept any
mathematical principle that is true in any given mathematical setting ([7]).

Until a definite proof or disproof of the axiom of choice is published
and accepted, the axiom of choice should be used in a formalistic manner.
If the axiom of choice is kept strictly within the bound of Zermelo-Fraenkel
set theory, it is harmless. As previously mentioned, it is independent of
the other axioms and does not cause a contradiction. However, when taken
outside of strict, abstract set manipulation, as in the case of the Banach-
Tarski theorem of 1924, it can become an apparent contradiction as proven
above,

The axiom of choice, developed to rid set theory of the antinomies, has
possibly become the single most debated topic in mathematics this century.
Norstrand proclaims “that it is a mathematical truism ... that the more
generally a theorem applies, the less deep it is” ([3], p. vi). This is not the
case in regards to the axiom of choice. The more freedom we give to the
boundaries in which the axiom of choice is applied, the more controversial
it becomes. A formalistic approach to the use of the axiom of choice and a
definite restriction to set manipulation within Zermelo-Fraenkel set theory
allows us to maintain its existence independent of human intuition. Maybe,
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the anonymous South American entrepreneur actually exists, and will fi-
nally have made enough gold to come forward with his techniques. Until
then, the choices surrounding the axiom of choice shall remain controversial.

Acknowledgements. A sincere thank you is in order to Mr. Richard Farrell
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Benedictine College who helped me during the production of this paper.
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During my History of Mathematics course two semesters ago, I did a
research paper on Sir Isaac Newton. Since then, I have been fascinated with
how much he has contributed to mathematics. In my Numerical Analysis
I course, my instructor introduced Newton’s method as a fixed-point itera-
tion: given z, the next z is given by Nz = g(z) = z— f(z)/ f'(z). For a few
weeks, we studied how Newton’s method worked and ways that it could fail.
It was at this time that I decided to pursue the topic of chaos. I started
noticing different aspects of chaos. I became aware of the logistic map and
the period-doubling road to chaos. The logistic map g(z) = Az(1 —=2) maps
the unit interval [0, 1] into itself when 0 < A < 4. It can be shown that
there is a sequence 0 < A\; < -+ < Ay <€ -+ < 4 of values of A with the
property that for each A, there is a point z in [Ms, An41) whose orbit is
periodic with period 2”. I knew that Newton’s method could not converge
for f(z) = 22 + 1 since the initial guess and all iterates were real numbers
while the roots of f(z) were complex. Moreover, the Newton iterates ap-
peared to be “chaotic.” It is this interesting concept that I have decided to
focus on. I will show in this paper the basic properties that are needed for
chaos and that the Newton iterates for f(z) = 22 + 1 are in fact chaotic.

To begin, I need to introduce some basic terms and concepts. First, let
g : S — S be a function where S is an infinite set of real numbers. In my
examples, S will be the real line or an interval of real numbers. The main
concept needed is the idea of a chaotic function. I will now lay before you
the definition of a chaotic function, but there will be several terms that will
need to be defined, which I will do thereafter in a stepwise fashion.

Definitions

The ultimate goal of this first section is to understand what a ckaotic



42 The Pentagon

function is:

Definition 1. We say g : S — S is a chaotic function if
1) the periodic points of g are dense in S,
2) g is topologically transitive, and
3) g exhibits sensitive dependence on initial conditions.

Now that the immediate goal is in sight, I will define the necessary
concepts for chaos. In the following definitions, g is a function from S to

S.

Definition 2. Let 2 € S. The orbit of z is the sequence of g-iterates of z;
that is, the orbit of = is the sequence zo = z, z; = g(z0), z2 = 9(z1), ...,
Zos1 = 9(2n), .- -

Definition 3. Let z € S. Then z is a fixed point of g if g(z) = z; that is,
the orbit of z is the constant sequence z, z, z, ... .

Ezample 3.1. The fixed points of g(z) = z!/2 on the interval [0, c0) are
A=0and A=1.

Definition 4. The doubling map is the map D : [0,1) — [0, 1) defined as
follows:

2z ifOSz<%

D(z) = 1
22-1 ifz<a<l

The doubling map will be very important for the remainder of this
paper. Points with periodic orbits are easy to compute for the doubling
map. The examples for definitions 5 and 6 are periodic points over the
doubling map.

Definition 5. Let z € S. Then z is periodic with period n > 1 if the first
g-iterates zg = z, ..., 21 are distinct but z, = zy.

Ezample 5.1. Notice z = 1/3 is a periodic point with orbit 1/3 — 2/3 —
1/3—=-.--.

Ezample 5.2. Note that z = 1/5 is a periodic point with orbit 1/5 — 2/56 —
4/56-3/6 = 1/5—---.

Definition 6. Let ¢ € S. Let 29 = z,...,Zn-1,2Zn be the orbit or g-
iterates of z. Then z is eventually periodic if there exists N > 1 so that
1) the Nth iterate zn is periodic, and
2) if N > 1, zn_, is not periodic.

Ezample 6.1. Notice z = 1/14 is eventually periodic with orbit 1/14 —
1/7—=2/T24/T—>1T—--..
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Definition 7. Let D be the real line or an interval of real numbers. A
set Z C X is dense in D if for every # € D and for every open interval
Ifs = (z — 6;, 2+ 6;) with center z and radius 6 > 0 there is a point of Z
in the interval,

Ezamples 7.1. The rational numbers are dense on the real line. The dyadic
rationals (rational numbers whose denominators are a power of 2) are dense
on the real line.

Definition 8. We say ¢ : X — X is topologically transitive if for any pair
of points z and y and any ¢ > 0 there is & third point z within € of z whose
orbit comes within ¢ of y; that is, there is a point in the orbit of z whose
distance from z is less than ¢ and a point in the orbit of z whose distance
from y is less than ¢.

Definition 9. We say g : X — X is sensitively dependent on initial
conditions if there is a § > 0 such that for any z and ¢ > 0, there is a y
within ¢ of z and a k > 1 such that the distance between z; = g*(z) and
vr = g8 (y) is at least §.

Now that I have the basic concepts I need, I can get to the heart of the
matter. I will show that for f(z) = z2+1, the map g(z) = z— f(z)/f'(z) is
chaotic through the following steps: 1) I will prove that the doubling map
D on [0,1) is chaotic; 2) I will consider how the doubling map D and the
Newton iterate map g(z) = z—f(z)/f'(z) = § (z — ) for f(z) = z%+1 are
related. To do this, I will need to introduce the concept of two topologically
conjugate maps and discuss the importance of topological conjugacy for
showing that g(z) is indeed chaotic.

Step 1: The doubling map is chaotic.

We have seen examples of points in [0, 1) where orbits under the dou-
bling map D are periodic and eventually periodic. After repeated calcula-
tions, I noticed the following patterns:

Proposition 1. Let D : [0,1) — [0,1) be the doubling map and let
z =a/b> 0 where b # 0 and a and b have no common factors. Then
1) if b is a power of two (that is, a dyadic rational), then except for a
finite number of terms the orbit of x consists of zeros;
2) if b is odd, then z is periodic; and
3) if b is even but not a power of two, then z is eventually periodic.

Proof. All three assertions are apparent if we consider D from the proper
perspective. For z € [0,1), let z1/2 + 22/22 + 29/2% + .- = 0.7y %223 . ..
be a binary expansion of z. Then, D(z) = z2/2 + z3/2%2 + 24/23 + .-+ =
0.z3z3z4...; that is, D shifts the binary expansion of 2 by one to the left,
dropping the first binary digit z;.
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To clarify this, consider three examples.

Example of assertion 1: let z =5/8 = 1/2+1/8 = 0.101. Then D(z) =
1/4 =0.01, D*(z) = 1/2=0.1, and D3(z) = 0 = 0.0.

Example of assertion 2: let z = 11/15. Then 11/15 — 7/15 — 14/15 —
13/15 — 11/15 — . ... This orbit in terms of the binary expansion of z is

11/15 = 0.1011 1011 1011 -
7/15=10.011 1011 1011--- —
14/15=0.111011 1011--- —
13/15=0.1 1011 1011 -- —
11/15=0.1011 1011 .-- —

Example of assertion 3: let 2 = 9/22. Then 9/22 — 9/11 — 7/11 —
3/11 — 6/11 — 1/11 — 2/11 — 4/11 — 8/11 — 5/11 — 10/11 —
8/11.... This orbit in terms of the binary expansion of z is

9/22 = 0.0 1101000101 1101000101 -- —
9/11 =0.1101000101 1101000101 - . - —
7/11 = 0.101000101 1101000101 -- - —
3/11 = 0.01000101 1101000101 -. —
6/11 = 0.1000101 1101000101 --- —
1/11 = 0.000101 1101000101 .. - —
2/11 = 0.00101 1101000101 - -
4/11 =0.0101 1101000101 - - - —
8/11 = 0.101 1101000101 - .. —
5/11 =0.01 1101000101 --- —

10/11 = 0.1 1101000101 - - - —
9/11 =0.1101000101--- —

Proposition 2. The set of periodic points of the doubling map is dense in
[0,1).

Proof. Since Z = {a/b| b > 0, a and b have no common factors, and b is
odd} is dense in [0,1) and each point of Z is a periodic point of D, then
the first set of periodic points of the doubling map is dense in [0, 1).

Proposition 3. The doubling map is transitive.

In definition 8, I defined topologically transitive. From that definition
and the following lemma, I will prove that D is topologically transitive.

Lemma. If two numbers z,y in [0,1) are close, that is, if the binary
expansions of z and y have the first block of k digits in common, then
d(z,y) < 1/2F-1,
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In order to prove that D is topologically transitive, it suffices to show
that there is a z in [0,1) so that the orbit of z comes arbitrarily close to
both z and y.

Proof (of proposition 3). Let £ = 0.z1z3... and y = 0.p1y2... be two
distinct points of [0,1). By a block of length k, I will mean the set of
binary expansions of 0,...,2¥~1. Thus, the blocks of length k = 1, 2, and
3 are as follows:

fork=1: 0,1;
for k=2: 00,01,10,11;
for k=3: 000,001,010,011,100,101,110,111.

Let = be the number in [0, 1) whose binary digits are obtained by concate-
nating the blocks of length k& > 1; that is,

2=01000110 11 000 001 010 011 100 101 110 111....

I claim that the orbit of z (which consists of the sequence obtained by
shifting the binary expansion of z to the left one digit at a time) is close to
both z and y. We also need the following notation: for n > 1, we let 0"z
be the number obtained by shifting the binary expansion of z n times to
the left.

Let ¢ > 0 be given. Pick n > 1 so that 1/2" < e. Let b; (by) be the
block consisting of the first n + 1 digits of the binary expansion of z (y).
Both the blocks b; and by, occur in z. Thus, we can shift 2 to the left until
the block b; occurs in the first digits of z; that is, there is k; > 0 so that the
binary expansions of z and o**z match. Therefore, d(z,0%=z) < 1/2" < ¢;
that is, o*= 2 is close to z. A similar argument shows that some element in
the orbit of z is close to y.

In definition 9, I defined sensitive dependence. From that definition, I
will prove proposition 4.

Proposition 4. The doubling map is sensitively dependent on initial con-
ditions.

Proof. It suffices to show that there is § > 0 so that for any = in [0, 1)
and for any ¢ > 0, there is a y so that d(z,y) < ¢ and there isa k > 0
so that the kth points in the orbits of z and y differ by at least §; that is,
d(o*z,0ty) > 6. Let 6§ = 1/2. Let 2 = 0.z;z3... be in [0,1). Let € > 0
be given. Pick k > 1 so that 1/2* < ¢. Let y = 0.z;25... be the binary
number with y; = z; for all i > 1 except fori = k+2. Let yp42 = 1 —Zp42.
Then d(z,y) < 1/2* < ¢ but d(o*+'z,o*Hly) = 1/2 = 6.

By the last three propositions, we now know that the doubling map D
is chaotic.
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Step 2: The Newton iterate map is chaotic.

We will show that the Newton iterate map g(z) = z — f(z)/f'(z) =
1(z — 1) is chaotic because it is topologically conjugate to the doubling
map D.

Definition 10. If a function f is one-to-one, onto, and continuous and its
inverse is continuous, then the function f is a homeomorphism.

Definition 11. Let f: X — X and g : Y — Y be functions. Then f is
topologically conjugate to g if there is a homeomorphism 7 : X — Y such
that 7o f = g o T; then, T is called a topological conjugacy.

This relationship is represented by the following commutative diagram.

X—!—-»X

rl 17
Y — Y
J

Topological conjugacy is important because it sometimes allows for the
relation of a known chaotic map, such as the doubling map, to a map we
are interested in studying. To be more precise, the following lemma is a
working tool for those who thrive on chaos. For a proof of this proposition,
please refer to [2] (pp. 89-91) or any standard text on chaos.

Proposition 5. If f and g are topologically conjugate, then f is chaotic if
and only if g is chaotic.

In (1], Robert L. Devaney argues that the doubling map D and the
Newton iterate map g(z) = 1(z — 1) for f(z) = z? + 1 are topologically
conjugate using the conjugacy map r(z) = cot(nz), and thus the following
commutative diagram holds:

[0,1) —2— [0,1)

R —— R
)

It would follow by proposition 5 that since D is chaotic, g is chaotic.
There are, I have noticed, several problems with this theory. The trou-
ble is that the diagram is not quite accurate. There are two obvious diffi-
culties:
1) 7(0) is not defined. It is true, however that 7 : (0,1) — (0,1) is a
homeomorphism.
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2) g is not defined on R since g(0) is undefined. Things are even worse:
there are many points z € R \ {0} for which the g-orbit of z is not
defined.

I will consider the second difficulty first. Once we have identified an

appropriate domain for g, the first difficulty will disappear!

I now list some points z in R for which the g-orbit of z is not defined.

0 — does not exist (d.n.e.)
1—-0—dne.
-1—>0—dne.
1+v2—1—=0—dne.
1-v2—51-0—dne.
-14v2 > -1=-0->dne.
-1-vV25-1-0->dne.
etc.

To properly find a domain on which g is defined and for which all points
have g-orbits, we need to remove from R the points whose g-orbits even-
tually contain zero. Since 7(1/2) = 0, we can find the points of R. whose
orbits eventually become zero by finding the points in (0, 1) whose D-orbits
eventually become 1/2 and then take their image under the map . A brief
caiculation shows the following:

1/4—-1/2

3/4—-1/2
1/8—-1/4—1/2
3/8—=3/4—1/2
5/8—1/4—1/2
7/8 =+ 3/4—1/2
1/16-1/8—1/4—1/2
3/16 - 3/8—3/4—1/2

The set of points in [0, 1) whose orbits eventually become 1/2 can now be
defined as follows:

DQ = {a/b|0 < a < b, where b is a power of two and a is odd}
= the set of dyadic rationals in the interval (0,1).

We are now able to fix those few problems and make 7 a topological
conjugacy. First, let DQ be the set of dyadic rationals in (0,1) and let
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A =1[0,1)\ DQ = (0,1)\ DQ. Then, let D*(z) = D(z) for z € A. Then
D*(z) is chaoticon A. Let R* = R\7(DQ) and let 7°(z) = r(z) for z € A.
Then 7* is a homeomorphism from A to R*. Finally, let g*(z) = g(=) for
z € R*. Using these definitions, the maps D* : A — A, g* : R* — R",
and 7* : A — R" are properly defined and 7* is a homeomorphism.

Proposition 6. For the maps as defined above, t* o D* = g* o 7*; that
is, T(D"(z)) = g*(v*(z)) for all = € A or, equivalently, the following
commutative diagram holds:

-l |

RO R‘
g .

Proof. Consider g * (z). We have

*(D*(2)) = cot(wD(z)) = cot(27z)
_ cos?(nz) —sin’(7z)
2sin(7z) cos(nz)

= 1 cot(nz) - = ¢"(r"(2).

4 cot(rz)

Therefore, g°(z) is conjugate to the doubling function D*(z).

Now that we have established topological conjugacy between the two
maps, we can focus on showing that g(z) is chaotic.

Proposition 7. Both D* and g* are chaotic.

Proof. The details of this proof are not difficult. I will outline the details
for both D* and g¢°.

Let PP = {a/b | b is an odd number and 0 < a < b}. Then PP con-
gists of periodic points of D* in A and PP is dense in A. Also, r*(PP)
consists of periodic points of ¢* in R* and 7*(PP) is dense in R*. An
example goes as follows: (1) z = 1/3 — 2/3 — 1/3 is a periodic orbit of
D* in A; (2) r(1/3) = cot(n/3) = cos(x/3)/sin(x/3) = 1/V/3; and (3)
(2) = 1/v/3 — ~1/+/3 — 1/v/3 is a periodic orbit of g* in R".

The orbit of z=01 0001 10 11.-- € A is dense in A and thus D* is
topologically transitive. The orbit of 7*(z) € R* is dense in R* and thus
g* is topologically transitive.

Similarly, since z € A, the sensitive dependence of D on [0, 1) implies
the sensitive dependence of D* on A. Finally, the sensitive dependence of
g* follows from that of D* and the fact that 7° is a homeomorphism.
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Now all problems have been fixed!!! Therefore D* is chaotic on A which
indicates that g° is chaotic on R* = R\ r(DQ).

With that, I conclude my presentation of a Newton’s method trip to
chaos. I know that the trip has been quick and short, but I hope quite
interesting. Taking such a known concept as Newton’s method and getting
an unexpected response was quite enjoyable. The one thing that I am sure
of: The trip from Newton to Chaos is well worth the time!

Acknowledgements. I would like to give a special “thank you” to Dr. Gary
McGrath for all of his time helping me prepare this paper.
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From the Pages of ...

“The following is an excerpt from a fascinating document contributed
to the editor’s [J. M. Sachs’] collection by a friendly statistician. The
document is meant to apply to statistical design and quality control but
the mathematical representation seems worth repeating here. There is no
source indicated on the material so credit cannot be given.

“Years ago when the Universe was relatively easy to explain the famous
Finagle Constant K; was introduced so that 2’ = 2+ K, where z represents
a measured variable, 2’ its theoretical counterpart and K is arbitrary.
Later as difficulties compounded Fy, the fudge factor appeared and 2’ =
Fyz + K; was used as an aid and comfort to those in distress. In World
War II the multiplicity of experiments made a stronger influence imperative
and some unsung hero rose to the occasion with the diddle factor Fy so that
it was now possible to use z' = Fyz? + Fyz + K. This helped a lot. It is
felt that for the present reality can be brought into reasonable agreement
with theory by the use of these three constants and no further extension
in this direction is anticipated in the immediate future. It seems wise to
point out however that there is a difference in the structure and thus the
use of the three constants. The Finagle Constant changes the universe to
fit the equation. The fudge factor changes the equation to fit the universe.
Finally the diddle factor changes both just enough to insure an adequate fit
somewhere about half way between. This sacrifices both reality and theory
and is known as statistical fence sitting.”

—The Pentagon, Fall 1960 (pp. 45-46)
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The Problem Corner

Edited by Kenneth M. Wilke

The Problem Corner invites questions of interest to undergraduate stu-
dents. As a rule the solution should not demand any tools beyond calculus.
Although new problems are preferred, old ones of particular interest or
charm are welcome, provided the source is given. Solutions should accom-
pany problems submitted for publication. Solutions of the following prob-
lems should be submitted on separate sheets before January 1, 1999. Solu-
tions received after the publication deadline will be considered also until the
time when copy is prepared for publication. The solutions will be published
in the Spring 1999 issue of The Pentagon. Address all communications to
Kenneth M. Wilke, Department of Mathematics, 2756 Morgan Hall, Wash-
burn University, Topeka, Kansas 66621 (e-mail: xxwilke@acc.wuacc.edu).

PROBLEMS 515-519

Problem 515. Proposed by Bob Prielipp, University of Wisconsin—Oshkosh,
Oshkosh, Wisconsin.
Consider the following equation:

*  4(z*-z+1)°-27(z - 1)’z% = (z - 2)’(2z — 1)?(= + 1)°.

Either (a) prove that the equation (*) holds for each real number = using
elementary algebra or (b) find a real number « such that the left side of (*)
does not equal the right side of (*).

Problem 516. Proposed jointly by Underwood Dudley, DePauw Univer-
sity, Greencastle, Indiana and Russell Euler and Jawad Sadek, Northwest
Missouri State University, Maryville, Missouri.

For every positive integer n, prove that there exists a prime p with n
digits.

Problem 517. Proposed by the editor.

Consider a rectangular piece of paper ABCD where AB = CD = 24
inches and BC = DA = 10 inches. Next bring point A into coincidence
with point C and fold the sheet, creating a crease from AB to CD. How
long is the crease?
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Problem 518. Proposed by Russell Euler and Jawad Sadek, jointly, North-
west Missouri State University, Maryville, Missouri.

Let z be a positive integer greater than 1. Prove that z20%+4 421064211
is composite for all nonnegative integers k.

Problem §19. Proposed by the editor.

Define a sequence of integers a;,as,as,... where a; is an arbitrarily
chosen positive integer and for k > 1, ax = (3ax-1/2) + 1. Can one find a
value for a; such that ajgo; is odd and a; is even for all integers k& < 10017

Please help your editor by submitting problem proposals.

SOLUTIONS 503, 505-509

Editor’s comment. The following names were inadvertently omitted
from lists of solvers in previous columns: Russell Euler and Jawad Sadek,
Northwest Missouri State University, Maryville, Missouri (problems 490,
491, 493, and 494) and Carl Libis, University of Alabama, Tuscaloosa, Al-
abama (problem 499). The editor apologizes for these oversights. Also, late
solutions for problem 504 were received from Scott H. Brown, Montgomery,
Alabama and James Dunn and Julie Dunn (jointly), Fresno Problem Solv-
ing Group, California State University, Fresno, California.

Problem 503. Proposed by C. Bryan Dawson, Emporia State University,
Emporia, Kansas.

Using only a compass and an unmarked straightedge, construct the
orthocenter, circumcenter, centroid, and the nine-point circle of an arbi-
trary triangle using the compass six or fewer times. The drawing of the
nine-point circle is included as one of the uses of the compass.

Solution by the proposer.

The solution can be achieved by following these steps. See the figure
for an illustration.

1. Using the vertices of a triangle as centers, construct a circle at each
vertex. The radius of each circle shall be the same and the radius shall be
large enough so that the circles intersect each other in pairs. (This accounts
for three uses of the compass.) Now the straightedge is used to find the
perpendicular bisector of each side of the triangle, the circumcenter of the
triangle, the median to each side of the triangle, the centroid of the triangle,
and the Euler Line which passes through the centroid and the circumcenter.
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2. Using the centroid as a center, construct the circle which passes
through the circumcenter and label the second intersection of this circle
with the Euler line as A. (This accounts for the fourth use of the compass.)

3. Using the point A as a center, construct the circle which passes
through the centroid. (This accounts for the fifth use of the compass.) This
circle intersects the Euler line at the triangle’s orthocenter since the centroid
trisects the line segment joining the circumcenter and the orthcenter. Also
the line connecting the points of the two circles constructed in steps 2 and
3 intersects the Euler line at the center of the nine-point circle.

4. Construct the nine-point circle using the point found in step 3 as a
center and another point on this circle, such as a midpoint on a side of the
triangle, to determine the radius of the nine-point circle.
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Editor’s comment. Clayton W. Dodge, University of Maine—Orono,
Orono, Maine, points out that the Poncelet-Steiner construction theorem
states that any Euclidean construction, insofar as the given and required
elements are points, may be accomplished with straightedge alone in the
presence of a given circle and its center [H. Eves, College Geometry, Boston,
Jones and Bartlett, 1995, p. 185]. Thus one must use the compass just twice,
the first time to draw an arbitrary circle to satisfy the hypothesis of the
Poncelet-Steiner theorem, and the second time to draw the nine-point circle
after locating its center and any of the points on its circumference. Dodge
also notes that if one can use both sides of the straightedge, so that one
can draw a pair of parallel lines, one does not need the arbitrary circle to
perform the constructions. In this case just one use of the compass suffices,
the actual drawing of the nine-point circle.

Problem 505. Proposed by J. Sriskandarajah, University of Wisconsin
Center—Richland, Richland Center, Wisconsin.
If a + b+ ¢ = abc, prove that

2a + 2 + 2c 8abe
1-—a2 " 1-8%2 1-c2 (1-a?)(1-6?)(1-c?)

Solution by Donna K. Wilkinson, Pittsburg State University, Pittsburg,
Kansas. (Revised by the editor.)

Combining terms, the left side of the given relation becomes

2a(1 — b%)(1 — c2) + 26(1 — a®)(1 ~ ¢?) + 2¢(1 — a2)(1 - bz)
(1-a?)(1 - 52)(1 - ¢2)

Hence it suffices to show that
(1) 2a(1 -8%)(1 = c®) + 2b(1 — a®)(1 — ¢?) + 2¢(1 — a?)(1 - b?) = 8abe

given that a+ b+ c—abc = 0.
Expanding the left side of (1) and collecting terms, we have

2a(1 — B%)(1 — ¢?) + 2b(1 = a®)(1 — ¢?) + 2¢(1 — a?)(1 — b?)
=2(a+ b+ ¢) + 2ac(—a — ¢ + abc) + 2bc(—b ~ ¢ + abe)
+ 2ab(—a — b + abc)
= 2abc + 2abc + 2abe + 2abe = 8abe.

This completes the proof.

Also solved by: Scott H. Brown, Montgomery, Alabama; James Dunn,
Julie Dunn and Anthony Leyba (jointly), Fresno Problem Solving Group,
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California State University, Fresno, California; Mark Maxwell, Missouri
Southern State College, Joplin, Missouri; Bob Prielipp, University of Wis-
consin—Oshkosh, Oshkosh, Wisconsin; Tran van Thuong, Missouri South-
ern State College, Joplin, Missouri; and the proposer.

Problem 506. Proposed by Bob Prielipp, University of Wisconsin—Oshkosh,
Oshkosh, Wisconsin.

Find all of the positive integer values of n for which the expression
4n? + 21n is a perfect square.

Solution by Casey Leavitt, student, Missouri Southern State College, Joplin,
Missouri.

Let A? = 4n2 + 21n where A and n are positive integers. Then since
21n > 0, A%2 > 4n? or A > 2n. Let A = 2n+C for some positive integer C.
Then (2n + C)? = 4n? + 21n and by our choice of n and C, we must have
21n — 4nC = C? > 0. Hence 21 > 4C so that C must be 1, 2, 3, 4 or 5.
By testing each of these values of C in the equation (2n + C)? = 4n? + 21n
and looking for integer values of n, only C = 3 corresponding to n = 1
and C = 5 corresponding to n = 25 are solutions. Hence the only possible
values for A% are 25 corresponding to n = 1, and 3025 corresponding to
n = 25.

Also solved by: Alexander Shaumyan, Eastern Kentucky University,
Richmond, Kentucky; Linda Obeid, Alejandro Munguia and Mike Fuller
(jointly), Fresno Problem Solving Group, California State University, Fresno,
California; and the proposer.

Problem 507. Proposed by Kenichiro Kashihara, Sagamihara, Kanagawa,
Japan.

Given any integer n > 1, the value of the pseudo-Smarandache function
Z(n) is the smallest integer m such that n evenly divides 3}, k. Let p be
a positive prime and s be an integer > 2. Show that

s+ _ 1 if pis even
Z(p')={”, P
p’ ~1ifpisodd.

Solution by Carl Libis, University of Alabama, Tuscaloosa, Alabama.

We know that Y ;. , k = m(m+1)/2 for some integer m > 0. Further-
more, ged(m, m+1) = 1. Now for p an odd prime, p* | m(m+1)/2 implies
that either m = jp* or m + 1 = jp® for some positive integer j. By taking
j =1, and taking the smaller of the two values, we have Z(p*) = p* - 1, if
p is odd.

Now for p = 2, p* | m(m + 1)/2 implies that either m = j2'+! or
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m+ 1 = j2*+!, By taking j = 1, and taking the smaller of the two values,
we have Z(2°) = 2*+1 — |,
Thus

s+l _q: . o = 9).
20" = {p 1if p is an even prime (p = 2);

p’ —1if pis an odd prime.

Also solved by: Charles Ashbacher, Hiawatha, Iowa; Bob Prielipp, Uni-
versity of Wisconsin—Oshkosh, Oshkosh,Wisconsin; Alexander Shaumyan,
Eastern Kentucky University, Richmond, Kentucky; Tran van Thuong, Mis-
souri Southern State College, Joplin, Missouri and the proposer.

Problem 508. Proposed by the editor.

Let ABCD be a parallelogram. Let EFGH be a quadrilateral inscribed
in parallelogram ABCD such that the area of EFGH is exactly half the
area of parallellogram ABCD. Show that at least one diagonal of EFGH
is parallel to a side of ABCD (see figure below).

R F B

p MH c

Solution by Michael Robert Kleinhenz, Missouri Southern State College.

We shall use the figure below (see p. 56) with the quantities designated
as marked. Let AB = CD =a, AF =y, FB=a~y, DH = z and
HC = a— z. Note that h; is the line which passes through the point
E and is perpendicular to the line DC. Similarly A2 is the line which
passes through the point E and is perpendicular to the extension of the
line AB. Similarly Ag is the line which passes through the point G and is
perpendicular to the extension of line DC. Similarly h4 is the line which
passes through the point G and is perpendicular to line AB.

If hy = hg, then the diagonal EG is parallel to both of the sides CD
and AB and we are done. Now suppose that EG is not parallel to the line
DC. Then hy # hs and hy — hz 3 0. Then by our assumption, the sum of
the areas of the triangles EDH, AEF, FBG and GHC equals one half of
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the area of parallelogram ABCD. Hence
(1) z-hi+y-ha+(a—2) -h3+(a-y) -ha=a-(ha+ha).

Now since hy + hz = hg + hg or equivalently, Ay — h3 = h4 — h3, equation
(1) simplifies to z(hy — h3) = y(ha — h2) = y(h1 — h3), or z = y. Hence
FH is parallel to AD.

A £ B

.

D H

Also solved by: Charles Ashbacher, Hiawatha, lowa; Alejandro Mun-
guia, Linda Obeid and Mike Fuller (jointly), Fresno Problem Solving Group,
California State University, Fresno, California and Bob Prielipp, University
of Wisconsin—Oshkosh, Oshkosh, Wisconsin. One incorrect solution was
received.

Problem 509. Proposed by Kenichiro Kashihara, Sagamihara, Kanagawa,
Japan.

Given any integer n > 1, the value of the pseudo-Smarandache function
Z(n) is the smallest integer m such that n evenly divides 3}, k.

(a) Solve the diophantine equation Z(z) = 8.

(b) Show that for any positive integer p the equation Z(x) = p has
solutions.

(c*) Show that the equation Z(z) = Z(z + 1) has no solutions.

(d*) Show that for any given positive number r there exists an integer
s such that |Z(s) - Z(s+1)| > r.

Solution to (a), (b), and (d) by Tran van Thuong, Missouri Southern State
College, Joplin, Missouri.

First we shall establish the following: ‘

Lemma: For any positive integer n, Z(n) = (—1 + +/1+ 8nt)/2 where

t is the smallest positive integer no greater than 2n — 1 for which the
expression 1+ 8nt is an odd perfect square.

Proof: Let Z(n) = m where m is a positive integer. Then by the defini-
tion of the pseudo-Smarandache function, 2n divides the product m(m+1).
Then m(m + 1) = 2nt for some positive integer ¢. Solving the quadratic
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equation m2 + m — 2nt = 0 and taking the positive root, we have

1 m=Z(n) = w

By taking ¢ = 2n — 1, 1 + 8nt = 1 + 8»(2n — 1) = (4n — 1)? which is an
odd petfect square. Noting that equation (1) shows that m decreases as the
value of ¢ decreases, the minimality of m can be guaranteed by choosing
t < 2n — 1 and such that 1 + 8nt is an odd perfect square. Choosing
t = 1 shows that (~1+ +/1 4 8n)/2 is the lower bound for Z(n). Choosing
t = 2n — 1 shows that 2n — 1 is an upper bound for Z(n). This proves the
lemma.

As a result of the lemma, we obtain the following results: if n is an
even integer, we can take { = 2n — 1 so that

(22) iVl “2”8" <Z(n) <2 -1
if n is an odd integer, we can take ¢t = (n — 1)/2 so that
(2b) Zityvltdn "2”8" <Z@m)<n-1

We now solve part (a). Since Z(z) = 8, z must be a divisor of (8-9)/2 =
36. Then since there is no integer r < 8 for which z divides r(r +1)/2, we
need only check z = 9, 12, 18 and 36. One can easily verify that each of
the values x = 9, 12, 18 and 36 produces a solution.

Solution to part (b). Equation (2b) establishes that a solution for the
equation Z(n) = p exists for each odd prime p. Since Z(3) = 2, then
there is always a solution to the equation Z(n) = p for each prime p.
[Editor’s comment: The proposer notes that since Y ;- k¥ = p(p + 1)/2,
Z(p(p + 1)/2) = p. This corresponds to taking ¢ = (p + 1)/2 in equation
(1))

Solution to part (d). Let r be a positive integer and let n be a positive
integer greater than r. Then let s = 2"; thus s + 1 = 2" + 1 which is odd.
Then by equation (2b), Z(2"+1) < 2". By Problem 507, Z(2") = 2"+1 1.
Finally Z(2") - Z(2" +1) > 2" -2"-1>n>r.

Solution to part (c¢) by Bryan Dawson, Emporia State University, Emporia,
Kansas.

Suppose Z(z) = Z(z+1) = m, where m is the smallest integer for which
z divides m(m+1)/2. Then we have z | m(m+1)/2 and z+1 | m(m+1)/2.
Since z and = + 1 are relatively prime, we see that z(z + 1) | m(m + 1)/2.
Therefore m(m + 1)/2 = kz(z + 1) for some integer &k, and m(m + 1) =
2kx(z+1). Thus z < m, ie,z <m=Z(z) = Z(z +1).
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Note that if 2 is odd, then z | z(z+1)/2. Alternatively, if z is even, then
z+1isodd and z+1 | z(z+1)/2. In either case, Z(z) = Z(z+1) < z. This
contradicts the last statement of the previous paragraph and our choice of
m. Hence there is no solution to Z(z) = Z(z + 1).

Also solved by: Charles Ashbacher, Hiawatha, Iowa (part (d) only) and
the proposer (parts (a) and (b) only).

Thank You, Referees!
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Kappa Mu Epsilon News

Edited by Don Tosh, Historian

News of chapter activities and other noteworthy KME events should be
sent to Don Tosh, Historian, Kappa Mu Epsilon, Mathematics Depart-
ment, Evangel College, 1111 N. Glenstone, Springfield, MO 65802, or to
toshd@evangel.edu.

CHAPTER NEWS

AL Gamma Chapter President — Cheryl Roberson
University of Montevallo, Montevallo 20 actives, 5 associates

Other 1997-98 officers: Ava Putman, vice president; Carrie Chickerell,
secretary; David Taylor, treasurer; Larry Kurtz, corresponding secretary;
Karolyn Morgan, faculty sponsor.

AL Zeta Chapter President — Melissa Boren
Birmingham Southern College, Birmingham 17 actives, 13 associates

Other 1997-98 officers: Melanie Styers, vice president; Shelley Moor,
secretary/treasurer; Mary Jane Turner, corresponding secretary; Shirley
Branan, faculty sponsor.

AR Alpha Chapter President — Danielle Morris
Arkansas State University, State University 4 actives, 1 associate

Other 1997-98 officers: Melissa Dubois, secretary; Rusty Jones, treas-
urer; William Paulsen, corresponding secretary/faculty sponsor.

CA Delta Chapter President — Caroline Sabol
California State Polytechnic University, Pomona 15 actives, 6 associates

Other 1997-98 officers: Mark Walker, vice president; Holly Lam and
Jason Ramirez, secretaries; Duy Pham, treasurer; Richard Robertson, cor-
responding secretary.

CO Gamma Chapter President — Heather Duncan
Fort Lewis College, Durango 25 actives, 9 associates
The chapter met to hold an initiation ceremony at the beginning of the
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semester. We met once again to discuss the Regional KME Convention,
which our school is hosting. Topics of discussion were holding a poster
session as well as student presentations of papers, and the various arrange-
ments that need to be made in order to put this event on. QOther 1997-
98 officers: Travis Kirkpatrick, vice president; Cynthia Hilliker, secretary;
David Crawford, treasurer; Richard Gibbs, corresponding secretary; Debbie
Berrier, faculty sponsor.

CO Delta Chapter President — Adam Furst
Mesa State College, Grand Junction 20 actives
Forty-two members, initiates, and guests attended the eighth annual
initiation banquet and ceremony on April 23, 1997. Eleven students and
three faculty members were initiated, bringing the chapter membership to
90. The fall semester began with a “bagel party” in Lincoln Park on Sept.
4th. Twenty-five members and guests attended. Key pins and certificates
were presented to the April initiates and possible activities for the year
were discussed. Several members are currently working on a web page for
our chapter; Kenneth J. Simler was a co-presenter of “The Development of
an IPX Delphi Component” at a Brown Bag Seminar in October, and two
members are part of a team planning to compete in the upcoming COMAP
Mathematical Contest in Modeling. Other 1997-98 officers: Christopher
Day, vice president; Michelle McGarry, secretary; Saori Okamura, treasurer;
Donna Hafner, corresponding secretary; Kenneth Davis, faculty sponsor.

FL Beta Chapter President — Cindy Chastain
Florida Southern College, Lakeland 20 actives, 8 associates

Other 1997-98 officers: Chris Scofield, vice president; Danny Koury,
secretary; Gayle Kent, corresponding secretary; Susan Rinker, faculty spon-
8or.

GA Alpha Chapter President — Tonja Davis
State University of West Georgia, Carrollton 25 actives

At our first meeting on October 15, membership certificates and pins
were distributed to the new initiates and a Fall Social was planned at a local
Mexican restaurant for later in the quarter. For the eleventh consecutive
year, Georgia Alpha held its annual Food and Clothing Drive for the Needy
with the proceeds being delivered to the Salvation Army at the end of the
quarter. Our Fall Social on November 6 was well attended and a good time
was had by all. Other 1997-98 officers: Stephanie Parker, vice president;
Lisa Farmer, secretary; Marta Valentic, treasurer; Joe Sharp, corresponding
secretary; Joe Sharp and Mark Faucette, faculty sponsors.
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IL Delta Chapter President — Tom Wiese
University of St. Francis, Joliet 18 actives

Other 1997-98 officers: Toni Dactilidis, vice president; David Daly,
secretary; Elizabeth Mastin, treasurer; Rick Kloser, corresponding secre-
tary /faculty sponsor.

IL Eta Chapter President — Bethany Webb
Western Illinois University, Macomb 10 actives

In September, we held a new student reception with pizza and soda.
Two guest speakers were from the spring of 97 “Writing in The Mathe-
matical Sciences” class. The students presented their papers to introduce
new students to what this recently-developed course is all about. In Oc-
tober, two Western Illinois University alumni came back for an evening
to speak to our group about their teaching experiences. One has taught
in a relatively large high school while the other is at a small rural school.
They provided application and interviewing tips, first year suggestions, and
words about how times have changed in recent years. In January, another
WIU alumnus returned to speak about the differences he has encountered
between the public middle school he taught at last year and the private Mus-
lim academy where he currently has a position. He also provided resume
tips and guidelines to make the first few years productive and enjoyable.
Other 1997-98 officers: Thomas Johnson, vice president; Katherine Fi-
jalkowski, secretary; Andrea Crary, treasurer; Larry Morley, corresponding
secretary/faculty sponsor.

IL Theta Chapter President — Donna Snaidauf
Benedictine University, Lisle 12 actives, 6 associates

Our activities for the fall semester included a “Pi” sale (brownies, cook-
ies, and of course pi) and we watched the Nova program on Andrew Wiles
and his proof of Fermat’s Last Theorem. Other 1997-98 officers: Julie
Deroche, vice president; Tracii Friedman, corresponding secretary /faculty
sponsor.

IN Beta Chapter President — Jessica Goldsand
Butler University, Indianapolis 19 actives

Other 1997-98 officers: Lee Duncan, vice president; Catherine Tischio,
secretary; Yuzhen Ge, corresponding secretary.

IN Delta Chapter President — David Zimmer
University of Evansville, Evansville 40 actives, 23 associates

The chapter offered tutoring free of charge for students at the Univer-
sity of Evansville. Other 1997-98 officers: Dennis Goodman, vice president;
Jaclyn Cron, secretary; Mohammad Azarian, treasurer/corresponding sec-
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retary/faculty sponsor.

IA Alpha Chapter President — Suzanne Shontz
University of Northern Iowa, Cedar Falls 36 actives

Students presenting papers at local KME meetings included Amy Grot-
john on “Research on mathematics learning by first graders,” Erin Blaine
reporting on “Summer Actuarial Internship on Investment and Finance,”
Suzanne Shontz on “Summer Undergraduate Research in Applied Linear
Algebra,” Jesse Connell on “The Geometry of Involute Gears,” and Gary
Spieler on “Strassen’s Algorithm for Matrix Multiplication.” Beth Kock
addressed the fall initiation banquet on “Markov Chains.” Five new KME
members were initiated. Sarah Lacox was awarded the MAA student mem-
bership. The annual KME Homecoming Coffee was hosted by Emeritus
Professors Carl and Wanda Wehner. Five KME alums attended along with
current KME members and faculty. Other 1997-98 officers: Amy Grotjohn,
vice president; Sarah Lacox, secretary; Erin Blaine, treasurer; John Cross,
corresponding secretary/faculty sponsor.

IA Delta Chapter President — Shilah Lybeck
Wartburg College, Waverly 46 actives

Our year began with a pizza party at the home of Dr. Glenn Fenneman,
faculty sponsor. Problem Corner problems were distributed and members
were encouraged to solve them and submit solutions. October’s meeting
centered around making plans for a float in the Renaissance Fair. The
November meeting program was the “Marriage Knot Problem” enacted
by two members and presented by Dr. Fenneman. Initial plans were also
made for attending the regional meeting in Macomb, Illinocis. Some addi-
tional Sunday evening meals were also arranged as socials during the term.
Other 1997-98 officers: Christopher Judson, vice president; Joshua Nel-
son, secretary; Emily Bailey, treasurer; August Waltmann, corresponding
secretary; Glenn Fenneman, faculty sponsor.

KS Alpha Chapter President — Mark Albert
Pittsburg State University, Pittsburg 50 actives, 8 associates

The fall semester activities began with a pizza party and initiation in
October. Eight new members were initiated. The initiation ceremony was
followed by an interesting and entertaining presentation by Dr. Yaping Liu,
called MathemaTricks. In November, KME sponsored a panel discussion,
“The Classroom Experience — What Do [ Need to Know?”, which fea-
tured recent Pittsburg State mathematics graduates providing advice for
future math educators. Fall semester activities concluded with a holiday
party at the home of Dr. Elwyn Davis, PSU Math Dept. chair, at which
members watched the video “The Tunnel of Samos.” Other 1997-98 of-
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ficers: Kathy Denney, vice president; Kari Hamm, secretary; Lisa Swaim,
treasurer; Cynthia Woodburn, corresponding secretary; Yaping Liu, faculty
sponsor.

KS Beta Chapter Co-Presidents — Rae Ann LeValley, Kristen Goetz
Emporia State University, Emporia 20 actives, 4 associates

Our KME chapter started out the semester with a booth at the annual
Activities Fair on campus. The purpose of this fair is to let incoming
students know about campus organizations. Demonstrations on how to
use graphing calculators were given at our booth. We are getting more
involved on campus this year, and participated in the campus-wide clean-
up for the first time. Our initation was held in November where we initiated
four new members. Along with the event we had a student presentation
demonstrating how to construct tetrahedral kites. We hope to continue
increasing our activities throughout this semester. Other 1997-98 officers:
Megan Little, treasurer; Connie Schrock, corresponding secretary; Larry
Scott, faculty sponsor.

KS Gamma Chapter President — Chad Eddins
Benedictine College, Atchison 7 actives, 13 associates

Early in September Kansas Gamma joined with the Physics Club in
sponsoring an alum visitor, Adam Taff, who spoke to the group on his career
in navy aviation. In early October the group gathered for a picnic evening
on the patio at faculty member Richard Farrell’s home. In mid-October Jef-
frey Blanchard shared with the group on his experience as an NSF summer
undergraduate researcher. His topic was “Beam Variation Problems.” Prior
to his talk Kansas Gamma initiated two new members and nine associate
members. On December 7, the group enjoyed the traditional Christmas
wassail at Marywood, home of Sister Jo Ann Fellin who returned to the
department this fall after the completion of a sabbatical. The final event
sponsored by the chapter for the semester was a presentation given by three
students on their computer science project. They described their efforts in
creating a home page with information on some rare books contained in the
Benedictine Library. Other 1997-98 officers: Jeff Blanchard, vice president;
Jo Ann Fellin, corresponding secretary/faculty sponsor.

KS Delta Chapter President — Douglas Appenfeller
Washburn University, Topeka 22 actives

We had two afternoon meetings with the Washburn Math Club, Math-
ematica. The first was a picnic with hamburgers, hot dogs, etc. Outdoor
games were played. The second was a pizza luncheon and a mathemat-
ics presentation was given. Other 1997-98 officers: Laurie Payeur, vice
president; Chung-Fei Tang, secretary; Justin Freeby, treasurer; A. Allan
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Riveland, corresponding secretary; Donna Lalonde and Ron Wasserstein,
faculty sponsors.

KY Alpha Chapter President — Elizabeth Barrett
Eastern Kentucky University, Richmond 25 actives

The fall semester began with floppy disk sales (together with the ACM
chapter) to students in the computer literacy class and the Mathematica
class. At the first meeting in the fall, the officers were elected and tenative
plans were made for the year. A student/faculty picnic was held at Lake
Reba Park in late September. Fifty-five people came to the picnic. Volley-
ball and lots of good food were available. The October meeting included
information about the Virginia Tech Math Exam and graduate programs
in math. In November, Lynne Brosius gave a presentation on Smith num-
bers (composite positive integers with digit sum equal to the digit sum of
the prime factors). She described one Smith number having 13,614,513
digits. The fall semester ended with the Christmas party and the White
Elephant Gift Exchange. The Puff the Magic Dragon tape surfaced again
this year and ended up in Ray Tennant’s possession. Other 1997-98 offi-
cers: David Curd, vice president; Tina Jordan, secretary; Jeremy Miller,
treasurer; Patrick Costello, corresponding secretary.

KY Beta Chapter President — Story Robbins
Cumberland College, Williamsburg 28 actives

On September 9, the Kentucky Beta chapter officers helped to host an
ice cream party for the freshmen math and physics majors. Along with the
Mathematics and Physics Club, the chapter had a picnic at Briar Creek
Park in the rain on September 23. On October 24 and November 5, seniors
Mindy Hazelwood and Story Robbins presented their summer research. The
chapter had an informal dinner at Pizza Hut on November 13. On the last
day of classes, December 12, the entire department, including the Math and
Physics Club and the KY Beta chapter, had a Christmas party with about
45 people in attendance. The fall semester also saw the continued improve-
ment of the chapter WEB page http://cc.cumber.edu/acad/math/kme.htm.
Other 1997-98 officers: Candace Osborne, vice president; Laura Thompson,
secretary; Melynda Hazelwood, treasurer; Jonathan Ramey, corresponding
secretary; John Hymo, faculty sponsor.

MD Alpha Chapter President — Judith Simon
College of Notre Dame of Maryland, Baltimore 7 actives, 3 associates

Other 1997-98 officers: Marie Morrow, vice president; Michelle Yeager,
secretary; Laura Bopp, treasurer; Sister Marie Augustine Dowling, corre-
sponding secretary; Joseph DiRienzi, faculty sponsor.
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MD Beta Chapter President — Jason Barr
Western Maryland College, Westminster 28 actives

We had an induction of our seven new members in October and in-
vited an alumnus, Tony Sager, who works at NSA (at Fort Meade) to talk
informally about his work there and about getting government jobs. We
also planned an exam break party for math majors. Spring plans under-
way include our annual career night dinner (co-sponsored by KME and the
WMC Career Services Office), and we will also have a booth at the College’s
Spring Fling as a fundraiser. Other 1997-98 officers: Robert Newman, vice
president; Julie Brown, secretary; Fred Butler, treasurer; Linda Eshleman,
corresponding secretary; James Lightner, faculty sponsor.

MD Delta Chapter President — Heidi Femi
Frostburg State University, Frostburg 29 actives

Maryland Delta Chapter opened the year with a donut and juice plan-
ning session in September. In October, Dr. Frank Barnet gave a talk to
the group entitled “The Eyes of an IMP on Mars,” in which he analyzed
some of the data from the Mars Pathfinder mission. Later in October the
chapter held a bike ride and picnic along the historic C&O canal, whose
western terminus is only 12 miles from the university. The November pro-
gram consisted of a video about Andrew Wiles and his proof of Fermat’s
Last Theorem. Other 1997-98 officers: Steven Fairgrieve, vice president;
Sean Carley, secretary; Andrew Adam, treasurer; Edward T. White, corre-
sponding secretary; John Jones, faculty sponsor.

MS Alpha Chapter President — Patricia DiBlasi
Mississippi University for Women, Columbus 8 actives

On October 8 we held our general meeting. Other 1997-98 officers:
Lani R. Crowder, vice president/treasurer; Patricia DiBlasi, secretary; Shao-
chen Yang, corresponding secretary/faculty sponsor.

MS Beta Chapter President — Shelley Hebert
Mississippi State University, Mississippi State 10 actives

The Mississippi Beta chapter prepared the Interschool Test for the Mu
Alpha Theta high school mathematics honorary state convention, to be
held in the spring of 1998. This was a very nice opportunity to get together
as a group, do some mathematics, and have some pizza, too. Other 1997-
98 officers: Janet Waldrop, vice president; Michael Pearson, corresponding
secretary.

MS Gamma Chapter President — Craig Collier
University of Southern Mississippi, Hattiesburg 16 actives, 2 associates
Other 1997-98 officers: Paula Thigpen, vice president; Michelle Hill,
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secretary; Alice W. Essary, treasurer/corresponding secretary; Barry Pi-
azza, Jeff Stuart, Bill Horner, faculty sponsors.

MS Epsilon Chapter President — Ashley Riley
Delta State University, Cleveland 12 actives

Other 1997-98 officers: Ken Byars, vice president; Chad Huff, secre-
tary/treasurer; Paula Norris, corresponding secretary; Rose Strahan, fac-
ulty sponsor.

MO Alpha Chapter President — Lisa Burger
Southwest Missouri State University, Springfield 23 actives, 6 associates

The fall activities of the MO Alpha chapter included hosting a depart-
mental picnic in September, a presentation of the history of and mathemat-
ics involved with the St. Louis Gateway Arch, initiating 6 new members,
and a presentation on cooperative education opportunities for mathematics
majors. Other 1997-98 officers: Katie Puetz, vice president; Jessica Me-
Donnell, secretary; Miriam Ligon, treasurer; John Kubicek, corresponding
secretary; Yungchen Cheng, faculty sponsor.

MO Beta Chapter President — Dennis Wise
Central Missouri State University, Warrensburg 20 actives, 7 associates

MO Beta had monthly meetings in the fall. In September, Dr. Sue
Sundberg spoke on tesselations. Nine new members and seven associates
were initiated in October. In addition, Dr. Shing So gave a talk titled
“Triangular and Oblong Numbers,” and the revised bylaws were approved.
Dr. Phoebe Ho spoke at the November meeting on the topic “Emulating
the Development of the Real Number System with Finite Sets.” At the
KME Christmas party in December, food was collected for a Christmas
dinner for a needy family. Other events for the semester included a book
sale and volunteering in the Math Clinic. Other 1997-98 officers: Tammy
Surfus, vice president; Aaron Shaefer, secretary; Cassie Young, treasurer;
Melissa Elliott, historian; Rhonda McKee, corresponding secretary; Scotty
Orr, Larry Dilley and Phoebe Ho, faculty sponsors.

MO Gamma Chapter President — Jennifer Puls
William Jewel College, Liberty 16 actives

The MO Gamma chapter was active this fall with helping students in a
Mathematics Help-Session held on Tuesday evenings. Several of the mem-
bers assisted in this effort, and signed up on a sheet posted in the Mathe-
matics Department. We have spent much of our time this fall preparing for
the regional convention which we will host in April of 1998. Other 1997-98
officers: Allison Cooper, vice president; James Brochtrup, secretary; Joseph
Mathis, treasurer/corresponding secretary/faculty sponsor.
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MO Eta Chapter President — Laurel Berner
Truman State University, Kirksville 10 actives, 7 associates

Meetings were held on the first Monday of every month. Activities
included a pledge class fundraiser, a Christmas market (bake sale), stu-
dent/faculty spades night, and movie night. Our main concentration was
preparing for the February Math Expo. Other 1997-98 officers: Christine
Stone, vice president; Angela Kell, secretary; Ann Herberholt, treasurer;
Jay Belanger, corresponding secretary/faculty sponsor.

MO Theta Chapter President — Christie Tosh DeArmond
Evangel College, Springfield 10 actives, 4 associates

Meetings were held monthly. The fall social was held at the home
of Don Tosh. Other 1997-98 officers: Amy Lee and Stan Roberts, vice
presidents; Don Tosh, corresponding secretary/faculty sponsor.

MO Iota Chapter President — Shan Brand
Missouri Southern State College, Joplin 22 actives
Fall semester activites commenced with a dinner and organizational
meeting at the home of Mrs. Mary Elick. Officers for the year were elected
at this meeting. Throughout the semester regular meetings were held with
programs often featuring student solutions to problems from the Problem
Corner of The Pentagon. Meetings, held jointly with Math Club, also
featured free pizza. Attendance at meetings was greatly improved! The
organization once again worked concessions at home football games as a
money-making venture. The Christmas Tree Decorating Party was held
at the new home of Dr. Chip Curtis. A live tree was furnished by the
organization and those attending each brought a decoration, some featuring
a math theme. Dr. Curtis will long remember the event, as the tree was
subsequently planted in his yard. Other 1997-98 officers: Agdon Brister,
vice president; Chris Baker, secretary; Amanda Harrison, treasurer; Megan
Radcliff, publicity; Mary Elick, corresponding secretary/faculty sponsor.

MO Kappa Chapter President — Edyta Blaszczuk
Drury College, Springfield 9 actives, 5 associates

The first activity of the semester was a bonfire party held at Dr. Allen’s
house. The winner of the annual Math Contest this year was Ben Ingrum
for the Calculus II and above division and Adrena Pearcy for the Calculus
I and below division. Prize money was awarded to the winners at a pizza
party held for all the contestants. Another pizza party was held at the house
of Dr. Carol Collins for the potential KME members (freshmen). The Math
Club has also been running a tutoring service for both the day school and
the continuing education division (Drury Evening College) as a money-
making project. Other 1997-—98 chapter officers: Billy Kimmons, vice
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president; Carol Collins, treasurer; Charles Allen, corresponding secretary;
Pam Reich, faculty sponsor.

MO Lambda Chapter President — Perriann McCoppin
Missouri Western State College, St. Joseph 35 actives

The MO Lambda chapter initiated five new members on September 21.
Guest speaker for the program was Dr. David John, who spoke on fractal ge-
ometry. Other fall 1997 activities included a Welcome Back Picnic, a booth
at Family Day, homecoming activities, a Thanksgiving covered dish dinner,
a planetarium show by KME sponsor Jerry Wilkerson, and attendance at
several departmental colloquia. Other 1997—98 chapter officers: Stephanie
Tingler, vice president; William Slabaugh, secretary; Sean Hutto, treasurer;
John Atkinson, corresponding secretary; Jerry Wilkerson, faculty sponsor.

NE Alpha Chapter President — Rustin Slaughter
Wayne State College, Wayne 30 actives

For the fall we have been holding our regular meetings. In them we
have discussed ways to increase our funds and also increase publicity for
Homecoming 1997. During Homecoming week, our chapter had a local
business’ windows painted. We had a great turnout for this event and it
gave everyone a chance to get to know each other. We are continuing efforts
for everyone to meet, through our plans of a Sioux City hockey game outing,
scheduled for shortly after the beginning of the new semester. We are also
currently selling pizza punch cards for the local Pizza Hut, in order to raise
funds. Other 1997-98 officers: Karl Laursen, vice president; Renee Fuhr,
secretary/treasurer; Ann Boes, historian; John Fuelberth, corresponding
secretary; Jim Paige, faculty sponsor.

NE Gamma Chapter President — Jennifer Praeuner
Chadron State College, Chadron 15 actives, 4 associates

Other 1997-98 officers: Otis Pierce, vice president; Julie Steinbach, ,
secretary; Erin Johnson, treasurer; James Kaus, corresponding secretary,/'
Monty Fickel, faculty sponsor. /

NM Alpha . Chapter President — Jason Strauch
University of New Mexico, Albuquerque 70 actives, 14 associates

Other 1997-98 officers: Jennifer Gill, vice president; Walter Kehowski,
secretary/treasurer; Merlin Decker, webmaster; Archie Gibson, correspond-
ing secretary/faculty sponsor.

NY Alpha Chapter President — Vinod Gulani
Hofstra University, Hempstead 15 actives, 2 associates
We cleaned up and decorated the math lounge. We sponsored a lun-
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cheon with the math faculty where the math program was discussed. Other
1997-98 officers: Angela Boccio, vice president; JoAnne Taormina, sec-
retary; Sacha DaCosta, treasurer; Aileen Michaels, corresponding secre-
tary/faculty sponsor.

NY Eta Chapter President — Stacey Lauricella
Niagara University, Niagara 15 actives

For a fund-raiser, our chapter co-sponsored a silent movie night in Oc-
tober featuring The Goldrush with Charlie Chaplin, including live musical
accompaniment. Other 1997-98 officers: Jennifer Egan, vice president;
Lara Brown, secretary; Leslie Good, treasurer; Robert Bailey, correspond-
ing secretary; Kenneth Bernard, faculty sponsor.

NY Nu Chapter President — Carol Mattice
Hartwick College, Oneonta 24 actives

Other 1997-98 officers: Willard Bradner VanderVoort, III, vice presi-
dent; Brandon Cheely, secretary; Matthew Jones, treasurer; Gary Stevens,
corresponding secretary/faculty sponsor.

OH Gamma Chapter President — Amy Booth
Baldwin-Wallace College, Berea 39 actives

Two students travelled with David Calvis to the Miami University Fall
Mathematics Conference. Other 1997-98 officers: Cassandra Kirby, vice
president; Margot Mailloux, secretary; Anila Xhunga, treasurer; David
Calvis, corresponding secretary/ faculty sponsor.

OK Alpha Chapter President — Josh Baker
Northeastern State University, Tahlequah 35 actives, 1 associate

Our fall initiation ceremonies for twelve students were held in the ban-
quet room of Roni’s Pizza. It was well attended by many faculty, their
families, and other students.The annual book sale did extremely well. We
made over $200. We are grateful to the faculty who donated old texts to
us for this sale. In September, we provided refreshments for the college’s
monthly Science & Technology Series. Dr. Mark Arnold from the Univer-
sity of Arkansas discussed “Who’s Modeling Whom?”. In October, the
chapter sponsored a talk by Dr. Larry Claypool, professor of statistics from
Oklahoma State University. His presentation on how statistics is used in
business and industry was excellent. He also talked about the graduate pro-
gram in statistics at OSU. We sold T-shirts and sweatshirts with a design
created by several of the KME members. This project did extremely well.
We sold the T-shirts at “cost + epsilon” as more of a service project than
a money-maker. We continue to have joint activities with NSU’s student
chapter of the MAA and participate in “The Problem Solving Competi-
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tion,” sponsored by the MAA. Our Christmas “pizza party” was again a
success! The games pitted the faculty against the students. The students
won, but it was close! Other 1997-98 officers: Dan Sisk, vice president;
Tera McGrew, secretary; Tracey McCutchen, treasurer; Joan Bell, corre-
sponding secretary/faculty sponsor.

OK Gamma Chapter President — Joe Antunez
Southwestern Oklahoma State University, Weatherford 20 actives

Other 1997-98 officers: Marina Ramirez, vice president; Linda Coley,
secretary; Christine Robben, treasurer; Wayne Hayes, corresponding secre-
tary; Gerard East, faculty sponsor.

PA Gamma Chapter President — Amanda Beisel
Waynesburg College, Waynesburg 19 actives, 5 associates

Other 1997-98 officers: Jennifer Baltes, vice president; Kristien Fox,
secretary; Angela Colinet, treasurer; Anthony Billings, corresponding sec-
retary/faculty sponsor.

PA Delta Chapter President — Jennifer Snyder
Marywood University, Scranton 4 actives

The chapter prepared for participation in Moravian College’s Student
Math Conference. Two members were preparing papers to present at the
February Pi Mu Epsilon program. Other 1997-98 officers: Maura Regan,
vice president; Brenda Rudzinski, secretary/treasurer; Sr. Robert Ann Von
Abnen, corresponding secretary/faculty sponsor.

PA Eta Chapter President — Frederick Lam
Grove City College, Grove City 32 actives

Induction of new members was held October 20. Dr. Dale McIntyre
gave a talk on the derivation of a set of parametric equations describing
the path of a dog during its pursuit of a rabbit. The group enjoyed donuts
and cider after the meeting. Other 1997-98 officers: Greta Kessler, vice
president; Sarah Lawhon, secretary; Diane Schnellbach, treasurer; Marvin
Henry, corresponding secretary; Dan Dean, faculty sponsor.

PA Iota Chapter President — Abby Todd
Shippensburg University, Shippensburg 20 actives, 3 associates

This semester KME along with our Math Club were co-sponsors of a
weekly seminar series. They also had a hand in our second annual student
math conference, which took place on November 18. Professor Sandra
Fillebrown from St. Joseph’s University gave the featured talk on fractal
attractors and the chaos game. In December, Dr. and Mrs. Doug Ensley
allowed us to use their home as the site of our fall initiation. We inducted
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three new members into KME. Many thanks to Doug and Amy for their
hospitality. Other 1997-98 officers: Peter Burnett, vice president; Nycole
Miller, secretary; Mike Seyfried, treasurer; Stacey Lytle, historian; Mike
Seyfried, corresponding secretary; Gene Fiorini, faculty sponsor.

PA KappaChap. Pres.—Paul O’Connor, Cheryll Stone-Schwendimann
Holy Family College, Philadelphia 5 actives, 2 associates

The chapter met Wednesday afternoons to work on problems from The
Pentagon, Math Horizons, and the College Mathematics Journal. The chap-
ter also sponsored a math competition for students from local area high
schools on October 20. Plaques were awarded to the top school and top stu-
dent competitor. Seniors Paul O’Connor and Cheryll Stone-Schwendimann
presented their senior research papers at a division symposium attended
by division faculty and KME members. Cheryll and Paul also presented
their research at a poster session held at the college. Other 1997-98 of-
ficers: Brian Minster, secretary/treasurer; Sr. Marcella Louise Wallowicz,
corresponding secretary/faculty sponsor.

PA Mu Chapter President — Jen Gibbons
Saint Francis College, Loretto 19 actives

KME members picked litter in October along a two-mile stretch of
highway near the college as part of Pennsylvania’s Adopt-A-Highway pro-
- gram. KME members served in leadership roles as session moderators and
as judges, score keepers and time keepers for the Science Bowl in the Fourth
Annual Science Day. More than 300 students from 19 high schools partic-
ipated on November 21. Several KME members also attended the NCTM
Regional meeting in Cleveland, Ohio, in November. Other 1997-98 offi-
cers: Brad Offman, vice president; Ernie Pagliaro, secretary; Ryan Howard,
treasurer; Pete Skoner, corresponding secretary; Adrian Baylock, faculty
sponsor. '

PA Omicron Chapter President — Daniel Coleman
University of Pittsburgh at Johnstown, Johnstown 37 actives

Other 1997-98 officers: Melissa Owens, vice president; Lori Duncan,
secretary; Nikki Gerba, treasurer; Sarah Leach, historian; Nina Girard,
corresponding secretary/faculty sponsor.

SD Alpha Chapter President — Kristy Schuster
Northern State University, Aberdeen 12 actives

Other 1997-98 officers: Margo Maynard, vice president; Rebecca Han-
son, secretary; Stacey Garrels, treasurer; Lu Zhang, corresponding secre-
tary; Raj Markanda, faculty sponsor.
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TN Alpha Chapter President — Jonathan M. Sprinkle
Tennessee Technological University, Cookeville 7 actives, 30 associates

Other 1997-98 officers: Russell Edward Watts, vice president; Andy
Adams, secretary; Deborah A. Watkins, treasurer; Frances E. Crawford,
corresponding secretary; Allen Mills, faculty sponsor.

TN Gamma Chapter President — Jennifer Murrah
Union University, Jackson 13 actives

Other 1997-98 officers: Lori Davis, vice president; Mandy Davidson,
secretary/treasurer; Matt Lunsford, corresponding secretary; Troy Riggs,
faculty sponsor.

TN Delta Chapter President — Michael Kelley
Carson-Newman College, Jefferson City 10 actives

Other 1997-98 officers: Rebecca Gritman, secretary; Catherine Kong,
corresponding secretary/faculty sponsor.

TX Kappa Chapter President — Carrie Tucker
University of Mary Hardin-Baylor, Belton 15 actives, 8 associates

A KME Christmas party was held at Dr. Harding’s home on Decem-
ber 12. Other 1997-98 officers: Mellissa Schexnayider, vice president;
Cheyanna Orsag, secretary; Jennifer Murphy, treasurer; Peter Chen, corre-
sponding secretary; Maxwell Hart, faculty sponsor.

Former National President Receives Award

Harold Thomas of Kansas Alpha, a former KME national president
(1989-1993), has received a Certificate for Meritorious Service for service
to the Kansas Section of the Mathematical Association of America. The
award was presented during the Joint Prize Session at the annual Joint
Mathematics Meetings in Baltimore in January. Only seven of these cer-
tificates were awarded this year.

Readers might also be interested to know that one of the regular con-
tributors to the Problem Corner, Jegenathan Sriskandarajah, also received
a Certificate for Meritorious Service, for service to the Wisconsin Section.

Largest Known Prime Update

The newest largest known prime was announced January 27. It is
93021377 _ 1 and has 909,526 digits. To join the Great Internet Mersenne
Prime Search, see this WWW site:

ourworld.compuserve.com/homepages/justforfun/prime.htm
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Announcement of the Thirty-Second Biennial
Convention of Kappa Mu Epsilon

The Thirty-Second Biennial Convention of Kappa Mu Epsilon will be
hosted by the Florida Beta chapter located at Florida Southern College in
Lakeland, Florida. The convention will take place April 15-17, 1999. Each
attending chapter will receive the usual travel expense reimbursement from
the national funds as described in Article VI, Section 2, of the Kappa Mu
Epsilon Constitution.

A significant feature of our national convention will be the presentation
of papers by student members of Kappa Mu Epsilon. The mathematical
topic selected by each student speaker should be of interest to the author
and of such scope that it can be given adequate treatment in a timed
oral presentation. Student talks to be judged at the convention will be
chosen prior to the convention by the selection committee on the basis of
submitted written papers. At the convention, the awards committee will
judge the selected talks on both content and presentation. The rankings
of both the selection and awards committees will determine the top four
papers.

Who may submit a paper?

Any undergraduate or graduate student member of Kappa Mu Epsilon .
may submit a paper for consideration as a talk at the national convention.
A paper may be co-authored. If selected for presentation at the convention,
the paper must be presented by one (or more) of the authors.

Presentation topics

Papers submitted for presentation at the convention should discuss
material understandable by undergraduates who have completed only dif-
ferential and integral calculus. The selection committee will favor papers
that satisfy this criterion and which can be presented with reasonable com-
pleteness within the time allotted. Papers may be original research by the
student(s) or exposition of interesting but not widely known results.

Presentation time limits

Papers presented at the convention should take between 15 minutes
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and 25 minutes. Papers should be designed with these time limits in mind.
How to prepare a paper

The paper should be written in the standard form of a term paper.
It should be written much as it will be presented. A long paper (such
as an honors thesis) must not be submitted with the idea that it will be
shortened at presentation time. Appropriate references and a bibliography
are expected. Any special visual aids that the host chapter will need to
provide (such as a computer and overhead projection system) should be
clearly indicated at the end of the paper.

The first page of the paper must be a “cover sheet” giving the following
information: (1) title, (2) author or authors (these names should not appear
elsewhere in the paper), (3) student status (undergraduate or graduate),
(4) permanent and school addresses and phone numbers, (5) name of the
local KME chapter and school, (6) signed statement giving approval for
consideration of the paper for publication in The Pentagon (or a statement
about submission for publication elsewhere) and (7) a signed statement of
the chapter’s corresponding secretary attesting to the author’s membership
in Kappa Mu Epsilon.

How to submit a paper

Five copies of the paper, with a description of any charts, models,
or other visual aids that will be used during the presentation, must be
submitted. The cover sheet need only be attached to one of the five copies.
The five copies of the paper are due by February 10, 1999. They should be
sent to:

Dr. Robert Bailey, KME President-Elect
Depaprtment of Mathematics

Niagara University

Niagara University, NY 14109

Selection of papers for presentation

A selection committee will review all papers submitted by undergrad-
uate students and will choose approximately fifteen papers for presenta-
tion and judging at the convention. Graduate students and undergraduate
students whose papers are not selected for judging will be offered the op-
portunity to present their papers at a parallel session of talks during the
convention. The president-elect will notify all authors of the status of their
papers after the selection committee has completed its deliberations.
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Criteria used by the Selection and Awards Committees

Each paper will be judged on (1) topic originality, (2) appropriateness
to the meeting and audience, (3) organization, (4) depth and significance
of the content, and (5) understanding of the material. Each presentation
will be judged on (1) style of presentation, (2) maintenance of interest, (3)
use of audio-visual materials (if applicable), (4) enthusiasm for the topic,
(5) overall effect, and (6) adherence to the time limits.

Prizes

All authors of papers presented at the convention will be given two-
year extensions of their subscription to The Pentagon. Authors of the four
best papers presented by undergraduates, as decided by the selection and
awards committees, will each receive a cash prize of $100.

Publication

All papers submitted to the convention are generally considered as
submitted for publication in The Pentagon. Unless published elsewhere,
prize-winning papers will be published in The Pentagon after any necessary
revisions have been completed (see page 2 of The Pentagon for further
information). All other papers will be considered for publication. The
Editor of The Pentagon will schedule a brief meeting with each author
during the convention to review his or her manuscript.

Thou SHALT Steal?

Yes, Really! KME chapters should feel free to “steal” logos, graphics
files, information, links, etc. from the national KME web site! Besides
making your web pages look “cool,” they’re easier to construct that way.
You could also consider adding links to portions of the national website,
such as to general information about KME or to the cumulative subject
index of The Pentagon. The URL for the national homepage is:

www.cst.cmich.edu/org.kme/

When you design a chapter homepage, please remember to make it clear
that your page is for your chapter, and not for the national organization.
Also, please include a link to the national homepage and submit your local
chapter webpage’s URL to the national webmaster. By doing so, other
chapters can explore activities of your chapter and get some great ideas!

By the way, this exception to the eighth commandment only applies
to the national KME web page, and not to your roommate’s sports car.
Sorry!
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Kappa Mu Epsilon National Officers

Patrick J. Costello President
Department of Mathematics, Statistics and Computer Science
Eastern Kentucky University, Richmond, Kentucky 40475
matcostello@acs.eku.edu

Robert Bailey President-FElect
Mathematics Department
Niagara University, Niagara University, New York 14109
rlb@niagara.edu

Waldemar Weber Secretary
Department of Mathematics and Statistics
Bowling Green State University, Bowling Green, Ohio 43403
kme-nsec@mailserver.bgsu.edu

A. Allan Riveland Treasurer
Department of Mathematics and Statistics
Washburn University, Topeka, Kansas 66621
zzrive@acc.wuacc.edu

Don Tosh Historian
Department of Science and Technology
Evangel College, 1111 N. Glenstone Ave., Springfield, Missouri 65802
toshd@evangel.edu

Kappa Mu Epsilon, Mathematics Honor Society, was founded in 1931. The
object of the Society is fivefold: to further the interests of mathematics
in those schools which place their primary emphasis on the undergraduate
program; to help the undergraduate realize the important role that mathe-
matics has played in the development of western civilization; to develop an
appreciation of the power and beauty possessed by mathematics due to its
demands for logical and rigorous modes of thought; to provide a Society for
the recognition of outstanding achievement in the study of mathematics at
the undergraduate level; and to disseminate the knowledge of mathematics
and familiarize the members with the advances being made in mathemat-
ics. The official journal of the Society, The Pentagon, is designed to assist
in achieving these objectives as well as to aid in establishing fraternal ties
between the Chapters.
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Active Chapters of Kappa Mu Epsilon
Listed by date of installation.
Chapter Location Installation Date
OK Alpha Northeastern State University, Tahlequah 18 April 1931
IA Alpha University of Northern Iowa, Cedar Falls 27 May 1931
KS Alpha Pittsburg State University, Pittsburg 30 Jan 1932
MO Alpha Southwest Missouri State University, Springfield 20 May 1932
MS Alpha Mississippi University for Women, Columbus 30 May 1932
MS Beta Mississippi State University, Mississippi State 14 Dec 1932
NE Alpha Wayne State College, Wayne 17 Jan 1933
KS Beta Emporia State University, Emporia 12 May 1934
NM Alpha University of New Mexico, Albuquerque 28 March 1935
IL Beta Eastern Illinois University, Charleston 11 April 1935
AL Beta University of North Alabama, Florence 20 May 1935
AL Gamma University of Montevallo, Montevallo 24 April 1937
OH Alpha Bowling Green State University, Bowling Green 24 April 1937
MI Alpha Albion College, Albion 29 May 1937
MO Beta Central Missouri State University, Warrensburg 10 June 1938
TX Alpha Texas Tech University, Lubbock 10 May 1940
TX Beta Southern Methodist University, Dallas 15 May 1940
KS Gamma Benedictine College, Atchison 26 May 1940
IA Beta Drake University, Des Moines 27 May 1940
TN Alpha Tennessee Technological University, Cookeville 5 June 1941
NY Alpha Hofstra University, Hempstead 4 April 1942
MI Beta Central Michigan University, Mount Pleasant 25 April 1942
NJ Beta Montclair State University, Upper Montclair 21 April 1944
IL Delta University of St. Francis, Joliet 21 May 1945
KS Delta Washburn University, Topeka 29 March 1947
MO Gamma William Jewell College, Liberty 7 May 1947
TX Gamma Texas Woman's University, Denton 7 May 1947
WI Alpha Mount Mary College, Milwaukee 11 May 1947
OH Gamma Baldwin-Wallace College, Berea 6 June 1947
CO Alpha Colorado State University, Fort Collins 16 May 1948
MO Epsilon Central Methodist College, Fayette 18 May 1949
MS Gamma University of Southern Mississippi, Hattiesburg 21 May 1949
IN Alpha Manchester College, North Manchester 18 May 1950
PA Alpha Westminster College, New Wilmington 17 May 1950
IN Beta Butler University, Indianapolis 16 May 1952
KS Epsilon Fort Hays State University, Hays 6 Dec 1952
PA Beta LaSalle University, Philadelphia 19 May 1953
VA Alpha Virginia State University, Petersburg 29 Jan 1955
IN Gamma Anderson University, Anderson 5 April 1957
CA Gamma California Polytechnic State University, San Luis Obispo 23 May 1958
TN Beta East Tennessee State University, Johnson City 22 May 1959
PA Gamma Waynesburg College, Waynesburg 23 May 1959
VA Beta Radford University, Radford 12 Nov 1959
NE Beta University of Nebtaala—Keayney, Kearney 11 Dec 1959
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IN Delta University of Evansgville, Evansville 27 May 1960
OH Epsilon Marietta College, Marietta 29 Oct 1960
MO Zeta University of Missouri—Rolla, Rolla 19 May 1961
NE Gamma Chadron State College, Chadron 19 May 1962
MD Alpha College of Notre Dame of Maryland, Baltimore 22 May 1963
IL Epsilon North Park College, Chicago 22 May 1963
OK Beta University of Tulsa, Tulsa 3 May 1964
CA Delta California State Polytechnic University, Pomona 5 Nov 1864
PA Delta Marywood University, Scranton 8 Nov 1984
PA Epsilon Kutztown University of Pennsylvania, Kutztown 3 April 1985
AL Epsilon Huntingdon College, Montgomery 15 April 1985
PA Zeta Indiana University of Pennsylvania, Indiana 6 May 1965
AR Alpha Arkansas State University, State University 21 May 1965
TN Gamma Union University, Jackson 24 May 1965
WI Beta University of Wisconsin—River Falls, River Falls 25 May 1985
IA Gamma Morningside College, Sioux City 25 May 1965
MD Beta Western Maryland College, Westminster 30 May 1965
IL Zeta Rosary College, River Forest 26 Feb 1967
SC Beta South Carolina State College, Orangeburg 6 May 1987
PA Eta Grove City College, Grove City 13 May 1987
NY Eta Niagara University, Niagara University 18 May 1968
MA Alpha Assumption College, Worcester 19 Nov 1968
MO Eta Truman State University, Kirksville 7 Dec 1968
IL Eta Western Hlinois University, Macomb 9 May 1969
OH Zeta Muskingum College, New Concord 17 May 1969
PA Theta Susquehanna University, Selinsgrove 26 May 1969
PA Iota Shippensburg University of Pennsylvania, Shippensburg 1 Nov 1969
MS Delta William Carey College, Hattiesburg 17 Dec 1970
MO Theta Evangel College, Springfield 12 Jan 1971
PA Kappa Holy Family College, Philadelphia 23 Jan 1971
CO Beta Colorado School of Mines, Golden 4 March 1971
KY Alpha Eastern Kentucky University, Richmond 27 March 1971
TN Delta Carson-Newman College, Jefferson City 15 May 1971
NY Iota Wagner College, Staten Island 19 May 1971
SC Gamma Winthrop University, Rock Hill 3 Nov 1972
IA Delta Wartburg College, Waverly 6 April 1973
PA Lambda Bloomsburg University of Pennsylvania, Bloomsburg 17 Oct 1973
OK Gamma Southwestern Oklahoma State University, Weatherford 1 May 1973
NY Kappa Pace University, New York 24 April 1974
TX Eta Hardin-Simmons University, Abilene 3 May 1975
MO Iota Missouri Southem State College, Joplin 8 May 1975
GA Alpha State University of West Georgia, Carrollton 21 May 1975
WYV Alpha Bethany College, Bethany 21 May 1975
FL Beta Florida Southern College, Lakeland 31 Oct 1976
WI Gamma University of Wisconsin—Eau Claire, Eau Claire 4 Feb 1978
MD Delta Frostburg State University, Frostburg 17 Sept 1978
IL Theta Benedictine University, Lisle 18 May 1979
PA Mu St. Francis College, Loretto 14 Sept 1979
AL Zeta Birmingham-Southern College, Birmingham 18 Feb 1981
CT Beta Eastern Connecticut State University, Willimantic 2 May 1981
NY Lambda C.W. Post Campus of Long Island University, Brookville 2 May 1983
MO Kappa Drury College, Springfield 30 Nov 1984
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CO Gamma Fort Lewis College, Durango 29 March 1985
NE Delta Nebraska Wesleyan University, Lincoln 18 April 1986
TX Iota McMurry University, Abilene 25 April 1987
PA Nu Ursinus College, Collegeville 28 April 1987
VA Gamma Liberty University, Lynchburg 30 April 1987
NY Mu St. Thomas Aquinas College, Sparkill 14 May 1987
OH Eta Ohio Northern University, Ada 15 Dec 1987
OK Delta Oral Roberts University, Tulsa 10 April 1990
CO Delta Mesa State College, Grand Junction 27 April 1990
NC Gamma Elon College, Elon College 3 May 1980
PA Xi Cedar Crest College, Allentown 30 Oct 1990
MO Lambda Missouri Western State College, St. Joseph 10 Feb 1991
TX Kappa University of Mary Hardin-Baylor, Belton 21 Feb 1991
SC Delta Erskine College, Due West 28 April 1991
SD Alpha Northern State University, Aberdeen 3 May 1992
NY Nu Hartwick College, Oneonta 14 May 1992
NH Alpha Keene State College, Keene 16 Feb 1993
LA Gamma Northwestern State University, Natchitoches 24 March 1993
KY Beta Cumberland College, Williamsburg 3 May 1993
MS Epsilon Delta State University, Cleveland 19 Nov 1994
PA Omicron University of Pittsburgh at Johnstown, Johnstown 10 April 1997
MI Delta Hillsdale College, Hillsdale 30 April 1997

Starting a KME Chapter

Complete information on starting a chapter of KME may be obtained
from the National President. Some information is given below.

An organized group of at least ten members may petition through a
faculty member for a chapter. These members may be either faculty or
students; students must meet certain coursework and g.p.a. requirements.

The financial obligation of new chapters to the national organization
includes the cost of the chapter’s charter and crest (approximately $50)
and the expenses of the installing officer. The individual membership fee
to the national organization is $20 per member and is paid just once, at that
individual’s initiation. Much of this $20 is returned to the new members in
the form of membership certificates and cards, keypin jewelry, a two-year
subscription to the society’s journal, etc. Local chapters are allowed to
collect semester or yearly dues as well.

The petition itself, which is the formal application for the establish-
ment of a chapter, requests information about the petitioning group, the
academic qualifications of the eligible petitioning students, the mathematics
faculty, mathematics course offerings and other facts about the institution.
It also requests evidence of faculty and administrative approval and support
of the petition. Petitions are subject to approval by the National Council
and ratification by the current chapters.



