The PentagonA Mathematics Magazine for Students
Volume 56 Number 1 Fall 1996
Contents
An Introduction to Multiquadric Interpolation 3
Michelle E. Ruse
Palindromes 23
Christopher Brown
Let's Be Seated 39
Joshua Weber
Symmetry Groups as Scientific Tools 43
Andy Miller
KME Quiz 50
The Problem Corner 51
Report of the Region IV Convention 59
Report of the Region V Convention 60
Kappa Mu Epsilon News 62
Kappa Mu Epsilon National Officers 77
Active Chapters of Kappa Mu Epsilon 78© 1996 by Kappa Mu Epsilon (www.cmich.edu/kme.html). All rights re-served. General permission is granted to KME members for noncommercialreproduction in limited quantities of individual articles, in whole or in part,provided complete reference is given as to the source.
Typeset in $\mathcal{A}_{\mathcal{M}} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Printed in the United States of America.

The Pentagon (ISSN 0031-4870) is published semiannually in December and May by Kappa Mu Epsilon. No responsibility is assumed for opinions expressed by individual authors. Papers written by undergraduate mathematics students for undergraduate mathematics students are solicited. Papers written by graduate students or faculty will be considered on a space-available basis. Submissions should be typewritten (double spaced with wide margins) on white paper, standard notation conventions should be respected and any special symbols not typed should be carefully inserted by hand in black ink. All illustrations must be submitted on separate sheets and drawn in black ink. Computer programs, although best represented by pseudocode in the main text, may be included as an appendix. Graphs, tables or other materials taken from copyrighted works MUST be accompanied by an appropriate release from the copyright holder permitting further reproduction. Student authors should include the names and addresses of their faculty advisors. Final versions on 3.5 inch disk in "text only" (ASCII) format are appreciated. Contributors to The Problem Corner or Kappa Mu Epsilon News are invited to correspond directly with the appropriate Associate Editor.

Individual domestic subscriptions: $\$ 5.00$ for two issues (one year) or $\$ 10.00$ for four issues (two years); individual foreign subscriptions: $\$ 7.00$ (US) for two issues (one year). Library rate: $\$ 10.00$ (US) for two issues (one year) or $\$ 20.00$ (US) for four issues (two years). Correspondence regarding subscriptions, changes of address or back copies should be addressed to the Business Manager. Copies lost because of failure to notify the Business Manager of changes of address cannot be replaced. Microform copies are available from University Microfilms, Inc., 300 North Zeeb Road, Ann Arbor, Michigan 48106-1346 USA.

Department of Mathematics
Washburn University of Topeka, Topeka, Kansas 66621 xxwilke@acc.wuacc.edu

Kappa Mu Epsilon News

Mary S. Elick
Department of Mathematics
Missouri Southern State College, Joplin, Missouri 64801 elick@vm.mssc.edu

Division of Mathematics and Computer Science
Emporia State University, Emporia, Kansas 66801 scottlar@esumail.emporia.edu

An Introduction to Multiquadric Interpolation

Michelle E. Ruse, student
Iowa Alpha
University of Northern Iowa
Cedar Falls, IA 50614

Presented at the 1995 National Convention and awarded "top four" status by the Awards Committee.

Introduction

We can find many mathematical problems in the world around us which do not have absolute answers, requiring us to find approximate solutions with as much accuracy as possible. For instance, if we try to construct a topographical map of a mountainous region, first we gather data by measuring some elevations and locations. In using the data to construct the map, we realize that because measuring every dip and valley would be impossible, the map must be constructed from a set of isolated points. The next step is either to guess the elevations between the data points, if there are enough points close enough together, or to estimate these elevations mathematically, using some form of an approximating method.

Since we would like to finish constructing the map by taking small regions around the known data points and finding approximating functions which, when graphed, will represent as precisely as possible the surface of the region, an entirely new problem arises. We now use these few, random data points to find an approximating surface by means of an interpolation method.

Interpolation Methods

The scenario above leads to an interpolation problem in $\mathbf{R}^{\mathbf{3}}$. We expect that interpolation methods in $\mathbf{R}^{\mathbf{3}}$ can be developed by generalizing interpolation methods appropriate for \mathbf{R}^{2}. Well-known and commonly used methods include Lagrange interpolatory polynomials, Taylor polynomials

This work was supported in part by grant TRA930381N from the National Center for Supercomputing Applications.
and cubic splines. We shall outline a general interpolation method appropriate for $\mathbf{R}^{\boldsymbol{n}}$ called Multiquadric Interpolation and we shall compare Multiquadric Interpolation (MQ) with the classic methods by examining a specific problem in the plane.

Since we do not know the true elevation function, but only some point values of the function, the mathematical model is derived from the behavior of the approximating function. Thus, the accuracy of the approximation is an important factor in selecting a method to derive the estimated function from the given data.

Many interpolatory methods exist, such as the classical ones named above, and each has its strengths and weaknesses. Some of these strengths and weaknesses depend upon the function itself; therefore some functions are easily interpolated because they do not change much, while others are not so easily estimated because their behavior is unpredictable. The problem is to find interpolation methods which can predict such behavior even in difficult instances.

We offer an example of interpolation in \mathbf{R}^{2} using the previously mentioned methods. We shall consider a known function, obtain data points by evaluating the function at specified abscissas and graph both the interpolating function and the true function. By considering the difference between these functions, we can measure the accuracy of our technique. We consider Runge's function $f(x)=\frac{1}{1+x^{2}}$ and seven specified data points.

Figure 1 shows the Lagrange approximation of $f(x)$, figure 2 shows the Taylor approximation of $f(x)$, and figure 3 shows the Cubic Spline approximation of $f(x)$. These figures were created on MATLAB using Neville's Algorithm for the Lagrange Polynomial, a simple program for the Taylor Polynomial and the Natural (Free) Cubic Spline algorithm found in Burden and Faires' Numerical Analysis, 5th edition [2]. As we can see in these figures some methods are more accurate than others, but we want more precision than these methods allow. Thus, we shall need to look for a more precise interpolation method.

Multiquadric Interpolation

These classical methods of interpolation use polynomials in the Cartesian plane to derive approximating functions, so it seems that we could use polynomials of degree one in the form of linear combinations calculated from the given ordered pairs for interpolation in the Cartesian plane. The following discussion leads to the formation of an interpolatory method called Multiquadric Interpolation, or MQ.

Suppose we are dealing with one independent variable and we are given the following data: $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)$. The problem is to find an approximate $F(x)$ such that $F\left(x_{i}\right)=f\left(x_{i}\right)$ for $i=1,2, \ldots, n$ and $F(x)$ accurately describes the behavior of $f(x)$ between these points. Throughout

Figure 1. Lagrange approximation of $f(x)$.

Figure 2. Taylor approximation of $f(x)$.

Figure 3. Cubic spline approximation of $f(x)$.
this report we shall use F to denote our interpolatory approximation to the function f with given data points. A reasonable function is the following:

$$
F(x)=\sum_{i=1}^{n} c_{i}\left|x-x_{i}\right|
$$

where the c_{i} 's are constants. These c_{i} 's are calculated by solving the linear equation $A \mathbf{c}=\mathbf{b}$, where \mathbf{c} is the unknown vector, \mathbf{b} is the vector of length n with $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)$ as its components, and $A=\left[a_{i j}\right]$ is an $n \times n$ matrix with $a_{i j}=\left|x_{i}-x_{j}\right|$. From this definition A is symmetric and has a principal diagonal of zeros.

In order to find the vector c of unknown coefficients, matrix A must be nonsingular; accordingly $A c=b$ will have a unique solution. Example 1 shows such an interpolation with one independent variable where the matrix is invertible; therefore c may be calculated uniquely. Figure 4 depicts graphically the interpolation method that finds a single approximating function.

Example 1. Interpolate the function $f(x)$, given the following data: $f(1)=4, f(2)=3, f(4)=7$.
We have $n=3, F(x)=\sum_{i=1}^{3} c_{i}\left|x-x_{i}\right|$, and $F\left(x_{i}\right)=f\left(x_{i}\right)$ for $i=1,2,3$.

The equation $\mathbf{A c}=\mathbf{b}$ is

$$
\left[\begin{array}{lll}
|1-1| & |1-2| & |1-4| \\
|2-1| & |2-2| & |2-4| \\
|4-1| & |4-2| & |4-4|
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
3 \\
7
\end{array}\right] .
$$

We solve using Gaussian elimination. Starting by exchanging rows 1 and 2, we obtain

$$
\left[\begin{array}{lll|l}
1 & 0 & 2 & 3 \\
0 & 1 & 3 & 4 \\
3 & 2 & 0 & 7
\end{array}\right] .
$$

We then subtract three times row 1 from row 3 and subtract two times row 2 from row 3 yielding

$$
\left[\begin{array}{ccc|c}
1 & 0 & 2 & 3 \\
0 & 1 & 3 & 4 \\
0 & 0 & -12 & -10
\end{array}\right] .
$$

Backsolving results in $c_{3}=5 / 6, c_{2}=3 / 2$, and $c_{1}=4 / 3$. Hence

$$
F(x)=\frac{4}{3}|x-1|+\frac{3}{2}|x-2|+\frac{5}{6}|x-4| .
$$

Let $g(x)=(4 / 3)|x-1|, h(x)=(3 / 2)|x-2|$, and $k(x)=(5 / 6) \mid x-$ 41. We graph each separate term to give a physical representation of the interpolation. Graphing $F(x)$ along with the terms illustrates that it is piecewise linear. We expect this result since the piecewise linear functions are a subspace of $C[1,4]$ and the addition of the lines, as shown in the graph, forms a line. The function is not differentiable at the data points since we only require that $F(x)=f(x)$ for the given data.

We can prove that in general the multiquadric matrix A will be nonsingular by developing an explicit formula for each of the c_{i}. We shall need three cases; first we develop a formula for c_{i} where $1<i<n$, and then formulae for c_{n} and c_{1} may be developed similarly. In each case the data is ordered so that $x_{1}<x_{2}<\cdots<x_{n}$ and $f(x)$ is the known vector. Then

$$
A=\left[\begin{array}{cccc}
\left|x_{1}-x_{1}\right| & \left|x_{1}-x_{2}\right| & \ldots & \left|x_{1}-x_{n}\right| \\
\left|x_{2}-x_{1}\right| & \left|x_{2}-x_{2}\right| & \ldots & \left|x_{2}-x_{n}\right| \\
\vdots & \vdots & \ddots & \vdots \\
\left|x_{n}-x_{1}\right| & \left|x_{n}-x_{2}\right| & \ldots & \left|x_{n}-x_{n}\right|
\end{array}\right]
$$

As a linear system the matrix equation $\mathrm{Ac}=\mathrm{f}(\boldsymbol{x})$ becomes

$$
\left\{\begin{array}{c}
c_{1}\left|x_{1}-x_{1}\right|+c_{2}\left|x_{1}-x_{2}\right|+\cdots+c_{n}\left|x_{1}-x_{n}\right|=f\left(x_{1}\right) \\
c_{1}\left|x_{2}-x_{1}\right|+c_{3}\left|x_{2}-x_{2}\right|+\cdots+c_{n}\left|x_{2}-x_{n}\right|=f\left(x_{2}\right) \\
\vdots \\
c_{1}\left|x_{n}-x_{1}\right|+c_{2}\left|x_{n}-x_{2}\right|+\cdots+c_{n}\left|x_{n}-x_{n}\right|=f\left(x_{n}\right)
\end{array} .\right.
$$

Figure 4. Pointwise addition to get linear piecewise approximation.

We shall now prove that the c_{i} have unique solutions for $1<i<n$. We subtract the $(i-1)$ st equation from the i th equation in $A c=f(x)$, giving us

$$
\begin{aligned}
c_{1}\left(\left|x_{i}-x_{1}\right|-\left|x_{i-1}-x_{1}\right|\right) & +c_{2}\left(\left|x_{i}-x_{2}\right|-\left|x_{i-1}-x_{2}\right|\right)+\ldots \\
& +c_{n}\left(\left|x_{i}-x_{n}\right|-\left|x_{i-1}-x_{n}\right|\right)=f\left(x_{i}\right)-f\left(x_{i-1}\right)
\end{aligned}
$$

Since $x_{i-1}<x_{i}$, the difference $\left|x_{i}-x_{k}\right|-\left|x_{i-1}-x_{k}\right|$ is greater than zero whenever $k<i$. If k is greater than or equal to i, the difference is negative. Thus the negative sign precedes the c_{k} whenever k is greater than or equal to i. Thus we get the following when we simplify:

$$
\begin{aligned}
c_{1}\left|x_{i}-x_{i-1}\right| & +c_{2}\left|x_{i}-x_{i-1}\right|+\cdots+c_{i-1}\left|x_{i}-x_{i-1}\right|-c_{i}\left|x_{i}-x_{i-1}\right|-\cdots \\
& -c_{n}\left|x_{i}-x_{i-1}\right|=f\left(x_{i}\right)-f\left(x_{i-1}\right) .
\end{aligned}
$$

We divide both sides by the common factor and obtain

$$
\begin{equation*}
c_{1}+c_{2}+\cdots+c_{i-1}-c_{i}-\cdots-c_{n}=\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{\left|x_{i}-x_{i-1}\right|} \tag{1}
\end{equation*}
$$

Similarly, we subtract the $(i+1)$ st equation from the i th equation and obtain

$$
\begin{equation*}
-c_{1}-c_{2}-\cdots-c_{i}+c_{i+1}+\cdots+c_{n}=\frac{f\left(x_{i}\right)-f\left(x_{i+1}\right)}{\left|x_{i}-x_{i+1}\right|} \tag{2}
\end{equation*}
$$

We add (1) and (2) to get

$$
-2 c_{i}=\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{\left|x_{i}-x_{i-1}\right|}+\frac{f\left(x_{i}\right)-f\left(x_{i+1}\right)}{\left|x_{i}-x_{i+1}\right|}
$$

and

$$
c_{i}=-\frac{1}{2}\left(\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{\left|x_{i}-x_{i-1}\right|}+\frac{f\left(x_{i}\right)-f\left(x_{i+1}\right)}{\left|x_{i}-x_{i+1}\right|}\right) .
$$

Therefore each c_{i} is determined uniquely.
Similarly we can prove that c_{1} and c_{n} are also determined uniquely. Since we obtain explicit formulae for each $c_{i}, A c=\mathbf{f}$ has a unique solution, and thus A is nonsingular. It can be noted that in the interpolatory equation $F(x)=\sum_{i=1}^{n} c_{i}\left|x-x_{i}\right|$, the expression $\left|x-x_{i}\right|$ is the distance between x and x_{i}. Thus, we replace $\left|x-x_{i}\right|$ with $\sqrt{\left(x-x_{i}\right)^{2}}$. The definition of Euclidean distance in higher dimensional spaces can be represented similarly, only more variables are needed. Knowing this fact, we can now generalize the interpolation method to \mathbf{R}^{n} by the following: Let x_{i} be any given data point in $\mathbf{R n}^{\boldsymbol{n}}$; then

$$
F(x)=\sum_{i=1}^{n} c_{i} d\left(x, x_{i}\right)
$$

where d is the Euclidean distance.
Beginning in three-dimensional space, the equation has two independent variables, the data is ordered triples, and the distance is

$$
d\left((x, y),\left(x_{i}, y_{i}\right)\right)=\sqrt{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}}
$$

for $i=1,2, \ldots, n$. The approximating function is

$$
F(x, y)=\sum_{i=1}^{n} \mathrm{c}_{i} d\left((x, y),\left(x_{i}, y_{i}\right)\right)
$$

So the $n \times n$ matrix A is

$$
\left[\begin{array}{ccc}
\sqrt{\left(x_{1}-x_{1}\right)^{2}+\left(y_{1}-y_{1}\right)^{2}} & \cdots & \sqrt{\left(x_{1}-x_{n}\right)^{2}+\left(y_{1}-y_{n}\right)^{2}} \\
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & \cdots & \sqrt{\left(x_{2}-x_{n}\right)^{2}+\left(y_{2}-y_{n}\right)^{2}} \\
\vdots & \ddots & \vdots \\
\sqrt{\left(x_{n}-x_{1}\right)^{2}+\left(y_{n}-y_{1}\right)^{2}} & \cdots & \sqrt{\left(x_{n}-x_{n}\right)^{2}+\left(y_{n}-y_{n}\right)^{2}}
\end{array}\right] .
$$

In order to solve $A c=f(x, y), A$ must be nonsingular. The matrix A is nonsingular as Blumenthal knew in the 1930's when he obtained this result by use of Cayley-Menger Determinants [1]. It was not until some fifty years later, in the 1980 's, that this fact was deemed important in approximation theory.

Now, A is invertible, so the unknown c_{i} 's may be calculated. As in figure 4, which showed the addition of absolute value functions that yielded a piecewise linear approximating function, the interpolatory function may be visualized as a linear combination of frustrums of right circular cones which are added pointwise to form the approximating surface. We may note that if the frustrums are centered on the x-axis, the term $\sqrt{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}}$ becomes $\sqrt{\left(x-x_{i}\right)^{2}+0}$. Hence, restricting the surface to the $x z$-plane reduces the problem to the previously studied case involving one independent variable. Thus, using distance in the interpolatory function is a proper generalization of the lower dimensional case.

If we consider the restriction to the $x z$-plane in the general case, where the frustrums do not lie on the x-axis, then a cone cut by a plane parallel to the axis of the cone, but not through the vertex, results in a hyperbola. Thus we may visualize the construction of the interpolatory function in the $x z$-plane as the pointwise addition of half-hyperbolas. It follows that any planar approximating function may be calculated using a linear combination of half-hyperbolas.

Now we generalize in $\mathbf{R}^{\mathbf{3}}$ to construct the approximating surface using two independent variables. This can be visualized as in figure 5, which shows two cones with origins x_{1} and x_{2}. A random x, y pair is selected, then the corresponding z values from the frustrum of each cone are added to obtain the z values of the approximating function, similar to the pointwise addition in example 1.

Here the resulting approximation will be a surface which may eatimate the true surface. Since the equation involving absolute value was the first interpolation method that we studied, and examining its natural generalization in $\mathbf{R}^{\boldsymbol{n}}$ resulted in a graph of half-hyperbolas, we now examine the equation of a hyperbola

$$
y^{2}-(x-a)^{2}=r^{2} .
$$

This can be written

$$
y^{2}=(x-a)^{2}+r^{2}
$$

or, finally,

$$
y= \pm \sqrt{(x-a)^{2}+r^{2}} .
$$

Since we want a function to approximate a surface, we shall only be concerned with the positive y values. Thus we may use $y=\sqrt{(x-a)^{2}+r^{2}}$ to form each term of our approximating function. We now substitute $\sqrt{\left(x-x_{i}\right)^{2}+r^{2}}$ for $\sqrt{\left(x-x_{i}\right)^{2}}$ in our previous development. The function becomes the following:

$$
\begin{equation*}
F(x)=\sum_{i=1}^{n} c_{i} \sqrt{\left(x-x_{i}\right)^{2}+r^{2}} . \tag{3}
\end{equation*}
$$

Figure 5. Interpolation in \mathbf{R}^{3}.
To solve the system $A c=\boldsymbol{f}(x)$, we must first know that there is a unique solution. Micchelli proved the following result: Given any distinct points x_{1}, \ldots, x_{n} in the plane, $(-1)^{n} \operatorname{det} \sqrt{1+\left|x_{i}-x_{j}\right|^{2}}>0$. This theorem says, in particular, that there is a unique surface $f(x)=c_{1} \sqrt{1+\left|x-x_{1}\right|^{2}}+\cdots+$ $c_{n} \sqrt{1+\left|x-x_{n}\right|^{2}}$ which interpolates (data) y_{1}, \ldots, y_{n} at x_{1}, \ldots, x_{n} [4].

Thus, the function (3) will provide us with an interpolatory function for the known data. This approximating function, when graphed, will give an approximation to the true function as the pointwise addition of halfhyperbolas, given that the parameter r^{2} is greater than zero.

We were able to move from one variable to two variables and even n variables using linear combinations of distance as the means of interpolation, so graphically we move from one to two to n variables using absolute values, hyperbolas, then hyperboloids of two sheets.

The equation of a hyperboloid of two sheets is the following:

$$
w^{2}-(x-a)^{2}-(y-b)^{2}=r^{2} .
$$

Therefore,

$$
w^{2}=(x-a)^{2}+(y-b)^{2}+r^{2},
$$

and finally

$$
w= \pm \sqrt{(x-a)^{2}+(y-b)^{2}+r^{2}} .
$$

As before, we shall be concerned with the positive values, one sheet of a hyperboloid of two sheets: $w=\sqrt{(x-a)^{2}+(y-b)^{2}+r^{2}}$.

We substitute this for our distance function to form a new interpolatory function which has the following equation:

$$
F(x, y)=\sum_{i=1}^{n} c_{i} \sqrt{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}+r^{2}}
$$

This interpolatory function will provide an approximation for a function of two independent variables which may be represented graphically as a surface. Now the linear equation $A \mathbf{c}=\boldsymbol{f}(x, y)$ must have a unique solution so that c is a vector of constants and interpolation using $F(x, y)$ will be possible. Micchelli's theorem also guarantees the uniqueness of c. Therefore, we have an interpolatory function. Micchelli's theorem says that interpolation is also possible for any finite number of independent variables:

$$
F(x, y, \ldots, z)=\sum_{i=1}^{n} c_{i} \sqrt{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}+\cdots+\left(z-z_{i}\right)^{2}+r^{2}} .
$$

We do not expect to be able to visualize the resulting hypersurface in any space greater than dimension three.

Accuracy Of Multiquadric Interpolation

As seen in figures 1-3, interpolation methods are not perfect. We hope to demonstrate that MQ proves to interpolate Runge's function far better than the classical methods, although not infallibly. Empirical studies of the veracity of interpolation methods have a long history in the mathematical literature. However, viable interpolatory schemes for scattered data were not systematically studied until the 1980's.

In 1982 Richard Franke realized a need to evaluate the accuracy as well as other factors of known interpolation methods of scattered data [3]. In
his evaluation he rated these methods with letter grades A, \ldots, F on the basis of many characteristics that he considered important for analyzing the techniques. The method developed above, called Multiquadric Interpolation (MQ), received A's in Complexity, Accuracy and Visual and a B-/Cin time evaluation. These marks were overall superior to other methods considered. Still, this is only Franke's criteria for an A grade.

We find it necessary as well as worthwhile to test this newly found interpolatory method to discover its advantages and limitations. Taking a closer look at the MQ formula, we would like to find reasonable values for the parameter \boldsymbol{r}^{2}.

Although a graph of an MQ approximation function may closely resemble that of the actual function, it does not necessarily mean it is the best or most precise interpolation, especially since we do not fully understand the unknown user-specified \boldsymbol{r}^{2} parameter in the equation.

Even if we find an r^{2} value that yields an approximating function whose graph is close to that of the true function, it does not mean that we have found an optimal r^{2}. In fact, this is a current topic of mathematical research in the area of approximation theory, but there is currently no best algorithm for determining an \boldsymbol{r}^{2} parameter for all cases.

Optimizing r ${ }^{\mathbf{2}}$

Now we direct our examination of MQ to the search for an optimal parameter, r^{2}. Referring to Franke's work with interpolation, Audry Ellen Tarwater points out that Franke's evaluation clearly states that MQ is far better than all other methods evaluated, but "by optimizing r^{2}, the results obtained are significantly improved, indicating that MQ can be far better than previously expected" [5]. Possibilities for optimizing the r^{2} parameter include finding a set numerical value from the given data, finding a variable \boldsymbol{r}^{2} such that \boldsymbol{r}^{2} is some function or optimizing r^{2} with information other than the data points.

We can attempt to optimize r^{2} as a scalar for Runge's function, which was exhibited in figures 1-3, by varying the r^{2} value for different trials of approximating this function. In figures 6-13 (at the end of this paper) there are some examples of varying r^{2} between zero and ten. This is a simple function in \mathbf{R}^{2}, so it is easy to substitute different values for \boldsymbol{r}^{2}, find the L_{1} error, and graph each approximation on the same graph with the true function, all in a reasonable amount of time and coding in MATLAB. Figure 6, with r^{2} as ten, shows an undulating graph which resembles the Lagrange Polynomial method. We discover in figure 7 with \boldsymbol{r}^{2} as zero, that we do not the have smoothness of the original function. Now we can refer to Tarwater's investigation, which states that a larger r^{2} increases the waves and a smaller r^{2} decreases the smoothness of the graph [5].

We tried several values between zero and ten and found by a visual
analysis, as well as numerical analysis of the errors, as seen in figures 7 and 8 , that r^{2} must be between zero and one. Figures 9 and 10 leave the optimal r^{2} between 0.01 and 0.02 . We further refined \boldsymbol{r}^{2} to 0.013 (figure 11) and 0.0133 (figure 12). But we see little difference in the final figures, so it seems we optimized the constant parameter as far as possible.

But this example oversimplifies the problem of parameter optimization, since all functions do not behave like Runge's function. Multiquadric approximations in $\mathbf{R}^{\mathbf{3}}$ present an even bigger problem. First of all, the immense amount of computing time necessary to calculate c_{i} 's and to graph it, as well as the vast possibilities of parameter values, make trial and error methods inappropriate for finding precise results in a reasonable amount of time.

Although we do not expect to find the optimal r^{2} by means of trial and error, we can explore the behavior of a function in \mathbf{R}^{3} and we might also gain some insight into the parameter using this method.

We investigated the parameter r^{2} as it pertains to Franke's surface

$$
\begin{aligned}
f(x)=9 & \left(.75 \exp \left(-.25\left((x-3)^{2}+(y-3)^{2}\right)\right)\right. \\
& +.75 \exp ((-x / 49)-(y / 100)) \\
& +.5 \exp \left(-.25\left((x-8)^{2}+(y-4)^{2}\right)\right) \\
& \left.-.2 \exp \left(-1(x-5)^{2}-(y-8)^{2}\right)\right) .
\end{aligned}
$$

On the 4-processor Cray Y-MP at the National Center for Supercomputing Applications, we ran a series of Fortran programs designed to solve the multiquadric matrix equation with various values for r^{2}. We not only varied \boldsymbol{r}^{2}, but we also varied the number of data points used, which was anywhere from 20 up to 300 randomly selected data points. These programs yielded the coefficients of the vector c , which were then used to construct the multiquadric interpolatory function. We then generated a graphical representation of the surface within MATLAB running on a 4 -processor Sun 670-MP. We found it convenient to dilate the domain uniformly so as to present the surface on the domain $[0,100] \times[0,100]$. A representative sample of the resulting surfaces are included in figures 13-19.

In the figures shown, 20 random data points were used and the surfaces were graphed using the dilated domain. Here we look at the L_{1} error. In figure 13 the parameter is zero; we can see the decreased smoothness, not only due to the nature of MQ with small r^{2} values, but also due to the small number of data points. The two peaks demonstrate this especially; both would appear to be cones. We had fewer data points on the lower peak, but we see that the higher peak appears somewhat conical.

We tried \boldsymbol{r}^{2} as 40 and found results we were likely to expect, as figure 14 shows; the peaks and valley are smooth, but the edges, which should be flat, are wavy. Figures 15 and 16 show the parameter as one and two,
respectively, which helps us determine that the optimal r^{2} must be between these values. Furthermore, we find as shown in figure 17 that the optimal parameter is near 1.3. The further refinements in figures 18 and 19 with the parameter equal to 1.33 and 1.339 , show little difference by refinement of r^{2} in the fourth significant digit. Again, we have gone as far as possible with this investigation of a constant parameter for this surface.

Conclusions

We found that varying \boldsymbol{r}^{2} gave us different graphs in \mathbf{R}^{2} and different surfaces in \mathbf{R}^{3}. We consistently found that large values for r^{2} resulted in poor interpolatory graphs and surfaces compared to the smaller r^{2} values.

In constructing the Franke surface, not only did we change r^{2}, but we also varied the number of data points. We observe that the smaller the parameter value is, the better the approximated surface is; but we also see that the fewer the known data points we use, the less smooth surfaces constructed with a small r^{2} value are. The construction of these surfaces involved fewer data points than the smooth surface interpolation.

Therefore we can conclude that not only does r^{2} seem to be a small number in both of our cases, but the accuracy of the interpolation also depends upon the number of data points given. Furthermore, the location of the data points is important since some regions of the surface are predicted more accurately than others. We can see this specifically at the corners of the surface, which indicates that there are too few points, especially along the edges. Although our MQ approximations proved to be accurate when r^{2} was small, they were not always efficient. The Franke surface construction required the use of a supercomputer for data point computation and MAT$L A B$ for generating a graphic representation. Although the supercomputer allows us to compute in a few minutes what takes over two hours on our usual computer, we do not always have access to such technology. So, MQ is not as efficient as it is accurate.

As Tarwater concludes in her study of the parameter r^{2}, "It has been shown that to optimize r^{2}, i.e. to minimize the error of the approximation, more factors are involved than the data locations" [5], we also conclude that information necessary to optimize MQ interpolation is missing. An interpolatory method may work well, but it cannot perfectly determine every function, so other techniques are still important. Also, analyzing the techniques for sensitivity, accuracy or other important traits cannot be overlooked. In conclusion, Multiquadric Interpolation seems to be one of the best interpolation methods available to us today.
Acknowledgements. I would like to thank the National Center for Supercomputing Applications for grant number TRA930381N which aided my research and data gathering. I cannot thank Dr. Timothy Hardy enough for all of his help, input, encouragement and patience. Thank you.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Shape Parameter: 0 L1 Error: 1798

Figure 13.

Figure 14.

Figure 15.

References

1. Blumenthal, Leonard M., Theory and Applications of Distance Geometry, second ed., Chelsea Publishing Company, New York, 1970.
2. Burden, Richard L. and Faires, J. Douglas, Numerical Analysis, fifth ed.,

Shape Parameter: 2 L1 Error: 1065

Figure 16.

Shape Parameter: 1.3 L1 Error: 1717

Figure 17.
PWS Publishing Company, Boston, 1993.
3. Franke, Richard, "Scattered Data Interpolation: Tests of Some Methods," Mathematics of Computation 38 (1982), 181-200.
4. Micchelli, Charles A., "Interpolation of Scattered Data: Distance Matrices and Conditionally Positive Definite Functions," Constructive Approximation

Figure 18.

Shape Parameter: 1.339 L1 Error: 1716

Figure 19.
Theory 2 (1986), 11-22.
5. Tarwater, Audry Ellen, A Parameter Study of Hardy's Multiquadric Method for Scattered Data Interpolation, M.S. Thesis, University of California, Davis, 1985.

Palindromes

Christopher Brown, student

Missouri Zeta
University of Missouri-Rolla Rolla, MO 65401

Presented at the 1995 National Convention

Introduction

The mathematical puzzles that are learned when one is a child, the enigmas that face a young mind, are often those which haunt the older student. Why did this work? We wonder. Is it magic? Did I imagine it?

So, I began my search for a topic in a locale familiar to me since elementary school: books of mathematical puzzles. My original intent was to discuss a somewhat broader range of puzzles, such as the family of "magic squares," simple integer problems, and perhaps even some geometrical dilemmas. Curiosity overthrew intent, however, when I encountered one very simple-sounding problem, a problem that deals only with the counting integers, a problem that relies only on addition. It is, in strict point of fact, a parlor trick, more or less an intellectual amusement to fill the time. And yet, it has not, to my knowledge, been solved. Everyone can perform the simple calculations, and yet no one has explained it, no one has provided an answer to the question of "Why?". And so, this is something of a story - of how I came to narrow down the topic so very much, and what steps I have taken to increase the scope of my understanding about this puzzle.

Palindromes

Take a few moments to consider the following puzzle, haphazardly discovered amidst a sea of others in a book of mathematical curiosities: write down a positive integer, say 91 ; write the integer's digits in opposite order, and add the two integers; repeat this process, until the number reads the same, forwards and back. This is known as a palindromic number, a phrase
more popularly associated with letters than with digits.

$$
\begin{array}{r}
91 \\
+19 \\
=110 \\
+011 \\
=121
\end{array}
$$

In the event that I have inadvertently chosen one of a select few counting integers that satisfies these conditions, I encourage the reader to take a few moments and try some other numbers, perhaps some of three and four digits, in order to rest assured that these statements hold true. A word of warning, however; even within the set of two-digit counting integers lie a few members that reach palindromes very slowly. For example, 89 and 98 each require twenty-four successive iterations of this formula in order to form a palindrome. Needless to say, it would be rather difficult to completely enumerate this process for even the two- and three-digit integers by hand. At this point, my investigation of this problem took on two very distinct and separate forms: the first, and perhaps the easier approach, which involves enumerating large sets of data using a computer program, and the second, more abstract method, which I will refer to as domain reduction. Neither was successful in providing "the" answer, but in my opinion, each approach has its merits and each has provided some interesting insights into the nature of the puzzle.

As mentioned above, and as perhaps the reader has discovered, one of the more difficult aspects of this problem is the enumeration of large sets of data. So, in the spirit of harmony with technology, I designed and implemented a computer program that does exactly that, as well as performing limited data analysis. Before discussing the results of this method, I would like to discuss the program itself, in order to assure the reader that all precautions to minimize error due to computer calculations have been taken. The difficulty with writing a computer program to handle this problem lies in the reversal of the digits to form the second number. This is by no means a standard operation, and would be very difficult to accomplish using the standard integer data type. In order to circumvent this, I have represented the numbers as a particular data structure referred to as a doubly-linked list. This has three major advantages, in terms of the problem: first, it simplifies the calculations involved, since the program can add the numbers in the manner that elementary school children are taught; second, it greatly reduces the computer error involved, since no member of the linked list will ever be greater than nineteen, and for most of the program execution time, all members are less than ten; and last, and perhaps most significant, the number can be reversed using nothing more complex than a simple while
loop control structure. This abstract data structure is represented below as a series of nodes, which are linked through pointers to each other in a fashion that allows the list to be read forwards or backwards (see figure 1).

Figure 1. Data structure used for representing integers.
Each node contains a field called digit, which holds the corresponding digit for the number, and two pointer fields, one pointing forward in the list and the other pointing back. This method leaps one additional hurdle that, at first, I did not envision as a problem: the length of the integers. A standard integer data type can be no higher than $2^{15}-1$, or 32,767 ; an unsigned integer data type is limited to numbers less than 2^{16}, or 65,536 . Unfortunately, when a number is reiterated through this algorithm many times, the serviceability of the integer data type quickly moves from impractical to impossible. There does exist one major drawback to the linked list as a form of numeric representation: the limitation of computer memory. Each separate node, each digit, in the linked list requires more memory than the entire number would, if represented as an integer data type. It is therefore necessary to run this program on a computer with a reasonably large amount of memory.

Basically, the mechanics of the program follow exactly the steps of the algorithm as outlined in the problem, with the additional feature that a range of numbers may be entered. Each number, the resulting palindrome, and the number of iterations is written to a standard ASCII text file, using commas as delimiters in order to facilitate the use of spreadsheets in analyzing the data.

By this point, I am sure the reader would be interested to know the results of this little computer analysis. When I first designed and ran the program, as an additional feature I added a "safety valve," just in case (this is a standard practice to help avoid infinite loop situations). I wish to stress just in case, because I did not expect anything to go wrong with the program. To my total and complete surprise, this safety valve was reached a number of times, merely within the domain of 1 to 1,000 . To assure the reader that, indeed, a reasonable safety valve was established, I wish to make note of a few figures. First, no number - other than these "safety violations" - exceeded 24 iterations for this domain; second, my
initial safety valve was set at 2000 iterations. To illustrate a point, I at first believed that one of the ever-present bugs had infested the program, and I actually spent nearly four hours rearranging program code and nearly disabling the program altogether. I had of course fallen prey to a common fallacy - that is, what has been printed must be true! The problem stated very clearly, in print [1], that one could attempt this trick with any number. And so, I am now forced to admit that I may have misled the reader in some of my earlier statements, but that was intended to illuminate this point clearly: the problem being examined has perhaps been somewhat poorly explored. In fact, I do not know, and possibly cannot know, whether or not these numbers actually adhere to this system of palindromes; they may produce palindromes at a much higher number of iterations than the machine can test. I have examined them at iterations up to ten thousand, and they have continued to fail at each test.

In the interest of closer examination of these numbers, I began writing them to a separate text file during the execution of the program, calling the file "crazy.dat", as in "These are driving me ... '. And, at firet, it seemed as though a pattern of these numbers was forming: 196, 295, 394, It seemed as though I might have inadvertently stumbled on a clue to the puzzle after all. But as the pattern continued to evolve, I saw that I had actually expanded the complexity of the puzzle: $196,295,394,493$, $592,689,691,788,790,879,887,978,986$ is the series of invalid numbers between 1 and 1,000 . It almost forms a pattern. It nearly represents a very large piece of the puzzle. It very clearly is not a simple sequence! These same problems exist in every set of data I have generated; patterns are almost formed, sequences almost simple. Sets of data have been generated for the set 1 to 100,000 . The appendix shows the output from the program for the data set 1 to 1,000 and the problematic integers between 1 and 10,000.

As a few more notes concerning this approach to analysis, I would like to mention some of the more interesting experiments I have performed on the sets of data. First, appended to the main body of the program is a function called "cmapit," which produces a color map of the data. This function first analyzes the data, and then draws lines of different color depending upon the number of iterations required to produce a palindrome. It produces a fairly atriking effect, appearing more or less as a compressed wave, with a few extra odd lines. It demonstrates an idea, one that I still emphasize, about the data; the numbers, the inputs, cannot be considered as integer values, but instead should be viewed as collections of digits. As the sum of the digits gets higher, the color appears more intense, and vice versa.

Next, I used a standard spreadsheet to graph and analyze the data. Using parsing methods, it is fairly simple to read the data generated from the text files into the spreadsheet. Once again, the graphs demonstrate a

Figure 2. Iterations vs. integer input.
remarkable pattern. See figure 2.
The lines that shoot off of the top of the graph are the integers which do not seem to form palindromes. Note that no other integer reaches 25 iterations in this data set.

Next, I examined data sets formed under other number bases. The source code of the program can be easily altered to change the number base by simply changing the value of the variable base near the beginning of the code. A general pattern seems to be that number bases lower than ten possess many more integers that do not generate palindromes, while the other integers on average require more iterations to produce palindromes. Higher number bases seem to lean towards the other end of the spectrum, having less of each. This seems reasonable, since lower number bases carry more frequently than higher bases in the addition operator. This suggests that the palindrome is some sort of equilibrium point, just before which no digit has carried, or, if carried, then carried in a manner bordering on coincidence.

Although most of the data gathered from computer analysis did not provide any solid answers, the graphs and color maps led me to the next, and still developing, phase of the project. The graphs seem to indicate that it is more useful to consider the infinite set of counting integers as an
infinite set of finite subsets of integers, i.e. to consider the counting integers to be divided into the one-, two-, three-, etc. digit number subsets. This seems reasonable, since each time the boundary of one of these subsets is crossed, the pattern of iterations abruptly and totally shifts. From this supposition came the idea of domain reduction.

The idea I have termed domain reduction represents in practice exactly what it appears to mean, that the domain of inputs can be reduced by a series of logical suppositions, until all possible cases have been enumerated. In theory, this sounds wonderful, but in practice it is a rather different story. Consider a two-digit number $a b$, such that a and b are each less than ten. Then the first iteration becomes

$$
\begin{gathered}
a \mid b \\
+b \mid a \\
=a+b \mid a+b .
\end{gathered}
$$

Note that the mark " \mid " is used to separate the digits, and not to denote absolute value. Let $d=a+b$. Then d must be less than or equal to 18 . If d is less than ten, then the number $d d$ is a palindrome and iteration stops. Thus, we have established that all two-digit counting integers whose digits sum to be less than ten reach a palindrome in one iteration. Also, if d is 11 , then iteration stops (i.e., $a b=29,92,47,74$, etc.). This limits us to a domain of $d \in\{10,12,13,14,15,16,17,18\}$. In all of these cases, d would have to carry, and

$$
d|d=1| d-9 \mid d-10 .
$$

The next step yields

$$
\begin{gathered}
1|d-9| d-10 \\
+d-10|d-9| 1 \\
=d-9|2 d-18| d-9 .
\end{gathered}
$$

Now, if $d=10,12$ or 13 , the process is complete at the second iteration, since no digit would carry. So this has already effectively removed all two-digit numbers such that $a+b<14$ from the domain. With repeated applications of this method on the finite set of two-digit integers, we can enumerate all of the possibilities; see table 3 of the appendix for the results. This demonstrates that the iterations of the two-digit integers are dependent on a single variable, $d=$ the sum of the two digits. However, from the outset the three-digit integers pose a much greater problem, since their iterations are dependent upon two variables, the middle digit b and the sum of the first and last digits d :

$$
\begin{gathered}
a|b| c \\
+c|b| a \\
=a+c|2 b| a+c .
\end{gathered}
$$

As the number of digits increase, the number of variables upon which the counting integers are dependent increases. For a counting integer with n digits, if n is even then the number of variables of dependence is $n / 2$, and if n is odd, then the number of variables of reduction is $(n+1) / 2$. This makes domain reduction theoretically possible, but practically, very unpalatable.

According to Young [2], this still existed as an open problem as of 1992, a conclusion with which this research seems to concur most heartily! So, we ask the question "Was any progress made here?". Perhaps not. It seems, though, that some interesting methods have been, if not created, then at least applied in an intriguing manner. It may be possible as time goes on to develop an algorithm for domain reduction, which would make a great step towards a solution. And, in the meanwhile, I hope this little puzzle will continue to create a little of that sense of magic in the younger mathematicians in elementary classrooms, and maybe even a little in myself.

Acknowledgements. I would like to give great thanks to Dr. Ilene Morgan for the assistance and encouragement she provided.

Editor's Note. Anyone wishing to receive a copy of the program used by Mr. Brown may request one from the editor (address on page 2).

References

1. Lausmann, Raymond F., Fun With Figures, McGraw-Hill, New York, 1965.
2. Young, Robert M., Excursions in Calculus: an Interplay of the Continuous and the Discrete, Dolciani Mathematical Expositions No. 13, Mathematical Association of America, Washington, 1992.

Appendix

The figures on pages 30 and 31 are intended to demonstrate the pattern found in the palindrome generation program. In either case, the lines that shoot off of the top of the graphs indicate an integer without a generated palindrome.

Table 1 on pages 32-36 represents the data set 1-1000, with the enumerated palindromes and the number of iterations required to produce the palindrome. Please note that any integer on this table having a palindrome of 0 is an invalid integer, and is included in table 2. I have generated the complete data set of $1-100000$, but it is too large to print. Table 2 on pages $36-37$ lists the integers in the set $1-10000$ which do not produce palindromes. It is included to show the emerging, and then crumbling, patterns in the invalid data set. Table 3 on page 38 displays the results of the domain reduction method of analyzing the set of two-digit counting integers.

Figure 3. Iterations vs. counting integers

Table 1

Table 1 continued

Table 1 continued

Table 1 continued

981	2	14121
908	2	287
9.3	2	308
994	2	4774
4	2	58
9	2	0093
$9 \cdot 7$	4	Orest
9	2	4.85-12
98	4	1980.7
970	3	tsext
971	2	IEAt
972	2	2172
874	2	3803
974	2	409
975	4	2xat

578	4	47074
- 7	0	475874
973	E1	0
070	4	13281
80	7	26472
9.1	2	1891
892	2	$2 \cdot 8$
903	3	717
94	3	8097
98	-	113011
0	591	0
	\leqslant	000
888	0	5*114
4	19	$98+10$
080	5	

51	3	31t3
9	3	58
0	3	787
04	3	Crro
094	4	2000
0	4	4-944
4	θ	44034
08	17	1.35-11
00	$1{ }^{18}$	Ansen
1090	1	1001

Table 1 continued

Invalid Integer		
196	2584	4439
295	2586	4492
394	2674	4494
493	2676	4529
592	2764	4582
689	2766	4584
691	2854	4619
788	2856	4672
790	2944	4674
879	2946	4709
887	2996	4762
978	3493	4764
986	3495	4799
1495	3583	4852
1497	3585	4854
1585	3673	4889
1587	3675	4942
1675	3763	4944
1677	3765	4979
1765	3853	4994
1767	3855	5078
1855	3943	5168
1857	3945	5258
1945	3995	5348
1947	4079	5438
1997	4169	5491
2494	4259	5493
2496	4349	5528

Table 2

5581	7076	8345	9088
5583	7149	8349	9147
5618	7166	8359	9164
5671	7239	8418	9168
5673	7256	8435	9178
5708	7329	8439	9237
5761	7346	8449	9254
5763	7419	8490	9258
5798	7436	8508	9268
5851	7491	8525	9327
5853	7509	8529	9344
5888	7526	8539	9348
5941	7581	8580	9358
5943	7599	8598	9417
5978	7616	8615	9434
5993	7671	8619	9438
6077	7689	8629	9448
6167	7706	8670	9507
6257	7761	8688	9524
6347	7779	8705	9528
6437	7796	8709	9538
6490	7851	8719	9597
6492	7869	8760	9614
6527	7886	8778	9618
6580	7941	8795	9628
6582	7959	8799	9687
6617	7976	8809	9704
6670	7991	8850	9708
6672	8058	8868	9718
6707	8075	8885	9777
6760	8079	8889	9794
6762	8089	8899	9798
6797	8148	8940	9808
6850	8165	8958	9867
6852	8169	8975	9884
6887	8179	8979	9888
6940	8238	8989	9898
6942	8255	8990	9957
6977	8259	9057	9974
6992	8269	9074	9978
7059	8328	9078	9988
			9999
	7		
	78		

Table 2 continued

Sum of digits Number of iterations Integers in set

	1	1	10								
-	2	1	11	20							
¢	3	1	12	21	30						
¢	4	1	13	22	31	40					
ω	5	1	14	23	32	41	50				
-	6	1	15	24	33	42	51	60			
O	7	1	16	25	34	43	52	61	70		
O	8	1	17	26	35	44	53	62	71	80	
\%	9	1	18	27	36	45	54	63	72	81	90
E	10	2	19	28	37	46	55	64	73	82	91
	11	1		29	38	47	56	65	74	83	92
\%	12	2			39	48	57	68	75	B4	93
$\underline{5}$	13	2				49	58	67	76	85	94
0	14	3					59	68	77	86	95
首	15	4						69	78	B7	96
日	16	${ }^{6}$							79	B8	97
	17	24								B9	98
	18	6									99

Let's Be Seated

Joshua Weber, student
Missouri Theta
Evangel College
Springfield, MO 65802

Presented at the 1996 Region IV Convention and awarded "top four" status by the Awards Committee.

Introduction

A common question that is used as an example in combinatorics is how many ways n couples can be seated in a row with $2 n$ chairs so that no couple sits together. The usual example is for 3 couples, and the number of seating arrangements is 240 . At the 1995 national KME convention in Colorado the problem was solved by Causey and Mooney [1] for 4 couples, and the answer is 13824 . In this paper we generalize this result with a recursive formula for n couples. We also find a general formula for how many ways exactly one couple can sit together.

Results

First, we introduce some terminology.
Definition. We define $E_{2 n}$ to be the number of arrangements of n couples ($2 n$ individuals) so that no couple sits together.

For example, $E_{2}=0$ since with one couple (two people), they must sit side by side. Also, $E_{4}=8$ since if the couples are $\{A, a\}$ and $\{B, b\}$ then the possible seating arrangements are

$$
A B a b \quad B A b a .
$$

The counting argument for this total is that there are 4 choices for the first position, 2 for the second position, and 1 each for positions three and four. The product of these, $4 \cdot 2 \cdot 1 \cdot 1=8$, gives the number of permutations with no couple sitting together. As mentioned above, $E_{6}=240$ and $E_{8}=13824$. We leave it to the reader to list all the possible seating combinations.

A second quantity is now defined.
Definition. We define $O_{2 n+1}$ to be the number of arrangements of n couples and one loner ($2 n+1$ individuals) so that no couple sits together.

For example, if the couple is $\{A, a\}$ and the loner is B then the possible seating combinations are $A B a$ and $a B A$, so $O_{3}=2$. In the case of a single loner, say A, the only seating arrangement is A and since no couple is sitting together we have $O_{1}=1$.

To list the arrangements for O_{5}, we assume the couples are $\{A, a\}$ and $\{B, b\}$ and the loner is E. Then the 48 possible seating combinations for O_{5} are given in Table 1, with the counting subdivided according to where E is seated.
Ein
position
1
2
3
4
5

> Seating Combinations
> EABab EAbaB EaBAb EabAB EBAba EBaba EbABa EbaBA AEBab AEbaB aEBAb aEbAB BEAba BEabA bEABa bEaBA ABEab AbEaB aBEAb abEAB BAEba BaEbA bAEBa baEBA ABEba AbEBa aBEbA abEBA BAEab BaEAb bAEaB baEAB ABaEb AbaEB aBAEb abAEB BAbEa BabEA bABEa baBEA ABabE AbaBE aBAbE abABE BAbaE BabAE bABaE baBAE

Table 1

Note that when E is located in a fixed position, we can then place the other individuals as if E was not present in E_{4} ways, and there may be some extra combinations since E could be used to split a couple in a previously disallowed arrangement.

This leads to the following definition:
Definition. We define $O_{2 n+1, i}$ to be the number of arrangements of n couples and one loner ($2 n+1$ individuals) so that no couple sits together given that the loner is sitting in position i.

For example, from Table 1 in the case of O_{5}, we see that

$$
O_{5,1}=O_{5,2}=O_{5,4}=O_{5,5}=8 \text { and } O_{5,3}=16 .
$$

Note that

$$
\begin{equation*}
O_{2 n+1}=\sum_{i=1}^{2 n+1} O_{2 n+1, i} \tag{1}
\end{equation*}
$$

For example, $O_{5}=O_{5,1}+O_{5,2}+O_{5,3}+O_{5,4}+O_{5,5}=48$.

To calculate $O_{2 n+1, i}$ we reason as follows. When a loner is sitting in position i, you may seat the n couples in the $E_{2 n}$ ways that did not require the loner to be present. For example, in Table 1, see the first row of the arrangement for O_{5} with E in position 3. Then there are extra seating arrangements that may be possible by placing a couple on each side of the loner. For example, see the second row of the arrangement for O_{5} with E in position 3. This combines the loner with a couple who together may be considered a single entity (a loner) among the remaining $n-1$ couples. To see this, assume the loner E is in position 3 . There are $2 n$ ways of arranging a couple in positions 2 and 4, since there are $2 n$ individuals left to choose from for position 2, but that individual's partner must occupy position 4. If the arrangement is $A E a_{-} \ldots$, then we see that $A E a$ can be considered a single loner in position 2 among the remaining individuals, with the corresponding number of arrangements being $O_{2 n-1,2}$.

This leads to the following formulas:

$$
\begin{aligned}
O_{2 n+1,1} & =E_{2 n} \\
O_{2 n+1,2} & =E_{2 n}+2 n O_{2 n-1,1} \\
O_{2 n+1,3} & =E_{2 n}+2 n O_{2 n-1,2} \\
\vdots & \\
O_{2 n+1,2 n} & =E_{2 n}+2 n O_{2 n-1,2 n-1} \\
O_{2 n+1,2 n+1} & =E_{2 n} .
\end{aligned}
$$

Adding these all together gives

$$
\begin{align*}
O_{2 n+1} & =(2 n+1) E_{2 n}+2 n \sum_{i=1}^{2 n-1} O_{2 n-1, i} \tag{2}\\
& =(2 n+1) E_{2 n}+2 n O_{2 n-1} .
\end{align*}
$$

We can find a recursive formula for $E_{2 n}$ as follows. There are $2 n$ choices for the first position. Once that person (call him A) is chosen, then his partner becomes a loner among the remaining $2 n-1$ individuals, except that the loner cannot sit in position 2. Thus the number of seating arrangements is

$$
E_{2 n}=2 n\left(O_{2 n-1}-O_{2 n-1,1}\right) .
$$

Since $O_{2 n-1,1}=E_{2 n-2}$, we arrive at the formula

$$
\begin{equation*}
E_{2 n}=2 n\left(O_{2 n-1}-E_{2 n-2}\right) . \tag{3}
\end{equation*}
$$

Alternately using formulas (2) and (3) lets us calculate arbitrarily large values of $E_{2 n}$ and $O_{2 n+1}$. For example, let us consider E_{6}. We know that $E_{4}=8$ and $O_{5}=48$. Therefore, we can find E_{6} by

$$
E_{6}=6\left(O_{5}-E_{4}\right)=6(48-8)=240 .
$$

The first several values for these quantities are:

$$
\begin{aligned}
& O_{1}=1 \quad E_{2}=0 \\
& O_{3}=2 \quad E_{4}=8 \\
& O_{5}=48 \quad E_{6}=240 \\
& O_{7}=1968 \quad E_{8}=13824 \\
& O_{9}=140160 \quad E_{10}=1263360 \\
& O_{11}=15298560 \quad E_{12}=168422400 .
\end{aligned}
$$

We have verified the values up through E_{10} by means of two independent computer programs and we verified the values up through O_{9} using combinatorial trees.

Finally, if we consider a couple sitting together as a loner among the other $n-1$ couples, the couple can be seated in 2 ways and the couple can be selected in n ways. The remaining couples can be seated in $O_{2 n-1}$ ways using this couple as a loner. So the number of ways of seating n couples so that exactly one couple sits together is $2 \cdot n \cdot O_{2 n-1}$. For example, the number of ways of seating 3 couples so that exactly one couple sits together is $2 \cdot 3 \cdot O_{5}=288$.

We could not find a general formula for the number of ways exactly k of the n couples could sit together.
Acknowledgements. I would like to thank Allen Moore, a co-student at Evangel College, for his diligent work on the computer. This allowed a numerical check of the formula, and he also provided an extra mind to help figure out this problem. I would especially like to thank Dr. Don Tosh, chair of the Science and Technology department at Evangel College. Without his support, guidance, and encouragement this paper would not exist. I have been extremely fortunate to have studied under him. Thank you so much Dr. Tosh for helping me find my direction in both this problem and my life. Most of all I would like to thank God, who made this problem come to life and gave us the skills used in solving it.

References

1. Causey, T. and Mooney, D., "When Intuition Fails," The Pentagon 55 No. 1 (1995), 4-8.

Oops!

The palindrome conjecture that is effectively debunked by Christopher Brown in his article on pages 23-38 of this issue was stated as fact, with no comment, reference, or accompanying proof, in the Fall 1943 - Spring 1944 issue (Vol. 3 Nos. 1 and 2) of The Pentagon, on page 37.

Symmetry Groups as Scientific Tools

Andy Miller, student

Iowa Delta
Wartburg College
Waverly, IA 50677

Presented at the 1996 Region IV Convention and awarded "top four" status by the Awards Committee.

Introduction

Group theory is a field first encountered by most mathematics undergraduates in their third or fourth year of studies. Symmetry groups are one of the earliest, and most intuitive, examples of groups encountered in a course in group theory. Thus, it is surprising that they are so powerful in analyzing very complex theories in the physical sciences. But this is exactly the case; in group theory, as in many fields of advanced mathematics, unexpected applications are the norm. Symmetry groups pop up in some of the most amazing places, and it is both interesting and instructive to look into a few of their applications.

A Quick Introduction to Group Theory

A group is a mathematical abstraction that can be used to describe many familiar items in mathematics, from integers to matrices to permutations. A group G is a set of elements (for convenience, let us call them a, b, c, and so on) with an operation (say, \cdot) such that the set and operation obey the following four rules:

1) Closure: Given any two elements a and b in $G, a \cdot b$ is also in G.
2) Associativity: Given any three elements a, b, and c in $G, a \cdot(b \cdot c)=$ $(a \cdot b) \cdot c$.
3) Existence of the Identity: There is some element, often denoted e, in G such that for any element a in $G, e \cdot a=a$. We say that e is the identity of G.
4) Existence of the Inverse: For any element a in G, there is some element, usually denoted a^{-1}, such that $a \cdot a^{-1}=e$. Then a^{-1} is called the inverse of a.

That's it! On such simple foundations are built the entire complex and magnificent field of modern group theory. To get a better handle on what groups are (and how wide-spread are their applications) consider the following example [5]:
> "... imagine you are standing on a straight road that goes on forever in front and behind you. Stand stock still; this is the identity of a group. Walk forwards a little, then a little more. But you are now where you would have been had you just walked further in the first place. So moving along a straight line exhibits the closure property. Associativity can be demonstrated by walking different distances forwards and backwards in different sequences and noting that the end result is always the same. Finally, if you walk forwards a bit then backwards to where you started you have discovered the inverse."

For another example, using symmetries instead of motion, consider the dihedral groups. The dihedral group D_{n} is the group of symmetries of a planar n-gon. These groups arise often in studying groups and symmetry. Figure 1 shows all the elements in D_{4}. There are four clock wise rotations through $0,90,180$, and 270 degrees - and four reflections - one horizontal, one vertical, and two diagonal. Note that $R 0$ is the identity element, for it does nothing. All four of the reflections and $R 180$ are their own inverses. Also, $R 90$ and $R 270$ are inverses of each other. The interested reader should check the other two group properties, closure and associativity, on his or her own.

Figure 1. The dihedral group D_{4}

Symmetry in Physics

The first example above came from one of the earliest ties between group theory and physics, made by Sophus Lie. He articulated a link between group theory and motion (see [5], p. 48) in the form of several different continuous groups, now called, appropriately, Lie groups. Besides the already noted example, motion on a line, there are many other Lie groups that one is already familiar with; two of these are $O(n)$, the collection of transformations that preserve distance in n-dimensional space (including inversion, the transformation, often denoted P, that sends ($x_{1}, x_{2}, \ldots, x_{n}$) to $\left(-x_{1},-x_{2}, \ldots,-x_{n}\right)$) and $S O(n)$, the subgroup of $O(n)$ that only includes rotations. Two that are most likely unfamiliar to the reader are $U(n)$ and $S U(n)$, groups of distance-preserving transformations in an abstract space.

These last two groups are very important in the field of theoretical physics called gauge theory. Gauge theory deals with the fundamental interactions that comprise the four forces of nature. These interactions are governed by several different basic conservation laws, including the familiar law of conservation of energy. Since conservation laws can be thought of as symmetries in time, one might think that symmetry groups could help us understand these conservation laws. This is indeed the case, as Lie groups can be used to model science's basic conservation laws, e.g., formulating the conservation of angular momentum in terms of $S O$ (3), or describing the conservation of charge as a phase symmetry of the electron's wave equation (see [5], p. 48). This second example is very important to physicists, as local phase symmetry is the building block for the theories of the fundamental forces of nature: the electromagnetic force, the nuclear weak force, the nuclear strong force, and gravity. Quantum electrodynamics deacribes the electromagnetic force in terms of $U(1)$, a group with one generator; this generator corresponds directly to the photon (the generators of a group are its "building blocks;" using the generators and the operation of a group, one can enumerate all of the elements in a group). Similarly, the theory of weak interactions is based on $S U(2)$; this group has three generators that translate into the W^{+}, W^{-}, and Z particles. Strong nuclear forces are formulated in terms of a group with eight generators (gluons): $S U(3)$ (see [5], p. 50).

Indeed, this symmetry becomes even more important as scientists strive for the Holy Grail of theoretical physics: the Grand Unified Theory of Everything. If all of the fundamental forces are based on symmetry, then it may be possible to tie them all together in some unified field theory. Alas, this goal is as yet unattainable, as no acceptable theory of local phase symmetry has yet been advanced to describe gravity.

Symmetry in Chemistry

Another area of the physical sciences that uses group theory is spec-
troscopy, the study of the light given off by excited atoms and molecules. Fan Chung and Shlomo Sternberg explore this idea as it relates to a particular molecule, C_{60}, also known as the "buckyball," in their article "Mathematics and the Buckyball" [1].

Buckminsterfullerene is a highly symmetric carbon molecule that looks exactly like a soccer ball. Its rotational symmetry group is I (the symmetric rotations of an icosahedron). This group is isomorphic to A_{5}, the group of all permutations of 5 elements. What is being permuted in this case? The molecule C_{60} has 30 single bonds, each of which can be "connected" to a bond on the opposite side of the cage-like molecule. These connections define fifteen planes that bisect the buckyball at different angles. Among these different planes, there are five sets of mutually perpendicular planes that define a set of three coordinate axes. So we can see that each rotation of C_{60} will permute these five sets of axes ($[1], \mathrm{p} .63$). Now that we have all the rotations of buckminsterfullerene, we can get all of the symmetries by adding the inversion operation to I, getting a new, 120 -element group: I_{h}.

To relate all of this to spectroscopy, we must appeal to group representation theory. A group representation is a mapping of every element in a group to a set of matrices such that if element r is mapped to a matrix A and element s is mapped to matrix B, then $r s$ is mapped to $A B$. The simplest example of this is with a group of rotations: a rotation in 3 -space through an angle α about the z-axis can be represented by the matrix

$$
\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Any rotation in I can be represented by a 3×3 matrix in a similar manner. But this representation is not unique, nor is it necessarily in terms of 3×3 matrices, since for any given representation it may be possible to break it down into smaller portions. A matrix which can be broken down is said to be reducible, while one that cannot is called irreducible. This is important because "the structure of a representation is determined by its irreducible components and their multiplicity" ([1], p. 67).

Issai Schur, one of the founders of group representation theory, proved a lemma that helps us determine all of the irreducible representations of a group. The lemma is this: two irreducible representations have either nothing in common or everything in common (i.e., they are identical). The representations of a group can be denoted by the dimension of its matrices in boldface, with a prime mark used when a group has more than one distinct irreducible representation of a given dimension. For the icosahedral group I there are 5 different irreducible representations: $1,3,3^{\prime}, 4,5$. To incorporate the inversion operator and thus characterize I_{h}, we need only
note that the representation of P is $-1 \cdot E$, where E is the identity matrix. Thus, any matrix representing a rotation can be turned into a rotational inversion by multiplying it by $-E$ ($[1]$, p. 68).

Now we have all of the tools we need to describe the spectroscopy of C_{60}. Every molecule will absorb and emit light at certain characteristic frequencies. These frequencies correspond to the vibrational energies of the molecule. Based on its structure, one can determine that buckminsterfullerene has 46 distinct vibrational energies in the one-photon state, the state that describes the infrared emission spectrum of molecules. Thus, we would expect it to emit light at 46 different frequencies based on structural considerations alone. However, experiments show that there are only 4 lines ([1], p. 64).

The reason for this is what scientists call "selection rules" that determine that certain emissions are forbidden. These selection rules come straight from group theory. Emissions are determined by quantum transitions between vibrational states, and these transitions can be described with matrix multiplication and representations of the states in matrix terms. As a consequence of Schur's lemma, the only allowable transitions will be those that correspond to the 3^{-}representations of the vibrational state. Thus, the multiplicity of 3^{-}in the space of the vibrational states will give us the number of infrared lines. This multiplicity is 4, exactly the number of observed spectral lines ($[1]$, p. 69).

The Jewel in the Crown: Mathematical Crystallography

So we now see that one way to use group theory in chemistry is to explore the basic structure of molecules and their energy characteristics. However, this is a fairly recent application of group theory. Chemists have been using groups in a different region of science for over 150 years: the field of crystallography.

The first big breakthrough in crystallography occurred when R-J Haüy dropped a friend's crystal which he was studying. When the crystal broke into identical shapes, Haüy proposed the model of a crystal that we use today: a crystal is made up of identical "building blocks" (atoms, lattice points, polyhedra, or whatever) whose shape is particular to the type of crystal ([2], p. 4).

This model restricted the shapes that these building blocks could have to be those with 2-, 3 -, 4 -, or 6 -fold symmetries, for no other shapes can fill space ([2], p. 18). To describe these symmetries, crystallographers turn to point groups, those symmetry groups whose transformations leave at least one point fixed. Marjorie Senechal very cleverly linked these point groups to the already discussed group $O(3)$, the symmetries of a sphere ([2], p. 32). Thus, to determine the groups of rotational symmetry, one need only find the finite subgroups of $S O(3)$, a task that is not as daunting as it first
appears. Using an important result in group theory - the orbit-stabilizer theorem - and the so-called crystallographic restriction (symmetries of order 5 and greater than 6 are not allowed), Marjorie Senechal cleverly classifies all of these subgroups ([2], pp. 34-36). The rotational symmetries are limited to the groups Z_{n} (the group of integers under addition modulo n), D_{n} (the nth dihedral group; see figure 1), T (the rotational symmetries of the tetrahedron), and O (the rotational symmetries of the octahedron and the cube) where n can take on the values $2,3,4$, and 6 ($[3]$, p. 33). To extend these groups to include all of the point groups, we merely need to combine these rotational groups with the inversion operator by taking their internal direct product (a special group theoretic operation, the details of which are not as important as the result). By doing this, we can see that there are 32 crystallographic point groups.

But crystals extend indefinitely, so we need to include some more symmetry operations to classify all of the 3 -dimensional symmetries of crystals: glide reflection, screw rotation, and rotatory inversion. A glide reflection is a reflection followed by a translation; a screw rotation is a rotation followed by a translation; and a rotatory inversion is a rotation followed by an inversion. It should be clear that these operations result from composing translation with the primary point group operations, reflection and transformation. Similarly, the so-called space groups, those groups which characterize the three-dimensional symmetries of crystal lattices, can be formed by combining translations with our previously classified point groups. Carrying out this classification yields 230 space groups.

The most amazing thing about these classifications is that they took place decades before the existence of experimental methods for testing the symmetries! Thus, using symmetry, group theory was able to see where science could not. A much more dramatic example of this is the history of the discovery of quasicrystals (crystalline solids with fivefold symmetry), which can be found in the very engaging article by van Baeyer [4].

Conclusion

These examples should demonstrate very clearly that group theory is a very powerful tool for scientific inquiry. Many students, myself included, get frustrated with the lofty heights of mathematical abstraction in which group theory resides. These illustrations serve to "ground" the topics and highlight the efficacy and surprising beauty of symmetry and its close cousin, group theory.

Acknowledgements. I would like to thank Dr. Lynn Olson for providing the impetus to write this paper in his abstract algebra class, and then for suggesting that I present it. I would also like to thank Dr. Glenn Fenneman for his valuable aid in revising the paper and Dr. Augie Waltmann for helping with arrangements to present at the regional convention.

References

1. Chung, Fan and Sternberg, Shlomo, "Mathematics and the Buckyball," American Scientist 81 (1993), 56-71.
2. Senechal, Marjorie, Crystalline Symmetries: An Informal Mathematical Introduction, Adam Hilger, Bristol, 1990.
3. Sternberg, S., Group Theory and Physics, University Press, Cambridge, 1994.
4. van Baeyer, H., "Impossible Crystals," Discover 11 No. 2 (1990), 69-78.
5. Wateon, Andrew, "The Mathematics of Symmetry," New Scientist 128 (October 1990), 45-50.

Subscription Renewals

Your Pentagon subscription expires with the volume and number that appears in the upper right corner of your address label (see back cover). Since this issue is Volume 56 Number 1, if the code $56-1$ appears on your label then this is your last issue!

Early renewals save us the cost of mailing out renewal notices. To renew, please send your check - just $\$ 10$ for four more issues (domestic individuals only; see page 2 for rates for libraries and foreign subsciptions) - together with your name and address and a copy of your old address label to:

> The Pentagon Business Manager
> Division of Mathematics and Computer Science
> Emporia State University
> Emporia, KS 66801 USA

Please renew promptly to avoid gaps in your journal collection.

KME WWW Update!

The national Kappa Mu Epsilon home page has been expanded and updated (thank you, Carey Hammel!). Information is now available on almost any KME topic of interest, including meetings, links to local chapter home pages, history, and much, much more! The URL is:
http://www.cmich.edu/kme.html
All local chapters with home pages should send their URL's to Arnold Hammel (a.hammel@cmich.edu) if they have not already done so. It is hard to provide a link to a page that no one knows about!

Plans are also underway for a home page for The Pentagon. Anyone with suggestions may send them to the editor (address on p. 2).

KME Quiz

Test your knowledge of Kappa Mu Epsilon! The answers to many of these questions can be found in this issue or past issues of The Pentagon. As an incentive, the first entry received from each state to correctly answer all of the questions below will receive a one-year extension of their subscription to The Pentagon! The names of winners will appear in the Fall 1997 issue. The deadline for submissions is July 1, 1997. Send entries to the editor (address on page 2). Have fun!

1. Name the only state with active Kappa, Mu, and Epsilon chapters of KME.
2. Name the states with active chapters with names of exactly two of Kappa, Mu, and Epsilon.
3. Which state had the first Delta chapter?
4. Which state has held the record for having the most chapters for the longest period of time?
5. Which state with five or more chapters has gone the longest without an installation of a new chapter?
6. Name the first letter of the Greek alphabet for which more active chapters of KME are named than are named for the preceeding letter.
7. What is the greatest number of currently active chapters that happened to be installed in the same year?
8. Fifty years ago, was "University" or "Teacher's College" more commonly in the name of an institution with a KME chapter?
9. What chapter is credited with writing "The Math Student Blues," a song which appeared in The Pentagon some time in the 1940's?
10. Name the only institution with an active chapter of KME whose name does not include either "University" or "College."
11. Name the only city with three active chapters of KME.
12. Which chapter has initiated the most total members into KME?
13. Which active chapter is located the furthest north?
14. Which active chapter is located the furthest east?

The Problem Corner

Edited by Kenneth M. Wilke

The Problem Corner invites questions of interest to undergraduate atudents. As a rule the solution should not demand any tools beyond calculus. Although new problems are preferred, old ones of particular interest or charm are welcome, provided the source is given. Solutions should accompany problems submitted for publication. Solutions of the following problems should be submitted on separate sheets before July 1, 1997. Solutions received after the publication deadline will be considered also until the time when copy is prepared for publication. The solutions will be published in the Fall 1997 issue of The Pentagon, with credit being given to student solutions. Affirmation of student status and school should be included with solutions. Address all communications to Kenneth M. Wilke, Department of Mathematics, 275 Morgan Hall, Washburn University, Topeka, Kansas 66621 (e-mail: xxwilke@acc.wuacc.edu).

PROBLEMS 500-504

Problem 500. Proposed by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

The nth triangular number is given by $t_{n}=n(n+1) / 2$ where n is a positive integer. Prove that there are an infinite number of triangular numbers which can be expressed as a sum of two distinct triangular numbers.

Problem 501. Proposed by Charles Ashbacher, Cedar Rapids, Iowa.
Given any integer $n>1$, the Smarandache function $S(n)$ is the smallest integer m such that n divides m !. The formula for the determinant of a 2×2 matrix is well known. Prove that there exists an infinite set of 4 -tuples ($a_{1}, a_{2}, a_{3}, a_{4}$) such that:
a) all a_{i} are composite and greater than 2 ;
b) $a_{i} \neq a_{j}$ for $i \neq j$; and
c) we have

$$
\left|\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right|=\left|\begin{array}{ll}
S\left(a_{1}\right) & S\left(a_{2}\right) \\
S\left(a_{3}\right) & S\left(a_{4}\right)
\end{array}\right| .
$$

Problem 502. Proposed by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

Prove that the following procedure always yields a Pythagorean triangle. (1) Add together either the reciprocals of two consecutive even integers or the reciprocals of two consecutive odd integers. (2) In the reduced form of the resulting fraction, the numerator and denominator are the legs of a Pythagorean triangle and the hypotenuse is $1+$ the denominator if the denominator is even and the hypotenuse is $2+$ the denominator if the denominator is odd.

Problem 503. Proposed by C. Bryan Dawson, Emporia State University, Emporia, Kansas.

Using only a compass and an unmarked straightedge, construct the orthocenter, circumcenter, centroid, and the nine-point circle of an arbitrary triangle using the compass six or fewer times. The drawing of the nine-point circle is included as one of the uses of the compass.

Problem 504. Proposed by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

If A, B, and C are the angles of a triangle, prove that

$$
2 \cos A \cos B \cos C=1-\cos 2 A-\cos 2 B-\cos 2 C .
$$

Please help your editor by submitting problem proposals.

SOLUTIONS 490-494

Problem 490. Proposed by Troy D. Van Aken, University of Evansville, Evansville, Illinois.

Suppose a person wants to cover a pickup bed that is four feet wide with a flexible plastic cover so that the cover rises one inch in the center (see figure below). If one assumes that the shape of the cover is circular, how large should the piece of plastic be cut? What if one assumes that the shape is parabolic?

Solution by Ali Ghorashi, University of Southern Louisiana, Lafayette, Louisiana (revised by the editor).

Solution to part (a). Assume that the shape of the cover is circular. Then we have the following figure:

Let $B E$ be a radius which is perpendicular to chord $A C$. Let it cut the circular cover at E and chord $A C$ at D. Then since $B A=B E=B C$, triangles $A B D$ and $B C D$ are congruent and $A D=D C$. Then since $D E=$ $1, B D=B C-1$. By the Pythagorean Theorem, $(B C-1)^{2}+C D^{2}=B C^{2}$, and since $C D=24$, we have

$$
B C=(1 / 2)\left(C D^{2}+1\right)=577 / 2=288.5 .
$$

But angle $D B C=\sin ^{-1}(C D / B C)=\sin ^{-1}(24 / 288.5)$. Then the length of the arc $A E C$ is $2 \cdot B C \cdot \sin ^{-1}(24 / 288.5)=48.05553628$ inches.

Solution to part (b). Assume that the shape of the cover is parabolic. Then we have the following figure:

Given the fact that the parabola passes through the three points $(0,1)$, $(-24,0)$ and $(24,0)$ and that the general equation for a parabola is given by $a x^{2}+b x+c=y$, one can easily show that $a=-1 / 576, b=0$ and $c=1$
so that the equation for the parabolic cover is

$$
y=-(x / 24)^{2}+1
$$

Then since $y^{\prime}=-(x / 288)$, the standard arc length formula gives

$$
I=\int_{-24}^{24} \sqrt{1+(x / 288)^{2}} d x=48.05549783 \text { inches. }
$$

Also solved by: Clayton W. Dodge, University of Maine-Orono, Orono, Maine. One incorrect solution was received.

Problem 491. Proposed jointly by Sammy and Jimmy Yu, special students at the University of South Dakota, Vermillion, South Dakota.

Evaluate the integral

$$
I=\int \frac{\sqrt{m-x^{n}}}{x^{1+n / 2}} d x
$$

Solution by Martha Degen, Alma College, Alma, Michigan.
Consider the case $\boldsymbol{n}=0$. Then the integral I becomes

$$
I=\int \frac{\sqrt{m-1}}{x} d x=\sqrt{m-1} \ln |x|+C .
$$

When $n \neq 0$, let $u=\sqrt{m-x^{n}}$ and $d v=x^{-(1+n / 2)} d x$ and integrate by parts. Then $d u=1 / 2\left(m-x^{n}\right)^{-1 / 2}\left(-n x^{n-1}\right) d x$ and $v=-2 x^{-n / 2} / n$. Then I becomes

$$
\begin{aligned}
I & =\frac{-2 \sqrt{m-x^{n}}}{n \sqrt{x^{n}}}-\int \frac{x^{-1+n / 2}}{\sqrt{m-x^{n}}} d x \\
& =\frac{-2 \sqrt{m-x^{n}}}{n \sqrt{x^{n}}}-\frac{2}{n} \int \frac{d w}{\sqrt{m-w^{2}}}
\end{aligned}
$$

where $w=x^{n / 2}$ and $d w=(n / 2) x^{n / 2-1} d x$, so that $x^{n / 2-1} d x=(2 / n) d w$. Now I becomes

$$
I=\frac{-2 \sqrt{m-x^{n}}}{n \sqrt{x^{n}}}-\frac{2}{n} \sin ^{-1}(w / \sqrt{m})+C
$$

or

$$
I=\frac{-2 \sqrt{m-x^{n}}}{n \sqrt{x^{n}}}-\frac{2}{n} \sin ^{-1}\left(x^{n / 2} / \sqrt{m}\right)+C .
$$

Also solved by: Tamara Adams and Timothy Sipka (jointly), Alma College, Alma, Michigan; Clayton W. Dodge, University of Maine-Orono, Orono, Maine; Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin and the proposers. One incorrect solution was received.

Problem 492. Proposed by Russell Euler, Northwest Missouri State University, Maryville, Missouri.

The Fibonacci numbers are defined by $F_{0}=0, F_{1}=1$ and $F_{n+2}=$ $F_{n+1}+F_{n}$ for $n=0,1,2, \ldots$ The Lucas numbers are defined by $L_{0}=2$, $L_{1}=1$ and $L_{n+2}=L_{n+1}+L_{n}$ for $n=0,1,2, \ldots$. Show that

$$
\sum_{i=0}^{n} F_{i}^{2}=\left\{\begin{array}{l}
\frac{1}{5}\left(L_{2 n+1}+1\right) \text { if } n \text { is odd } \\
\frac{1}{5}\left(L_{2 n+1}-1\right) \text { if } n \text { is even } .
\end{array}\right.
$$

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

First we establish the following lemmas. Let $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$. Then $\alpha+\beta=1$ and $\alpha \beta=-1$.
Lemma 1. $5 F_{i}^{2}=L_{i}^{2}-4(-1)^{i}$.
Proof. Since $F_{i}=\left(\alpha^{i}-\beta^{i}\right) / \sqrt{5}$ and $L_{i}=\alpha^{i}+\beta^{i}$, we have $5 F_{i}^{2}=\left(\alpha^{i}-\beta^{i}\right)^{2}=$ $\left(\alpha^{i}+\beta^{i}\right)^{2}-4(\alpha \beta)^{i}=\left(\alpha^{i}+\beta^{i}\right)^{2}-4(-1)^{i}$.

Lemma 2. $\sum_{i=1}^{n} L_{i}^{2}=L_{n} L_{n+1}-2$.
Proof. Note $\sum_{i=1}^{1} L_{i}^{2}=L_{1}^{2}=1^{2}=1$ and $L_{1} L_{2}-2=3-2=1$. Thus the desired result holds for $n=1$. Next assume that

$$
\sum_{i=1}^{k} L_{i}^{2}=L_{k} L_{k+1}-2
$$

where k is an arbitrary fixed positive integer. Then

$$
\begin{aligned}
\sum_{i=1}^{k+1} L_{i}^{2} & =\sum_{i=1}^{k} L_{i}^{2}+L_{k+1}^{2}=L_{k} L_{k+1}-2+L_{k+1}^{2} \\
& =L_{k+1}\left(L_{k}+L_{k+1}\right)-2=L_{k+1} L_{k+2}-2 .
\end{aligned}
$$

Thus

$$
\sum_{i=1}^{n} L_{i}^{2}=L_{n} L_{n+1}-2
$$

for each positive integer n by mathematical induction.
Lemma 3. $L_{n} L_{n+1}=L_{2 n+1}+(-1)^{n}$.
Proof. Since $\alpha+\beta=1$, we have $L_{n} L_{n+1}=\left(\alpha^{n}+\beta^{n}\right)\left(\alpha^{n+1}+\beta^{n+1}\right)=$ $\left(\alpha^{2 n+1}+\beta^{2 n+1}\right)+(\alpha \beta)^{n}(\alpha+\beta)=L_{2 n+1}+(-1)^{n}$.
Proof of main result. By Lemma 1, Lemma 2, and Lemma 3,

$$
\begin{aligned}
\sum_{i=0}^{n} F_{i}^{2} & =\sum_{i=1}^{n} F_{i}^{2}=\frac{1}{5} \sum_{i=1}^{n} L_{i}^{2}-\frac{4}{5} \sum_{i=1}^{n}(-1)^{n} \\
& =\frac{1}{5}\left(L_{n} L_{n+1}-2\right)-\frac{4}{5} \sum_{i=1}^{n}(-1)^{n} \\
& =\frac{1}{5}\left(L_{2 n+1}+A\right)
\end{aligned}
$$

where $A=\left((-1)^{n}-2-4 \sum_{i=1}^{n}(-1)^{n}\right)$. Now if n is odd, $A=-1-2-$ $4(-1)=1$. If n is even, $A=1-2-4(0)=-1$. Therefore,

$$
\sum_{i=0}^{n} F_{i}^{2}=\left\{\begin{array}{l}
\frac{1}{5}\left(L_{2 n+1}+1\right) \text { if } n \text { is odd } \\
\frac{1}{5}\left(L_{2 n+1}-1\right) \text { if } n \text { is even }
\end{array}\right.
$$

Also solved by: Clayton Dodge, University of Maine-Orono, Orono, Maine; Carl Libis, University of Southwestern Louisiana, Lafayette, Louisiana and the proposer.

Problem 493. Proposed jointly by C. Bryan Dawson and Sam Snyder, Emporia State University, Emporia, Kansas.

Consider the decimal expansion of $\frac{\sin x}{x}$, where $x=10^{-k}$ for some nonnegative integer k where x is expressed in radians. Show that the first $6 k+3$ digits of the decimal expansion of $\frac{\sin x}{x}$ are given by $9_{2 k} 83_{2 k} 416_{2 k}$, where r_{i} denotes i repetitions of the digit r.
Solution by Clayton Dodge, University of Maine-Orono, Orono, Maine.
Divide each term of the Maclaurin series for $\sin x$ by x to obtain

$$
\frac{\sin x}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\cdots
$$

Setting $x=10^{-k}$ we get

$$
\frac{\sin x}{x}=1-\frac{10^{-2 k}}{6}+\frac{10^{-4 k}}{120}-\frac{10^{-6 k}}{5040}+\cdots
$$

$$
\begin{aligned}
= & 1-\left(.166^{\prime} 6^{\prime}\right) 10^{-2 k}+\left(.00833^{\prime} 3^{\prime}\right) 10^{-4 k} \\
& -\left(.0001984^{\prime} 126984^{\prime}\right) 10^{-6 k}+\cdots \\
= & 1-\left(1-.833^{\prime} 3^{\prime}\right) 10^{-2 k}+\left(.000833^{\prime} 3^{\prime}\right) 10^{-4 k} \\
& -\left(.0001984^{\prime} 126984^{\prime}\right) 10^{-6 k}+\cdots \\
= & \left(1-10^{-2 k}\right)+\left(.833^{\prime} 3^{\prime}\right) 10^{-2 k}+\left(.00833^{\prime} 3^{\prime}\right) 10^{-4 k} \\
& -\left(.0001984^{\prime} 126984^{\prime}\right) 10^{-6 k}+\cdots,
\end{aligned}
$$

which is the desired form since $1-10^{-2 k}=.9_{2 k}$ and $\left(.833^{\prime} 3^{\prime}\right) 10^{-2 k}=$ $.0_{2 k} 833^{\prime} 3^{\prime}$. Also $.0_{4 k} 33^{\prime} 3^{\prime}+\left(.00833^{\prime} 3^{\prime}\right) 10^{-4 k}=\left(.34166^{\prime} 6^{\prime}\right) 10^{-4 k}$, placing exactly $2 k$ threes between the 8 and the 4 . In a similar manner one can show that the next term leaves [exactly] $2 k$ sixes before altering the digits. In this solution the notation 'abcd...' denotes an infinitely repeated block of digits.

Also solved by: the proposers.
Problem 494. Proposed by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

Let x and y be integers. Prove that if $3 x^{2}-2 y^{2}=1$, then $x^{2}-y^{2}$ is divisible by 40.

Solution by Clayton Dodge, University of Maine-Orono, Orono, Maine.
First we solve the given Diophantine equation

$$
\begin{equation*}
3 x^{2}-2 y^{2}=1 \tag{1}
\end{equation*}
$$

By trial with the aid of a calculator or computer program, one finds that the first three solutions in positive integers of equation (1) are $(x, y)=(1,1)$, $(9,11)$ and $(89,109)$ and that these are the only solutions in positive integers with $x<100$. Assuming that $x_{n+1}=a x_{n}+b y_{n}$ for some integers a and b, one determines from the three solutions listed above that these formulas produce $\left(x_{4}, y_{4}\right)=(881,1079)$ and $\left(x_{5}, y_{5}\right)=(8721,10681)$ as the next two solutions which can be easily verified. By taking $\left(x_{1}, y_{1}\right)=(1,1)$ and $3 x_{n+1}^{2}-2 y_{n+1}^{2}=1$ for some pair of positive integers, and letting

$$
\begin{equation*}
x_{n+1}=5 x_{n}+4 y_{n} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{n+1}=6 x_{n}+5 y_{n}, \tag{3}
\end{equation*}
$$

we have

$$
\begin{aligned}
3 x_{n+1}^{2}-2 y_{n+1}^{2} & =3\left(5 x_{n}+4 y_{n}\right)^{2}-2\left(6 x_{n}+5 y_{n}\right)^{2} \\
& =3 x_{n}^{2}-2 y_{n}^{2}=1 .
\end{aligned}
$$

Hence by mathematical induction all integer pairs (x_{n}, y_{n}) where x_{n} and y_{n} are as defined in (2) and (3) respectively provide solutions of equation (1).

For sake of completeness, one can solve the recursion relations (2) and (3) to obtain

$$
\begin{equation*}
x_{n}=5 x_{n+1}-4 y_{n+1} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{n}=-6 x_{n+1}+5 y_{n+1} \tag{5}
\end{equation*}
$$

It now follows that if there is any other solution in positive integers to equation (1), then one can apply (4) and (5), repeatedly if necessary, to obtain smaller solutions of equation (1). Eventually one would obtain a solution to equation (1) with $x<100$. But since there are no solutions of equation (1) with $x<100$ other than those already found above, the recursion formulas (2) and (3) give all solutions to equation (1) since (x_{1}, y_{1}) $=(1,1)$.

Observe that in all solutions of equation (1), both x and y are odd. Hence both $x+y$ and $x-y$ are even. Thus it suffices to show that either $x+y$ or $x-y$ is divisible by 20 . Note that $x_{1}-y_{1}=0$ and is divisible by 20.

First suppose that $x_{n}+y_{n}=20 u$ for some integer u. Then by (2) and (3), $x_{n+1}-y_{n+1}=\left(5 x_{n}+4 y_{n}\right)-\left(6 x_{n}+5 y_{n}\right)=-\left(x_{n}+y_{n}\right)=-20 u$. Next suppose that $x_{n}-y_{n}=20 v$ for some integer v. Then similarly $x_{n+1}+y_{n+1}=$ $\left(5 x_{n}+4 y_{n}\right)+\left(6 x_{n}+5 y_{n}\right)=11 x_{n}+9 y_{n}=11 x_{n}+9 y_{n}+\left(20 v-x_{n}+y_{n}\right)=$ $20\left(\left(x_{n}+y_{n}\right) / 2+v\right)$. This shows that if either $x_{n}-y_{n}$ or $x_{n}+y_{n}$ is divisible by 20 , then either $x_{n+1}+y_{n+1}$ or $x_{n+1}-y_{n+1}$ is likewise divisible by 20 . This completes the proof.

Also solved by: the proposer.

Algebra Christmas Carol
 To the tune of Jingle Bells (verse and chorus)

Dashing through group theory, in a one-semester course.
Over fields we go, laughing 'till we're hoarse!
We study commutative rings, making spirits bright.
Oh what fun it is to sing an Algebra song tonight!
Oh, Algebra! Algebra! Algebra all the way!
Oh what fun it is to take in a one-semester course!
Algebra! Algebra! Algebra all the way!
Oh what fun it is to take in a one-semester course!

Report of the Region IV Convention

Prepared by Mary Sue Beersman, MO Eta, Region IV Director

The 1996 Region IV convention of Kappa Mu Epsilon was held April 26-27, 1996 at Washburn University in Topeka, Kansas with Kansas Delta serving as the host chapter. Approximately eighty-five members attended representing fourteen chapters.

On Friday evening a registration/Casino Night was held at the Memorial Union. A lot of colorful money changed hands (it was pink, green, and blue!).

On Saturday morning, after welcomes by Dr. Aaron Stucker, Chair of the Department of Mathematics and Statistics at Washburn University, and by Daniel Wessel, President of Kansas Delta, two separate sessions of student presentations began. The two sessions were needed since thirteen papers were to be presented. Presiders at the sessions were Dr. Billy Milner and Dr. Ken Ohm. In Session A the following student papers were presented:

Progression of Chaos Theory
Mary Kay Vaske, SD Alpha, Northern State University

Let's Be Seated
Joshua James Weber, MO Theta, Evangel College

Real Division Algebras and Dickson's Construction Heather Golliher, IA Alpha, University of Northern Iowa

Investigations of Biological Computers and Graph Theory Kimberly Bell, KS Delta, Washburn University

Pinochle Probability
Crystal Vacura, KS Epsilon, Fort Hays State University

Higher Order Niven Numbers
Lyle Bertz, MO Beta, Central Missouri State University

Coding Theory
Sherry Brennon, KS Alpha, Pittsburg State University

The following student presentations were given in Session B:

Symmetry Groups as Scientific Tools
Andy Miller, IA Delta, Wartburg College
Better Understanding the Simplex Method Mark Garton, MO Kappa, Drury College
Analyzing Atonal Music
Carmen Witten, KS Epsilon, Fort Hays State University

Tinkering with the Quaternion
Dawn M. Weston, KS Gamma, Benedictine College

Molecules and Their Symmetries: Determining the Hybridization of a Central Atom Using Point Groups
Suzanne Shontz, IA Alpha, University of Northern Iowa

Unusual Methods of Representing Triangles
Richard Williamson, Mo Iota, Missouri Southern State College

After lunch in the Memorial Union Dr. Ron Wasserstein gave an interesting and entertaining talk entitled "What a Coincidence" and the awards ceremony was held. The top two presenters (in alphabetical order) in each session were announced as Lyle Bertz, Missouri Beta and Joshua James Weber, Missouri Theta for Session A and Andy Miller, Iowa Delta and Carmen Witten, Kansas Epsilon for Session B. In addition to chapters represented by student presentations, MO Eta, MO Lambda and KS Beta were present.

Report of the Region V Convention

Prepared by Donna K. Hafner, CO Delta

The Region V Convention was held April 19-20, 1996, in Grand Junction, Colorado, hosted by CO Delta at Mesa State College. Being at the farthest northwest point in the region, we were joined by only two other chapters - Colorado Gamma (Fort Lewis College) and New Mexico Alpha (University of New Mexico). Convention activities were planned and coordinated by Clifford Britton, CO Delta Faculty Sponsor, and Donna K.

Hafner, Corresponding Secretary.
This convention was held jointly with the Rocky Mountain and Intermountain Section Meetings of The Mathematical Association of America. KME participants were invited to attend three significant MAA addresses as well as many of the MAA papers.

Dr. Gustavus Simmons, Rothschild Professor of Mathematics at Cambridge and Retired Director of National Security Studies at Sandia National Laboratories, opened the meetings on Friday with "Secrets \& Geometry." His address was both delightful and educational with some surprising results! Following the presentation of numerous MAA papers, Dr. Fred Adler, Professor of Mathematical Biology, University of Utah, addressed the group with "Equalization and Optimization by Colonies of Foraging Ants," a problem illustrating some basic principles of ecology and calculus. A social hour followed by a joint KME/MAA banquet was held on Friday evening. Dr. Kenneth Ross, the President of MAA, University of Oregon, presented the banquet address.

KME members gathered for a Saturday breakfast and then attended the colorful and intriguing address "Patterns, Symmetry, \& Chaos" by Dr. Martin Golubitsky, Cullen Distinguished Professor of Mathematics, University of Houston. The following KME student papers were then presented.

Functions of Bounded Variation Darren Gemoets, CO Gamma, Fort Lewis College

Some Occurrences of the Fibonacci Sequence Natisha Kimminau, CO Delta, Mesa State College

Stability Considenations for Numerical Methods Johnny Snyder, NM Alpha, University of New Mexico

Each student presenting a paper received a Certificate of Recognition, a cash award, and a two-year extension of his/her subscription to The Pentagon. Fruit, cheese, cookies, and beverages were served during the awards and brief general information session prior to adjournment.

Back Issues

Is your journal collection complete? Copies of most back issues of The Pentagon are still available for $\$ 5.00$ per copy. Please send inquiries to:

The Pentagon Business Manager

Division of Mathematics and Computer Science
Emporia State University
Emporia, KS 66801 USA

Kappa Mu Epsilon News

Edited by Mary S. Elick, Historian

News of chapter activities and other noteworthy KME events should be sent to Mary S. Elick, Historian, Kappa Mu Epsilon, Mathematics Department, Missouri Southern State College, Joplin, Missouri 64801.

CHAPTER NEWS

AL Zeta
Birmingham-Southern College, Birmingham
Chapter President - Scott A. Matthews
Other chapter officers for 1996-97: James M. Corder, vice president; Mary Jane Turner, corresponding secretary; Raju Sriram, faculty sponsor. Secretary and treasurer are to be elected later.

CO Beta
Colorado School of Mines, Golden

Chapter President - Michael Colagrosso
15 actives, 7 associates

Tracy Gardner, chapter member and past president, wrote regular articles for the student newspaper, each of which included an interesting math problem. Several members volunteered time to assist with the "Math Counts" competition. Members also provided free tutoring at the local schools for students $\mathrm{K}-12$. Bi-weekly problem sessions were held featuring various Putnam competition problems. T-shirts bearing the slogan "KME because there are only three kinds of people, those who can count and those who can't" were designed and sold. Other chapter officers for 199697: Tiffany Maier, vice president; Dawn Pribyl, secretary; Grant Erdmann, treasurer; Ardel Boes, corresponding secretary/faculty sponsor.

CO Gamma

Fort Lewis College, Durango
25 actives
Ten new members were inducted at an Initiation Pizza Party held in March. Chapter President Darren Gemoets presented a paper at the Region V Convention at Mesa State College in April. Student officers for 1996-97 will be elected in the fall. Faculty officers: Richard A. Gibbs, corresponding secretary; Deborah Berrier, faculty sponsor.

CO Delta

Chapter President - Natisha R. Kimminau
Mesa State College, Grand Junction 24 actives, 7 associates
CO Delta held its seventh annual initiation banquet and ceremony at the Holiday Inn on March 27, 1996. Thirty-nine members, initiates, and guests were in attendance. Six students and one faculty member were initiated. KME pins and certificates were presented to the newly initiated members at a meeting in early May. On April 19-20, the chapter hosted the 1996 KME Region V Convention. Nineteen members registered, including members from NM Alpha and CO Gamma. The meeting was held jointly with the Rocky Mountain and Intermountain Sections of the MAA. Other chapter officers for 1996-97: Deborah J. McCurley, vice president; Robin L. O'Connor, secretary; Tassie S. Medlin, treasurer; Donna K. Hafner, corresponding secretary; Kenneth Davis, faculty sponsor.

GA Alpha

West Georgia College, Carrollton
Chapter President - Tonja Davis 20 actives, 7 associates
On May 29, 1996, the GA Alpha Chapter held its annual initiation meeting at which time seven new pledges were inducted into KME. At the reception following the initiation, the names of the mathematics scholarship and award winners for 1996-97 were announced. The winners, all KME members, are as follows: Crider Awards - Stephanie Parker and Kristy Williams; Burson Award - Mark Thomas; Cooley Scholarship and Whatley Scholarship - Tonja Davis. Other chapter officers for 199697: Stephanie Parker, vice president; Michael Jumper, secretary; Kristy Williams, treasurer; Joe Sharp, corresponding secretary/faculty sponsor; Mark Faucette, faculty sponsor.

IL Beta

Chapter President - Sarah Schuette
Eastern Ilinois University, Charleston
Meetings were held throughout the semester. February activites included the ICTM Math Contest and the ICTM Conference. Chapter initiation of new members was held in April, as was the KME Honors Banquet. The KME picnic, held jointly with Math Club, took place April 14. Other chapter officers for 1996-97: Lisa Stranz and Justin Large, vice presidents; Susan Schmid, secretary; Carrie Webb, treasurer; Lloyd Koontz, corresponding secretary/faculty sponsor.

IL Delta

College of St. Francia, Joliet
Chapter President - Mike Mravle 25 actives, 11 associates
Other chapter officers for 1996-97: Heather McNulty, vice president; Toni Dactilidis, secretary; Meg McAleer, treasurer; Rick Kloser, corresponding secretary/faculty sponsor.

IL Theta

Benedictine University, Liale
Chapter members in conjunction with Math Club aponsored an alumni career night. Featured speakers were recent math graduates who discussed their current career activities. The spring induction ceremony was held in conjunction with the annual Math/Computer Science Awards Banquet. Other chapter officers for 1996-97: Geoffrey Pacana, vice president; Donna Snaidauf, secretary; Mary Beth Dever, corresponding secretary/faculty sponsor.

IN Alpha

Manchester College, North Manchester
Chapter President - Nikki Erdelyi
11 actives, 4 associates
The 1996 banquet of the Manchester College Department of Mathematical Sciences and the IN Alpha Chapter of KME was held on Thursday, May 2, at the Ponderosa Restaurant in Warsaw. Three graduating seniors, Craig Strong, Joseph Vairo, and Rebekah Ousley, were honored at the event, and four new members were inducted into KME. The after-dinner address was given by Curt Beery, a past president of the chapter and a 1992 alumnus of the college. His topic was "Mathematics and My Career: From MC to MMA." Curt is currently employed as a programmer analyst at Mennonite Mutual Aid in Elkhart. Other chapter officers for 1996-97: Sidath Senadheera, vice president; Jennifer Bowman, secretary; Ron Whybrew, treasurer; Stan Beery, corresponding secretary; Andrew Rich, faculty sponsor.

IN Gamma

Anderson University, Anderson
Other chapter officers for 1996-97: Rhonda J. Merrill, vice president; Jeffrey R. Smith, secretary/treasurer; Stanley L. Stephens, corresponding secretary/faculty sponsor.

IA Alpha

Chapter President - Matthew D. Schafer
University of Northern Iowa, Cedar Falls
31 actives
Students presenting papers at local KME meetings included Heather Golliher, who spoke on "Real Division Algebras and Dickson's Construction," and Sid Bos, whose topic was "The Assignment Problem: Decision vs Search." Two new members were initiated at the spring initiation banquet. Amber Grotjohn gave the banquet address. Her topic was "Wind Power." A highlight of the spring semester was the KME Region IV Convention in Topeka, KS. Heather Golliher, Andy Miller from Wartburg College in Waverly, Andy Schafer and Suzanne Shontz, along with UNI faculty John E. Bruha and John S. Cross, made the round trip in a brand new Dodge rental van. Heather presented her paper, "Real Division Algebras," and

Susanne presented a paper entitled "Molecules and their Symmetries" to the convention. KME members assisted with the telethon, Science and Technology Day, and Mathematics Awareness Week. Other 1996-97 chapter officers: Mary E. Pittman, vice president; Suzanne M. Shonte, secretary; Amber Grotjohn, treasurer; John S. Cross, corresponding secretary/faculty sponsor.

IA Gamma
Morningside College, Sioux City

Chapter President - Heather Schott 8 actives, 3 associates

Other 1996-97 chapter officers: James Nicolaisen, vice president; Jared Ellwein, secretary; Heather Kelly, treasurer; Douglas Swan, corresponding secretary/faculty sponsor.

IA Delta

Wartburg College, Waverly
Chapter President - Joy Trachte
54 actives, 2 associates
The first meeting of the new year was a party held at the home of faculty member Dr. Robin Pennington. Members brought board and card games; faculty members provided a variety of edible goodies. On February 21 KME met with other interested students and faculty to suggest renovation needs and plans for Becker Hall of Science. Lists of ideas and needs developed through the end of March were then shared with the college administration. On March 15-16, the chapter co-hosted thirty-six high school participants in the 1996 Explorations in Mathematical Sciences event. At the annual initiation banquet, held March 16, seventeen new members were welcomed into the chapter. Daniel Nettleton, former chapter president and Ph.D. candidate at the University of Iowa, gave the banquet address. He spoke about applications of statistics and how mathematics is used in statistical work. Members met with the computer science and physics clubs in early May to celebrate the year with a picnic and volleyball competition. Other 1996-97 chapter officers: Shilah Lybeck, vice president; Richard Kloster, secretary; Christopher Judson, treasurer; August Waltmann, corresponding secretary; Lynn Olson, faculty sponsor.

KS Alpha
Pittsburg State University, Pittsburg

Spring Semester activities February for eight new members. Following the initiation, guest speaker Dr. David Surowski from Kansas State University presented an interesting talk on "The Fundamental Theorem of College Algebra." The regular March meeting program was given by Sherry Brennon. She gave a trial run of her paper that was subsequently presented at the Regional Convention in April. Her topic was "Coding Theory." Two additional new members who were unable to attend the February initiation were initiated at this
meeting. The April meeting featured a presentation by Dr. Elwyn Davis, Mathematics Department Chairman, on "Analytical Hierarchical Processes and Decision Making." Six students and one faculty member attended the Region IV Convention at Washburn in late April. The chapter assisted the Mathematics Department faculty in administering and grading tests given at the annual Math Relays on April 23. Several members also worked on the Alumni Association's Annual Phon-a-thon. The final meeting for the semester was the traditional homemade ice cream and cake social held at Professor Gary McGrath's home. Officers for the coming school year were also elected. The annual Robert M. Mendenhall awards for scholastic achievement were presented to Natalia Ivanova, Bethany Schnackenberg, and Dan White. Dr. Harold Thomas, KS Alpha corresponding secretary for the past 29 years, informed the group that this was his final meeting as corresponding secretary. Dr. Thomas is looking forward to phased retirement beginning with the ' 96 -'97 fall semester. His role as corresponding secretary will be ably filled by Dr. Cynthia Woodburn. Other 1996-97 chapter officers: Matthew Jackson, vice president; Heather Seybold, secretary/treasurer; Bobby Winters, faculty sponsor.

KS Beta

Emporia State University, Emporia

Chapter President - Brenda Sloop 33 actives, 11 associates

Other chapter officers for 1996-97: Andy Applegarth, vice president; Ruth Dale, secretary; Shannon Decker, treasurer; Connie S. Schrock, corresponding secretary; Larry Scott, faculty sponsor.

KS Gamma

Benedictine College, Atchison

Chapter President - Erik J. Kurtenbach 15 actives, 16 associates

Charter member Mary Margaret Downs Intfen and her husband George were honored by the college with the school's highest honor on February 17 at the Scholarship Dinner and Auction. On March 3 Jeff Blanchard, Chad Eddins, and Dan Kenney were initiated into KS Gamma and twelve new associate members were received. Initiation at Marywood was followed by a chili supper. Three students presented their research at the March 27 Discovery Day on campus. Dawn Weston spoke on "Tinkering with the Quaternion," Seth Spurlock talked about "Exploring $Z_{5}[7]$," and Jimmy Wang demonstrated his "Personal Financial Manager." The Math Ed students demonstrated their Home Pages as part of the day's activites and KS Gamma sponsored Richard Delaware of UMKC as a guest apeaker. On April 24 the group gathered for dinner at Paolucci's and presented key rings to the graduates. Named as Sister Helen Sullivan Scholarship recipients at the April 25 Honors Convocation were: Jeff Blanchard, Chad Eddins, Christie Engelbert, Dan Kenney, Erik Kurtenbach, Seth Spurlock, and Dawn Weston. President Dawn Weston presented her research paper at
the Regional Meeting at Washburn. Erik Kurtenbach served as a judge for the other section of papers. A final speaker for the year was co-sponsored by KS Gamma and the Physics Club. Faculty sponsor Jo Ann Fellin, OSB, will be on sabbatical during the 1996-97 year. Other chapter officers for the coming year: Chad W. Eddins, vice president; Dawn M. Weston, secretary; Christine M. Engelbert, treasurer; Eric Schultz, StuGo Representative; Seth Spurlock, Exponent Editor; Linda Herndon, OSB, corresponding secretary/faculty sponsor.

KS Delta

Chapter President - Mandy Chester
Washburn University, Topeka
Much of the spring activity focused on hosting the Region IV KME Convention. The Convention was attended by approximately 85 people from 14 chapters. KS Delta member Kim Bell was one of the 13 student paper presenters. Chapter president Dan Wessel presided over several of the activities and faculty sponsor Dr. Ron Wasserstein gave the luncheon address. Other spring activities included an April induction of four new members and a joint picnic in May with the Washburn Mathematics Club. Other 1996-97 chapter officers: Kevin Hennessy, vice president; Jim Stinson, secretary/treasurer; Allan Riveland, corresponding secretary; Donna LaLonde and Ron Wasserstein, faculty sponsors.

KY Alpha

Eastern Kentucky Univeraity, Richmond

Chapter President - Lynne Brosius 16 actives, 18 associates

Once again, the semester began with the sale of floppy discs as a chapter fund-raising activity. The agenda of the February meeting, the first meeting of the semester, included discussion on hosting and/or attending a regional convention. It was decided not to host a regional convention this year. The March initiation ceremony for new members featured a talk by Dr. Margaret Yoder entitled "Braid Equivalences," and was followed by a party in the student center. In April, Laura Melius from the Career Development and Placement Office gave a presentation regarding the software system Résumé Expert that is available to students and alumni who are job seeking. New officers for the coming year were elected at the May meeting. Other 1996-97 officers: Kevin Zachary, vice president; Heather Sadler, secretary; Elizabeth Barrett, treasurer; Patrick Costello, corresponding secretary/faculty sponsor.

KY Beta

Cumberland College, Williamsburg
Chapter President - Timothy D. Wilson
27 actives
On February 27 the KY Beta Chapter initiated seven student members and one faculty member. Outgoing president Tessie Black presided over the initiation ceremony, banquet, and related activies. Last year's in-
ductees, as well as graduating seniors, were also recognized at the event. In April, members assisted in hosting the regional high school math contest held annually at Cumberland College. The entire department, including the Math and Physics Club and the KY Beta Chapter, enjoyed a picnic at Briar Creek Park in early May. On the first day of finals, a pizza party was held immediately following the calculus exams. Other 1996-97 chapter officers: Story A. Robbins, vice president; Melynda K. Hazelwood, treasurer; Jonathan E. Ramey, corresponding secretary; John A. Hymo, faculty sponsor.

MD Alpha

Chapter President - Shannon Spicer College of Notre Dame of Maryland, Baltimore $\quad 11$ actives, 7 associates

During the spring semester, chapter members heard a presentation by Ana Casas, who reported on her engineering internship with Baltimore Gas and Electric Company. In March, Dr. Horace Russell, Associate Dean, College of Engineering of University of Maryland at College Park, spoke on the Dual Degree Program. Several sports events were held, including a volleyball game with the Loyola Physics Club. In May, nine students were inducted and two students were received into temporary membership at the annual induction dinner. John McGowan, Special Program Manager, AT\&T, presented the program for the event. His topic was "Trends in Communications Technologies." Other 1996-97 chapter officers: Rachel Keffer and Jolanta Krywonis, co-vice presidents; Carolyn Pointek, secretary; Marie Morrow, treasurer; Sister Marie Augustine Dowling, corresponding secretary; Margaret Sullivan, faculty sponsor.

MD Beta
Western Maryland College, Westminster

Chapter President - Leslie Huffer 26 actives

A highlight of spring events was a Mathematics Careers Night, held in early April, featuring various alumni of the college. Speakers for the dinner meeting included Carey Noll Emmons, '79, of NASA-Goddard Space Flight Center, Greenbelt, MD; Dan Holoski, '94, of Radical Solutions, Reisterstown, MD; and Sue Shermer Seevers, '71, Department of Defense (NSA), Fort Meade, MD. Other 1996-97 chapter officers: Toni Smith, vice president; Julie Brown, secretary; Lori Mowen, treasurer; James Lightner, corresponding secretary/faculty sponsor.

MD Delta

Chapter President - Joseph Palardy 43 actives
Frostburg State University, Frostburg
In February the group enjoyed a dialog with Chinese mathematics professor Dr. Sun. The March meeting, a get-acquainted session for new members-to-be, featured mathematical recreations. This was followed a few days later by the induction itself which welcomed 16 new members
into the organization. Chapter president Jesse Siehler provided a talk and demonstration on the mathematics of juggling for the occasion. The April program was given by one of Frostburg State's COMAP modeling teams: Leo Cyr, Jesse Siehler, and Jeff Wolfe. They previewed the presentation of their COMAP problem solution, which they later delivered at the MD-DCVA sectional meeting of the MAA. Other 1996-97 chapter officers: Heidi Femi, vice president; Carla White, treasurer; Edward T. White, corresponding secretary; John P. Jones, faculty sponsor.

MA Alpha

Assumption College, Worcester
9 actives, 3 associates
Three new members were initiated the first of May. Following a dinner in honor of the new initiates, Professor Charles Brusard spoke on "The Gibbs Phenomenon in Fourier Series." Student officers for 1996-97 are to be elected in the fall. Charles Brusard is corresponding secretary/faculty sponsor.

MI Beta
Chapter President - Carrie Rickabaugh
Central Michigan University, Mount Pleasant
45 actives
Winter 1996 meetings of MI Beta included an open house for prospective members, activities at the Student Activity Center, a Careers in Mathematics Seminar, and winter initiation. Senior students were the speakers at the Careers in Mathematics meeting. Guest speaker at the winter initiation was CMU Mathematics Professor Kirsten Fleming, who gave an interesting presentation on "Cryptography from Julius Ceasar to Sneakers." Her encoded messages, when decoded, were mathematical quotes. Chapter President Kristen Williams presented the program at one of the regular meetings; her topic was "Mathematics in Art." Kristen is also working on the local KME Homepage for the World Wide Web. It should be available for browsing sometime during. the summer months. Discussions at the 1995 KME National Convention led Kristen and MI Beta member Rich Lamb to begin developing a homepage for the national KME. This was started in the fall of 1995 but student teaching and graduation delayed completion. Current plans are for Arnie Hammel to assist his son, Carey, during summer 1996 in efforts to expand the page and get it "out there" so individual chapters can link to it and the whole world can discover what the great organization of Kappa Mu Epsilon is all about!! The spring concluded with a picnic co-hosted by the Mathematics Department, KME, the Statistics Club, and the Actuarial Club. Other 1996-97 chapter officers: Kevin Zajac, vice president; Norma Reynolds, secretary; Debbie Sink, treasurer; Arnold Hammel, corresponding secretary/faculty sponsor.

MS Beta
Mississippi State University, Mississippi State

Chapter President - Jii Khoo
20 actives, 7 associates

Other chapter officers for 1996-97: Brandon Butler, vice president; Christin McCloskey, secretary; Steve Wilson, treasurer; Michael Pearson, corresponding secretary/faculty sponsor.

MS Gamma University of Southern Misaissippi, Hattiesburg

Chapter President - Chuck Fleming
Other chapter officers for 1996-97: Mary Bassinger, vice president; Leigh Lynn, secretary; Alice W. Essary, treasurer/corresponding secretary; Barry Piazza, faculty sponsor.

MS Epsilon
Delta State University, Cleveland
Chapter President - Robert East 17 actives
Other chapter officers for 1996-97: Kim Grimes, vice president; Alex Roehm, secretary/treasurer; Paula Norris, corresponding secretary; Rose Strahan, faculty sponsor.

MO Alpha
Chapter President - Catherine Montgomery Southmeat Missouri State Univeraity, Springfield 12 actives, 4 associates

During the spring semester the chapter held two initiations, the second to accommodate two students who did not learn about the first initiation due to communication problems. Regular monthly meetings were held. A highlight of the semester was the Annual KME Banquet which has grown to include all faculty, staff, graduating senior math majors, math scholarship recipients, freshmen math awardees, and retired faculty. This year the banquet was attended by about 90 people and was considered a great success. Other 1996-97 chapter officers: Lisa Burger, vice president; Jennifer Mulder, secretary; Miriam Ligon, treasurer; Ed Hufiman, corresponding secretary/faculty sponsor.

MO Beta
Chapter President - Lynn Graves Central Missouri State University, Warrensburg $\quad 25$ actives, 6 associates The February initiation of new members featured speaker Srikant Radhakrishnan whose topic was properties of Pascal's Triangle. In March, volunteers helped with the annual Math Relays. CMSU graduate Jeff Quibell was the apeaker for the Klingenbery Lecture, also held in March.

Activities of the April meeting included election of new officers and a hands-on demonstration of the new TI-92 calculator. Nine students and two faculty attended the Region IV KME Convention in Topeka, KS. MO Beta now has a home page on the internet. You can visit them at http://153.91.1.102/ kme/kme.html. Their page also has a link to the national home page. Other 1996-97 chapter officers: Cassie Young, vice president; Carla Brown, secretary; Barbara Hart, treasurer; Joy Birchler, historian; Rhonda McKee, corresponding secretary; Larry Dilley, Phoebe Ho, and Scotty Orr, faculty sponsors.

MO Gamma
William Jewell College, Liberty

Chapter President - Amy Fifer
13 actives, 5 associates

Other 1996-97 chapter officers: Lori Cantrall, vice president; Allison Cooper, secretary; Joseph T. Mathis, treasurer/corresponding secretary/faculty sponsor.

MO Epsilon
Central Methodist College, Fayette

Chapter President - Gary Smith
13 actives, 5 associates
Other 1996-97 chapter officers: Michele Niemczyk, vice president; Victoria Vahle, secretary; William D. McIntosh, corresponding secretary/faculty sponsor; Linda O. Lembke, faculty sponsor.

MO Eta
Truman State University, Kirksville

Chapter President - Amanda Nixon 20 actives, 4 associates

Other 1996-97 chapter officers: Kristen Moffitt, vice president; Laurel Berner, secretary; Jenny Griswold and Karen VanCleave, treasurers; Doug Cutler, historian; Mary Sue Beersman, corresponding secretary; Joseph Hemmeter, faculty sponsor.

MO Iota
Missouri Southern State College, Joplin
The organization met for regular monthly meetings and twice monthly for problem solving sessions. In February, several members car-pooled on a field trip to the MPSI Company in Tulsa, OK, where a former chapter president, Robyn Housman Caruthers, works as Manager of Modeling Research. Robyn and her husband, who works in demographics, gave members a tour of the plant and discussed the operation of MPSI. Initiation for nine new members was held in late March. As usual, many parents and friends attended the initiation ceremonies and the banquet which followed. Several students participated in the first Missouri MAA Collegiate Mathematics Competition at Southeast Missouri State University in Cape Girardeau. A delegation of eight attended the Region IV Convention at Washburn University in Topeka, KS, in late April. Richard Williamson presented a paper
at the convention concerning unusual transformations of triangles. He also presented the paper at the Missouri Academy of Science Meeting at Drury College in Springfield, MO. At the Washburn Convention, Chapter Preaident Jolena Gilbert served on the paper judging committee. Also in April, member Angela Selleck Long presented a talk to the Mo-Kan Council of Teachers of Mathematics entitled "Braid Theory." A party at the new home of Dr. and Mrs. Pat Cassens in early May closed out a successful semester. Student officers for 1996-97 will be elected in the fall. Faculty officers: Mary Elick, corresponding secretary; Chip Curtis, faculty sponsor.

MO Lambda

Chapter President - Tanya Griffin
Missouri Western State College, St. Joseph
Professor Steve Klassen was the guest speaker for the March 3 initiation of five new members into the MO Lambda Chapter of Kappa Mu Epsilon. Four student members and one sponsor attended the Region IV Convention in Topeka, KS. MO Lambda President Brian Bettis served on the paper judging team. In observance of Mathematics Awareness Week, chapter members helped sponsor a series of three guest speakers. At the spring picnic Tanya Griffin was honored as the winner of the Riemann Award for outstanding accomplishment and promise in the field of mathematics. She was also elected president at that time. Other 1996-97 chapter officers: Cindy Ready, vice president; Stacey Cabill, treasurer; John Atkinson, corresponding secretary; Jerry Wilkerson, faculty sponsor.

NE Alpha
Wayne State College, Wayne

Chapter President — Rick Pongratz 36 actives, 14 associates

Fourteen new members were initiated into NE Alpha Chapter at the spring semester initiation. The club selected Igor Proscurshim the Outstanding Freshman Student based on exam performance. KME members helped the Mathematics Department with the annual high school mathematics contest. In addition, the club was give the responsibility of overseeing the balloting for the selection of the Outstanding Wayne State College Math/Science Professor of the Year. Other 1996-97 chapter officers: Rustin Slaughter, vice president; Becky Proskocil, secretary/treasurer; John Fuelberth, corresponding secretary; James Paige, faculty sponsor.

NE Beta
University of Nebraaka-Kearney, Kearney
Chapter President - Jerrid Freeman
Other 1996-97 chapter officers: Kim Flessner, vice president; Jeremy Suing, secretary; Justin Falor, treasurer; Charles Pickens, corresponding secretary; Peggy Miller, faculty sponsor.

NE Delta

Nebraaka Wesleyan University, Lincoln

Chapter President - Justin Rice 16 actives, 6 associates
Other 1996-97 chapter officers: Dusten Olds, vice president; Christin Cordes and J. P. Johnson, secretary/treasurer; Gavin Larose, corresponding secretary/faculty sponsor.

NM Alpha

University of New Mexico, Albuquerque
Other 1996-97 chapter officers: Lary Mos Blackwood, secretary; Johnny Snyder, treasurer; Archie G. Gibson, corresponding secretary/faculty sponsor.

NY Alpha
Hofatra Universaity, Hempstead

Chapter President - Aaron Riddle 15 actives, 11 associates

Chapter activities included a talk on careers in mathematics and an end-of-term picnic and barbeque. Other 1996-97 chapter officers: Brandi York, vice president; Paul Ryan, secretary; Lisa Fontana, treasurer; Aileen Michaels, corresponding secretary/faculty sponsor.

NY Eta

Niagara University, Niagara University

Chapter President - Stacey Lauricella 18 actives, 11 associates
Other 1996-97 chapter officers: Jennifer Egan, vice president; Amy Maar, secretary; Lara Brown, treasurer; Robert L. Bailey, corresponding secretary; Kenneth Bernard, faculty sponsor.

NY Kappa

Pace Univeraity, New York

Chapter President - Jennifer Smith 20 actives, 8 associates
Other 1996-97 chapter officers: Julia Chan, vice president; Angela Stone, secretary; Melahu Aynalem, treasurer; Geraldine Taiani, corresponding secretary; Blanche Abramov and John Kennedy, faculty sponsors.

NY Lambda

Chapter President - Joseph D. Sprague c. W. Post Campus-Long Ioland Univeraity, Brookville 32 actives
Twelve new members were initiated during the annual induction banquet held March 25 at the Greenvale Town House Restaurant. Dr. Debra V. Curtis, member \#31 and now Assistant Professor of Mathematics at Bloomfield College in New Jersey, described in her talk, "From C.W. Post to Professor: Paths and Pitfalls," some of her experiences since graduating. The evening concluded with the announcements by Dr. Maithili SchmidtRaghavan; Dean of the College, of the departmental awards. Other 1996-97 chapter officers: Joseph Glorioso, vice president; Justine D. Bello, secretary; Colin R. Grimes, treasurer; Andrew M. Rockett, corresponding secretary; Sharon Kunof, faculty sponsor.

NC Gamma

Elon College, Elon College
NC Gamma has begun a monthly math contest through the student newspaper. The chapter also sponsored guest speakers Bill Love from the University of North Carolina at Greensboro and Theresa Early of Appalachian State University. In addition members helped sponsor a year-end picnic for graduating mathematics and computer science students. Other 1996-97 chapter officers: Kristin Miller, vice president; Amy Markijohn, secretary; Todd Williard, treasurer; David Nawrocki, corresponding secretary; James Allis, faculty sponsor.

OK Alpha
Chapter President - Carrie O'Leary Northeastern Oklahoma State University, Tablequah 44 actives, 4 associates

OK Alpha continued to enjoy joint activities with NSU's student chapter of MAA. Members met for problem sessions featuring problems from The Pentagon and The American Mathematical Monthly and participated in "The Problem Solving Competition" sponsored by the MAA. The initiation of five students was well attended by both faculty and students. John Callaway has set up a database that includes information about the chapter's membership. He is also working on a local World Wide Web site. In March, the chapter sponsored a talk by Joe Michalcik, Actuary and Vice President of Blue Cross/Blue Shield of Oklahoma. At the annual "pre-finals" ice cream social, members of OK Alpha and the MAA student chapter gave their annual "Mathematics Teacher of the Year" award to Dr. Joan E. Bell. They also presented her with yellow roses and a plaque in appreciation and recognition of meritorious service in her ten year sponsorship of Kappa Mu Epsilon. Other 1996-97 chapter officers: Laura Cole, vice president; Lisa Eidson, secretary; Peter Butz, treasurer; Joan E. Bell, corresponding secretary/faculty sponsor.

PA Alpha

Westminster College, New Wilmington
Chapter President - Laura Williams 18 actives, 3 associates Other 1996-97 chapter officers: Laurel Scaff, vice president; Heather Carson, secretary; Jill Schuller, treasurer; Jen Gatnerak, publicity; J. Miller Peck, corresponding secretary; Carolyn Cuff and Warren Hickman, faculty sponsors.

PA Gamma

Waynesburg College, Waynesburg

Other 1996-97 chapter officers: Etta M. Nethken, vice president; Linda K. Smitley, secretary; Amanda J. Beisel, treasurer; Anthony Billings, corresponding secretary/faculty sponsor.

In late March PA Eta held an initiation ceremony for new members and elected new officers. The winner of the KME-selected Outstanding Freahman Mathematics Student was announced at a Parents' Day Award Ceremony on April 29. Chapter members had the opportunity on April 17 to hear Dr. Barbara Faires from Westminster College speak on "Tilings of the Plane." The group also held a fund-raising book sale. Other 199897 chapter officers: Suzette Cramer, vice president; Lori Young, secretary; Eric Blum, treasurer; Marvin C. Henry, corresponding secretary; Dan Dean, faculty sponsor.

PA Iota

Chapter President - Rebecca Shubert Shippemsburg University of Pennaylvania, Shippensburg 23 actives, 10 associates

On April 21, initiation was held for 10 new members at a local restaurant. Also in April, together with the Math Club, the organization took part in the Adopt-a-Highway Program, cleaning up a section of a local roadway. Three faculty members and eight students enjoyed attendance at a regional meeting of the EPADEL Section of the MAA. Other 199697 chapter officers: Mary Wenrich, vice president; Cindy Hefty, secretary; Vicki Shanahan, historian; Michael D. Seyfried, treasurer/corresponding secretary; Gene Fiorini, faculty sponsor.

PA Kappa

Holy Family College, Philadelphia
促
On March 29 the PA Kappa Chapter held its annual initiation ceremony, inducting three new members. At this time, the chapter also celebrated its 25 th anniversary on campus and honored Sister M. Grace Kuzawa, CSFN, Ph.D., for her 25 years of service to the chapter and her 40 years of service as a faculty member at Holy Family College. Many chapter alumni were present to offer testimonials, recognizing Sister's contribution to their mathematical development. During April, Mathematics Awareness Month, numerous activities were held to promote math awareness on campus. Among these, "Math Problems for Prizes" were offered daily during the last week of the month. On April 27 the chapter sponsored its second annual grade school mathematics competition. Eight local schools participated in arithmetic, problem solving, basic algebra, basic geometry, and math puzzle competitions. The top three schools received plaques and each participating student received a certificate. Other 1996-97 chapter officers: Thomas Feldmann, vice president; Lisa Esposito, secretary; Cheryll Stone-Schwendiman, treasurer; Sr. Marcella Wallowicz, corresponding secretary/faculty sponsor.

TN Delta

Chapter President - Deron C. Walraven Carson-Newman College, Jefferson City 12 actives, 4 associates

The chapter held an induction banquet in late March and observed Mathematics Awareness Week April 21-27. Other 1996-97 chapter officers: Michael D. Kelley, vice president; Jana L. Taylor, secretary/treasurer; Catherine Kong, corresponding secretary/faculty sponsor.

TX Eta
Hardin-Simmons University, Abilene

Chapter President - Sylvia Cantu 15 actives, 9 associates
In conjunction with the Big Country Council of Teachers of Mathematics, TX Eta Chapter sponsored a Math-Science UIL Contest in November. In February the group hosted the Math Count Contest sponsored by the Abilene Chapter of Professional Engineering Society. The 22nd annual induction banquet for the chapter was held March 2. Nine new members were inducted, bringing the membership in the local chapter to 175 . Induction ceremonies were under the direction of President Jeremy Fitch, Vice President John Lally, and Secretary Alexandria Hadlock. Program for the event was given by Dr. Edwin Hewett, Head of the Mathematics Department, who made a presentation on "Interesting Numbers." Other 1996-97 chapter officers: Christina Fischer, vice president; Stephanie Helbert, secretary; Phillip Hubbard, treasurer; Frances Renfroe, corresponding secretary; Edwin Hewett and Dan Dawson, faculty sponsors.

TX Kappa

University of Mary Hardin-Baylor, Belton

Chapter President - David Hogan
12 actives, 2 associates

TX Kappa held its annual Spring Symposium on April 11. Discussion followed a presentation by Dr. William Harding who shared his ideas on how to teach basic concepts in calculus to children. Other 1996-97 chapter officers: Carrier Tucker, vice president; Kristi Davis, secretary; Andrea Hankins, treasurer; Peter H. Chen, corresponding secretary; Maxwell Hart, faculty sponsor. secretary/faculty sponsor.

Trivia

Can you find all the chapters listed above whose schools have changed names since their last appearance in KME News? The number of such universities is positive.

Kappa Mu Epsilon National Officers

Arnold D. Hammel
President
Department of Mathematics
Central Michigan University, Mt. Pleasant, Michigan 48859
a.hammel@cmich.edu
Patrick J. Costello
President-Elect
Department of Mathematics, Statistics and Computer Science
Eastern Kentucky University, Richmond, Kentucky 40475
matcostello@acs.eku.edu

Waldemar Weber
Secretary
Department of Mathematics and Statistics
Bowling Green State University, Bowling Green, Ohio 43403 kme-nsec@mailserver.bgsu.edu

A. Allan Riveland
Treasurer
Department of Mathematics and Statistics
Washburn University, Topeka, Kansas 66621
zzrive@acc.wuacc.edu

Mary S. Elick
Historian
Department of Mathematics
Missouri Southern State College, Joplin, Missouri 64801 elick@vm.mssc.edu

Kappa Mu Epsilon, Mathematics Honor Society, was founded in 1931. The object of the Society is fivefold: to further the interests of mathematics in those schools which place their primary emphasis on the undergraduate program; to help the undergraduate realize the important role that mathematics has played in the development of western civilization; to develop an appreciation of the power and beauty possessed by mathematics due to its demands for logical and rigorous modes of thought; to provide a Society for the recognition of outstanding achievement in the study of mathematics at the undergraduate level; and to disseminate the knowledge of mathematics and familiarize the members with the advances being made in mathematics. The official journal of the Society, The Pentagon, is designed to assist in achieving these objectives as well as to aid in establishing fraternal ties between the Chapters.

Active Chapters of Kappa Mu Epsilon

Listed by date of installation.

Chapter

OK Alpha
IA Alpha
KS Alpha
MO Alpha
MS Alpha
MS Beta
NE Alpha
KS Beta
NM Alpha
II Beta
AL Beta
AL Gamma
OH Alpha
MI Alpha
MO Beta
TX Alpha
TX Beta
KS Gamma
IA Beta
TN Alpha
NY Alpha
MI Beta
NJ Beta
IL Delta
KS Delta
MO Gamma
TX Gamma
WI Alpha
OH Gamma
CO Alpha
MO Epsilon
MS Gamma
IN Alpha
PA Alpha
IN Beta
KS Epsilon
PA Beta
VA Alpha
IN Gamms
CA Gamma
TN Beta
PA Gamma
VA Beta
NE Beta

Location
Northeastern Ollahoms State University, Tahlequah
University of Northern Iowa, Cedar Falls
Pittsburg State University, Pittsburg
Southwest Missouri State University, Springfield
Misaissippi University for Women, Columbus
Mississippi State University, Mississippi State
Wayne State College, Wayne
Emporia State University, Emporia
University of New Mexico, Albuquerque
Eastern Illinois University, Charleston
University of North Alabama, Florence
University of Montevallo, Montevallo
Bowling Green State University, Bowling Green Albion College, Albion
Central Missouri State University, Warrensburg
Texas Tech Univeraity, Lubbock
Southern Methodist University, Dallas
Benedictine College, Atchison
Drake Univeraity, Des Moines
Tennessee Technological University, Cookeville
Hofstra University, Hempstead
Central Michigan University, Mount Pleasant
Montclair State University, Upper Montclair College of St. Francis, Joliet
Washburn University, Topeka
William Jewell College, Liberty
Texas Woman's University, Denton
Mount Mary College, Milpraukee
Baldwin-Wallace College, Berea
Colorado State University, Fort Collins
Central Methodist College, Fayette
University of Southern Missiasippi, Hattiesburg
Manchester College, North Mancheater
Westminster College, New Wilmington
Butler University, Indianapolis
Fort Hays State University, Hays
LaSalle University, Philadelphia
Virginia State University, Petersburg
Anderson University, Anderson
California Polytechnic State University, San Luia Obiapo
East Tennessee State University, Johnson City
Waynesburg College, Waynesburg
Radfond University, Radford
Univernity of Nebraaka-Kearney, Kearney

Installation Date

18 April 1931
27 May 1931
30 Jan 1932
20 May 1932
30 May 1932
14 Dec 1932
17 Jan 1933
12 May 1934
28 March 1935
11 April 1935
20 May 1935
24 April 1937
24 April 1937
29 May 1937
10 Junc 1938
10 May 1940
15 May 1940
26 May 1940
27 May 1940
5 June 1941
4 April 1942
25 April 1942
21 April 1944
21 May 1945
29 March 1947
7 May 1947
7 May 1947
11 May 1947
6 June 1947
16 May 1948
18 May 1949
21 May 1949
16 May 1950
17 May 1950
16 May 1952
6 Dec 1952
19 May 1953
29 Jan 1955
5 April 1957
23 May 1958
22 May 1959
23 May 1959
12 Nov 1959
11 Dec 1959

IN Delta
OH Epailon
MO Zeta
NE Gamma
MD Alphs
II. Epsilon

OK Beta
CA Delta
PA Delta
PA Epsilon
AL Epsilon
PA Zeta
AR Alpha
TN Gamma
WI Beta
IA Gamma
MD Beta
IL Zeta
SC Beta
PA Eta
NY Eta
MA Alpha
MO Eta
IL Eta
OH Zeta
PA Theta
PA Iota
MS Delta
MO Theta
PA. Kappa
CO Beta
KY Alpha
TN Delta
NY Iota
SC Gamms
LA Delta
PA Lambda
OK Gamms
NY Kappa
TX Eta
MO Iota
GA Alphs
WV Alpha
FL Beta
WI Gamma
MD Delta
II Theta
PA Mu
AL Zeta
CT Beta
NY Lambda
MO Kappa

University of Evansville, Evansvillo
Marietta College, Marietta
University of Missouri-Rolla, Rolla
Chadron State College, Chadron
College of Notre Dame of Maryland, Baltimore
North Park Colloge, Chicago
University of Tula, Tulas
California State Polytechnic University, Pomona
Marywood College, Scranton
Kutztown University of Pennsylvania, Kutztown
Huntingdon College, Montgomery
Indians University of Pennsylvania, Indiana
Arkansas State University, State University
Union University, Jackeon
University of Wisconsin-River Falls, River Falls
Morningside College, Sioux City
Weatern Maryland College, Westminster Rosary College, River Foreat
South Carolina State College, Orangeburg
Grove City College, Grove City
Niagara University, Niagara Univeraity
Assumption College, Worcester
Truman State University, Kirksville
Weatern Ilinois University, Macomb
Muskingum College, New Concord
Susquehanna University, Selinagrove
Shippensburg University of Pennsylvanis, Shippensburg
William Carey College, Hattieaburg
Evangel College, Springfield
Holy Family College, Philadelphia
Colorado School of Mines, Golden
Eastern Kentucky Univeraity, Richmond
Carson-Newman College, Jefferson City
Wagner College, Staten Island
Winthrop University, Rock Hill
Wartburg College, Waverly
Bloomsburg University of Pennsylvania, Bloomsburg
Southweatern Oklahoma State University, Weatherford
Pace University, New York
Hardin-Simmons University, Abilene
Missouri Southern State College, Joplin
West Georgia College, Carrollton
Bethany College, Bethany
Florida Southern College, Lakeland
University of Wisconsin-Eau Claire, Eau Claire
Frostburg State University, Frostburg
Benedictine University, Liale
St. Francis College, Loretto
Birmingham-Southern College, Birmingham
Eastern Connecticut State University, Willimantic
C.W. Post Campus of Long Island University, Brookville

Drury College, Springfield

27 May 1980
29 Oct 1980
19 May 1961
19 May 1982
22 May 1963
22 May 1963
3 May 1964
5 Nov 1964
8 Nov 1964
3 April 1985
15 April 1965
6 May 1965
21 May 1965
24 May 1965
25 May 1965
25 May 1965
30 May 1965
26 Feb 1987
6 May 1967
13 May 1867
18 May 1968
19 Nov 1968
7 Dec 1968
9 May 1969
17 May 1969
26 May 1969
1 Nov 1969
17 Dec 1970
12 Jan 1971
23 Jan 1971
4 March 1971
27 March 1971
15 May 1971
19 May 1971
3 Nov 1972
6 April 1973
17 Oct 1973
1 May 1973
24 April 1974
3 May 1975
8 May 1975
21 May 1975
21 May 1975
31 Oct 1876
4 Feb 1978
17 Sept 1978
18 May 1979
14 Sept 1979
18 Feb 1981
2 May 1981
2 May 1983
30 Nov 1984

CO Gamma
NE Delta
TX Iota
PA Nu
VA Gamma
NY Mu
OH Eta
OK Delta
CO Delta
NC Gamma
PA Xi
MO Lambda
TX Kappa
SC Delta
SD Alpha
NY Nu
NH Alpha
LA Gamma
KY Beta
MS Epsilon

Fort Lewis College, Durango
Nebraska Wesleyan University, Lincoln MaMurry University, Abilene Urainus College, Collegeville Liberty University, Lynchburg
St. Thomas Aquinas College, Sparkill Ohio Northern University, Ada Oral Roberts University, Tulsa
Mesa State College, Grand Junction Elon College, Elon College
Cedar Crest College, Allentown
Missouri Western State College, St. Joseph
University of Mary Hardin-Baylor, Belton
Erakine College, Due West
Northern State University, Aberdeen
Hartwick College, Oneonta
Keene State College, Keane
Northwestern State University, Natchitoches
Cumberland College, Williamsburg
Delta State University, Cleveland

29 March 1985
18 April 1986
25 April 1987
28 April 1987
30 April 1987
14 May 1987
15 Dec 1987
10 April 1990
27 April 1990
3 May 1990
30 Oct 1990
10 Feb 1991
21 Feb 1991
28 April 1991
3 May 1992
14 May 1992
16 Feb 1993
24 March 1993
3 May 1993
19 Nov 1994

Starting a KME Chapter

Complete information on starting a chapter of KME may be obtained from Arnold Hammel, National President (see address on p. 77). Some information is given below.

An organized group of at least ten members may petition through a faculty member for a chapter. These members may be either faculty or students; student members must meet certain coursework and g.p.a. requirements.

The financial obligation of new chapters to the national organization includes the cost of the chapter's charter and crest (approximately $\$ 50$) and the expenses of the installing officer. The individual membership fee to the national organization is $\$ 20$ per member and is paid just once, at that individual's initiation. Much of this $\$ 20$ is returned to the new members in the form of membership certificates and cards, keypin jewelry, a two-year subscription to the society's journal, etc. Local chapters are allowed to collect semester or yearly dues as well.

The petition itself, which is the formal application for the establishment of a chapter, requests information about the petitioning group, the academic qualifications of the eligible petitioning students, the mathematics faculty, mathematics course offerings and other facts about the institution. It also requests evidence of faculty and administrative approval and support of the petition. Petitions are subject to approval by the National Council and ratification by the current chapters.

