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Editor's Notes

Two years

This issue marks the end of my first two-year cycle as editor of TAe
Pentagon. I sincerely hope that you, the reader, have found many interest
ing articles in these two years. Ofcourse, any comments and suggestions
relating to this journal are welcome! Simplysend them to the editor at the
address on page 2.

Submissions

Not all articles in TAe Pentagon come from those presented at KME
conventions. Articles of interest to students are always welcome. Such
submissions arerefereed. Student papers aregiven priority. One interesting
submitted article, "Lengths of Generalized Rose Curves," appears in this
issue. Although this article is by a KME student, membership in KME is
not a requirement for publishing in this journal. If you or someone you
know has done something interesting, please consider publication in The
Pentagon! Instructions are on page 2.

End-of-page notes

Much information is contained in the notes at the end of articles in each
issue ofthisjournal. Thisissue contains notes onthenew URL ofKME, the
newest largest known prime, information on back issues and subscription
expiration dates, a KME Quiz update and more! Don't forget to look for
such information in each issue! Also, submissions for possible inclusion in
these notes will be considered; simplysend them to the editor.

Palidromes

It has recently come to the attention of the editor that a series of articles
appeared in Mathematics Magazine (see vol. 40 (1967) pp. 26-28, vol. 42
(1969) pp. 252-254 and 254-256, and vol. 46 (1973) pp. 96-99) addressing
the palindrome conjecture. One ofthe articles, by the well-known problem
solver Charles W. Trigg, raises basically thesame questions as those raised
in the previous issue of TAe Pentagon by Christopher Brown (vol. 56 no. 1
(Fall 1996), pp. 23-38), although Brown's article is a little more extensive
and provides additional information. Another of the articles provides a
counterexample to the conjecture for numbers in any base of the form 2*.
Readers whose curiosity was aroused by Brown's article may find these
articles very interesting. The conjecture is apparently still open for base
10.
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Atmospheric Gambling: An Investigation
of Rayleigh Scattering in the Atmosphere

using Monte Carlo Methods

Jeffrey D. Brown, student

Kansas Delta

Washburn University
Topeka, KS 66621

Presented at the 1995 National Convention and
awarded "top four" status by the Awards Committee.

A well-known example of atmospheric scattering is the blue sky we see
on a clear day. This paper will investigate the dynamics of atmospheric
scattering of light using Monte Carlo techniques. It will discuss the gener
ation of random numbers by computer algorithms and their use in Monte
Carlo techniques. The paper will concludewith a discussion of atmospheric
scattering based on a Monte Carlo simulation. My decision to investigate
this topic came about becauseof an interest in the greenhouse effect and the
impact on the environmentof an increasing amount of atmospheric carbon
dioxide.

Random numbers are defined as numbers that occur at random; that
is, they occur with no specific pattern. If an event is truly random, then
all possible outcomes must have an equal chance of occurring. However,
random numbers are often taken for granted. If you were asked to provide
a list of random numbers, most likely you would sit down at your computer
or with yourcalculator and callon its randomnumber generator. But, how
can a computer with its deterministic program generate a so-called random
number? The answer is that it can not. It does, however, give us the next
best thing.

Computers generate pseudo-random numbers. These numbers act like
random numbers, but are generated from a deterministic algorithm. In
order to act like a random number, these pseudo-random numbers must
meet several properties, such as to appear to occur independently of one
another and to be distributed uniformly over the sample space. Good
generators will be able to pass several statistical tests ofrandomness. The
tests would be used to validate uniformity, goodness-of-fit, independence,
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number of runs, and other properties.
The most commonly used generators today are congruential generators.

These generators calculate the residues modulo some integer m ofa linear
transformation to produce a nonrandom sequence ofnumbers [4]. A seed
or initial value must be provided tothe algorithm, which then multiplies it
by a constant and adds another constant to that value. That sum is then
divided modulo another large constant to produce the next number. This
number then becomes the seed value for the next iteration. The following
generator is an example of this:

Xi = (5243 •Xj + 55397) mod 262139.

In thisexample, Xj is the seed value and X{ is the pseudo-random number
and also the next seed value. Many times it is desired to have numbers
occurring between 0 and 1. This is accomplished by dividing the above
number by 262139. If proper constants are chosen, this method provides
an extremely good set of pseudo-random numbers.

Congruential generators were used in all ofthe simulations that I per
formed. To begin my exploration of the Monte Carlo method and to test
the congruential generators, my first simulation was to estimate w. The
area under the curve x2 + y2 = 1 represents ir/4 of the total area of the
square ranging from the origin to 1on both the x and y axes (see figure
1). Probability theory dictates that points placed at random in the square
would be on or under the curve tt/4 amount oftime. This is simulated by
using the random number generator to produce the x and y coordinates of
a point in the square. Each coordinate was squared. If the sum of these
squares was less than or equal to 1, a counter was incremented by 1. The
counter divided bythe total number ofiterations approximated jt/4. After
100,000 iterations, ir was estimated at 3.141400099. The estimate depends
on the seed value and the number ofiterations [2].

As mentioned above, the use of pseudo-random numbers and proba
bility theory to solve problems numerically is termed Monte Carlo meth
ods. The term "Monte Carlo methods" was first coined bymathematicians
Stanislaw Ulam and Nicholas Metropolis in the 1940's. The methods were
named after the famous gambling casinos ofMonaco, since they use games
ofchance, similar to gambling, to study other interesting phenomena [1].

Today, Monte Carlo methods are avery powerful tool for investigating
complex problems from awide range of fields. They are useful in quantum
mechanics to study energies of general quantum systems and ground-state
wave functions. They can be used to estimate the area bounded by a
curve. Monte Carlo methods have been used in several studies to examine
the equilibrium properties ofvarious atomic and molecular clusters [1].

These methods are often quicker and easier to compute than tradi
tional methods. Monte Carlo methods can be very useful in solving prob
lems which are not only difficult but impossible to solve analytically. They
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Figure 1.

greatly benefit from the fact that repetition ofthesolution process only re
fines the accuracy of the solution. This is a major reason that the methods
are popular among computational chemists and physicists.

Monte Carlo techniques were employed in my study of atmospheric
scattering. To fully understand the benefits of their application, we must
first understand the atmosphere. The earth's atmosphere is composed of
several different molecules. Nitrogen, which makes up approximately 78%
of the atmosphere, is by far the most abundant of these molecules. The
other major constituent is oxygen at approximately 21%. Argon is the
third largest occurring at almost 1%. The next largest constituent is car
bon dioxide at slightly less than .05% [5]. Many other elements are in the
atmosphere but occur in such small proportions that they were not consid
ered in our simulations. However, this simulation couldbe adapted to take
into consideration other atmospheric constituents such as water vapor and
pollutants.

We used Dalton's lawof partial pressure andthe idealgas lawto deter
mine the ratio of the volumeoccupied by nitrogen, oxygen, carbon dioxide,
and argon to a volume of space. Dalton's law of partial pressure simply
states that the total pressure is the sum of the individual pressures. The
individual pressure of a gas is called its partial pressure, which is defined
as the pressure of the gas divided by the total pressure of allpresent gases.
The ideal gas law relates pressure to volume by the equation PV = nRT,
where P represents partial pressure, V represents the volume of occupied
space, n is thenumber ofmoles ofgas, R isaconstant, and T is temperature
in degrees Kelvin. Rewritingthe above equation, we get

n/V = P/RT.
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Using Avogadro's number Na = 6.022 x 1023 molecules/mole,

nNa/V = PNafRT

gives the number of molecules/volume. Now, set

nNa = N,

where n is the total number of molecules, and

Vt = (4/3)jrr3AT,

where Vt is the volume occupied by molecules.
In order for these equations to hold true, weassumed that the molecules

were spherical in shape. While molecules do not occur as spheres in nature,
it is a common assumption to make, and it was necessary to make an
assumption about their shape in order to calculate their volume. The radii
were calculated from the atomic radii of the molecules. Continuing,

(4/3)7rr3

By substitution,
Vt PNa

(4/3>r3y RT '

which can be rewritten as

V, PiVa(4/3)7rr3
V~ RT

This equation represents tne volume ofspace occupied by a certain type of
molecule per the total volume of space. From this equation, I calculated
the percentages of space occupied by each of the four main constituents of
the atmosphere.

Realizing that the volumes were dependent on pressure, it was neces
sary to consider the dependence of pressure on altitude. The atmosphere
consists offour layers. The first layer is that of the troposphere. It ranges
from the surface ofthe earth toapproximately 10km. From the troposphere
to about 50km lies the stratosphere. Above the stratosphere is the meso-
sphere, which ranges up to almost 80km. The thermosphere goes up to
100km. See figure 2.

I decided that the simulation would consider a small section of the
atmosphere that was close to the surface of the earth. This allowed for
pressure to be held constant. If we let P0 = pressure at height 0, then
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Figure 2.

P = P0 •exp(—mgh/RT). At a height of A= 1 meter, the argument of the
exponent is approximately 10~4, so Po = P for heights less than 1 meter.

Light that is incident upon the earth from the sun is really a form of
energy. Light is characterized by wavelength or frequency. Energy is in
versely related to the wavelength of light. When the wavelength of light is
less than the molecular size, light can be scattered by the molecule. This
is an example of Rayleigh scattering. Such scattering is insignificant when
considering the long wavelength light, such as infrared light, emitted from
earth. The greenhouse effect traditionallydeals with absorption and emis
sion of this long wavelength light. Short wavelength light is not absorbed
but rater scattered by atmospheric gases. Short wavelength light is emitted
by the earth's surface as a result of reflection. Figure 3 indicates reflection
of short wavelength light as a function of surface type [5].

surfiace Type
Sea surface (low angle sun.'

Reflectivitv (in oercent!

10-70

sea surface (higher angle sun) <10

Snow (wet or dirty) 25-75

Snow (clean or dry) 75-95

Forest 10-20

sand, desert 25-40

3are soil 10-25

(Wallace, HobbS 1977)

Figure 3.

Scientists usually report the intensityof radiation, which is the energy
of radiation per second per square centimeter. The intensity of scattered
light is given by the relationship

J = /0a2cos^/r2A4.
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The alpha represents a polarizability constant that varies directly with
molecule size; cos ^ represents the direction of the scattered energy and
in our case was held constant at 1; r represents the distance from the
molecule; and lambda represents the wavelength of the scattered light.

In this equation, only one of the variables is dependent upon the type
of molecule being scattered. It quickly became apparent that if I could
determine not only where in the atmosphere molecules are being hit but
also which molecules are being hit, then I could make some conclusions
about atmospheric scattering.

I wrote a FORTRAN program (see table 1) to model the effects of
a photon of light reflecting from the earth back up into the atmosphere.
The program takes a photon and passes it through several layers of the
atmosphere. As the photon reaches each level, the program goes through
analgorithm to see if the photon hits a molecule or if it passes through. If
it does hit a molecule, it records which molecule is hit and at what level it
occurs.

The algorithm used to detect whether or not a photon hits a molecule
is based on Monte Carlo methods. While the molecules in each layer ofthe
atmosphere occur in certain percentages, they do not occur in groupings;
they are spread randomly throughout the layer. This effect is simulated
with the useof random numbers. The total volume of eachof the molecules
in a layer per the total volume of space in the layer is placed on a number
line from 0to 1. The algorithm then calls on the random number generator
for a pseudo-random number. The pseudo-random number is then tested
to see if it falls onthe nitrogen section ofthe number line. If it does, it adds
one to the nitrogen counter at that level and starts a new photon up from
the bottom level. If it does not fall on thenitrogen section, it is then tested
to see if it falls on the oxygen section. This is repeated until a molecule
has been hit or all of the molecules at one layer have been tested. If no
molecules have been hit, the photon is then sent up to the next level. At
this level, a new pseudo-random number is generated and the molecules at
that level are checked. This process continues until a molecule is hit or all
of the levels are completed.

Thegeneration ofthese pseudo-random numbers is an effective way of
randomly mixing the molecules ofa layer. By generating a new number at
each level tested, we areassured that themolecules at anyone level arenot
in the same position at any other level.

This process is repeated numerous times to simulate the effects of sev
eral photons being reflected up into the atmosphere. When the simulation
is completed, the programdisplays the numberof times each molecule is hit
and at what level they are hit (see table 2). From this information, I made
some preliminary conclusions about scattering created by the molecules
being hit by the light.
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♦ multiple level scattering program
double precision rn, vl, v2, v3, v4
integer seed, seedl, x, I, J, 0. L,n2,o2,ar,co2, nj
integer nit (11), oxy(ll), arg(ll), carb(ll)

Print *, 'Enter seed values and B of iterations'
read *, seed, seedl,x

Do 50 Q-l, 11
nit(Q)=0
oxy(Q)=0
arg(O)"0
carb(Q)"0

50 continue
Do 1001 1=1, x

* setting volumes
vl=>. 0002782

V2B. 0000486

V3=.00000537

v4=.000000399

Do SOI J=l,ll
xn=random(seed, seedl)
If (rn.lt.(.5678987)) goto 500
If (rn.ge. (.S678987+vD) goto loo
nit(J)=nit(J)+l
goto 1000

100 if(rn.ge.(.567B987+V1+V2)) goto 200
oxy(J)=oxy(J)+1
goto 1000

200 If (rn.ge. (.5678987 +V1+V2+V3)) goto 300
arg(J)=arg(J)+1
goto 1000

300 If (rn.ge.(.5678987+vl+v2+v3+v4)) goto 500
carb(J)=carb(J)+l
goto 1000

500 Continue
501 Continue
1000 continue
1001 continue

Print *, 'Level N2 02 AR C02'
Do 1050 L=l,ll , ,
Print 2001,L-l.nit(L>.oxy(L),arg(L),carb(L)

2001 Format (1X,I2,4X,IS,IX,I5,2X,15,3X,IS)
1050 continue

end

function random(ix,jx)
real*8 random
integer*4 ix,jx
ix=ix*65539
jx=jx*262147 .
random=.4656613E-9*FLOAT(IABS(lX+3x))
return

end

Table 1. FORTRAN program.
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Script command is started on Fri Feb 10 08:4?
Enter seed values and ff of iterations'M

34765 8325 500000*M
Level N2 02 AR C02'M
0 135 24 1 O'M
1 135 22 1 0*M

2 139 22 1 O'M
3 131 26 2 O'M

4 159 21 1 O'M
5 149 27 3 O'M
6 151 28 3 O'M
7 131 14 5 O'M
8 133 27 7 I'M
9 145 21 3 O'M

10 146 18 1 O'M

$ exir t'M

Table 2. Sample program results.

My initial conclusion indicates that carbon dioxide does not make a
significant contribution to Rayleigh scattering. I am currently working
on ways to improve the simulation to see if it would have any effect on
the results I recorded. One of these improvements is in the way that the
atmospheric gases are described. I am also investigating other geometries
to best represent the shape of the atmospheric molecules.

Another refinement could bemade in theassumptions used in theequa
tion that measures the intensity ofscattered light. In mycalculations, cos^
was held constant. It is possible this could have had an effect on the re
sults obtained. There are also other types ofatmospheric scattering. Mie
scattering, which deals with large particle scattering of long wavelength
infrared light from the earth, is an example ofother possible types ofscat
tering. Other atmospheric constituents should be considered to see their
effect as well. It is possible that some ofthe other larger molecules might
produce more intensity from scattering. It is also intriguing to consider the
possibility ofscattering from successive layers, that is, scattered light being
scattered again by molecules in nearby layers.

It must be considered that this is just the first step in studying a
fascinating aspect ofthe atmosphere. There are many difficulties in trying
to study the atmosphere. As Thomas Kyle said [3], "Atmospheric studies
have always suffered from the atmosphere itself not being reproducible. It
is not that something is wrong with the experiments or techniques; it is
the atmosphere which differs each time the experiment is repeated. Even
computations ofatmospheric properties suffer from the complement to this
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problem; different models assume different atmospheric conditions and get
conflicting results."

You can see the difficulty in establishing a feasible model of the atmo
sphere. I believe that with the proper refinements over time, my simulation
could be a useful tool in studying the effects of atmospheric scattering.
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Higher Order Niven Numbers

Lyle Bertz, student

Missouri Beta

Central Missouri State University
Warrensburg, MO 64093

Presented at the 1996 Region IV Convention and
awarded "top four" status by the Awards Committee.

Introduction

Niven numbers were first introduced in [3] by the following definition.

Definition. A positive integer is said to be Niven if it is divisible by its
digital sum.

Since that time, many discoveries have been made regarding Niven
numbers. We note that the digital sum of ar, which we denote S(x), is
computed by the formula

LlogrJ+l

«•>- £ M£-l£])j-
Some important results concerning Niven numbers follow:

1) There exists an infinite set ofNiven numbers [1].
2) Let N(x) denote the number ofintegers less than orequal to x that

are Niven. Then limI_0O ^ = 0(see [2]).
3) Currently, no asymptotic formula is known for N(x).
In this paper, we will attempt to partition the Niven numbers by the

defining the order ofa Niven number and answer some ofthe basic questions
(similar to (1) thorough (3)) concerning Niven numbers of various orders.
We define an integer x > 0 to be an nth order Niven number, denoted
N(n)(x), ifx is a Niven number and S(x) is a Niven number oforder n-1,
and that Nw(x) if and only if S(x) = x. All other Niven numbers are said
to have no order.

It is easily seen that the Niven numbers of the first order are the integers
from 1 to 9. We also see that the set ofthe first ten Niven numbers ofthe



14 The Pentagon

second orderis {10,12,18,20,21,24,27,30,36,40}. It would seem to follow
that the first 3rd order Niven number has a digital sum of 10, but that
is incorrect. The first 3rd order Niven number is 48. The first 3rd order
Niven number whose digital sum is 10 is 190.

Results

Question (1): Dothere exist Niven numbers of infinite order? In order
to answer this, we will construct a number which is a multiple of a Niven
number x. The following lemma, derived in [1], will prove useful for our
proof.

Lemma 1. S(mn) = 5(m)5(n)-9c(m,n), where c(m,n) denotes the sum
of carries which occur when calculatingthe product ofm and n.

We also note the following:

Lemma 2. For any x,

c x, £ io«ai°8*j+o =0

We see that for each '1' in the sum, it is exactly ItogzJ digits away
from the next '1' in the number. Since the last digit is 1 and the length of
x is equal to [togxj +1, the product is x/S(x) consecutive copies of x, i.e.,
the product looks like

dnd„-i...dido ... d„d„-i...dido,

where n = length of x and <f, denotes the tth digit of x. It is easily seen
that this product has no carries.

Theorem l.Ifxis Niven, then there exists a Niven number n such that
S(n) = x.

Proof. We define

n= £ *-10'<llo«*J+1>.
*=o

Clearly x|n, and wesee via Lemma1 that

5(n) =5 £) x•10'<Li°g*J+D

=S(x)S\ £ lO'd'os'J+D -9c x, £ io'(ll°6*J+i)
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/*fo-i \ / Bfo-i \=S(x) £ 1J - 9c x, £ io'(Li°s*J+i) .

Via Lemma 2, we see that the number of carries of the product is 0 and
thus

5(n) =5(x) £ i=_^.5(x) =aJ.

Corollary 1. If there exists an integer x such that JV(„)(x), then there
exists an integer y such that N(n+i)(y) andS(y) = x.

Corollary 2. There exist Niven numbers ofarbitrarily large order.

Theorem 1 looks like a convenient function for generating higher order
Niven numbers. Given the entireset ofnth orderNiven numbers, could this
generate all Niven numbers of higher order? No. This is easily disproved
when one looks at the algorithm with respect to the number 12. The
algorithm yields 12121212, but the first 3rd order Niven number whose
digital sum is 12 is 48.

Question 2: If N{n)(x) = #{y : N(n)(y),y < x), for what n does
limt_0O N(*„)(x) = co? We have already stated that the set offirst order
Niven numbers is finite. This leads one to believe that the higher orders
are finite, but this is not true.

Theorem 2. For n> 2, lira*-,,,,, JV(*n)(x) = co.

Proof. We see that 10* is a second order Niven number for any j > 0.
Hence, lim^oo Nfa = oo. For any x such that JV(2)(x), one can create an
integer y such that W(3)(y) via Theorem 1. Thus, lim^oo iv*(*3)(x) = oo.
We easily see that, by induction, the set of Niven numbers of order n is
infinite for any n > 2.

Question 3: What is lim^c ^^? Since JV("n)(x) <N(x), we easily
see that lim,^*, ^=^ =0.

Question 4: What is known about the asymptotic formula for NT Jx)?
Unfortunately, we know little about an asymptotic formula for N(x). Yet,
it is very obvious that ifthere does exist an asymptotic formula for N(x),
say f(x), then the asymptotic formula for NtJx), if it exists, is bounded
by/(x).

Open Questions

The following are some ofthe open questions regarding higher order
Niven numbers. First, what is the largest set of consecutive numbers that
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belong to the nth order? In [2], it was proven that 20 is the largest set
of consecutive Niven numbers. The sequence generated each had a digital
sum of 2464645030, which is not Niven. By definition, these Niven numbers
have no order. Hence, the question of whether there exists 20 consecutive
Niven numbers of order n arises. It is my conjecture that this might be
true, but the set consists of numbers that have greater than 1300 digits.

Other questions arise, like what is the order which contains the largest
set of consecutive integers? For what values of x is NT Ax) < NTn+1^x)
true for all n? For what values is NTJx) > NTn+1Jx) true for all n?
Finally, what is the asymptotic formula for NTJx)?
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Lengths of Generalized Rose Curves

Ismat Hasan Shari, student

Alabama Zeta

Birmingham-Southern College
Birmingham, AL 35254

Introduction / Project Description

This project began by considering the well-known polar "rose curves."
These are the polar graphs of r(0) = cos(mff) where m € N. We then
generalized the situation by allowing the coefficient of 0 to be rational. In
other words, we investigated the graphs ofr(0) = cos (^0), where m and
n are relatively prime, and n £ 0. We realized the need to determine the
minimal interval J = [0, p] for which the polar graph of this function on
domain / is complete; we define the "polar period" to be this value of p.
The polarperiod is discussed in detail in Section 2. It is wellknown that the
polar period for the rose curves iseither ir or 27r, depending on the parity
of m, and so we expected to observe a similar phenomenon in the case of
the "generalized rose curves," r(0) = cos (f$). We were not disappointed.
Indeed, the parity of m and n are involved, as shown in Lemma 3.

Next we focused on finding the arc length ofthegeneralized rose curve,
numerically approximating this length for several values of m and n. The
resulting data suggested an interesting conjecture, namely that the arc
length ofr = cos (&$) and that ofr = cos (%9) are equal. Section 3 is
devoted to arc length, and this result is stated and proved as our main
theorem.

The Polar Period of a Generalized Rose Curve

In what follows, we make use of some basic properties of polar coordi
nates. Most calculus texts are likely to provide the necessary background
on polar coordinates, their graphs, and their arc lengths (c.f. [3]). First
ofall, when we write (rlt0i) = (r2,02), we mean equality as points in the
plane, not as ordered pairs ofnumbers. In particular, we have the following:

Received in April1996 andin revised form in September 1996.
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Proposition 1. TAe equality (ri, 0i) = (r2,02) holds if andonly ifone of
the following conditions hold:

(i) n=r2 = 0;
(ii) there is an n € Z such tiat r\ = r2 and 0\ = 62 + 2nir; or
(Hi) there is an n € Z such that ri = -r2 and 0i = 02 + (2n + 1)jt.

Definition 1. TAe polar period of a function r = r(0) is the smallest
a > 0 that satisfies

(2.1) (r(0 + a),0 + a) = (r(9),0) forall0eR.

Roughly speaking, the polar period is the smallest positive numberp
for which the polar graph is completed as 0 varies from 0 to p. As an
example, we can easily compute the polar period for the standard rose
curves r(0) = cos (m0):

~ m. i • j . //i\ / a\ • f "" if mis oddLemma 2. TAe pofer period for r(0) =cos (m0) is | ^ .fm .g eyen .

Proof. Consider r(0) = cos(mfl).
Case I: Assume m is odd. To show that a = it satisfies (2.1), note that

(r (0 + it) ,9 + ff) = (cos m(0+ jt) ,0 + it)
= (cos (m0+ mn) ,0+ it)
= (- cos (m0) ,0+ jt) (using well-known identities)
= (cos(m0) ,0) (by Proposition 1)

= (r(*M)-

To show that it is the smallest a > 0 that satisfies (2.1), assume that
a satisfies (2.1) with 0 < a < n. Substituting 0 = 0 into (2.1) with
r(9) = cos(m0), we obtain (cos(ma) ,o) = (1,0). Now by Proposition 1,
a must be a multiple of jt, which is impossible since a € (0, tt). Thus it is
the polar period.

Case II: Assumem is an eveninteger. In a manner similar to the above,
we first show that

(r (0+ 2ir),0+ 2tt) = (cos (m0 + 2rmr) ,0 + 2x)
= (cos(m0),0).

Then we prove that a = 2* is the smallest a that satisfies (2.1) by using
Proposition 1, as above.

Note that for the rose curves the parity of m necessarily determines
the polar period. We now introduce the generalized rose curves r(0) =



Spring 1997 19

cos (2*0) in which the parity of both m and n play a role. For notational
convenience in what follows, let

a _ ( 1 if mn is oddA""--\2 ifmniseven •

Note that 0m„=0nm-

Lemma 3. TAe polar period for r (0) = cos (^0) is Pmnn*-

Proof Let r (0) = cos (**0). We first show that (2.1) holds when a = 2njr:

(r (0 +2nit) ,0+2nir) =(cos (-0 +2mjr) ,0+2n?r)
=(cos (—0J ,0+2n7rJ (using known identities)
= (cos (—0j ,0J (by Proposition 1).

Now to compute the smallest a that satisfies (2.1), let us assume that a
satisfies (2.1). Substituting 0 = 0 into (2.1) with r(0) = cos(^0), we
obtain

(CO!»(^a),or)=(l,0).
By Proposition 1, cos &at = ±1, forcing a = £Jbr for some integer ifc.

Also by Proposition 1, a is a multiple of it, so j~ € Z. Since n and m are
relatively prime, k is a multipleof m, andthus a is a multipleof nit. Thus,
the polar period must be either nx or 2n?r.

Case I: Assume m is odd and n is even (n ^ 0). Then the polar period
is 2n?r, since a = nit does not satisfy (2.1):

(cos (^ (0 +tjtt)) ,0+mr) =(cos (™0 +mn) ,0)
-(—(=.),•)

*(-(?)••)
in general, as can be easily seen by substituting 0 = 0.

Case II: Assume m is even and n is odd. In this case, the polar period
is also 2njr and not nit, since

(cos (^(0 +tmt)),0 +njr) =(cos (—0 +m?r) ,0+nir)
=(cos(—0) ,0+njr)

"(-(?)•»)



2J) The Pentagon

as above.

Case III: Assume m and n are both odd. Then the polar period is nit.
To show that (2.1) holds when or = nit, we compute as follows:

(r(0 +nir),0 +n7r) =(cos (—0 +mit) ,0 +nit)
= (—cos (—0) ,0+nit) (using known identities)

=(cos (—0) ,0) (by Proposition 1).

Thus, nit is the polar period if m and n are odd.

In preparation for the main results, we introduce some notation. We
denote the polar period of r(0) = cos(^0) byp(m,n). Using this notation,
we can express an immediate consequence of the previous lemma.

CoroUary 4. p(n,m) = ^ -p(m,n).

Proof. Note that p(n,m) = Pnmmit = ^mn^nit = ^ -p{m,n).

One additional lemma required in the next section is the following result
concerning integrals of periodic functions.

Lemma 5. If g(x) is periodic with period p, then for any a,b € R,
X+pg(x)dx = fi+'>g(x)dx.
Proof

fO+P f* fO+P
I g(x)dx= g(x)dx+ I g{x)dx

Ja Ja Jb
fb+p ra+P

= J g(x)dx+ I g(x) dx
Ja+p Jba+p

b+p

g (x) dx.
b-i

CoroUary 6. If g (x) is periodic with period p, and k is any positivt
integer, then JQkp 0(x) dx = k- f£ g(x) dx.
Proof

,kp rp ftp ftp
/ g(x)dx= g{x)dx+ g(x)dx+ ---+ g(x)dx

Jo Jo Jp J(k-l)p

= k- I g(x) dx.
Jo
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Main Results: Arc Length

In this section we will prove our observations about the arc lengths
of generalized rose curves. For this purpose we denote the arc length of
r(0) = cos(S0) by/(m,n).

Main Theorem. For m, n € N , / (m,n) = I(n,m).

Proof. Consider r (0) = cos (^0). By using the standard arc length formula

Arc Length = / y/f{0)2 +f'(0)2d0
Ja

for a polar function r = f(0), where 0 € [a,/3], we obtain

'(-..)-JfMV-'(5*)+i*,(W*
Then, by substituting tp = —0 we get

/'»p(m,n) I m2 n/ (m, n) = / Wcos2 (<p) + —r- sin2 (tp) •—dip.
Jo » nz m

Now by Lemma 3,

n rmxBInn I ~5

^m' n^=mJ VC°S2 ^ +n2" Si°2 ^ rf^
Since one can easily show that cos2 (tp) + =£ sin2 (p) is periodic with period
it, Corollary 6 yields

/(m, n) =(mj9mn) ^ / ^cos2 (v) +^ sin2 (tp) dip
(3-1) =A»n / yn2 cos2 (<p) +m2 sin2 (tp) dtp.

Similarly, I(n, m) =pma /„' ^m2 cos2 (<p) +n2 sin2 (y>) dtp. Now, sub
stituting V» = f - p in (3.1) and using the identity cos (f - <p) = sin(p),
we obtain

— IT .^

'(m, n) =-/?mn y ^/n2 sin2 (ip) +m2 cos2 (V>) <fy

=Ann j yjn* sin2 (tf>) +m2 cos2 (^) cty

=Ann / ym2 cos2 (VO +n2 sin2 (^) dip (By Lemma 5)
= /(n,m).
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Figure 1. Five-leaved rose r = cos (50) (left) with period it and
generalized rose curve r = cos (|0) (right) with period bit. Each
has approximate arc length 10.505.

Figure 2. Generalized rose curves r = cos (§0) (left) with period
18ir and r = cos (§0) (right) with period Ait. Each has approximate
arc length 38.155.

This theorem surprised us. The graphs of r = cos (^0) and r =
cos (-"-0) have very different polar periods, and look dramatically different;
see the comparisons in figures 1 and 2.

Applying trigonometric identities to (3.1), one can show that

l(m,n) =2n/?m„ /' Wl - (" J" j s\n2tpd<p.
This integral cannot be evaluated as an elementary function. Nevertheless,
it can be expressed in terms of a special function known as an elliptic
integral. More generally, integrals of the form

E(u) = f3 \J\-u2sin20dO
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are known as complete elliptic integrals of the second kind [2], and are
often found in the context of physical problems and engineering [1]. El
liptic integral tables were once common computational tools; however, as
we discovered, the development of powerful computer algebrasystems has
rendered these largelyobsolete. In the language of elliptic integrals, when
n> m, the generalized rose curve r = cos(^0) has arc length

l(m,n) = 2n0mnE (y^5)-
This would enable one to approximate these lengths using the elliptic inte
gral tables. Of course, if m > n, the Main Theorem allows us to compute
l(n,m) to achieve the same result.

Acknowledgements. My special thanks are given to Dr. Barry Spieler, Dr.
Natwarlal Bosmia, and Dr. William Boardman for their supervision and
advice, and for their patience in the preparation of this paper, which began
as an interim term project at Birmingham-Southern College. In perform
ing this research we used the computer algebra system Derive v.3.0 for
experimentation and computation.
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From the Pages of...

"LETHAL ENVELOPE ... The most important—and startling—sci
entific discovery of the yearhas been the evidence telemetered back by the
instrumented Earth satellites of a region of dangerous radiation extend
ing from outer space into the Earth's atmosphere. Presenting as it does
a new obstacle to manned space flight, the "radiation shell" is of major
interest to scientists of Systems Corporation of America, who are already
at work investigating techniques for protecting men and instruments from
this unexpected hazard. Other topflight physicists, engineers and applied
mathematicians who would like to specialize in precision solutions to the
problemsof space travel are invited to address their inquiries to ... SYS
TEMS CORPORATION OF AMERICA"

—advertisement in The Pentagon, Fall 1958
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I thought the universe was governed by strict, oppressive laws, until I
learned about the emerging, amazing science called Chaos. This science has
such significance that I believe everyone in the educational world should be
familiar with it. I would like to outline some of the basic ideas of chaos and

fractal geometry. James Gleick [3] defines chaos as "the obstinate element
of disorder within order, of variation where predictability was expected."
The chaos theory is reshaping how scientists see the universe. No longer can
we blindly follow one set of orderly rules and ignore the disorder found in
nature. But in examining this disorder, we may discover the fundamental
secrets of the universe.

Chaos was discovered barely a decade ago when various scientists began
examining the disorder in nature. Heart oscillations, gypsy moth popula
tions, and stock prices all led to parallels in nature with cloud shapes, light
ning paths, blood vessel networks, and star clusters. Scientists from every
field noticed the surprising patterns of nature. Chaos has revolutionized
science by uniting scientists from every field in a world in which increasing
specialization prevented physicists from communicating with biologists or
mathematicians.

However, chaos has also sparked controversy in scientific circles. Some
call it the greatest overstatement of the century. On the other hand, James
Gleick [3] states, "The most passionate advocates of the new science go
so far as to say that 20th century science will be remembered for just
three things: relativity, quantum mechanics, and chaos." One thing that is
unique about the chaos revolution is that it applies to objects we can see
and touch. Theoretical physics has not directly affected the average person
recently. Chaos has brought physics back into the mainstream. Theorists
in chaos look at the big picture, believing the whole is truly greater than
the sum of its parts.
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Because chaos theory applies to a wide range of disciplines, the individ
uals who are helping shape it are also quite diverse. One scientist involved
in the origin of chaos theory was Edward Lorenz, a meteorologist at MIT.
He ran a computer program which simulated weather patternsonearth by
obeying a few basic physical laws. He decided to repeat a certain sequence
and typed in its initial conditions. The weather surprisingly did not repeat
theoriginal sequence; it began thesamebut quickly became unrecognizable.
Was it a computer malfunction? No, the difference was that the computer
held six decimal places in the first sequence, while Lorenz only included
three in the second sequence. This difference of one ten-thousandth caused
a completely different outcome, virtually ruling out long-range forecasting
of weather, the stock market, and other complex systems.

The resulting phenomenon, small changes causing complex results, had
never before been considered. Scientists had always assumed that simple
changes led to simple results and complex results could only be a product
of complex initial conditions. This event, termed "sensitive dependence on
initial conditions," has become known as the Butterfly Effect. Asexplained
in the hit book and movie Jurassic Park, by Michael Crichton, this is the
idea that the flap of a butterfly wing in China today can cause storms in
New York in a month. Scientists have ignored minor changes, thinking that
they were negligible; chaos is saying they were wrong.

The chaotic patterns of nature can be modeled by complex shapes
that Benoit Mandelbrot termed "fractals." Fractal patterns are highly ir
regular and fragmented, like a jagged coastline. Also self-similar, fractals
repeat themselves across scale, pattern inside pattern. For example, the
Koch snowflake is constructed by beginning with an equilateral triangle,
and adding similar triangles one-third of its size to the middle third of the
larger triangle's sides. This process is repeated to infinity. The most fa
mous fractal is the Mandelbrot set, named for Benoit Mandelbrot who, in
1980, was among the first to heavily study it. It is a cousin to the Julia
sets, studied by French mathematician Gaston Julia in the 1920's. One
seemingly simple equation, f(z) = z2 + c, is a basis for the Mandelbrot set
and some filled Julia sets.

Though theequations appear simple, the image ofa fractal isinfinitely
complex. For example, let us see how togenerate a basic fractal. Beginning
with a function, we will examine its "orbit." An orbit is the sequence
generated upon iteration of a function, starting with some initial value x0.
Consider the function F(x) = x2; perform the iterations xk+i = x2.. If
|x0| < 1, the orbit converges to 0. If |x0| > 1, the orbit diverges to :fcoo.
If |x0| = 1, the orbit converges to 1. Thus, there exist three different
possibilities for the orbits of F(x) = x2. A fractal is based on orbits of
functions.

I wrote a short program to compute the orbit off(x) =x2-2 and sur-
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prisingly found that even a simplefunction like this can produce a chaotic
orbit. In fact, it will produce orbits with absolutely no pattern if |xo| < 2
and xo is not an integer. So, choose an initial value of 1.3 (or 0.8, or 1.17,
etc.), and the orbit generated does not have any pattern.

In more realistic situations, we can use complex numbers to model
systems of two variables. Filled Julia sets contain complex numbers whose
orbits do not go to infinity. The boundaries of most Julia sets of complex
functions are fractals. Togenerate a Juliaset of the function f(z) = z2 + c,
we first choose a complex number, c = a + bi, and a grid of points in the
complex plane. Then, we compute the first n points on the orbit of each
point, zo, in the grid by iterating Zk+i = *t+c. If the orbit does not exceed
a certain bound after n iterations, we will assume that the original point,
zQ, is in the Julia set. If the orbit does exceed the bound, it is assumed
to diverge to infinity. Points in the set can be colored white and points
outside the set are colored according to the number of iterations, t, before
exceeding the bound. We can let the low range of Vs be red, and follow the
spectrum on up to the highest «'s being violet. Using Fractint for Windows
[2], I have generated a Julia set (see figure 1 for a greyscale version; the
areas which appear speckled are the fractal boundary of the set) based on
the constant c = -0.75978106- 0.09707710H. This complex and beautiful
image is contained in the grid of the complex plane from (—2,-1.5) to
(2,1.5).

The function f(z) = z2 + c was just oneexample of the many types of
functions which can be used to form Julia sets. Transcendental functions,
like c •sin(z) and c •e' also form interesting fractals. You can see some of
these in "The Fractal Poster Set" by Robert L. Devaney [1].

The Julia sets utilize several orbits, one orbit for each point in the
plane, for a single function. The Mandelbrot set, or M-set, onlyexamines
one orbit, the zero orbit (zo = 0), but does so for the family of functions of
the form F(z) = z2 + c, where z and c are complex and c varies. Thus the
M-set is shown in the c-plane, while the Julia sets are in the z-plane. To
graph the M-set, calculate the orbit of zero for a gridof different c-values.
For the Mandelbrot set, it can be shown that any orbit which reaches 2 or
—2 will diverge. The coloring can be decided in the samemanner as for the
Julia sets. Generating these infinitely complex images requires the speed
of the computer, which has facilitated generating fractal images in the last
twenty years.

I have generated, again with Fractint, several images of the Mandel
brot set in its entirety as well as tiny, magnified pieces of it. The first
image is theentire Mandelbrot set (see figure 2for a greyscale version); its
infinite complexity is contained in a small circle of radius 2, centered about
theorigin. Each successive image isa blown-up picture ofthe boxed area in
the previous image (figures 3, 4, and 5). The magnification and maximum
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Figure 1. Julia set.
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iterations for each image are:

figure
fig. 2
fig. 3
fig. 4
fig. 5

magnification

1

6376.52

6975425.12

9783689130.19

iterations

150

150

500

2000

Figure 2. Mandelbrot set.

The Pentagon
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Figure 3. Portion of the Mandelbrot set.

I finally arrived at an image that resembles the entire Af-set (figure
5). However, upon close examination, you maysee that it is not an exact
replica but has its own variations. In fact, no two parts of this seemingly
self-similar fractal are exactly the same. Theoretically, if we wished, we
could forever view increasingly higher magnifications ofthe Mandelbrot set,
oranyfractal, andallofthe images would beinfinitely complex. Computer-
generated images offractal geometry are colorful and beautiful, connecting
science and art. These amazing images are still far from being understood.

Since fractals are a continuous loop of infinite length contained in a
finite amount ofspace, Gleick illustrates [3], "in the mind's eye, a fractal
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Figure 4. Portion of the Mandelbrot set.

is a way of seeing infinity." This aspect of infinite length in finite area was
actually examined at the'turn of the century, but then discarded because it
was so bothersome to most mathematicians. A simple one-dimensional line
fills no space. However, a fractal's length does fill some space. More than
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Figure 5. Portion of the Mandelbrot set.

a line, but less than a plane, it may have fractional dimension. Mandelbrot
use the forgotten techniques of the early 20th century mathematicians to
calculate some fractional dimensions. For example, he found the dimen
sion of the Koch snowfiake to be approximately 1.2618. This number is a
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measure of the geometric complexity of a fractal. The fractional dimension
of a fractal that models a real-world system can give important informa
tion about properties of the system. Fractional dimension is one of the few
things that modern science knows about fractals.

There is still a lot that I do not know, and still a lot that no one knows,
about chaos and fractal geometry. I hope that I have helped illuminate
some of the basic ideas behind this revolutionary science. The infinitely
complex and repeating patterns of fractals may contain the answers to
nature's fundamental questions. Chaos has the potential to unlock the
greatest secrets of the universe. Future generations will use chaos theory to
solve what classical science could not, to reveal what only Mother Nature
has known since the dawn of time.

Acknowledgements. I would like to take this opportunity to thank Christo
pher Brown for sharing with me some of his knowledge of computer-gener
ated imagery and Dr. Timothy Randolph for helping me find some valuable
resources. I would also like to thank Dr. Jim Joiner, our KME chapter's
faculty advisor. Without his persistent encouragement I would not have
completed this paper.
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Newest Record Primes

Since the last time it was reported in The Pentagon (Fall 1995), the
record for largest known prime has been broken twice! The two new num
bers are 21257787-1 and the current record of 21398269 -1. In the Fail 1941
issue, the decimal expansion of the largest known prime was printed using
one line of type. The current record has 420921 digits, which would take
just over 181 pages to print, or more than 2.26 issues of The Pentagon1.

Two WWW sites for primes are given below. The first is the site for
information on the largest primes. The second is for the Great Internet
Mersenne Prime Search, in which you can participate! It is through George
Woltman's free software located there that Joel Armengaud found the cur
rent record. Maybe you will set the next record!

www.utm.edu/research/primes/largest.html#biggest
ourworld.compuserve.com/homepages/justforfun/prime.htm
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Many times the discussion of division algebras is limited to the asso
ciative cases. However, nonassociative real division algebras doexist. They
are often left out because it is assumed that in order to solve linearequa
tions it is enough to require multiplicative inverses. In the following pages,
we will show that this is not the case by using Dickson's construction to
form an infinite number of real algebras in which multiplicative inverses
exist but in which there are linear equations without solutions.

We begin bystatingCurtis'definition ofan algebra [2]. As a reminder,
a field is a commutativering in which the set of all nonzero elementsforms
a group with respect to multiplication.

Definition. Let F beaGeld. Then D isan algebra over a Seld F provided
D is a vector space over F and D has multiplication such that

(i) r(ab) = (ra)b = a(r6) for all r 6 F and a, b€ D, and
(ii) a(b + c) = ab + ac and (a + b)c = ac+ bc for alla,b,c€D.

Furthermore, an algebra D is a division algebra when it contains a
unity and each linear equation with coefficients in D hasa unique solution
in£>.

Division algebras have many of the characteristics of rings. Both are
required to be Abelian groups with respect to addition. Also, themultipli
cation is both left and right distributive in rings and in division algebras.
Themain difference lies in the associativity ofmultiplication. Rings must
have an associative multiplication. Division algebras, however, only require
that scalar multiplication be associative. This difference may seem small
but in fact it is quite important.

With the above definition ofa division algebra> the following theorem
holds.
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Theorem (Bott and Mibor [1] and Kervaire [7]). A finite dimensional
division algebra over the Geld of real numbers has dimension 1, 2, 4, or8.

These algebras are the reals, the complex, the quaternions, and the
Cayley numbers, respectively. The reals and the complex numbers are
familiar. However, the quaternions and the Cayley numbers are more
obscure so I will describe them briefly. The quaternions are defined as
Q = {a0 + ctii + a^j + ct3k : ar0,ai,at2)a3 € R} (throughout, R will
be used to denote the real numbers). The addition in the quaternions is
componentwise and the multiplication isas defined in table 1 (Durbin [5]):

* 1 i j k

1 1 i j k

i i -1 k -j

j 3 -k -1 i_

k k j -i -1

Table 1. Multiplication in the quaternions.

The Cayley numbers are of the same format but with eight compo
nents instead of only four. Again, the addition is componentwise and the
multiplication is as defined in table 2 (Kleinfeld [8]).

It is obvious from this table that the Cayley numbers are nonassocia-
tive. For example, i * (j *I) = -o but (i*j) *l = o. Therefore, the Cayley
numbers are both the largest example of a division algebra over the real
numbers and the nonassociative exampleof a divisonalgebra over the reals.

Now we shall construct an infinite number of real algebras in which
multiplicative inverses exist for all nonzero elements but in which there are
linear equations without solutions. This construction isknown as Dickson's
construction. First, however, another definition is necessary.

Definition (Dickson [3]). Let D be an algebra with identity over a Geld
F. A map 0 : D —• D is called a conjugation if0 is a vector space homo-
morphism such that for all a,b€ D,

(i)0(0(a)) = a,
(ii) 0(ab) = 0(b)0(a),
(Hi) a0(a) £ F, and
(iv) a0(a) ^ 0 for a # 0.
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* 1 i j k 1 m n o

1 1 i 3 k 1 m n o

i i -1 k "j m -1 -o n

j j -k -1 i n o -1 -m

k k j -i -1 o -n m -1

1 1 -m -n -o -1 i J k

m m 1 -o n -i -1 -k j

n n o 1 -m -j k -1 -i

o o -n m 1 -k -j i -1

Table 2. Multiplication in the Cayley numbers.

An exampleof a conjugationis 0 : R —• R defined by 0(a) = —a. The
properties can be checked easily and will be left to the reader.

The following lemma is also necessary for the construction.

Lemma (Dickson [4]). An algebra with a multiplicative identity and a
conjugation has inverses for all nonzero elements.

Proof Let ogD, where D is an algebra with a unity and a conjugation.
Let a ^ 0. Then since a0(a) € F and o0(a) £ 0, (a0(a))_1 exists. Now
a * (0(a)(a0(a))_1) = 1,so 0(a)(a0(a))_1 is the inverse ofa.

With these definitions and lemmas in place, the search for an algebra
in which each nonzero element has a multiplicative inverse but in which
some linear equations do not havesolutions may begin.

This search involves Dickson's construction of a division algebra. This
construction sets D to be an algebra with a unity and a conjugation. There
fore, D has inverses for all nonzero elements by the above lemma. Dickson
proposes that D2 = D x D is also an algebra with unity and conjuga
tion. The addition is componentwise and multiplication and conjugation
are defined by

(a,b)(c, d)= (ac- 0(d)b, da + 60(c)) and
0((a,b)) = (0(a),-b).

Obviously, this canbe extended to D4 = D2 x D2, D8 = D* x D*, D16 =
D* x I>8, etc. Letting D= R, we obtain R2, R4, R8, R18

Now, R16 isanexample ofan algebra which hasinverses for allnonzero
elementsbut which contains linear equations without solutions. Zero divi-
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sors are numerous in R16. One such pair is

((0,1), (0,j)) * ((0,j), (0, -1)) = ((0,0), (0,0)),

where each of the above ordered pairs is a pair of quaternions, that is,

((0,l),(0,i)) =
((0 + Of + 0j + OJfc, 1+ 0» + Oj+ 0k), (0+ Of + 0j + 0*r, 0+ Oi + lj + 0k)).

These zero divisors lead us to

((0,l),(0,i))x = ((0,0),(j,0)),

an equation without solutions in R16.
Proving that this equation has no solution involves choosing an arbi

trary solution, say /?. Let /?= ((a, 6),(c,d)) where a, b,c,d€ Q. Putting 0
in for x in the equation simplifies it to

((b+ jd, -a + jc), (bj-d,c + ja)) = ((0,0), (j, 0)).

Solving for b yields the equations b+ jd = 0 and bj —d = j. Substitution
leads to (—jd)(j) —d = j. We now write d = t*i + r2f + raj + r+k where
each ri € R. Simplification yields —2tr2 —2ir4 = j. Since i, j, and k are
linearly independent over R, there is no solution.

We now state one more related proposition. First, a definition is nec
essary.

Definition (Durbin [5]). Let R be a commutative ring. Then a € R is a
zero divisor if there exists b€R such that 6^0 and ab= 0.

Proposition (Hopf [6]). Let D be a finite dimensional division algebra
over F. The following are equivalent:

(i) D has no zero divisors;
(ii) no linear equation in D hasmore than onesolution; and
(hi) every linear equation in D hasa solution.

This proposition allowsus, in effect, to use the phrase "no zero divisors"
to replace the requirementthat each linearequation havea unique solution.

In order to completely discuss division algebras, both the associative
and the nonassociative cases must be considered. To do this, it must first be
realized that the requirement of multiplicative inverses is not enough to be
able to solve all linear equations. In fact, wehave found an infinite sequence
of algebras which have multiplicative inverses for all the nonzero elements
but which contain linear equations without solutions. We also mentioned
three statements which are equivalent to the statement that linear equa
tions have solutions. Among these was not, however, the requirement of
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multiplicative inverses alone. For students to completely understand all
division algebra cases, they must be exposed to the nonassociative case. In
order to do so, they must be taught that the fact that all linear equations
havesolutions does not always follow from simply requiring multiplicative
inverses in division algebras.
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The Symbol «="

"When Robert Recorde in TAe Whetstone of Wit, published in
1557, usedour familiar symbol"=" for equality he proposed this sym
bolism in the following words: "And to avoide the tediouse repitition
of these woordes: is equalle to: I will sette as I doe often in woorke
use, a paire of paraDelles, or Gemowe lines of one lengthe, thus: =,
bicause noe .2. thynges can be moareequalle."

"Despite thiseloquent appeal to reason, the symbol consisting of
a stylized combination of the letters ae from the word "aequalis" was
in frequent use (See Descartes, La Geometrie for most of the 17th
century."

—TAe Pentagon, Vol. 16 No. 1
Fail 1956



3J TAe Pentagon

Molecules and Their Symmetries: Determining the
Hybridization of a Central Atom using Point Groups

Suzanne Shontz, student

Iowa Alpha

University of Northern Iowa
Cedar Falls, IA 50614

Presented at the 1996 Region IV Convention

There are many symmetries evident in nature. Leaves are symmetrical,
snowflakes are symmetrical, and crystals are symmetrical. Another very
important example of symmetries in nature occurs in most molecules.

There are many uses of finding the symmetries of a given molecule in
a chemical setting. Once a set of symmetries has been established, work
can be done in quantum mechanics or crystallography, for example. Also,
the atomic orbitals that form a given hybrid orbital of a central atom in a
molecule can be determined. The goal of this paper is to establish a math
ematical method for determining which atomic orbitals form the hybrid
orbital of the central atom in a given molecule.

The Method

One way of defining symmetry is as a geometrical transformation that
arranges a body into an equivalent (possibly identical) configuration that
is indistinguishable from the original. One goal of this paper is to show
that the set of all symmetries of a molecule meets all of the requirements
for forming a mathematical group.

A group is a set G together with an operation* on G such that each
of the following axioms is satisfied:

(i) a* (6 * c) = (a* 6) *c for all a,6, c e G (associativity);
(ii) there is anelement e 6 Gsuch that a*e = e*a = a for each a€G

(existence of an identity element); and
(iii)for each a € G thereis an element b€ Gsuch that a*6 = b*a = e

(existence of inverse elements).
In this context, wewillsee that G is a set of symmetryoperations and

that the operation on the set is composition. This group is also called a
symmetry group or a point group. Note that this definition can also be
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extended to three dimensions. This is the definition that we will use for

the symmetry group of a molecule.
In order to establish a symmetry group for a specific molecule, we

must first define what is meant by a symmetry element and a symmetry
operation. According to Cotton [2], a symmetry element is a geometrical
entity such as a line, a plane, or a point, with respect to which one or more
symmetry operations may be carried out, and a symmetry operation is a
movement of a body such that, after the movement has been carried out,
every point of the body is coincident with an equivalent point (or perhaps
the same point) of the body in its original configuration.

There are four different types of symmetry elements: a plane, a center
of symmetry (center of inversion), a proper axis of rotation, and an im
proper axis of rotation. It is highly unlikely that a molecule will possess all
four types of symmetry elements. Each of these symmetry elements yields
one or more symmetry operations. A plane, for example, yields reflection
in the plane; a center of symmetry or center of inversion yields inversion of
all the atoms through the center of the molecule. A proper axis of rotation
generates one or more rotations about the axis, and an improper axis of
rotation generates at least one repetition of the following sequence: rota
tion followed by reflection in a plane perpendicular to the axis of rotation.
There is also another trivial symmetry operation which can be applied to
all molecules, and that is the identity operation. It has the effect of doing
nothing at all to the molecule. The identity operation is symbolized by E.

The first symmetry element is a plane which yields reflection in a plane.
A symmetry plane is required to pass through the molecule. The symbol -
is used to designate a plane ofsymmetry and also the operation of reflecting
through the plane. Carbon dioxide is an example of a molecule that has a
plane of symmetry which, in figure 1, extends out from the page along the
dashed line. Figure 1 shows the effect of applying a to carbon dioxide.

I

I

I

:b=<_=6- ——t'0=C=6\
0> J (z) w 0)

I

Figure 1. Reflection in a plane.
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The second symmetry element is a center of inversion, which results in
the inversion of all atoms about the center of the molecule. The symbol for
the center of inversion and the operation of inverting all atoms through the
center of the molecule is t. Figure 2 shows an example of inversion.

^

Figure 2. Inversion.

The third type of symmetry element mentioned was a proper axis of
rotation, which generates at least one rotation about the axis. The symbol
for this symmetry element is Cn, where n is the order of the axis. Once
again, C„ also represents the operation of rotating a molecule about the Cn
axis. The order of the axis is the number of times that the smallest rotation

capable of giving an equivalent configuration must be repeated in order to
give a configuration not merely equivalent to the original but also identical
to it. Figure 3 shows an example of rotation about a Cz axis, where the C$
axis cuts through the boron molecule and is perpendicular to the molecular
plane.

F

e>)F"
y

Rtf

U)F FLO

Figure 3. Rotation about a Cz axis.

The final symmetry element is an improper axis of rotation, which
generates a proper rotation about the axis and then a reflection through a
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plane perpendicular to the rotation axis. The symbol for an improper axis
of rotation is S„, where n denotes the order of the axis. It also designates
the corresponding symmetry operation. Figure 4 illustrates an Se operation
(see [2]).

Figure 4. An 56 operation.

It is now possible to show that the set of all symmetry operations on
a given molecule forms a mathematical group. The first requirement for
a mathematical group is that the set under consideration be a non-empty
set. The set of symmetry operations for every molecule contains at least
one element, the identity operation, E. Thus, the first requirement for a
group has been satisfied.

We have seen that the second requirement for a mathematical group is
that the product of any two elements in the set is a third element in the set.
This can be verified for every molecule. As an example, we will consider
the molecule H^O. The complete set of all symmetry operations for H^O
is {E,C2,o*v(xz),oJv(yz)} (see [2]). It can be seen that the product of any
two operations in the set yields a third operation in the set. For example,
when C2 is applied to HiO and is followed by C2) the result is E (see figure
5). Similarly, this can be verified for all other combinations of operations
in the set. The second requirement for a mathematical group has been
satisfied in the case of water. By a similar argument, this can be shown for
all existing molecules.

The third requirement is that there be an element E in the group
such that for every other element X in the group, EX = XE = X. We
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Figure 5. Example of composition of operations on H^O.

have already shown that the identity is E, which is the operation of doing
absolutely nothing at all to the molecule. Thus, the third requirement for
a group has been satisfied.

The fourth requirement is that the associative law hold for the set of
symmetry operations. According to Durbin [3], the associative law always
holds whenever compositions can be formed provided that the functions are
well-defined.

The fifth and final requirement is that every element in the group has
an inverse that is also in the group. Since our group is a group of symmetry
operations, the inverse of an operation is one that will undo what the first
operation does. Mathematically, an operation R has an inverse S if the
following is true: RS = SR = E. This can be easily verified. For example,
if a molecule is transformed into a similar molecule through reflection in a
plane, it may be transformed into the original molecule by reflecting that
image in the same plane. Thus, the final requirement for a mathematical
group has been satisfied. Therefore, it has been shown that the set of all
symmetry operations of a molecule forms a mathematical group which is
called a symmetry group, or point group.

The next step is to establish an exhaustive list of these symmetry groups
of molecules so that we will then be able to determine what symmetry
group, or point group, a given molecule falls into, and thus, determine what
are its atomic orbitals and hybridization. In his book Chemical Applica
tions of Group Theory [2], Cotton lists nineteen symmetry groups likely to
be encountered in ordinary molecules. He groups them according to the
symmetry elements and operations present in the molecule. The symbols
for the point groups are named Schonflies symbols after their inventor.

Once it has been decided which point group a molecule belongs to, a
character table can be consulted. A character table for a specific point
group contains a list of all the symmetry operations in the group, the char
acters of the irreduciblerepresentations of the group, the representations of
a group, and symmetry properties of the group, which can be used to decide
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which atomic orbitals (AO's) constitute a given hybrid orbital. According
to [4], the numbers in a character table aresimplythe representations of the
symmetry operations in a group. There are n irreducible representations
for a group consisting of n classes of symmetry operations [2]. An irre
ducible representation is simply a representation in which it is not possible
to find a symmetry operation that willreduce the matrix into two matrices
of smaller dimension. For example,

1 0 0

0 1 0

0 0 1

represents an irreducible representation for the identity operation, E, in a
given group.

Annxn matrix is then constructed where n represents the number of
bonds between the atoms in the molecule. The matrix is obtained by placing
the number 1 in the ajj position of the matrix if that axis is unchanged
by the symmetry operation for axis j and placing the number 0 in that
positionif that axis is changed by the symmetry operation. A "1" is placed
in the atj position if the tth axis moves into the jth position. The rest of
the matrix is then filled in with zeros.

The character or trace of any symmetry operation in a group is simply
the number of axes (or atoms) in a molecule left unshifted by the geometric
transformation. When represented in a matrix, the character is the sum of
the diagonal elements in a square matrix (this only applies to calculations
involving the characters of the symmetry operations, not to calculating the
characters of the irreducible representations, which are obtained from a
character table). Thus, for a square matrix A,

i

We now consider the following example.

Example: Boron Trifluoride

The formula for boron trifluoride is BF3. It exists in nature as a trigonal
planar molecule, which can be represented as in figure 6.

We see that BFz has one Cz axis, three C2 axes perpendicular to the
Cz axis, and one Sz axis. Also, BFz has a horizontal plane of reflection
and three vertical planes of reflection. Therefore, BFz must belong to the
symmetry group Dzh according to the chemists' notation or D* according
to the mathematicians' notation. This is a dihedral group of order twelve
which is non-Abelian. According to the Dzh character table, boron trifluo
ride has twelve symmetry operations, namely E, two Cz's, three C2's, 07,,
two Sz's, and three <rv's.
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Figure 6. Boron triflouride.

Now, the characters of an overall representation must be determined
by examining one symmetry operation from each class. We have

with x = 3;

with x = 0;

with x — i;

with x = 3;

with x = 0; and

£ =
hi "1 0 0] "n"

r2 = 0 1 0 ra

W 0 0 1 .ra.

Cz =
ri "0 1 0" 'r\
A = 0 0 1 r2

wJ 1 0 0 .r3.

C2 =
VA "0 0 ll "ri"

A = 0 1 0 r2

UJ [l 0 0 .rs.

<Th =

S3 =

-„ =

h "1 0 0" n

«* = 0 1 0 *2

wJ 0 0 1 -r3.

hi "0 1 0" ~T\
«* = 0 0 1 T2

UJ 1 0 0 73.

hi '1 0 01 "ri"
r* = 0 0 1 ra

U 0 1 0 .r3.
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with x = 1- Therefore, the characters of the overallreduciblerepresentation
are

E 2Cz 3C2 oh 2Sz 3c0
3 0 13 0 1 "

The formula to use for finding the number of each irreduciblerepresen
tation needed in the irreducible representation of the symmetry group Dzh
is given to be

irreducible representations needed = (1/n) y^XRXl^t

where n is the number of symmetry operations in the point group, xr -
the character of the reducible representation, xi is the character of the
irreduciblerepresentation, and N is the number of symmetry operations in
the class (c.f. [4]). Recall that this formula is only used to determine the
character of a reducible representation. A partial character table for Dzh
is as shown in table 1.

D3h E 2C, 3C2 l°h 2S„ 3a.

A,' 1 i 1 1 1

V 1 -1 1 •1

E' 2 0 2 •1 0

A," 1 1 -1 •1 -1

A," 1 •1 1 -1 1

E" 2 0 .2 0

Table 1. Partial character table for Dzh.

Using the formula of the previous paragraph, an irreducible represen
tation for £>3/, can be found. We obtain

(1/12)[3-1-1 + 0-1-2+1-1-3 + 3-1-1 + 0-1-2 + 1-1-31 = 1^
(1/12)[3 •1•1+ 0 •1•2+1 •-1 •3+ 3 •1•1+ 0 •1•2+1 •-1 •3] = 0A2
(1/12)[3 •2-l + 0--l-2 + l-0-3 + 3-2*l + 0--l-2 + l-0-3]_:l£'

(1/12)[3 •1•1+ 0 •1-2 +1 •1-3 + 3 •-1 •1+ 0 •-1-2 +1 •-1 •3] = 0A?
(1/12)[3 • 1•1+ 0 •1•2+ 1•-1 •3+ 3 •-1 •1+ 0 •-1 •2+ 1•1•3] = 0A2'

(1/12)[3 •2-l + 0--l-2 + l-0-3 + 3--2-l + 0-l-2+l-0-3] = qe".

Therefore, this reduces to A\ + E'. This means that the atomic orbitals
must have the same symmetry properties as A[ and E'.
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V 2 2 2
* *y ; i

E' (x.y) (x2-y2,xy)

Table 2

Consulting a character table for Dzh again, we can determine which
atomic orbitals contribute to the hybrid orbital. A partial character table
for Dzh is as given in Table 2.

The above information tells us that one orbital must be perfectly sym
metrical with respect to the x and y axes and also with respect to the z
axis. Therefore, it must be an s orbital or a d,a orbital. Also, there must
be two orbitals that collectively have the same symmetry properties as E'.
According to the character table, these orbitals could be a px orbital and a
pv orbital, or they could be a dza_„3 orbital and a dxy orbital. Therefore,
BFz must be sp2, sd2, d3, or p2d hybridized. Using knowledge of chemical
bonding energies, we know that the boron atom must be sp2 hybridized
because that hybridization is the most stable hybridization. Therefore the
hybridorbital is made from a 2s orbital, a 2px orbital, and a 2p„ orbital.
According to [1], BFz is indeed an sp2 hybridized molecule.
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On any given campus, if a random group ofstudents were approached
and asked if they knew what actuarial science was, some mightgroan and
say something about too much math, but most would think youjust cre
ated a new major. Yet, if a group of students in the math department
were approached and asked the same question, you might hear some of
the same groans as before, but the majority would have some idea about
the subject in mind. Most believe actuarial science to be an overbearing
amount of number crunching in the insurance industry. That's to be ex
pected. Even Webster's New World defines an actuary as "a person whose
work is to calculate statistically risks, premiums, life expectancies, and so
forth for insurance." However, actuarial science is branching out, and the
once hidden profession is becoming known.

The study of actuarial science evolved in England in 1792 during the
primitive beginnings of life insurance. At that time, much was to be dis
covered about the intricacies of insurance, and mathematicians led the way.
Upon the onset of the twentieth century, more technical problems involving
insurance emerged in the United States, thus stressing the need for some
control and regulation. Meeting this demand, the Society of Actuaries and
the Casualty Actuarial Society formed. Presently, these two organizations
head the series of exams administered to aspiring actuaries.

Until recently, the exam process eventually led an actuary candidate
downone of two avenues, the first being the study of life insurance offered
by the Society of Actuaries, and the second the study of casualty insurance
offered by the CasualtyActuarialSociety. Eachof the twochoices consisted
of a series of ten examinations, with the first four jointly given by both
organizations, and the final six given separately by each organization. The
exams are worth a set amount of credits. An associateship may be obtained
after completing 200 credits, and a fellowship after 350. However, due to
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the changing needs of today's world, the Society of Actuaries is in the
process of relinquishing its set limitations of life insurance and expanding
its horizon (Society of Actuaries [4]).

Once limited to life insurance, the Society of Actuaries is now offering
an alternativeexam series. As of July 31,1995, the proposed series of exams
available to actuaries will be finance/investment, group and health bene
fits, individual life and annuity, and pension plans. However, along with
these modifications comes new requirements for a candidate's attainment
of both associateship and fellowship status. Associateship status cannot be
achieved until300 credits have been successfully completed. Upon complet
ing those credits, 90 credits from the candidate's specialty field, 60 elective
credits, and attendance of the Fellowship Admissions Course are required
before fellowship status may be earned (Society ofActuaries [4]). The new
changes to theexamination process are inhopes ofbuilding astronger foun
dation and a broader knowledge baseto better exercise the diverse skillsof
an actuary.

To further illustrate the assorted natureof problems of which an actu
ary is capable beyond the insurance industry, I have chosen two examples
to demonstrate. In the first example, the operations research technique of
building a linear programming model is useful in finding a solution. In the
second, financial theory of interest is utilized.

EXAMPLE 1

This example hasbeen condensed and simplified from its original form
found in the Introduction to Operations Research text ([1], pp. 43-46) to
serve the purpose of this paper. Realistically, more variables would be
needed.

Mary is a modern day success story. She is highly regarded in her
career, active in her community,and she has an adoring husbandand chil
dren. However, tragedy has fallen upon Mary. Shehasjust been diagnosed
with a malignant tumor in the abdominal region. Radiation therapy is her
best possible chance for survival. This treatment involves using two exter
nal beams which will pass ionizing radiation through the patient's body,
damaging both cancerous and healthy tissues. Due to the problems of at
tenuation and scatter, the procedure is quite complex. The goalis to select
the combination of beams to be used, andthe intensity of each one, in order
to generate the best possible dose distribution.

Once the treatment design has been developed, it is then administered
in may installments spread over several weeks. After a thorough anatomical
analysis of the intensity of each beam, a medical team came up with the
following dosage requirements. If the dose level at the entry point forbeam
1 is 1 kilorad, then an average of .4 kilorad will be absorbed by the entire
healthy anatomy in the two dimensional plane, an average of .3 kiloradwill
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be absorbed by the nearby critical tissues, an average of .5 kilorad will be
absorbed by the various parts of the tumor, and .6 kilorad will be absorbed
by the center of the tumor. If the dose entry level for beam 2 is 1 kilorad,
the healthy anatomy, critical tissues, tumor region, and center of the tumor
will absorb .5, .1, .5, and .4 kilorads, respectively. Also, concerning the total
dosage from combined beams 1 and 2, that for the healthy anatomy must
be as small as possible, critical tissues must not exceed 2.7 kilorads, the
average of the tumor region must equal 6 kilorads, and the center of the
tumor must be at least 6 kilorads.

Simultaneously satisfying all of these requirements is a difficult task.
However, it is possible with a linear programming model. First, it is nec
essary to review the goal in mind and set up a table. We are given the
area affected by the beam, the fraction of each beam absorbed, and restric
tions on the total average dosage. Therefore, the following table can be
produced:

Area

healthy anatomy
critical tissue

Beam 1

.4

.3

Beam 2

.5

.1

Restrictions/dosage
minimize

<2.7

tumor region
center of tumor

.5

.6

.5

.4

= 6

>6

From the table, we can form a linear programming model. Let x\ and
xi be the two decision variables representing the entry points for beam 1
and beam 2. Because the total dosage reaching the healthy anatomy is to
be minimized, let Z represent this quantity. We want to minimize

Z = .4xi + .5x2

subject to

.3*1 + .lx2 < 2.7

.5~i + .5-2 = 6

.6~i -I- .4x2 > 6

xi >0

x2>0.

Solving graphically (see figure 1), the feasible region consists of points
on the line segment from (6,6) to (7.5,4.5). Because all of these points
simultaneously satisfy all of the constraints, we must find the minimum
value to arrive at the optimal solution. Filling in the points for xi and z2
in the original Z equation, we have

(.4* 7.5)+ (.5* 4.5) = 5.25
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Figure 1

and

(.4* 6)+ (.5* 6) = 5.4.

Thus, the point (7.5,4.5) yields the minimum value. Seven and one half
kilorads of beam 1 and 4.5 kilorads of beam 2 must be administered. This
example clearlyshows other paths an actuary is capable of taking.

Example two will demonstrate the difference between simple and com
pound interest rates using the financial theory of interest.

EXAMPLE 2

It is known that $600 invested for 2 years will earn S264 in interest.
What is the accumulated value of $2000 invested at the same rate of com
pound interest for three years? We have

600(1+ t)2 = 864
(l + f)2 = 1.44

1 + 1 = 1.2

i = 1.2-1

f = .2.

Then

2000(1 + .20)3 = 3456.

However, if we took that same $2000 and invested it at 20% simple interest
for three years, our investment would yield

2000(1+.2(3)) = 3200.
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Therefore, the compounded interest yields a larger return. This knowledge
is not only beneficial for companies, but for personal investments and loans
as well.

These examples have shown that the knowledge gained through the
study of actuarial science truly is not a process of relentless number crunch
ing in insurance. An actuary's knowledge and understanding of the many
facets of mathematics and related areas could benefit many businesses in
their future economic endeavors. However, the "hidden" secret of an actu
ary's knowledge must first be revealed.

In an effort to reveal this secret, in 1993 the Society of Actuaries orga
nized an "Ask an Actuary" campaign to encourage interest in the actuary
profession. The Society passed out 26,000 buttons with the inscription
"Ask an Actuary" to launch the campaign. In doing so, the Society hoped
to uplift and motivate morale, show pride in the profession, and increase
awareness of actuarial science. A glimpse of these buttons was seen on the
David Letterman Show and through the halls of the U.S. Congress. Former
Society of Actuaries President Walter Rugland remarked, "I see the day
in the twenty-first century that whenever a business or government deci
sion maker has a question about risk, her or his first thought will be 'Ask
an Actuary.'" His goal for the twenty-first century is becoming a reality
more and more each day due to the constant changes and flexibility of the
actuarial profession ([3]).

This once "hidden" secret is no longer standing in the shadows of the
insurance industry. It is now making its mark in the business world, and
the possibilities are endless. From being listed as the number one career
by the Jobs Rated Almanac [2] to building mathematical models, actuarial
science has no bounds.
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"Two sons of Carl Friederick Gauss came to America and settled
in Missouri. Eugene lived on a farm a short distance from Columbia
where he fied in 1896 and William lived in St. Louis where he died in
1879."

—TAe Pentagon, Vol. 9 No. 1 (Fall 1949)
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The Problem Corner

Edited by Kenneth M. Wilke

TAe Problem Corner invites questions of interest to undergraduate stu
dents. As a rule the solution should not demand any tools beyond calculus.
Although new problems are preferred, old ones of particular interest or
charm are welcome, provided the source is given. Solutions should ac
company problems submitted for publication. Solutions of the following
problems should be submitted on separate sheets before January 1, 1998.
Solutions received after the publication deadline will be considered also
until the time when copy is prepared for publication. The solutions will
be published in the Spring 1998 issue of TAe Pentagon, with credit being
given to student solutions. Affirmation of student status and school should
be included with solutions. Address all communications to Kenneth M.
Wilke, Department of Mathematics, 275 Morgan Hall, Washburn Univer
sity, Topeka, Kansas 66621 (e-mail: xxwilke@acc.wuacc.edu).

PROBLEMS 504 (corrected) and 505-509

Problem 504 (corrected). Proposed by Bob Prielipp, University of Wiscon
sin—Oshkosh, Oshkosh, Wisconsin.

If A, B, and C are the angles of a triangle, prove that

2 cos A cos B cosC = 1 - cos2 A - cos2B - cos2C.

Problem 505. Proposed by J. Sriskandarajah, University of Wisconsin
Center—Richland, Richland Center, Wisconsin.

If a + b+ c = abc, prove that

2a 26 2c 8a6c

1- a2 T 1- A2 T 1- c2 ~ (1 - a2)(l - 62)(1 - c2)-

Problem 506. Proposed by BobPrielipp, University ofWisconsin—Oshkosh,
Oshkosh, Wisconsin.

Find all of the positive integer values of n for which the expression
4n2 + 21n is a perfect square.
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Problem 507. Proposed by Kenichiro Kashihara, Sagamihara, Kanagawa,
Japan.

Given any integer n > 1, the value of the pseudo-Smarandache function
Z(n) is the smallest integer m such that n evenly divides __£_i k. Let p be
a positive prime and s be an integer > 2. Show that

' p*+l —1 if p is even
p* — 1 if pis odd.

Z(p') ={i
Problem 508. Proposed by the editor.

Let ABCD be a parallelogram. Let EFGH be a quadrilateral inscribed
in parallelogram ABCD such that the area of EFGH is exactly half the
area of paraUellogram ABCD. Show that at least one diagonal of EFGH
is parallel to a side of ABCD (see figure below).

Problem 509. Proposed by Kenichiro Kashihara, Sagamihara, Kanagawa,
Japan.

Given any integer n > 1, the value of the pseudo-Smarandache function
Z(n) is the smallest integer m such that n evenly divides __£_! k.

(a) Solve the diophantine equation Z(x) = 8.
(b) Show that for any positive integer p the equation Z[x) = p has

solutions.

(c*) Show that the equation Z[x) = Z(x + 1) has no solutions,
(d*) Show that for any given positive number r there exists an integer

s such that \Z(s) - Z(s + 1)| > r.

Editor's comment. Parts (c) and (d) of problem 509 were submitted
without solution. Partial solutions are welcome.

Please help your editor by submitting problem proposals.
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SOLUTIONS 482, 495-499

Problem 482 (corrected). Proposed by Bob Prielipp, University of Wiscon
sin—Oshkosh, Oshkosh, Wisconsin.

Evaluate

/= / ln(sinx)dz.
Jo

Solution by Russell Euler, Northwest Missouri State University, Maryville,
Missouri.

First consider f(x) —ln(sinx) on the interval (0, it). Since /(- —x) =
f(x), the graph of y = /(x) is symmetric about the line x = w/2. Thus if
/ exists, then

,x/2

(1) 7= 2- / ln(sinx)dx.
Jo

To show that this integral converges, it suffices to show that

lim [Vxln(sinx)]

is a finite number. Rewriting this expression and using L'Hospital's rule
gives

lim (>/xln(sinx)) = lim ..„

_ (cosx)/(sinx)
~_™ (-l/2)x-3/2

_ ,. x3'2cosx
= -2 lim —:

*-.o+ sinx

„ ,. -x3/2sinx + (3/2)x1/2cosx
= -2 lim

r_0+ COS X

= 0<co.

Thus, the integral converges.
Usingy as the variable of integration in (1) and making the substitution

x = (~/2) - y gives

(2) 1 = 2- ln(cos x) dx.
Jo
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Adding equations (1) and (2) yields

,*/2

21= 2- I (ln(sin x) + ln(cos x)) dx,
Jo

and thus

(3)

' ln(sinx cos x) dx
o

!

ln((sin2x)/2) dx
o

ln(sin 2x) —In2dx
o

-I
-I

fw/2
-(it/2) In 2+ / ln(sin 2x) dx.

Jo

In the integral in (3), let 0 = 2x. Then

/ ln(sin 2x)dx==- ln(sin 6)dQ = ^I.
Jo * Jo 2

Then from (3),
/=ij-(,r/2)ln2,

and I = —jrln2.

Also solved by: the proposer.

Problem 495. Proposed jointly by Sammy and Jimmy Yu, students at the
University of South Dakota, Vermillion, South Dakota.

Evaluate _ _ ,
fa-b\ fb-c\ fc-a\cos ^—j cos (^—J cos ^—j

if sin a + sin 6 + sin c = cos a + cos 6 + cos c = 0.

Solution by the proposers.

Let u>i = cosa + tsina, u/2 = cosA+ tsinA and w3 = cosc+fsinc,
respectively. Then u>i + u»2 + u>3 =0 and u/iu>2u>3 = cos(a + b + c) +
t sin(a + b+ c), which does not equal zero. We use the following relations
repeatedly: if wg = cosr + t'sinr and wy = coss + t'sins, then wxwy =
cos(r+s) + f*sin(r + s); cosr+cos s = 2cos((r + s)/2)) cos((r - s)/2); and
sin r + sins = 2sin ((r + s)/2)) cos((r —s)/2). Now,

W1W2VOZ = [-(u»2 + wz)][-(u>i + tu3)][-(iui+ UJ2)]
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= —(wi + u*2)(u»i + uj3)(uj2 + w3)
= —((cos a + cos6) + i(sina + sin6)) •((cos b+ cos c)

+t'(sin 6+ sinc)) -((cos c+ coso) + »'(sin c + sin a))
= (-2 cos[(o - 6)/2]) {cos[(a + b)/2] + isin[(o+ 6)/2]}

•(-2 cos[(A - c)/2]){cos[(6 + c)/2]+ £sin[(6 + c)/2]}
•(-2 cos[(c - a)/2]) {cos[(c + a)/2]+ isin[(c+ a)/2]}

= -8 {cos[(a - 6)/2] cos[(6 - c)/2] cos[(c - a)/2]}
•{cos(a + 6+ c) + t sin(a + 6+ c)}

= -8 {cos[(a - 6)/2] cos[(6 - c)/2] cos[(c - a)/2]}wi_2u_.

Hence,
cos[(a - 6)/2] cos[(6 - c)/2] cos[(c - a)/2] = -1/8.

Also solved by: Clayton W. Dodge, University of Maine, Orono, Maine
and Bob Prielipp, University of Wisconsin—Oshkosh, Oshkosh, Wisconsin.
One incorrect solution was received.

Editor's comment. Both Prielipp and Dodge used straightforward
trigonometric identities in their lengthy solutions. Prielipp also showed
that if A is any arbitrary angle measured in degrees, then sinA + sin(A+
120°) + sin(>l + 240°) = cos A+ cos(A + 120°) + cos(A + 240°) = 0.

Problem 496. Proposed by Bob Prielipp, University of Wisconsin—Oshkosh,
Oshkosh, Wisconsin.

Find the smallest positive integer that can be increased by 50% by
moving the digit on the extreme right to the extreme left.

Solution by Bryan Crissinger, Messiah College, Grantham, Pennsylvania.

Let anan_ia„_2 .. .a0 be the desired number where each a, is a digit
and do is not zero. Then a0a„an-i.. .<n is the number formed after shifting
the rightmost digit to the extreme left. Then the problem requires that

10na0 +lO"-1*, +•••+10°oi = (3/2) (l0na„ + lO""1^-! +•••+ 10°a0)
which simplifies to

n

(2 10n-3)ao =28j^lO,-1a,-.
<=i

Since 4 divides ao, we must have either ao = 4 or a0 = 8. Furthermore, 7
divides (2 • 10" —3). The smallest positive integer for which this occurs is
n = 5. Now if ao = 4, then

n

28571 =£l0»'-1a,-
i=i
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and the desired number is 285714, since (3/2) * (285714) = 428571. Pro
ceeding similarly yields the solution 571428, which corresponds to ao —8
and which is the next largest number having the desired property.

Also solved by: Charles Ashbacher, Cedar Rapids, Iowa; Clayton W.
Dodge, University of Maine, Orono, Maine; Danny L. Stansbury Jr., Uni
versity of Southern Mississippi, Ocean Springs, Mississippi; Aran D. Stubbs,
Colorado Springs, Colorado and the proposer. One incorrect solution was
received.

Problem 497. Proposed by Charles Ashbacher, Cedar Rapids, Iowa.
The Smarandache function S(n) is defined in the following way: S(n) =

m is the smallest integer such that n evenly divides m!. The Euler phi
function 4>(n) is defined by letting <j>(n) be the number of positive integers
less than or equal to n that are relatively prime to n. Prove the following:

(a) The equation S(<j>(n)) = n has no solution.
(b) The equation n —S(c>(n)) = 1 has an infinite number of solutions.

Solution by Clayton Dodge, University of Maine, Orono, Maine.

Part (a). Since 4>(n) is the number of integers less than or equal to n
that are relatively prime to it, and since n is relatively prime to itself only
for n = 1, then <f>(n) < n except that ^(1) = 1. Furthermore, <f>(p) = p —1
when p is prime and 4>{n) < n —1 for composite n. Similarly, S(n) = n
for n = 4 or when n is prime; otherwise S(n) < 2n/3 by problem 486.
In any case S(n) < n. Thus 5(^(1)) = 5(1) = 0 since 0! =1. If p is
prime, then S(<f>(p)) = S(p —1) < p —1. Finally, if n is composite, then
S(flKn)) < *(n) < » - 1.

Part (b). Wesolve the equation 5($(n)) = n —1. Clearly n = 1, 3 and
5 are solutions since 5(^(3)) = 5(2) = 2 and 5(^(5)) = 5(4) = 4. The last
line of the proof in part (a) shows that n cannot be composite. Finally, if
n is a prime larger than 5, then (j>(n) = n —1 is a composite number larger
than 4, so S(n - 1) < 2(n - l)/3 < n - 1. Thus there are not infinitely
many solutions, but only the three solutions listed above.

Solution by Alex Shaumyan, Eastern Kentucky University, Richmond, Ken
tucky (revised by the editor).

Part (a). Consider <f>(n). If n = 1, then 0(1) = 1, and since 0! = 1,
5(4(1)) = 5(1) = 0. If n > 1, then <f>(n) < n - 1. So S(<f>(n)) < n - 1 and
the equation S(<f>(n)) = n has no solution.

Part (b). The given equation is equivalent to

(1) 5(*(n)) = n-l.

Equation (1) holds for n = 1since 5(^(1)) = 5(1) = 0. For n > 1,5(2) = 2
and 5(4) = 4 and the equation S($(n)) = n-1 implies that <f>(n) = n - 1.
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Therefore n must be prime if n > 1 since for composite n, ^(n) < n —2.
There are only two primes which satisfy equation (1). These are 3 and
5 since 5(^(3)) = 5(2) = 2 and 5(^(5)) = 5(4) = 4. For any prime
n > 5, consider ((n —l)/2)!, which contains the two disinct integers 2 and
(n —l)/2 in its product. Then (n —1) is a divisor of ((n —l)/2)! for every
prime n > 5. Thus, for each prime n > 5, S(a>(n)) = S(n —1) < (n —l)/2,
which does not equal n —1. Hence the only solutions for part (b) are n = 1,
3 and 5.

Also solved by: the proposer (part (a) only).

Problem 498. Proposed by Oscar R. Casteneda, Southwest High School,
San Antonio, Texas.

Let ABC be an arbitrary triangle with sides of lengths a, b and c.
Contruct squares facing outward on each of the sides of the triangle. Prove
that the length of the line segment 5i52 connecting the centers of two
adjacent squares equals the length of the line segment CSz connecting the
center of the third square with the common point of the other two squares.
Also prove that these two line segments are perpendicular.

Solution by Clayton W. Dodge, University of Maine, Orono, Maine.

This result is a special case of Van AubePs theorem: If squares are
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erected all outwardly or all inwardly on the sides of a quadrilateral, then
the centers of the squares arethe vertices of a quadrilateral whose diagonals
are perpendicular and equal in length. See the figure below.

This proof is based upon complex numbers. Let the vertices of the
quadrilateral be A, B, C, and D in counterclockwise order, and let E, F,
G, and H be the centers of the squares erected outwardly on sides AB,
BC, CD and DA, respectively. We let the corresponding lowercase letters
represent the complex affixes of the upper case points. By [1], if z = a+ bi
corresponding to the point Z in the complexplane, the point Z is the image
of the complex number z = a + bi and z is the affix of the point Z (see
figure below).

s' b

>/. r
0
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Geometrically, z+w is the affix of the fourth vertex of 5, the parallelogram
having affixes z, 0, and to for three consecutive vertices (see figure below).

0<

To construct w - z, take w —z as the affix of the fourth vertex D of the
parallelogram OZWD (see figure below).

For ease in visualization, let the origin be located at the intersection O of
the lines EG and FH. If M is the midpoint ofside AB, then m = (a+b)/2
and e—m = t(a—m), since a counterclockwise rotation about point M maps
segment MA to ME. Letting u = (1 + i)/2, weobtain e = (a/2)(l + i) +
(A/2)(l-i) = au+ b(l-u). Similarly, / = 6w+c(l-w), g = cw + d(l-w)
and A= a(l —w). It is easy to verify that iu = u —1 and iw-i = —_. Then
i(a—e) = f'wc—iua+(i—iu)d-(i—iu)b —uc—c—ua+a+ud—ub = k—f,
so Fif and £G are perpendicular and equal in length. For the case where
the squares are erected inwardly, label the vertices of the quadrilateral A,
B, C, D in clockwise order. Then the above proof holds. The desired
result follows by letting vertices C and D coincide so that the square on
CD reduces to the single point C.

[l] Dodge, Clayton W., Euclidean Geometry and Transformations, Addison
Wesley, 1972, pp. 152,156.

Also solved by: J. Sriskandarajah, University of Wisconsin Center—
Richland, Richland Center, Wisconsin (part (b) only) and the proposer.

Editor's comment. Fred A. Miller, Elkins, West Virginia found the
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stated problem as Theorem 4.81 on pp. 96-97 of Geometry Revisited by H.
S. M. Coxeter and S. L. Greitzer. Clayton Dodge also provided the follow
ing reference to a nice proof of Van Aubel's theorem by isometries in the
article by R. L. Finney entitled "Dynamic Proofs of Euclidean Theorems"
in Mathematics Magazine 43 (1970), pp. 177-185. For other references to
Van Aubel's theorem, see the solution to Pentagon problem 308 (Vol. 39
No. 1, Fall 1979, pp. 34-35).

Problem 499. Proposed by Russell Euler, Northwest Missouri State Uni
versity, Maryville, Missouri.

The Fibonacci numbers are defined by Fo = 0, F\ = 1 and F„+2 =
Fn+i + Fn for n = 0,1,2 Evaluate the following expression for all
integers n > 1:

n» rp —2 rp 2 17 2iOJ7 J7 2 ri 17 4
'2n+1^2n-l — ^2n — r„+l rn-l + "Sj+l^n ^n-1 —'n •

Solution by Scott H. Brown, Auburn University, Montgomery, Alabama.

By [1], we have the well-known identity for Fibonacci numbers

(i) n.iF^-F^t-i)*,

where k is any integer > 1. Let k = 2n. Then by (1), F2n_iF2n+i —F2n =
(—l)2n = 1. Then using (1) with k = n, the given expression can be
rewritten as l-F2+1F2_l+2Fn+lF2Fn.l-F* = l-(Fn_iFn+i-F2)2 =
l-[(-l)"]2 = 0.

[1] Hoggatt, Vernon E., Jr., Fibonacci and Lucas Numbers, 1969, lis on pp.
57-58.

Also solved by: Clayton W. Dodge, University of Maine, Orono, Maine;
Bob Prielipp, University of Wisconsin—Oshkosh, Oshkosh, Wisconsin and
the proposer.

Golden Anniversaries

Five KME chapters have their fiftieth anniversaries this spring! They
are Washburn University, Topeka, Kansas (KS Delta), March 29; William
Jewell College, Liberty, Missouri (MO Gamma), May 7; Texas Woman's
University, Denton, Texas (TX Gamma), May 7; Mount Mary College,
Milwaukee, Wisconsin (WI Alpha), May 11; and Baldwin-Wallace Col
lege, Berea, Ohio (OH Gamma), June 6. Congratulations! By the way,
the names of KS Delta and TX Gamma at the time of installation were
Washburn Municipal University and Texas State College for Women, re
spectively.
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Kappa Mu Epsilon News

Edited by Mary S. Elick, Historian

News of chapter activities and other noteworthy KME events should be sent
to Mary S. Elick, Historian, Kappa Mu Epsilon, Mathematics Department,
Missouri Southern State College, Joplin, Missouri 64801.

CHAPTER NEWS

AL Gamma Chapter President — Terra Jones
University of Montevallo, Montevallo 18 actives, 2 associates

Other 1996-97chapter officers: Cheryl Coley, vicepresident; Ava Put-
man, secretary; David Taylor, treasurer; James Ochoa, corresponding sec
retary; Karolyn Morgan, faculty sponsor.

AL Zeta Chapter President — James Blizard
Birmingham-Southern College, Birmingham 12 actives, 18 pledges

AL Zeta initiated 18 new members into the chapter on December 5,
1996. Dr. Clyde Stanton, Professor of Chemistry, presented the program
for the event. His presentation, entitled "Making Waves," dealt with the
mathematicsof Quantum Mechanics and Confirmation Stability in Organic
Molecules. A reception followed the ceremonies. Other 1996-97 chapter
officers: James Corder, vice president; Melissa Boren, secretary/treasurer;
Mary Jane Turner, corresponding secretary; Raju Sriram, faculty sponsor.

AR Alpha Chapter President — Michael Von Dran
ArkansasState University, State University 10 actives, 3 associates

Other 1996-97 chapter officers: Bobby Peppers, vice president/treas
urer; Melissa DuBois, secretary; William Paulsen, corresponding secre
tary/faculty sponsor.

CA Delta Chapter President — Steve Guertin
California State Polytechnic University, Pomona 10 actives, 4 associates

Other 1996-97 chapter officers: Maria Nuniez, vice president; Jen
nifer Sommers, secretary; Carol Sabol, treasurer; Richard Robertson, cor
responding secretary; Jim McKinney, faculty sponsor.
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CO Delta Chapter President — Natisha R. Littlejohn
Mesa State College, Grand Junction 10 actives

CO Delta Chapter held two meetings during the Fall semester of 1996.
The first, a business meeting, was held in early September to organize
and plan activities for the year. Members were encouraged to write papers
which might serve as honors theses and also as presentations for the upcom
ing KME National Convention. Such papers could additionally be given at
the Spring MAA Section Meeting and at the Friday Brown Bag Seminars in
Mathematics. The second meeting of the semester, held the first of Novem
ber, featured a potluck dinner and provided an opportunity to socialize,
discuss graduate school plans, and report on the papers being written by
the members. Scott Davis, past president, is working on a home page for
the chapter. The faculty sponsor and the corresponding secretary are busy
trying to line up enough funding for all interested members to attend the
Thirty-First Biennial Convention in April. Other 1996-97 chapter officers:
Deborah J. McCurley, vice president; Robin L. O'Connor, secretary; Tassie
S. Medlin, treasurer; Donna K. Hafner, corresponding secretary; Kenneth
Davis, faculty sponsor.

GA Alpha Chapter President — Tonja Davis
State University of West Georgia, Carrollton 30 actives

Once again, GA Alpha sponsored a November-December Food and
Clothing Drive for the needy. Proceeds were taken to the Salvation Army
Office. On Thursday, November 21, the annual Fall Social, held at a local
Mexican restaurant, was enjoyed by all those in attendance. Other 1996-97
chapter officers: Stephanie Parker, vice president; Michael Jumper, secre
tary; Kristy Williams, treasurer; Thomas J. Sharp, corresponding secre
tary/faculty sponsor.

IL Delta Chapter President — Mike Mravle
College of St. Francis,Joliet 20 actives

Other 1996-97 chapter officers: Heather McNulty, vice president; Toni
Dactilidis, secretary; Meg McAleer, treasurer; Rick Kloser, corresponding
secretary/faculty sponsor.

IN Beta Chapter President — Audrey Purmort
Butler University, Indianapolis 15 actives

Other 1996-97 chapter officers: Melissa Kolarik, vice president; Stephen
Sanders, secretary/treasurer; Yuzhen Ge, corresponding secretary/faculty
sponsor.
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LA Alpha Chapter President — Matthew Schafer
University of Northern Iowa, Cedar Falls 35 actives

Fall meetings featured student presentations by Sarah Lacox and Su
zanne Shontz entitled "Mathematics is Golden" and "Molecules and Their
Symmetries," respectively. CynthiaOhmprovided the program for the De
cember initiation banquet, held at Tally's Restaurant. Six new members
joined the chapter at that time. The annual KME Homecoming Coffee was
held onOctober 12 at the home ofProfessor and Mrs. Greg Dotseth. Among
those attending was KME alumna Cherie Cobet Schafer. She and her hus
band were visiting theirson, Matt, who iscurrently serving as the IAAlpha
chapter president. KME members assisted with the Fall Phonathon for the
Mathematics Department; they also helped with the Mathematics-Science
Symposium in November. Other 1996-97 chapter officers: Mary Pittman,
vice president; Suzanne Shontz, secretary; Amber Grotjohn, treasurer; John
S. Cross, corresponding secretary/faculty sponsor.

IA Gamma Chapter President —Heather Schott
Morningside College, Sioux City 9 actives

Other 1996-97 chapter officers: James Nicolaisen, vice president; Jared
Ellwein, secretary; Heather Kelly, treasurer; Douglas Swan, corresponding
secretary/faculty sponsor.

IA Delta Chapter President —Joy Trachte
Wartburg College, Waverly 34 actives, 5 associates

Freshmen students were welcomed at an organizational meeting in
Septemberat which time an overview ofplansfor the year were discussed. A
Problem Solving Group was formed with the intention ofmeeting onehour
weekly during the evening meal. The October meeting agenda included
a planning session for the chapter's homecoming fund-raising booth. A
committee was also formed at that time to plan a trip to the Science and
Industry Museum in Chicago. The program for the November meeting was
givenby members of the Problem Solving Group. The chapter's picture was
taken for the year book in December and a Christmas Party was planned
with the Physics and Computer Science Clubs. The organization has also
begun planning for MathAwareness Week in April. Other 1996-97 chapter
officers: Shilah Lybeck, vicepresident; Richard Kloster, secretary; Christo
pher Judson, treasurer; August Waltmann, corresponding secretary; Lynn
Olson, faculty sponsor.

KS Alpha Chapter President —Kathleen Denney
Pittsburg State University, Pittsburg 54 actives, 8 associates

Fall semester activities began with a pizza party and the initiation of
eight new members in October. Following the initiation, guest speaker
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Troy Goodsell of Brigham Young University presented an interesting talk
entitled "Shadows of Cantor Sets." Graduate student Andrew Buchholz, a
former KS Alpha president, enthralled the audience at the regular Novem
ber meeting by relating his experiences during a Budapest Semester in
Mathematics. In December, the chapter hosted a road trip to Joplin, Mis
souri, to view the latest Star Trek movie, First Contact. Other 1996-97
chapter officers: Matthew Jackson, vice president; Brian Coots, secretary;
Kari Hamm, treasurer; Cynthia Woodburn, corresponding secretary; Bobby
Winters, faculty sponsor.

KS Beta Chapter President — Brenda Sloop
Emporia State University, Emporia 36 actives, 10 associates

The KS Beta Chapter of Kappa Mu Epsilon made a concerted effort
during the fall semester to become more active and visible on campus. To
this end, members sponsored a table at both the Campus Activities Fair
the beginning of the semester and at Family Day in late September. Bryan
Dawson, faculty member and editor of TAe Pentagon, presented the pro
gram at the first meeting of the year on September 11. Ten new members
were initiated during the fall semester and two chapter members attended
the NCTM Regional Conference in Kansas City. As a service project, the
chapter assisted with Brownie Day in mid November, setting up and man
ning various stations for the Brownie members. The club also held a Christ
mas Decoration Creation Party in December. The spring semester is look
ing extremely promising; new members are enthusiastic and all are looking
forward to the annual math day. Other 1996-97 chapter officers: Andrew
Applegarth, vice president; Ruth Dale, secretary; Shannon Decker, treas
urer; Jason Manhart, historian; Connie Schrock, corresponding secretary;
Larry Scott, faculty sponsor.

KS Gamma Chapter President — Erik Kurtenback
BenedictineCollege, Atchison 13 actives, 8 associates

KS Gamma was invited to host a display at the MAA-sponsored Math
Mania held at Kansas City Kansas Community College on October 3. Erik
Kurtenback, Dawn Weston, Seth Spurlock, Christie Englebert, and faculty
sponsor Linda Herndon, OSB, set up an "Amazing Bubbles" display for
the 300+ high school and college students in attendance. On October 5,
Linda Herndon, OSB, presented a workshop "WWW + Math = A World
of Resources" as part of the Greater Kansas City Mathematics Technology
Expo held at KCKCC. Dawn Weston attended the day's events. Dr. Tim
Miller from the MO Lambda Chapter at Missouri Western State College
spoke to chapter members on "The Mathematics of Voting" at the October
meeting. A fall chili supper was held in Westerman Hall the evening of
November 5. The annual Wassail Party was hosted by Jo Ann Fellin, OSB,
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at Marywood on December 8. Other 1996-97 officers: Chad Eddins, vice
president; Dawn Weston, secretary; Christie Engelbert, treasurer; Linda
Herndon, OSB, corresponding secretary/faculty sponsor.

KS Delta Chapter President — Mandy Chester
Washburn University, Topeka 31 actives

Fall activities included two picnicsheld in conjunction with the depart
mental Math Club. Other 1996-97 chapter officers: Kevin Hennessy, vice
president; Jim Stinson, secretary/treasurer; Allan Riveland, corresponding
secretary; Donna LaLonde and Ron Wasserstein, faculty sponsors.

KY Alpha Chapter President —Lynne Brosius
Eastern Kentucky University, Richmond 17 actives

In conjunction with the ACM Chapter, as a fund raiser, KY Alpha
members once again provided floppy disks to students in the computer lit
eracy class and the Mathematics class. A September picnic held at Lake
Reba Park for KME, ACM, and the departmental faculty featured vol
leyball games and plenty of good food. At the October meeting members
viewed the videotape on Paul Erdos entitled N is a Number. The November
meeting included a panel discussion on graduate schools: Professors Kirk
Jones, Ray Tennant, and Pat Costello served as panelists, sharing their
thoughts and respective views on the topic. The highlightof the Christmas
Party was, as always, the white elephant gift exchange. One participant was
required, before he opened his chosen gift, to pay a penny to the provider
of that particular gift. According to the old superstition, this would guar
antee that the gift, a knifeset, would not sever the friendship of the giver
and the receiver. Other 1996-97 chapterofficers: KevinZachary, vicepres
ident; Heather Sadler, secretary; ElizabethBarrett, treasurer; Pat Costello,
corresponding secretary/faculty sponsor.

KY Beta Chapter President —Timothy David Wilson
Cumberland College, Williamsburg 20 actives

On September 17, 1996, the KY Beta Chapter officers assisted with
an ice cream party honoring freshmen math and physics majors. Mem
bers heard a presentation by actuary Dr. Virginia Young in October and
held an informal dinner get-together at Mi Pueblo, a Mexican restaurant,
in November. Other activities shared with the Mathematics and Physics
Club included a picnic at Briar Creek Park in late September and an
end-of-semester Christmas Party on December 10. About 55 people at
tended the Christmas Party. The fall semester also saw the introduction
of the KY Beta Chapter WWW page, including pictures and activities,
at http://q.cumber.edu/math/kme.htm. Other 1996-97 chapter officers:
Story Anne Robbins, vicepresident; Jennette Arlene Adamczak Dees, sec-
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retary; Melynda Kay Hazelwood, treasurer; Jonathan Ramey, correspond
ing secretary; John Hymo, faculty sponsor.

MD Beta Chapter President — Leslie Huffer
Western MarylandCollege, Westminster 24 actives

Other 1996-97 chapter officers: Toni Smith, vice president; Julie
Brown, secretary; Lori Mowen, treasurer; James Lightner, corresponding
secretary/faculty sponsor.

MD Delta Chapter President — Joseph Palardy
Frostburg State University, Frostburg 31 actives

MD Delta Chapter kicked off the fall semester with an organizational
meeting in September, followed by a picnic at Rocky Gap State Park in
October. November saw a Mathematical Treasure Hunt, with cash prizes
for the winner. Other 1996-97 chapter officers: Heidi Femi, vice president;
Brian Azzi, secretary; Carla White, treasurer; Edward T. White, corre
sponding secretary; John P. Jones, faculty sponsor.

MI Beta Chapter President — Carrie Rickabaugh
Central Michigan University, Mount Pleasant 20 actives

MI Beta Chapter, along with the CMU Math Department and the Ac
tuarial Club, hosted a Homecoming Alumni Picnic in mid October. Guest
speakers for the fall were student teachers Kristen Williams and Dan Rothe.
Kristen discussed projects she had used as a student teacher in her trig class
and Dan demonstrated the TI-92 calculator. Other 1996-97 chapter offi
cers: Kevin Zajac, vice president; Norma Reynolds, secretary; Debbie Sink,
treasurer; Arnold Hammel, corresponding secretary/faculty sponsor.

MS Alpha Chapter President — Karen Chandler
Mississippi University for Women, Columbus 13 actives, 2 associates

The chapter held a general meeting on October 11 and an initiation
ceremony on November 1. Other 1996-97 chapter officers: Amee Jo Miles,
vice president/treasurer; Karen Chandler, secretary; Jean Ann Parra, cor
responding secretary; Shaochen Yang, faculty sponsor.

MS Beta Chapter President — Huoy Jii Khoo
Mississippi State University, Mississippi State 20 actives, 7 associates

Other 1996-97 chapter officers: Brandon Butler, vice president; Chris-
tin McCloskey, secretary; Michael Pearson, corresponding secretary/faculty
sponsor.
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MS Gamma Chapter President —Chuck Fleming
University of Southern Mississippi, Hattiesburg 20 actives

Other 1996-97 chapter officers: Mary Bassinger, vice president; Leigh
Lynn, secretary; AliceW. Essary, treasurer/corresponding secretary; Barry
Piazza, faculty sponsor.

MS Delta Chapter President — John Miller
William Carey College, Hattiesburg 8 actives

Other 1996-97 chapter officers: Shaun Selman, vice president; Angela
Tillman, secretary; Vivian Anderson, treasurer; Charlotte McShea, corre
sponding secretary/faculty sponsor.

MS Epsilon Chapter President —Robert East
Delta State University, Cleveland 12 actives

Other 1996-97 chapter officers: Kim Grimes, vice president; Alec
Roehm, secretary/treasurer; Paula Norris, corresponding secretary; Rose
Strahan, faculty sponsor.

MO Beta Chapter President —Lynn Graves
Central Missouri State University, Warrensburg 25 actives, 5 associates

MO Beta Chapter held monthlymeetings during the Fall 1996 semester.
Six new members were initiated at the October meeting. Tammy Surfus
and Derek Beals traveled to Kansas City Kansas Community College to
work at a KME booth at Math Mania. In other semester activities, mem
bers volunteered at the Math Clinic, held a book sale, adopted a family
through the Christmas Store, and sponsored a Christmas Party. Orders
for KME sweatshirts were taken in December. Speakers for the semester
were Terry Brown, who spoke about the Eudora e-mail software; Charles
Pace, the 1996 CMSU Distinguished Alumnus, who recently retired from
NASA, having worked with the Apollo missions and space shuttle oper
ations; and Richard Delaware from UMKC, whose topic was "Morley's
Trisector Theorem." Other 1996-97 chapter officers: Cassie Young, vice
president; Carla Brown,secretary; Barbara Hart, treasurer; TammySurfus,
historian; Rhonda McKee, corresponding secretary; Larry Dilley, Phoebe
Ho, and Scotty Orr, faculty sponsors.

MO Gamma Chapter President —Amy Fifer
WilliamJewellCollege, Liberty 10 actives, 5 associates

Other 1996-97 chapter officers: Lori Cantrall, vice president; Alli
son Cooper, secretary; Joseph T. Mathis, treasurer/corresponding secre
tary/faculty sponsor.
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MO Epsilon Chapter President — Gary Smith
Central Methodist College, Fayette 13 actives

Other 1996-97 chapter officers: Michele Niemczyk, vice president; Vic
toria Vahle, secretary/treasurer; William D. Mcintosh, corresponding sec
retary; Linda 0. Lembke, faculty sponsor.

MO Iota Chapter President — Vicki Nelson
Missouri Southern State College, Joplin 10 actives, 5 associates

Officers were elected at an organizational meeting held early in the
semester at Tarzan's Pizza. In an effort to accommodate everyone's sched
ules, meeting time was set at 7:00 a.m. This proved to have a negative
effect on attendance. Members, however, did a great job of working con
cession stands at the fivehome football games, consequently adding $350to
the chapter's treasury. Preliminary plans were made to attend the national
convention in the spring. The Problem Solving Group met frequently and
a number of members competed on the national Putnam Exam. A Christ
mas Party Open House was held at the home of Mrs. Mary Elick. Other
1996-97 chapter officers: Shan Brand, vice president; Jennifer Schumaker,
secretary; Jerl Simpson, treasurer; Agden Brister, historian; Mary Elick,
corresponding secretary; Charles Curtis, faculty sponsor.

MO Kappa Chapter President — Patrick Hentges
Drury College, Springfield 11 actives, 3 associates

The first activity of the semester was a pizza rush party for potential
KME members held at the home of Dr. Carol Collins. Michelle Biggers and
Aaron Wilson tied for first place in the annual Math Club Contest. Prize
money was awarded to the winners at a pizza party held for all contestants.
The annual fall bonfire party was held at the home of Dr. Charles Allen.
Michelle Biggers presented a preliminary report on her undergraduate re
search at a luncheon meeting. Throughout the semester, Math Club has
been running a tutoring service for both the day school and the Continuing
Education Division (Drury Evening College) as a money-making project.
The semester ended with a Christmas Party at the home of Aaron Wilson.
Other 1996-97 chapter officers: Jon Adams, vice president; Michelle Big
gers, secretary; Edyta Blasyczuk, treasurer; Charles Allen, corresponding
secretary/faculty sponsor.

MO Lambda Chapter President — Tanya Griffin
Missouri Western State College, St. Joseph 42 actives

Fall 1996 activities for MO Lambda Chapter of KME included a Wel
come Back Picnic in August, a booth at Family Day in September, and
Fall Initiation Ceremonies for 12 new members in mid October. The group
also sponsored a float in the Homecoming Parade and participated in the
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window decorating contest in October. In November members enjoyed a
Thanksgiving carry-in meal and a Calculator Resale Project provided a
fund raiser in December. Other 1996-97 chapter officers: Cynthia Ready,
vice president; Devon Kerns, secretary; Stacy Cabeen, treasurer; John
Atkinson, corresponding secretary; Jerry Wilkerson, faculty sponsor.

NE Alpha Chapter President — Rick Pongratz
Wayne State College, Wayne 21 actives

Fall activity centered on redecorating the club bulletin board and plan
ning a trip to a hockeygame. Other 1996-97chapter officers: Rusty Slaugh
ter, vice president; Becky Proskocil, secretary/treasurer; John Fuelberth,
corresponding secretary; Jim Paige, faculty sponsor.

NE Gamma Chapter President — J.J. Fernandez
Chadron State College, Chadron 14 actives, 10 associates

Other 1996-97 chapter officers: Chris Mundt, vice president; Julie
Steinbach, secretary; Erin Johnson, treasurer; Jim Kaus, corresponding
secretary; Monty Fickel, faculty sponsor.

NE Delta Chapter President — Justin Rice
Nebraska Wesleyan University, Lincoln 12 actives

Other 1996-97 chapter officers: Dusten Olds, vice president; Christin
Cordes, secretary; J.P. Johnson, treasurer; Gavin Larose, corresponding
secretary/faculty sponsor.

NY Alpha Chapter President — Norbet Lis
Hofstra University, Hempstead

Activities for the semester included a bowling event and the annual
holiday party. Other 1996-97 chapter officers: Adam Katz, vice president;
Ophir Feldman, secretary; Lisa Fontana, treasurer; Aileen Michaels, corre
sponding secretary/faculty sponsor.

NY Eta Chapter President —Stacey Lauricella
Niagara University, Niagara University 20 actives

NY Eta Chapter and the Mathematics Department sponsored the third
annual "Career Day" on November 22. The purpose of the program was
to acquaint undergraduates with the wide range of career opportunities
available in the field of mathematics. Five mathematics alumniof Niagara
University provided perspectives about career choices and how their math
ematical training had helped them achieve their goals. Students gained
further informationduring a question/answer session following the presen
tations. Careersdiscussed were in the computing, engineering, and financial
fields. Other 1996-97 chapter officers: Jennifer Egan, vice president; Amy
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Maar, secretary; Lara Brown, treasurer; Robert Bailey, corresponding sec
retary; Kenneth Bernard, faculty sponsor.

NY Lambda Chapter President — Kelli Ann Polotaye
C. W. Post Campus of Long Island University, Brookville 20 actives

Other 1996-97 chapter officers: Joseph D. Sprague, vice president;
Robin M. Cancellieri, secretary; Jason R. Rand, treasurer; Andrew M.
Rockett, corresponding secretary; Sharon Kunoff, faculty sponsor.

OH Zeta Chapter President — Chetan Kandhari
Muskingum College, New Concord 12 actives, 4 associates

Fall activity has been primarily focused on planning for the April trip
to the national convention in Springfield. Other 1996-97 chapter officers:
Christopher Luzier, vice president; Melissa Frutig, secretary/treasurer; Da
vid L. Craft, corresponding secretary; Richard Daquila, faculty sponsor.

OK Alpha Chapter President — Carrie O'Leary
Northeastern State University,Tahlequah 36 actives, 3 associates

Chapter initiation ceremonies for twelve new members, held in a lo
cal restaurant, were well attended by faculty, students, and families of the
initiates. John Callaway has finished setting up a database containing in
formation about past and current chapter membership. John, who also
designed the OK Alpha WWW page, graduated from NSU this past De
cember and will be greatly missed. Members continue to sponsor a monthly
math contest and to hold an annual book sale. Mrs. Linda Collins retired

in December from NSU's mathematics department. KME presented her
with a gift, thanking her for planning the games for KME for these past
ten years. The Christmas Pizza Party was again a great success. Those
attending played Family Feud. Other 1996-97 chapter officers: Laura Cole,
vice president; Lisa Eidson, secretary; Peter Butz, treasurer; Joan E. Bell,
corresponding secretary/faculty sponsor.

OK Delta Chapter President — Brock Leach
Oral Roberts University, Tulsa

After a period of inactivity, OK Delta is striving to reorganize. Debra
Oltman is corresponding secretary and Roy Rakestraw is faculty sponsor.

PA Alpha Chapter President — LauraWilliams
WestminsterCollege, New Wilmington 15 actives

Fall activities centered on planning a high school problem-solving com
petition to be held in April during Math Awareness Week. Six high schools
in the area will participate in the competition. The winner will receive a
graphing calculator with DERIVE capabilities. Other 1996-97 chapter of-
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fleers: LaurelScaff, vice president; Heather Carson, secretary; Jill Schuller,
treasurer; J. Miller Peck, corresponding secretary; Carolyn Cuff and War
ren Hickman, faculty sponsors.

PA Gamma Chapter President — Erin Korns
Waynesburg College, Waynesburg 22 actives, 6 associates

Other 1996-97 chapter officers: Etta Nethken, vice president; Linda
Smitley, secretary; AmandaBeisel, treasurer; Anthony Billings, correspond
ing secretary/faculty sponsor.

PA Delta,
Marywood College, Scranton 1 active

PA Delta is planning a spring semester induction, at which time of
ficers will be named. Sr. Robert Ann von Ahnen, IHM, is corresponding
secretary/faculty sponsor.

PA Eta Chapter President — Ronna Matich
Grove City College, Grove City 26 actives

Other 1996-97 chapter officers: Suzette Cramer, vice president; Lori
Young, secretary; Eric Blum, treasurer; Marvin C. Henry, corresponding
secretary; Dan Dean, faculty sponsor.

PA Iota Chapter President — Rebecca Shubert
Shippensburg University ofPennsylvania, Shippensburg 20 actives, 7 associates

Other 1996-97 chapter officers: Mary Wenrich, vice president; Cynthia
Hefty, secretary; Vicki Shanahan, treasurer; Michael Seyfried, correspond
ing secretary; Gene Fiorini, faculty sponsor.

PA Kappa Chapter President — Nicholas J. Gross
Holy Family College, Philadelphia 6 actives, 2 associates

The chapter organized a math competition for highschool students to
be held on December 7, 1996. Unfortunately, the event was canceled due to
insufficient registration. Chapter members currently enrolled in the Senior
Seminar presented their research papers to division faculty on December
12. Nick Gross spoke on "Efficiency in Sports Gambling," Tom Feldmann
addressed 'The Aerodynamics ofGolf Ball Design," and Lisa Esposito re
ported her research on the use of mathematics in computer tomography.
Chapter members are presently making plans for the annual installation
ceremony which will take place on April 3, 1997. Members are also plan
ning college-wide activities for Math Awareness Month as wellas for the 3rd
Annual Grade School Math Competition. Other 1996-97 chapter officers:
Thomas Feldmann, vice president; Lisa Esposito, secretary; Cheryll Stone-
Schwendiman, secretary; Sister Marcella Louise Wallowicz, corresponding
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secretary/faculty sponsor.

PA Mu Chapter President — Colleen Connors
Saint Francis College,Loretto 22 actives, 2 associates

The PA Mu Chapter of KME participated in a variety of activities
during the 1996-97 year. The annual KME induction ceremony was held
on February 4, 1997. The evening began with a mass celebrated by KME
member Father Joseph Chancier, T.O.R. Following the mass, a dinner
was held in the Maurice Stokes room for the 20 inductees, members, and
guests. After the dinner, two students were inducted, bringing the total
chapter membership to 157. Several KME members participated in the
Third Annual Science Day. The senior mathematics majors presented a
poster session featuring their projects. Other KME majors served as mod
erators, judges, scorekeepers, and timers for the Science Bowl. A total of
256 high school students from 19 schools attended. KME members also
participated in the Adopt-A-Highway program on October 13, 1996. Ap
proximately 15 people picked up litter from the highway near the college.
Other 1996-97 chapter officers: Jennifer Ropp, vice president; Jennifer
Gibbons, secretary; Jaysn Voshell, treasurer; Peter Skoner, corresponding
secretary; Adrian Baylock, faculty sponsor.

SD Alpha Chapter President — Stacy Garrels
Northern State University,Aberdeen 11 actives

Other 1996-97 chapter officers: Kristi Schuster, vice president; Margo
Maynard, secretary; Lu Zhang, corresponding secretary; Raj Markandz,
faculty sponsor.

TN Gamma Chapter President — Kyle Brown
Union University, Jackson 23 actives

Other 1996-97 chapter officers: Elizabeth Morgan, vice president; Sher
ry Lin, secretary; Rachel Wright, treasurer; Matt D. Lunsford, correspond
ing secretary; Troy D. Riggs, faculty sponsor.

TN Delta Chapter President — Deron C. Walraven
Carson-Newman College, Jefferson City 11 actives

The primary activity for TN Delta thus far for 1996-97 has been the
planning and implementing of the fall picnic. Other 1996-97 chapter offi
cers: Michael D. Kelley, vice president; Jana L. Taylor, secretary/treasurer;
Catherine Kong, corresponding secretary/faculty sponsor.

WI Gamma Chapter President — Steve Wall
University of Wisconsin—Bau Claire, EauClaire 20 actives, 10 associates

Other 1996-97 chapter officers: Kady Hickman, vice president; Kendra
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Zillmer, secretary; Jeremy Eppler, treasurer; Marc Goulet, corresponding
secretary/faculty sponsor.

The Math Student Blues
(Tune: I've Been Working on the Railroad.)

I've been working on a problem
All the livelong night,
I've been working on a problem
To hit that quiz just right.
Don't you hear the teacher raving,
"Get up early in the morn,
Study hard or you'll be flunking
Sure as you were born."

I've been wondering about that formula
And how it's ever got,
I've been wonderingabout that answer
And all that tom-e-rot,
Cause I hear the teacher raving,
"Get up early in the morn,
Study hard or you'll be flunking
Sure as you were born."

I've been working all this winter,
All this livelong term;
I've been listening to professors
And for rest my heart does yearn.
I've been goin' to lab'ratory,
To gym and math class too—
If I go to many other things
I don't know what I'll do.

—NEW YORK ALPHA CHAPTER

—Reprinted from TAe Pentagon, Fall 1949

KME Quiz Update

No attempted solutions to the KME Quiz have been received. If we
receive no complete solutions, the submission with the greatest number of
correct answers will be declared the winner. See page 50 of the previous
issue (Fall 1996) for the quiz.
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Ballad of the Octagon

Once there was an Octagon
In love, so it would seem;
For when the Circle girl came 'round
His face, oh, it would beam!

The Circle girl was curved all over
Uniformly, everywhere!
No rough corners could be found;
If there were he wouldn't care.

Then one day he saw the girl
walking with a Square!
"How can you do that?" he said,
He said, "How could you dare?"

"Look," she said, "for it is simple.
A regular polygon is he.
His sides are great, his angles right,
He's full of symmetry."

"But you," she said, 'just look at you!
Your sides are all the same.

Your angles, though, are all messed up —
Go hang your head in shame!"

As he left that fateful day
He said, "That Square will flop!
I'll be a regular Octagon
So at me he'll have to stop!"

He pumped, he pushed, he stretched, he pulled,
He walked, he jogged, he ran;
He got himself in shape again
To carry out his plan.

Then he saw her once again,
He thought, "This will be fun!"
"Look at me now," he said with pride,
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Look at what I've done!"

"You are much better," said the girl,
"Much better than the Square!
But you're still not the best around,
To Parallelogram you can't compare."

"Beating him," she said, "you cannot do,
To try is of no use;
He has two angles, so, a, cute,
But yours are so obtuse."

He walked away even before
The words had left her lips;
But disappointment didn't last long —
That night he met Ellipse.

—The editor.

KME Election Results

The election of national officers was held Saturday, April5,1997, during
the Thirty-First Biennial Convention of Kappa Mu Epsilon in Springfield,
Missouri. The winners and their addresses are:

Robert Bailey, President-Elect
Mathematics Department
Niagara University
Niagara University, NY 14109
rbail@niagara.edu

Don Tosh, Historian
Evangel College
1111 N. Glenstone Ave.

Springfield, MO 65802
toshd@evangel.edu

Patrick J. Costello was also installed as President; his address is on
page 77. The George R. Mach Distinguished Service Award was presented
to Harold L. Thomas. The full report of the convention will be printed in
the Fall issue of this journal. For a preview of the papers presented, see the
paper by Suzanne Shontz on pages 38-46, which was awarded "top four"
status at this convention. The version printed here is the one presented at
the 1996 Region IV Convention, but is essentially the samein content.
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Kappa Mu Epsilon National Officers

Arnold D. Hammel President
Department of Mathematics

Central Michigan University, Mt. Pleasant, Michigan 48859
a.hammel@cmich.edu

Patrick J. Costello President-Elect
Department of Mathematics, Statistics and Computer Science

Eastern Kentucky University, Richmond, Kentucky 40475
matcostello@acs.eku.edu

Waldemar Weber Secretary
Department of Mathematics and Statistics

Bowling Green State University, Bowling Green, Ohio 43403
kme-nsec@mailserver.bgsu.edu

A. Allan Riveland Treasurer

Department of Mathematics and Statistics
Washburn University, Topeka, Kansas 66621

zzrive@acc.wuacc.edu

Mary S. Elick Historian
Department of Mathematics

Missouri Southern State College, Joplin, Missouri 64801
elick@vm.mssc.edu

Kappa Mu Epsilon, Mathematics Honor Society, was founded in 1931. The
object of the Society is fivefold: to further the interests of mathematics
in those schools which place their primary emphasis on the undergraduate
program; to help the undergraduate realize the important role that mathe
matics has played in the development of western civilization; to develop an
appreciation of the power and beauty possessed by mathematics due to its
demands for logical and rigorous modes of thought; to provide a Society for
the recognition of outstanding achievement in the study of mathematics at
the undergraduate level; and to disseminate the knowledge of mathematics
and familiarize the members with the advances being made in mathemat
ics. The official journal of the Society, TAe Pentagon, is designed to assist
in achieving these objectives as well as to aid in establishing fraternal ties
between the Chapters.
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Active Chapters of Kappa Mu Epsilon
Listed by date ofinstallation.

Chapter

OK Alpha
IA Alpha
KS Alpha
MO Alpha
MS Alpha
MS Beta

NE Alpha
KS Beta

NM Alpha
ILBeta

ALBeta

AL Gamma

OH Alpha
MI Alpha
MO Beta

TX Alpha
TXBeta

KS Gamma

IABeta

TN Alpha
NY Alpha
MI Beta

NJBeta

IL Delta

KS Delta

MO Gamma

TX Gamma

WI Alpha
OH Gamma

CO Alpha
MO Epsilon
MS Gamma

IN Alpha
PA Alpha
IN Beta

KS Epsilon
PA Beta

VA Alpha
IN Gamma

CA Gamma

TN Beta

PA Gamma

VA Beta

NE Beta

Location Installation Date

Northeastern State University, Tahlequah 18 April 1931
University of Northern Iowa, Cedar Falls 27 May 1931

Pittsburg State University, Pittsburg 30 Jan 1932
Southwest Missouri State University, Springfield 20 May 1932

Mississippi University for Women, Columbus 30 May 1932
Mississippi State University, Mississippi State 14 Dec 1932

Wayne State College, Wayne 17 Jan 1933
Emporia State University, Emporia 12 May 1934

University of New Mexico, Albuquerque 28 March 1935
Eastern Illinois University, Charleston 11 April 1935

University of North Alabama, Florence 20 May 1935
University of Montevallo, Montevallo 24 April 1937

Bowling Green State University, Bowling Green 24 April 1937
Albion College, Albion 29 May 1937

Central Missouri State University, Warrensburg 10 June 1938
Texas Tech University, Lubbock 10 May 1940

Southern Methodist University, Dallas 15 May 1940
Benedictine College, Atchison 26 May 1940
Drake University, Des Moines 27 May 1940

Tennessee Technological University, Cookeville 5 June 1941
Hofstra University, Hempstead 4 April 1942

CentralMichigan University, Mount Pleasant 25 April 1942
Montclair State University, Upper Montclair 21 April 1944

College of St. Francis, Joliet 21 May 1945
Washburn University, Topeka 29 March 1947

William Jewell College, Liberty 7 May 1947
Texas Woman'sUniversity, Denton 7 May 1947

Mount Mary College, Milwaukee 11 May 1947
Baldwin-Wallace College, Berea 6 June 1947

Colorado State University, Fort Collins 16 May 1948
Central Methodist College, Fayette 18 May 1949

Universityof Southern Mississippi, Hattiesburg 21 May 1949
Manchester College, North Manchester 16 May 1950
Westminster College, New Wilmington 17 May 1950

Butler University, Indianapolis 16May 1952
Fort Hays State University, Hays 6 Dec 1952
LaSalle University, Philadelphia 19 May 1953

Virginia State University, Petersburg 29 Jan 1955
Anderson University, Anderson 5 April 1957

California Polytechnic StateUniversity, SanLuisObispo 23 May 1958
EastTennessee State University, Johnson City 22 May 1959

Waynesburg College, Waynesburg 23 May 1959
Radford University, Radford 12 Nov 1959

Universityof Nebraska—Kearney, Kearney 11 Dec 1959
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IN Delta University of Evansville, Evansville 27 May 1960
OH Epsilon Marietta College, Marietta 29 Oct 1960
MO Zeta University of Missouri—Rolla, Rolla 19 May 1961
NE Gamma Chadron State College, Chadron 19 May 1962
MD Alpha College of Notre Dame of Maryland, Baltimore 22 May 1983
IL Epsilon North Park College, Chicago 22 May 1963
OK Beta University of Tulsa, Tulsa 3 May 1964
CA Delta California State Polytechnic University, Pomona 5 Nov 1964
PA Delta Marywood College, Scranton 8 Nov 1964
PA Epsilon Kutztown University of Pennsylvania, Kutztown 3 April 1965
AL Epsilon Huntingdon College, Montgomery 15 April 1985
PA Zeta Indiana University of Pennsylvania, Indiana 6 May 1965
AR Alpha Arkansas State University, State University 21 May 1965
TN Gamma Union University, Jackson 24 May 1965
WI Beta University of Wisconsin—River Falls, River Falls 25 May 1965
IA Gamma Momingside College, Sioux City 25 May 1965
MD Beta Western Maryland College, Westminster 30 May 1965
IL Zeta Rosary College, River Forest 26 Feb 1967
SC Beta South Carolina State College, Orangeburg 6 May 1967
PA Eta Grove City College, Grove City 13 May 1967
NY Eta Niagara University, Niagara University 18 May 1968
MA Alpha Assumption College, Worcester 19 Nov 1968
MO Eta Truman State University, Kirksville 7 Dec 1968
IL Eta Western Illinois University, Macomb 9 May 1969
OH Zeta Muskingum College, New Concord 17 May 1969
PA Theta Susquehanna University, Selinsgrove 26 May 1969
PA Iota Shippensburg University of Pennsylvania, Shippensburg 1 Nov 1969
MS Delta William Carey College, Hattiesburg 17 Dec 1970
MO Theta Evangel College, Springfield 12 Jan 1971
PA Kappa Holy Family College, Philadelphia 23 Jan 1971
CO Beta Colorado School of Mines, Golden 4 March 1971
KY Alpha Eastern Kentucky University, Richmond 27 March 1971
TN Delta Carson-Newman College, Jefferson City 15 May 1971
NY Iota Wagner College, Staten Island 19 May 1971
SC Gamma Winthrop University, Rock Hill 3 Nov 1972
IA Delta Wartburg College, Waverly 6 April 1973
PA Lambda Bloomsburg University of Pennsylvania, Bloomsburg 17 Oct 1973
OK Gamma Southwestern Oklahoma State University, Weatherford 1 May 1973
NY Kappa Pace University, New York 24 April 1974
TX Eta Hardin-Simmons University, Abilene 3 May 1975
MO Iota Missouri Southern State College, Joplin 8 May 1975
GA Alpha State University of West Georgia, Carrollton 21 May 1975
WV Alpha Bethany College, Bethany 21 May 1975
FL Beta Florida Southern College, Lakeland 31 Oct 1976
WI Gamma University of Wisconsin—Eau Claire, Eau Claire 4 Feb 1978
MD Delta Frostburg State University, Frostburg 17 Sept 1978
IL Theta Benedictine University, Lisle 18 May 1979
PA Mu St. Francis College, Loretto 14 Sept 1979
AL Zeta Birmingham-Southern College, Birmingham 18 Feb 1981
CT Beta Eastern Connecticut State University, Willimantic 2 May 1981
NY Lambda C.W. Post Campus of Long Island University, Brookville 2 May 1983
MO Kappa Drury College, Springfield 30 Nov 1984
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CO Gamma Fort Lewis College, Durango 29 March 1985
NE Delta Nebraska Wesleyan University, Lincoln 18 April 1986
TX Iota McMurry University, Abilene 25 April 1987
PA Nu Ursinus College, Collegeville 28 April 1987
VA Gamma Liberty University, Lynchburg 30 April 1987
NY Mu St. Thomas Aquinas College, Sparkill 14 May 1987
OH Eta Ohio Northern University, Ada 15 Dec 1987
OK Delta Oral Roberts University, Tulsa 10 April 1990
CO Delta Mesa State College, Grand Junction 27 April 1990
NC Gamma Elon College, Elon College 3 May 1990
PA Xi Cedar Crest College, Allentown 30 Oct 1990
MO Lambda Missouri Western State College, St. Joseph 10 Feb 1991
TX Kappa University of Mary Hardin-Baylor, Belton 21 Feb 1991
SC Delta Erskine College, Due West 28 April 1991
SD Alpha Northern State University, Aberdeen 3 May 1992
NY Nu Hartwick College, Oneonta 14 May 1992
NH Alpha Keene State College, Keene 16 Feb 1993
LA Gamma Northwestern State University, Natchitoches 24 March 1993
KY Beta Cumberland College, Williamsburg 3 May 1993
MS Epsilon Delta State University, Cleveland 19 Nov 1994

Starting a KME Chapter

Complete information on starting a chapter of KME may be obtained
from the National President (see address on p. 77). Some information is
given below.

An organized group of at least ten members may petition through a
faculty member for a chapter. These members may be either faculty or
students; student members must meet certain coursework and g.p.a. re
quirements.

The financial obligation of new chapters to the national organization
includes the cost of the chapter's charter and crest (approximately $50)
and the expenses of the installing officer. The individual membership fee
to the national organization is $20per member and is paidjust once, at that
individual's initiation. Much of this $20 is returned to the new members in

the form of membership certificates and cards, keypin jewelry, a two-year
subscription to the society's journal, etc. Local chapters are allowed to
collect semester or yearly dues as well.

The petition itself, which is the formal application for the establish
ment of a chapter, requests information about the petitioning group, the
academicqualificationsof the eligible petitioning students, the mathematics
faculty, mathematics course offerings and other facts about the institution.
It also requests evidence of faculty and administrative approval and support
of the petition. Petitions are subject to approval by the National Council
and ratification by the current chapters.


