
The Pentagon

A Mathematics Magazine for Students

Volume 55 Number 2 Spring 1996

Contents

Thank You, Referees! 3

Fore!!! 4

Daniel Wessel

The Bobcat That Lived in a Polygon 20
Phyllis Mahan

Playing Checkers with Mathematical Logic 30
Thomas A. Hileman

I Think Knot 37

Saylai Craig

The Problem Corner 51

Kappa Mu Epsilon News 60

Announcement of the Thirty-First Biennial Convention
of Kappa Mu Epsilon 74

Kappa Mu Epsilon National Officers 77

Active Chapters of Kappa Mu Epsilon 78

© 1996 by Kappa Mu Epsilon. All rights reserved. General permission
is granted to KME members for noncommercial reproduction in limited
quantities of individual articles, in whole or in part, provided complete
reference is given as to the source.
Typeset in A\fS-1&. Printed in the United States of America.



2 The Pentagon

The Pentagon(ISSN 0031-4870) is published semiannually in December and May
by Kappa Mu Epsilon. No responsibility is assumed for opinions expressed by
individual authors. Papers written by undergraduate mathematics students for
undergraduate mathematics students are solicited. Papers written by graduate
students or faculty will be considered on a space-available basis. Submissions
should be typewritten (double spaced with wide margins) on white paper, stan
dard notation conventions should be respected and any special symbols not typed
should be carefully inserted by hand in black ink. All illustrations must be sub
mitted on separate sheets and drawn in black ink. Computer programs, although
best represented by pseudocode in the main text, may be included as an ap
pendix. Graphs, tables or other materials taken from copyrighted works MUST
be accompanied by an appropriate release from the copyright holder permitting
further reproduction. Student authors should include the names and addresses of
their faculty advisors. Final versionson 3.5 inch disk in "text only" (ASCII) for
mat are appreciated. Contributors to The Problem Corner or Kappa Mu Epsilon
News are invited to correspond directly with the appropriate Associate Editor.

Individual domestic subscriptions: $5.00 for two issues (one year) or S10.00 for
fourissues(two years); individual foreign subscriptions: $7.00 (US) for two issues
(one year). Library rate: $10.00 (US) for two issues (one year) or $20.00 (US)
for four issues (two years). Correspondence regarding subscriptions, changes of
address or back copies should be addressed to the Business Manager. Copies lost
because of failure to notify the Business Manager of changes of address cannot
be replaced. Microform copies are available from University Microfilms, Inc., 300
North Zeeb Road, Ann Arbor, Michigan 48106-1346 USA.

EDITOR C. Bryan Dawson
Division of Mathematics and Computer Science

Emporia State University, Emporia, Kansas 66801
dawsonbr@e8umail.emporia.edu

ASSOCIATE EDITORS

The Problem Corner Kenneth M. Wilke
Department of Mathematics

Washburn University of Topeka, Topeka, Kansas 66621
xxwilke@acc.wuacc.edu

Kappa Mu Epsilon News Mary S. Elick
Department of Mathematics

Missouri Southern State College, Joplin, Missouri 64801
elick@vm.mssc.edu

BUSINESS MANAGER Larry Scott
Division of Mathematics and Computer Science

Emporia State University, Emporia, Kansas 66801
scottlar@esumail.emporia.edu



Soring 1996

Thank You, Referees!

The current and previous editors wish to thank the following individuals
who refereed papers submitted to The Pentagon during the last two years.

V. Sagar Bakhshi
Virginia State University

Petersburg, Virginia

Duane Broline

Eastern Illinois University
Charleston, Illinois

Jeffrey Clark
Elon College

Elon College, North Carolina

Marvin Harrell

Emporia State University
Emporia, Kansas

James E. Lightner
Western Maryland College

Westminster, Maryland

Elizabeth G. Yanik
Emporia State University

Emporia, Kansas

We also wish to thank the many other individuals who volunteered
to serve as referees but were not used during the past two years. Referee
interest forms willagain besent by mailin the nearfuture, sothat interested
faculty may volunteer. If you wish to volunteer as a referee, feel free to
contact the editor (see page 2) for a referee interest form.

Back Issues

Is your journal collection complete? Copies of most back issues of The
Pentagon are still available for $5.00 per copy. Please send inquiries to:

The Pentagon Business Manager
Division of Mathematics and Computer Science

Emporia State University
Emporia, KS 66801 USA



The Pentagon

Fore!!!

Daniel Wessel, student

Kansas Delta

Washburn University
Topeka, KS 66621

Presented at the 1995 National Convention and

awarded "top four" status by the Awards Committee.

In watching golf on Sunday afternoons I am amazed at the control that
Greg Norman and other professionals have over the ball. On the contrary
my ball hardly ever goes where I want it to go. I decided to investigate some
of the underlying mathematics and physics which determine the path of the
golf ball. Since I plan to teach high school mathematics, this undertaking
might additionally serve as a source of problems and projects that I can
use to stimulate interest in high school mathematics and physics students.

As an introduction to some of the basic principles involved, consider a
program which I have entered on a TI-85 advanced scientific calculator. A
copy of the complete program can be found in the Appendix. The following
is an outline of the program's features:

1.) Prompts user for the distance to the flag.
2.) Asks user if a treeis wanted in the fairway. If yes, prompts forheight

and location of the tree, then displays the tree and flag on the screen.
3.) Prompts the user to choose a club from a menu (using ironsonly).
4.) Determines anddisplays the pathof the ball (See Figure 1).
5.) Informs the user how far the ball landed from the flag.

In the program the golf ball path depends upon the golf club selected
which in turn is used to determine the initial velocity and initial angle
at which the ball leaves the ground. Several assumptions were made to
simplify the model. They are listed below:

1.) The only force acting on the ball is due to gravity (the ball is in a
vacuum).

2.) The initial angle at which the ball leaves the ground is the same as
that of the loft angleof the clubhead (See Table 1).
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Figure 1

3.) During the swing the golf clubhead follows a circular path. The
radius of that path is assumed to be the club length plus 15 inches.

4.) A golfer'sswing speed (angular velocity) at the time of impact with
the ball is the same for any club he uses.

5.) The golf ball's initial velocity as it leaves the clubhead is linearly
related to the speed of the golf clubhead immediately before impact.

CLUB LOFT

WOODS

Driver 11*

[RONS

#3 23"

#4 26*

#5 30-

#6 34*

#7 38"

#8 42*

#9 46-

PW so-

From Gotfsmith

Clubhead and

Component

Catalog, 1994 p. 42

Table 1

Using these initial assumptions we can develop an equation which de
scribes the path of the golf ball. In Figure 2 we picture the relationship
between the position, velocity, and acceleration vectors along the golf ball
path.
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V(t)

a(t)

r(t)

Figure 2

As in calculus,

r(t) = x(t)i + y(t)j is the position vector at time t (seconds),
v(t) = r'(t) = x'(t)i + */(0J is the associated velocity vector, and
a(t) = v'(t) = r"(*) = x"(t)i + */"(<)j is the associated acceleration

vector,

where i is the unit vector in the positive horizontal direction, and j is
the unit vector in the positive vertical direction.

In Assumption 1 we have assumed that gravity g is the only force
acting on the golf ball and this exerts a force in a downward direction, so
the components of the acceleration vector for any time t are necessarily
given by

x"(t)= 0

y"(0 = -*.

Substituting the components back into the acceleration vector we get

a(t) = -gj.

We picture the initial velocity vector v(0) in Figure 3 where

»(0)= *'(0)i + j/(0)j and v0 = vV(0)2 + y'(O)2.

In Figure 3, 9 is the initial angle of the ball and v0 is its initial velocity.
Using some simple trigonometry we get

x'(0) = VOCOS0
l/(O) = t)osin0.

Next, if the ball is assumed to be struck at the origin of our coordinate
system,

*(0) = 0, y(0) = 0.
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(x'(0),y'(0))

x'(0)

Figure 3

Summarizing and reorganizing the above conclusions, two differential equa
tions with associated boundary conditions are generated:

x"{t) = 0, with i(0) = 0 and x'(0) = v0 cos 8;
y"(t) = -g, with y(0) = 0 and j/(0) = v0 sin0.

Equations of this nature are solved in most calculus texts, so the solutions
are stated without the solution detail:

x(t) = Dflt cos0,

y{t) = -gt2/2 + votam0.

Eliminating the parameter t we get the quadratic equation

y = -gx2/(2vl cos2 6) + xtan6.

This equationdetermines the parabolic path of the golfball in my program.
The constant g is taken as the standard 32 feet/second2. Furthermore, the
initial angle 8 is taken as the loft angle of the selected golf club as stated
in Assumption 2. The loft angle of the clubhead measures the angle of
the slanted face of the clubhead. More specifically, it is the angle that
the clubhead face makes with the shaft of the golf club. These angles
(Table 1) are typical golf club lofts as found in the Golfsmith Clubhead and
Component catalog. To keep the program uncluttered, the only choice for
clubs are the irons (3-9 and the pitching wedge).

To determine the initial velocity vq in the program we first use Assump
tion 3 (the path of the clubhead is circular, with radius equal to the club
length plus 15 inches). In The Search for the Perfect Swing by Cochran
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and Stobbs (page 206), the clubhead speed for the driver at the time of
impact with the ball is typically about 162 feet/second (for a six ounce
clubhead). Additionally, the driver club length is typically 43 inches. So
the radius of a golfswingwith the driver is 58 inches (43+15). Now, using
the trigonometric formula v = rw, we can convert the linear velocity t> of
162 feet/second to an angular velocity w of 33.52 radians/second, where r
is the swing radius of 58 inches, which equals 4.83 feet.

Assumption 4 states that the golfer's angular velocity is the same for
any club. Again using Assumption 3 we multiply the length of each club
plus 15 inches by the constant angular velocityof 33.52 radians/second to
determine the linear velocity of the clubhead at the time of impact with
the ball. Golf club lengths with calculated clubhead speeds are given in the
third column of Table 2.

CLUB LENGTH CLUB BALL

(inches) SPEED SPEED

(ft/sec) (ft/sec)

WOODS

Driver 43 162.0 214.0

IRONS

#3 38.S 149.4 154.8

#4 38 148.0 148.2

#5 37.5 146.7 142.0

#6 37 145.3 135.4

#7 36.S 143.9 128.7

#8 36 142.5 122.1

#9 35.5 141.1 115.4

PW 3S.5 141.1 115.4

Lengths from Gotfsmrth Catalog, 1994 p. 412.

Speeds calculated using model's assumptijns.

Table 2

In Assumption5 weassumethat the initial velocityvj is linearly related
to the clubhead speed ve immediately before impact:

»j = ave + b.

In Cochran and Stobbs (page 206) we find that the expected initialvelocity
of the ball when hit with a driver with a clubheadspeed of 162feet/second is
214 feet/second. Unfortunately we could find noother data which predicts
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initial ball speeds for clubs other than the driver. We expect that the
ball velocity leaving the pitching wedge would be somewhat less than the
clubhead speed before impact. We estimate that the ball would leave the
pitching wedge with a speed of 115 feet/second, which, with the clubhead
speed of 141.1 feet/second from Table 2, will yield a reasonable traveling
distance for the ball. Solving the system

Vb = ave + b with t>& = 214 when ve = 162.0

and vt = 115 when ve = 141.1

we get the linear equation coefficients a = 4.74 and b = -553.37. Using
this equation we calculate the initial velocity of the ball as it leaves the
clubhead for each of the irons in our golf bag. The results which are used
in our program are stated in the fourth column of Table 2.

Using the model's assumptions, we have determined the initial velocity
and initial angle for each club, and outlined the mathematics which de
termines the resulting path of the golf ball used in the program. We now
mvestigate how closely these results mirror "golf course reality."

Using a typical loft angle for a driver, 11° (Table 1), and ball speed
off the driver, about 214 feet/second (Table 2), and the projectile path
developed in the program, a ball hit with the driver would go 178 yards.
However, using empirically determined driving distances from Cochran and
Stobbs (page 26) an average drive with this loft angle and initial velocity
should go 218 yards. This result is rather surprising since we assumed our
golf course resides in a vacuum, and therefore there was no air resistance
drag which obviously would shorten the path of the ball even more.

Physicists sometimes assume that the drag is proportional to the ve
locity of the projectile but acting in the opposite direction (see Figure 4).
We now investigate how the path of the ball is affected if this additional
drag resistance is added to our model's assumptions.

Figure 4
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Recall that in the program discussion a(t) = —gj and v(t) = x'(t)i +
*/(t)j. When we also considerdrag we get a more complicated set of equa
tions:

a(<) = -*•(<) - gj = -*x'(t)i + [-*«/(*) - 9]j.

Also, recallthat a(t) = x"(t)i+y"(t)j, so the resulting differentialequations
in this case are

x"(i) = -Jtx'(t), with x'(0) = vo cosfl and x(0) = 0
y"(t) = -*-/(*) - g, with */(0) = vosin0 and y(0) = 0.

The above boundary conditions are unchanged from our previous discussion
without the additional drag assumption.

These differential equations are not solved in calculus; however they can
be solved using beginning differential equations techniques. The solutions
are

x(t) = (v0cos$/k)[l-e-kt]
y(t) = l/Jfcfojsin* + G-/*)][l - e~kt] - (a/*)*.

Figure 5

It is interesting to observe the shape of the drag curve compared to the
parabolic non-drag curve (Figure 5);we used the TI-85 to graphboth paths
using a driver with an initial ball velocity of 214 feet/second (Table 2) and
an initial angle of 11° (Table 1). In the'equation involving drag, we used a
value of .25 for the proportionality constant k. We have no scientific way of
determining the most appropriate value of the constant of proportionality
k. However, after trying several different values we found that a selection
of .25 yieldsa graphwhichreasonably reflects our expectations of the drag
curve.

Not surprisingly, adding the drag assumption produced a path which
was shorter than the path in a vacuum. Consequently, there must be other
real world factors involved. Indeed, another force that is acting on the ball
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is that caused by the spin of the golf ball. This force due to the spin of
the golf ball is commonly called lift. The lift vector n is perpendicular
to the velocity vector and counteracts the gravity vector (Figure 6). This
upward lift results from air pressure due to the air moving more quickly
above the ball than below. This is due to a spin of several hundred radi
ans/second generated by the slanted edge of the clubhead at impact. The
mathematics and physics involved here get rather complicated. We turn to
The Mathematics of Projectiles in Sport by Neville de Mestre (page 147)
for assistance. De Mestre determined that due to the shape, size, and char
acteristics of a golf ball, the drag is more accuratelyrepresented by a force
which is proportional to the velocity squared (still acting in the opposite
direction of the velocity).

Figure 6

De Mestre uses these lift, drag, and gravity forces to determine the
following system of differential equations:

dfvcoBip) —pA «,„ „ . .* dx
-tj— = "5—©'(Cbcos^ + Cisini/r) —-swcos-/-

d(wsint/>) -pA ,.„ . . „ ,v dy . ,
Jt ~~2mV (CDBm,i> + ci>costl>)-9 di~VBm^'

with initial conditions

*(0) = 0, y(0) = 0, w(0) = vo, and t4(0) = 8,
and where

v(t) = the ball's velocity vector

$(t) = the angle the velocity vector makes with the horizontal (Figure 6)
p = the density of air

A = the cross-sectional area of the golf ball
m = mass of the golf ball

g = gravitational force

Cd = drag coefficient (which varies with the velocity of the ball)
Ci = lift coefficient (which varies with the amount of spin on the ball).
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Because of the variations in the drag and lift coefficients during the flight
of the ball, de Mestre determines that these differential equations are best
solvedusing numericalmethods. However, de Mestre cites previous research
(P.G. Tait) in which the lift coefficient Cl was found to be approximately
proportional to the velocity (Cl = Civ), where Cl is the constant of pro
portionality. Other research (Bearman and Harvey) argues that for golf
speeds greater than 40 m/s, Cd could be considered constant. These two
simplifying assumptions combined with some further assumptions concern
ing the angle t/>(t) allow the stated differential equations to be replaced
by a set of simplified differential equations which can be solved without
numerical methods. De Mestre's solution is stated below:

, KD(2voKL-g)^ g.2
+ 2^ * 4*»

where Kb = 2m/(pACD), Kl = pACl/(2m), and the constants, other
than Cl, are as earlier specified in the lift equation. Using the TI-85 we
sketched the path of the golf ball in Figure 7 using the de Mestre solution
and the corresponding path in a vacuum (short path).

Figure 7

In this case we use metric values for the constants. In particular, g = 9.8
meter/second2, vQ = 65.2 meter/second, $= .192 radian, A= .0014 meter2,
m = .046 kg, p = 1.3 kg/meter3, CD = 0.204, and CJ = 3.03. Again we
have no way of determining the values of Cd and Cl accurately, but the
selected values result in a curve which appears close to what might be
expected. Cochran andStobbs (page 162) show a similar diagram without
discussing the mathematical underpinnings of the curves. Notice that in
the lift path, the ball'svertex is about two-thirds of the way to impact with



Soring 1996 13

the ground, and the ball appears to follow an approximately linear path in
the early part of the flight.

We have investigated how lift and drag would effect the path of the
golf ball. Our program's assumption that gravity was the only force acting
on the golf ball did indeed significantly simplify the model. How about our
other assumptions concerning the initial angle and initial velocity of the
ball? How closely do these assumptions reflect reality?

Recall that we assumed that the initial angle of the golf ball as it
leaves the ground is the same as that of the loft of the club (Assumption
2). In reality, several modifications are necessary. According to Cochran
and Stobbs (page 151), there is a frictional force which decreases the initial
angle significantly, especially for the higher-numbered irons. The decrease
ranges from about 2° for the driver to 16° for the nine iron. (Cochran and
Stobbs determined these range values using a constant club speed of 100
miles/hour.) In Figure 8, a is this angle of decrease. This angle results
from the downward force as the ball slides along the clubhead. This action
also is responsible for the initial spin on the ball which produces the lift.

club "(haft

dubhead

Figure 8

Although not mentioned in Cochran and Stobbs, there is another mod
ification of the initial angle which must be considered. For the driver and
lower-numbered irons the ball is typically placed forward from the middle
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of the golfer's stance. As a result the ball will be struck with a slightly
upward motion which slightly increases the initial angle from that of the
loft angle. This angle produces a counteracting increase in the initial angle
of the ball. It ranges from 0° for the five iron to about 5° for a driver.

In Assumption 2 we assumed that the initial angle of the ball was
equal to the loft angle. The modifications discussed above show that this is
not very accurate. We have also shown that Assumption 1 concerning the
medium in which the ball travels is not accurate. How about the remaining
three assumptions, which all effect the initial velocity of the ball at impact
with the clubhead?

In Assumption 5 it was stated that the initial velocity of the ball would
be linearly related to the speed of the golf clubhead immediately before
impact. As a result the length of the club completely determined the initial
velocity of the ball. However, in a real-world golf situation there are many
other factors that contribute to the initial velocity of the golf ball. One
factor that needs to be considered involves the modified angle at which the
ball leaves the club that was discussed a few paragraphs earlier. Cochran
and Stobbs (page 152) argue that the greater the loft of the club face the
more the initial velocity of the ball will be reduced. This is due to the
frictional force that is occurringbetween the ball and the club face (Figure
8).

In addition to the loft, the club mass and the ball's elasticity also effect
the initial velocity ofthe ball as it leaves the golf club. Cochran and Stobbs
(page 229) give the following formula for the initial velocity, vy.

V4 = Ve((l+ e)/(l + (m/M))),

where

ve = velocity of the clubhead immediately before impact

m = mass of the golf ball

M = mass of the clubhead

e = coefficient of restitution, which varies from .67 on a drive

to .80 on a putt.

The coefficient of restitution depends upon the velocity of the clubhead
at impact. It is a measure of the "bounce ratio" of the ball when it hits
a surface (or in this case, the surface hits the ball). Cochran and Stobbs
claimthat this formulais reasonably accurate for a driver, but would not be
very accurate for the higher-numbered irons. In Assumption 5 we stated
that the initial velocity of the ball was linearly related to and therefore
completely determined by the velocityof the clubhead at impact. In fact,
it depends at least upon the masses of the ball and clubhead, and the
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coefficient of restitution of the ball. We conclude that Assumption 5 was
also an over-simplification of reality.

We now turn our attention to Assumption 4 (a golfer's angular swing
speed is the same for every club). The mass of the clubhead directly affects
the velocity of the clubhead. Data in Table 3 shows that the weight of a
golf clubhead slows the clubhead velocity. This is not surprising. A golfer
could not swing a sledgehammer as fast as a golf club. We conclude that
Assumption 4 is also an over-simplification of reality.

Clubhead

Weight
(ounces)

Clubhead

Speed

(ft/sec)

4

6

8

10

172

162

1S3

147

Cochran and Stobbs, p. 206

Table 3

We began our investigation with a program which utilized a model
containing five assumptions concerning the initial angle of the ball, the
initial velocity of the ball, and the medium in which the ball travels. These
initial assumptions seemed reasonable at the time, but we have argued
that four of the five assumptions require significant modifications in order
to better reflect golf course reality. The remaining assumption, involving
a circular golf clubhead path, is also but a rough approximation to reality.
However, perhaps surprisingly, this assumption may be the most realistic
of the five. Video pictures in Cochran and Stobbs (page 25) show that the
clubhead path on a typical swing is reasonably close to circular.

We have just begun to uncover the mysteries of the flight of the golf
ball. In our investigation we have ignored something called the "yaw" of
the golf ball. Yaw is the physicists' term for the sideways spin of the ball
which causes hook and slice. We have also ignored the dimpling of the
golf ball which effects both the lift and yaw of the ball. In addition, the
flexibility of the golf club shaft effects the golf swing and the initial velocity
of the ball at the time of impact. Furthermore, the internal material of the
golf ball effects the elasticity of the ball which in turn effects the coefficient
of restitution at impact. Additionally, the internal material of the ball also
determines the weight. Cochran and Stobbs (page 176) imply that the
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standard weight for a golf ball is 1.63 ounces, but there is no corresponding
standard size for a golf ball. They report that in 1968 the British used a
ball of diameter 1.63 inches, while the Americans used a ball of diameter
1.68 inches. I am promoting an even bigger golf ball. I suggest a diameter
of 1.75 inches. A ball with a diameter of 1.75 inches has two advantages
over a smaller counterpart. First, the ball is easier to hit. Second, and
more importantly, the ball will FLOAT.

Acknowledgements. I would like to thank Dr. A. Allan Riveland for all of
his assistance in the preparation of this paper. Also I would like to thank
Wayne Lanning, our golf expert, for his insight on the golf swing.
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Appendix

PROGRAM:00LP

:Lbl START

:Paxaa

:Fn0tf ' Clears all functions

:dLCD ' Clears vi«a acreen

:ClDra • Claara all things draan

:0->xHin

:.25->tStop

:-2S->jHin
:100->jScl
:300->xSel
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Dagree 'Sato degree HODE
Diap "Hoo far to the flag"
Input " (in yards)? ", F
3F->F ' Converte F to feat

F+3S->xHax

(l/3)(F+3E)->yRax
Diap "Do you oant a trao?"

Kenu(l,"Yes", A1.2."lo",A2)
Lbl 11

Diap "Hoa far to the tree"
Input " in yarda)T", V
3H->V » Convarta V to faat

Diap "Hob tall of tree?"
Input " (in faat)?", E
TREE 'Calla program TREE
DiapO 'Displays graph
Pause

Ooto Club 'Goea to Lbl Club

Lbl 12

2->B

0->H

Goto Club

Lbl Club

{23,26,30.34,38.42.46,50}->Ang
154.8.148.2.142.0.135.4.128.7, 122.1.115.4.115.4}->Val

Diap "that club?"

HETOS 'Call program HEIUS
If C»0

Then

Ooto START

End

lng(C-2)->l
?el(C-2)->?

Line(F.0,F,20) 'Drava flag
Lino(F+9,20,F,20)
poly({-16/((? coa I)2), tan 1, o})
aaz(lns)->Z

-16W2/(? cos I)2) ♦ W tan 1
lna->B

If B>E

Than

DraaF (z^ZH-lSCx-Vcv cos l)2)+x tan 1)
Pause

Else

DraaF (x<Z)(x<W)(-16(x2/(V coa l)2)+x tan 1)
If Z>«

Than

Line (V.B..75V.0)
Pouaa

End

Pause

dLCD
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:CLDrB

:Diap "Try a noa club"
:Diap " or noB hole!"
:TREB

:0oto Club

•End

:int ((1/3)aha (Z-F))->S

:If S—O

.'Than

idLCD

:Diap "Oraat Shot "
:Diap "Tou Bit The Pin!"

:Elaa

:CUCD

:Diop "Tour ahot landed",S/'yarda froathe pin."
:EBD

:Pause

:0oto 8T1RT

PROGRAM: HEIUS

Honu(l ,»3iron",C1.2,"4iron",C2.3."Biron",C3,4,"8iron".C4.S."Hore",C6)
Lbl Cl

3->C

Ooto B

Lbl C2

4->C

Goto E

Lbl C3

5->C

Ooto K

Lbl C4

8->C

Goto B

Lbl C6

Hanud,"7iron".C6,2.M8iron".C7,3,"9iron",C8,4."P»",C9,5,"BaB»,D1)
Lbl C6

7->C

Goto B

Lbl C7

8->C

Goto B

LblCS

9->C

Goto B

Lbl C9

10->C

Goto E

Lbl Dl

0->C

Goto B

Lbl B

Return
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ProgxaanTRBB
:Lino(lf,0,W,H)

:Llno(V.B.V-20,10)
:Lino(V-20,10,V+20,10)
:Line(H,B,V+20,10)
:Llna(F,0,F,20)
:Lina(F+9,20,F,20)
:Return

Convention Winners

19

Daniel Wessel (left) andJeffrey Brown (right) presented twoof the win
ning papers at the 30th Biennial Convention in Durango, Colorado (picture
courtesy of Allan Riveland, Kansas Delta). Unfortunately, pictures of the
other winners (Michelle Ruse, Tammy Causey and Dane Mooney) are cur
rently unavailable. Anyone having pictures of the other winners should feel
free to send them to the editor (see p. 2 for address).
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Introduction

It is a clear, cool March morning in eastern Kentucky. The sun is
just beginning to come up and the grass is covered heavily with dew. A
lone biologist, wearing layers of field clothes and tall rubber boots, hikes
through an open field waving a Yagi antenna in front of her. One thought
runs through her mind: Where are they now?

"They" are radio-collared bobcats and she goes out each day trying to
locate them. She may never see them and may never be closer than 3 km
to them. But with the beeping of the receiver, three or four fixes later, and
the use of triangulation calculations, she willbe able to determine approx
imately where they were. If she can locate the same bobcat a sufficient
number of times over a period of six months or so, then she will be able to
describe the size and shape of that bobcat's home range and compare it to
that of other bobcats. She will also be able to determine if any bobcats are
sharing a common area.

An animal'shome range canbe described as the area whichis traversed
by an individual animal in its normalactivitiesof food gathering, mating,
and rearing young. The most common method of describing an animal's
homerange is by drawing a minimumconvex polygon around the animal's
set of known location points. The study now turns to one of geometry.

Geometric objects such as points, line segments, and polygons have
beenstudied since the beginning of mathematics. Geometric problems such
as determining whether two line segments intersect or whether a point lies
within a polygon are easily visualized and can often be solved by simply
looking at a sheet of paper. However, generalizing a geometric problem so
that a solution can be found for any possible set of points, line segments,
and polygons requires non-trivial computer algorithms.
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Computational geometry is the branch of computer science that studies
algorithms for solving geometric problems. These algorithms have appli
cations in many varied and interesting fields such as modern engineering,
robotics, computer graphics, computer-aided design, very-large-system in
tegration, and biology. Surprisingly, even though geometry has had a long
history of useful applications, computational geometry has only recently
begun to study these problems. It is not surprising that biologists use
computational geometry as an aid in describing an animal's home range.

Background

Before discussing algorithms which describe an animal's home range,
there are certain properties from geometry that can help us visualize the
home-range polygon and better understand the algorithms that find this
polygon.

The fundamental object in computational geometry is the point, which
is an ordered pair of numbers such as coordinates in the Cartesian system.
All other objects are described in terms of points. A line segment is a pair
of points connected by a straight line segment. A polygon is an ordered
sequence of points where successive points in the sequence are connected
by straight line segments and the last point is connected to the first point
to make a closed figure.

An animal's home range is described by a minimum convex polygon,
known as the convex hull. The convex hull is the smallest convex polygon
containing all points in the point set and where the vertices of the hull come
directly from the point set. A convex polygon has the property that for
any pair of points that belong to the polygon, the line segment connecting
these points must itself lie entirely within the polygon (Fig. 1, top). A
non-convex polygon has the property that there is a pair of points where
the line segment connecting these points does not lie entirely within the
polygon (Fig. 1, bottom). For example, triangles and regular octagons are
convex, but arrow and star-shaped polygons are not.

A set of points can be classified with respect to a given polygon as
exterior, interior, or boundary points (Fig. 2). An interior point is the
center of a circle with sufficiently small radius which belongs entirely to
the polygon. An exterior point is the center of a circle containing no point
of the figure. A point is a boundary point if every circle drawn about the
point always contains both interior and exterior points.

Questions

Algorithms used in finding the convex hull repeatedly ask three ques
tions. Do two given line segments intersect? What is a simple closed path
for the point set? Does a given point lie inside or outside a given poly
gon? These questions can often be answered by simply looking at a sheet
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Figure 1. Top: convex polygons. Bottom: non-convex polygons.

of paper. But a computer cannot simply look at a sheet of paper. Hence,
algorithms have been developed to instruct a computer to find solutions to
these questions.

®

®

Figure 2. Exterior, interior, and boundary points.

Do two given line segments intersect? A straightforward way to solve
this problem is to find the intersection point of the lines defined by the line
segments and check whether this point falls between the endpoints of both
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the segments. Problems with this method arise when the two segments are
nearly parallel to each other. The calculations are then sensitive to the
precision of the division operator on the computer.

A more accurate method uses cross products and direction of turn. Let
pi,p2i andps be pointswhere pi = (*i,»i),P2 = (*2,lfc), andp3 = (xa.Jte)-
Let line 1 be the segment defined by the points pi and P2, and let line 2 be
the segment defined by the points p^ and pa. The direction of turn going
from pi to p2 to pa is a left turn if we travel counterclockwise along these
points (Fig. 3, left) or a right turn if we travel clockwise (Fig. 3, right).
The direction of turn can be determined by calculating the cross product
of the vector made up of pi and p% with the vector made up of pi and p$:

(P2 -Pi) x (pa -pi) = (x2 -*i)(ife - yi) - (a* - *i)(y2 - J/i).

A left turn is made if the cross product is positive, and a right turn is made
if the cross product is negative. A zero cross product indicates that the
points are collinear.

Figure 3. Left: left turn. Right: right turn.

The direction ofturn is calculated four times to determine whether two

line segments intersect — twice as we travel along one segment going to
each of the other segment's endpoints, and twice more as we travel along
the second segment going to each of the first segment's endpoints. If we
make a right and a left turn as we travel along the first segment (Fig. 4,
top left), and again a right and a left turn as we travel along the second
segment (Fig. 4, top right), then we can conclude that the two segments
intersect. If we make two right turns or two left turns as we travel along
either segment then we can conclude that the two segments do not intersect
(Fig. 4, bottom).

What is a simple closed path for a given point set? This question is
also known as the travelling salesman problem. What is being asked is
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Figure 4.
lines.

The Pentagon

Top: intersecting lines. Bottom: non-intersecting

what path can be followed through a set of given points so that each point
is visited only once, the path never crosses itself, and we end at the point
from which we started. For the travelling salesman problem we want this
to be the shortest path. Thankfully, the shortest path is not necessary for
our purposes since there is no algorithm available today which will find the
shortest path for any given set of points.

We start by finding the anchor for the point set. The anchor is the
lowest point in the set — the one with the least y-coordinate (Fig. 5, left).
If there is more than one point with the least y, then among those points
with the least y the anchor is the point with the least x-coordinate. Then
we find the angle that each point makes as we travel from the point to
the anchor and out in the positive horizontal direction from the anchor
(Fig. 5, center). The points are then ordered by the angle they form from
smallest to largest. Finally, adjacent points in the ordering are connected
with straight line segments, and the last point is connected to the anchor.
The resulting polygon, which is not necessarily convex, is a simple closed
path for the point set (Fig. 5, right).

Does a given point lie inside or outside a given polygon? A straight
forward way to solve this problem is to draw a long line segment from the
point in any direction, longenough so that its endpoint is guaranteed to be
outside the polygon, and count the number of times this test line crosses
the polygon. If the numberof hits is odd then the point must be inside the
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pi ®

Figure 5. Construction of a simple closed path.

polygon. If the number of hits is even then it must be outside the polygon
(Fig. 6, left).

Problems with this method arise when our test line hits a vertex point.
How many hits do we count that as? If our point is outside and we count a
vertex hit as 1 then we are saying the point is inside. So, let's say a vertex
hit is 2. But then if our point is inside we would be saying it is outside.
Another problem is encountered when we hit an entire line segment. How
many hits should we say these are (Fig. 6, center)?

Luckily, there is a solution. Wecan lookat the twolinesegmentswhich
share this vertex as an endpoint. If the two segments are on the same side
of the test line then we will not increment the number of hits. If the two
segments are on opposite sides of the test line then increment the number
of hits by 1. When our test line encounters a line segment then we can look
at the two segments which are attached to that segment's endpoints and
follow this rule of same side or opposite sides (Fig. 6, right).

Figure 6. Is a point insideor outside a given polygon?

Convex Hulls

We are now well equipped to look at algorithms which determine the
convex hull for a given point set. There are many algorithms available
that find the convex hull. Two of the most popular are Jams' March and
Graham's Scan.
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Jarvis' March, also known as package wrapping, was created by R. A.
Jarvis in 1973. This algorithm is easily visualized as wrapping a line around
the set of points. We repeatedly anchor at an outermost point and sweep
a line around until it hits another point. We start by finding the anchor
for the set. This will be the first point on the hull. We anchor here and
sweep a horizontal line, drawn in positive direction, upward until we hit a
point in our set (Fig. 7, top left). This will be the second point on the hull.
We then anchor at this point and sweep upward again until we hit the next
point on the hull (Fig. 7, top right).

The computer isn't actually sweeping a line. At each anchor the angle
made from every point in the set to that anchor is calculated. The point
which forms the smallest angle with that anchor will be the point hit in the
sweep.

When we reach the topmost point in our set we will then anchor and
sweep a horizontal line, drawn in the negative direction, downward until
we hit the next point on the hull (Fig. 7, bottom left). We continue to do
this until our original anchor is hit (Fig. 7, bottom right). The package is
now fully wrapped and we have our convex hull.

Figure 7. Jarvis' March.

This algorithm has time complexityof 0(nh), where n is the number
of points in the set and h is the number of vertices on the hull. This
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time complexity can be explained by thinking that at each anchor (h) we
calculate the angle from each point in the set (n). Hence, we have nh
calculations. If many of the points from the point set lie on the hull this
grows to 0(n2).

Graham's Scan was created by R. L. Graham in 1972 and is a more
efficient algorithm in most cases. We start by finding a simpleclosed path
for our point set (Fig. 8, top row). Then the first three points in the path
are included as candidates for the hull (Fig. 8, second row left). The next
pointon the path, p4, is included as a candidate for the hull (Fig. 8, second
row right). To determine if this point could be a hull point we calculate
the direction of turn as we travel from pa to pa to p4. If this is a left turn
then wewill leave p4 asa candidate for the hull. Include the next point on
the path, ps, as a candidate for the hull. Calculate the direction of turn as
we travel from pa to p4 to p6 (Fig. 8, third row left). If this is a right turn
then we will remove the previous point, p4, as a candidate and rename p$
as p4 (Fig. 8, third row right). Then calculate the direction of turn going
from pa to ps to this new p4. If it is a left turn then we can leave p4 as a
candidate. If it is a right turn we would backtrack again until a left turn is
found.

Continue in this manner of including the next point on the path as
a candidate, calculating the direction of turn for the last three candidates
(Fig. 8, bottomleft),andbacktracking if necessary untila left turn is found.
We continue until the first point in the set, the anchor, is included again.
One final direction ofturn iscalculated (Fig. 8, bottom right), and our hull
is now complete.

Graham's Scan has been shown tohave atimecomplexity of0(n log n),
where n is the number of points in the set. This time complexity can be
explained by thinking back to the start of this algorithm. The first step
was finding a simple closed path, which is basically sorting the points by
the angle they form with the anchor. Most of the work in Graham's Scan
is done here and many sorting algorithms have complexity 0(n log n).
Conclusion

As we have seen, geometric problems areeasily visualized and can often
be solved by simplylooking at a sheet of paper. However, these problems
are more complicated to implement by computer. Study in computational
geometry will undoubtedly continue as more people become intrigued by
geometric problems that in most cases seem obvious at first glance. Scien
tists continue to look at problems with known solutions in hopes of finding
a faster, more efficient algorithm.

With a set of known location points in hand and a good algorithm for
finding the hull, our biologist can now more easily and accurately describe
the home range of each bobcat she has followed tirelessly during the past
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Figure 8. Graham's Scan.
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months.
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Checkers, dating back over 4000 years, is the oldest continuous game
in the history of the world. Egyptians kings took time off from building
the pyramids to play it. The game of checkers is mentioned in Homer's
Odyssey as well as in the writings of Plato. Throughout history, it has
served as a source of entertainment and intellectual challenge for some very
famous individuals. George Washington, Ben Franklin, Abraham Lincoln,
Theodore Roosevelt, and Harry Houdini are included among these people.
Edgar Allan Poe liked checkers more than any other educational pastime.

Although checkers has been played with many different variations, we
chose to follow the rules of the American Checker Federation. The checker
board has sixty-fouralternating light and dark squares (see figure 1). For
playing purposes, the board must be placed so that the bottom corner
square on the left- hand side (known as the single corner) is dark. The
dark squares are numbered from 1 to 32, startingfrom the upper left-hand
corner. Each side starts with twelve pieces, one side being of light color
and the other of dark color. In this article, we will refer to them as black
and white even though they may be black and red or red and white. The
twelveblack pieces shouldbe placed on the squares labeled 1 to 12 and the
twelve white pieces on squares 21 to 32. The first move is always made by
the player having the black pieces with each player alternating afterward.

In order to win the game, a player must either block the opponent's
pieces or capture all of them. The player making the last move wins. At
the beginning of the game allof the pieces (also called checkers) move like
pawns; that is, they can move from one dark square to another either by
stepping forward by one square or jumping an opponent's piece. Upon
reaching an opponent's kingrow (the final row on the opposite side of the
board), thechecker iscrowned by placing another checker onit and becomes
aking. Crowning endsyour move, andit isthen your opponent's turn. This
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Figure 1. Checkerboard. Black's side at top, white's side at
bottom.

31

is true evenif youjumpedinto the king's row andhave a possible jump out
as well. Kings can move or jump either forward or backward one square
at a time. This type of king is called a normal king. In our first version,
we programmed the computer to play using flying kings, which can move
the full length of the board. Since the moves of normal kings are a subset
of the ones for flying kings, our strategy, originally developed for the flying
kings, applies equally well to normalkings.

A checker must jump an adjacent piece of the opponent if the square
beyond is vacant. When a piece is jumped, it is capturedand removed from
the board. Onlyone piece maybe jumped at a time, but anynumber may
be jumped in a series during one turn. If a jump is available, it must be
taken; no other moves are allowed.

Antonio Torquemada, an author from Valencia, Spain, published the
first book on checker methodology in 1547, and Pierre Mallet, a French
mathematician, did the same for checker strategy in 1668. The first such
book written in the English language was published by William Payne
at London in 1756. From the viewpoint of master players, the game has
advanced significantly since then in terms of knowledge accumulated. For
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instance, one American master player has compiled over seven hundred
variations on a single opening. Manyend games also have been solved 'and
published. By way ofcomparison, checkers has advanced verylittle in terms
of mathematical theory. Thus far, there is only the theory of the move (also
called vantage), which is helpful in the endgame but much too simplistic to
be applied to an opening or mid game. Until computers arrived, checkers
stood at a crossroads with no new theory, but only increasing data on
specific end games, beginning gambits, and game records [1].

While working at International Business Machines, Arthur Samuel re
alized that checkers was ideally suited for computer programming and ma
chine learning (now called artificial intelligence) because of itsmathematical
and logical nature. Beginning his research in 1952, he improved his checker
program to the pointwhere in the 1960's he was able to beat a master level
player. However, he became frustrated under the limitations of the com
puting resources available to him at that time. Progress stood still until
computer scientist Jonathan Schaeffer took an interest in checkers. Scha-
effer, like many serious chess players, thought that checkers was childishly
simple andnot worthy ofattention. They thought that for allpractical pur
poses checkers had been solved and that chess was a more prestigious and
intellectually challenging game to pursue. Thus, it was natural for early
efforts to focus on the challenge of chess and ignore the game of checkers.

After a casual inquiry into the state of computerizedcheckers, Schaeffer
began hisquest to build theultimate checker-playing machine, theChinook,
which currently ranks as the second best player in the world. Only Marion
Tinsley, a mathematics professor from Florida State University, is better.
Tinsley is widely regarded as the best player ever, losing only ten games in
the last forty years while holding the world championship. So it was with
much anticipation that a match of man against machine was to be played.
Chinook first met Tinsley in the 1990 U.S. National Open and played a
four game match, each ending in draws. In 1991, Tinsley visited Edmonton
to play a friendly match against Chinook and won one game, drawing the
remaining 13. Tinsley said this about Chinook: "He (Chinook) hasn't
really developed much in the way of judgment and makes strange moves,
but then gets down and fights like the very devil after getting into trouble.
It's exciting to play him" [5]. At a forty match exhibition in London in
1993, Tinsley again prevailed over Chinook, with a record of 4-2-33. He
defeated a machine that is able to consider three million different checker
moves a minute and look 17 to 21 moves ahead. In its memory, Chinook
has a record of every published game of Tinsley's, yet Tinsley comes out
victorious. About the historic final game, the Sunday Times in London
writes, "Amazingly the man used just half an hour thinking time for this
historic game, while Chinook used an hour and half, during the course of
whichit saw no less than 270 million positions, but to no avail" [6].
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While it is difficult to understand how Tinsley develops his strategy,
Chinook's approach relies on a massive database to compare with the cur
rent board. In a sense, Chinook "works backward" to decide which of the
moves is the best. However, the phrase "working backwards" is not what
is intuitively expected [7]. Instead of drawing inferences from the goal of
winning, Chinook considers preceding positions that would lead to it and,
asa result, it considers many useless possibilities that could not be realized
through forward play.

Chinook increases its database daily with the help of one hundred
twenty computers which labor day and night to add even more moves to
the massive database. According to Schaeffer, Chinook's prime advantage
lies in the end game databases it can bring to bear in matches. Cur
rently, Chinook can refer to all 2.3 billion positions attainable with six or
fewer pieces, and the Alberta researchers are in the midst of calculating
the 35 billion positions possible for seven pieces. "We believe that if we
could reach the eight-piece database, which includes 400 billion positions,
we would be virtually unbeatable," according to Schaeffer [5]. What this
means is that currently with only six pieces left on the board Chinook al
ready knows which moves lead to victory, defeat, or a drawn game. But
all of this requires a massive hardware investment. The Chinook consists
of a dedicated mainframe computer with gigabytes of data storage. It also
requires a lengthy amount of timeto consider moves because of the search
time inherent in a database of such large size. Furthermore, Chinook has
noreal judgment orelegance of play and suffers from the lack of a coherent
strategy.

My adviser and I wanted to program a microcomputer to play a good
game ofcheckers using asimple setof logical rules. This purpose could best
be accomplished through list processing, a concept suggested by Alonzo
Church, a mathematical logician, in 1964. The first step was to get the
program to follow checker rules. We chose to use Object Logo, because of
its graphical user interface, list-processing capabilities, and object-oriented
features [3]. Initially, our program played defensively by protecting threat
ened pieces and strengthening its position. We chose not to have the com
puter trade pieces to advance its position, but rather filled spaces from
behind. This strategy led to a program that advanced very slowlyand was
trapped easily. A trap isamove where one side sacrifices a piece (or pieces)
in exchange for pieces of the opponent. For example, when one piece is ex
changed for two of your opponent's pieces it is called a two-for-one trap.
To illustrate,black has pieces at 10,15, and 16, with white having pieces at
23, 24, and 28, andwith white'sturn to move (see figure 1). A conservative
player would move 24to 20 and force the black piece either to moveand be
taken by 23or to stay and be taken by the white piece at 20, producing a
three-to-two piece advantage. However, the better choice for white would
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be to advance from 24 to 19 so that black is forced to jump from 15 to 24
and then white is left with a double jump, producing a two-to-one piece
advantage. This changes the entire complexion of the game with white
gaining a decisive advantage.

The improvements in our second version of the program resulted from
the incorporation of forward and backward recursion, which allows us to
have complete information (movesaredescribed entirely) about moves and
checker positions [3]. In the first version,the strategy was crippled, because
we could not look past the second jump in a multiple jump move without
recomputing each change of position. Our second version is more aggressive
and sets traps without becoming trapped. We finally settled on four simple
principles that were derived from analyzing masters play and that could be
viewed as axioms for making recommendations in many situations [2] [4].
Rather than consulting a huge database, like Chinook, we used filters to
shorten the time for picking moves. Each filter uses a relative hill-climbing
function to evaluate possible moves while considering a given combination
of our principles [7]. The filters were arranged in order of importance and
programmed to pass through the subsequent ones after one filter produced
a unique recommendation.

Our first filter checks for immediate victory or defeat. It first checks if
there is a move that will win the game. If so, this move is performed. Next,
it checks if there is a move that will lose the game. If there is such a move,
the computer tries to avoid it. The second filter looks for traps to spring.
We check for three types ofgeneral traps, which apply to any type of piece,
and three types of traps for normal kings, as appropriate. The computer
checks for traps that we can spring by comparing two-dimensional models
to the board using a pattern recognition routine. The second filter also has
a defensive aspect, since it detects potentially entrapping situations. If the
program detects a trap about to be sprung on us in the next move, then
the computer searches for a move to block or ruin our opponent's plans.
The third filter looks to find traps that could be set in one move. The
fourth and final filter looks ahead to a depth the programmer specifies and
evaluates the board position of our pieces, the neighborhood support, and
ability to get a king. A strategic position is determined by six positional
arrays, which give priorities to some choices. Forexample, there are more
opportunities for moves from the center of the board. Thus, the central
squares, numbered 14, 15, 18, and 19, are important real estate for win
ning a checker game. Neighborhood support is a measure of the strength a
piece gets from the proximity of its own pieces. Master players agree that
the strongest formation in checkers is a triangle with its vertex facing an
opponent. Furthermore, having checkers grouped together lends to greater
strength when advancing pieces forward foran attack. Thus, neighborhood
support is an important principle. The ability to get a king is also impor-
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tant, because a king allows for attacks from behind, where an opponent is
weakest. Currently, our program is set to look six moves ahead when we
are down in pieces and only four or two moves when we,are ahead. Greater
depths require more power, memory, and time.

The current version of our checker program plays a decent game. In
terms of strengths, the current version is much more aggressive and can
take advantage of opponents' errors. Furthermore, if it has a numerical
advantage, then it forces its opponent into traps to further strengthen its
position. The beginning game is much improved, too. It recognizes traps
quickly and exploits them effectively in gaining a piece advantage or a
positional advantage. The mid game also has a more aggressive strategy
for obtaining kings. Even the end game is improved over the first version.
It plays with greater conviction in defeating its opponent. However, the
second version requires more time for calculations since it does more. At
present, the time between moves can run up to five minutes with a fast
computer, whereas in the first version the maximum time was around two
minutes with a slower one.

Our program can be improved several ways. First, our filters could
change their priorities from a game's beginning to the middle stage and,
again, in the end game to allowstrategy to be specialized for each phase [4].
We already implemented this idea somewhat minimally by increasing the
search depth when there are fewer than seven pieces left. The search depth
can be further increased when either side has two or fewer pieces without
appreciatively increasing the wait time. We can also train our program to
respond to particular situations in prescribed ways.

Although our program lacks the massive, efficient database that Chi
nook has, it plays a good game of checkers for its size (about 400 thousand
bytes) and power (Apple Centris 650). An opponent wishing to defeat the
computer must be able to force the computer into sophisticated traps that
it has not been programmed to recognize. Otherwise, our program is ex
cellent in detecting, setting up, and springing traps, as well as advancing
pieces to produceboth numericaland positionaladvantages. Although the
computer efficiently advances pieces to the king's row to get them crowned,
it is not aggressive enough in the end game to put its opponents away
quickly. Sometimes it tends to advance pieces to the king's row rather than
eliminate opponent's pieces. Finally, the time between moves should be
reduced as much as possible. Although hardly a competitor for Tinsley
or any other master, casual players can get hours and hours of enjoyment
competing with the mathematical logic of our program.

Acknowledgements. I would like to thank my faculty advisor, Waldemar
Weber, forhis hard work and programmingexpertise in Object Logo. With
out him, this project would never have been brought this far. For inspira
tion and support, I thank Renee Bannister, who proved not only to be a
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worthy match in checkers but also in life. Finally, I would like to thank the
Faculty Honors Committee of the Department of Mathematics and Statis
tics at Bowling Green State University for patience and encouragement.

Editor's Note. Anyone interested in a copy of the computer program (for
Macintosh) described in this article may write Waldemar Weber, National
Secretary of Kappa Mu Epsilon, Department ofMathematics and Statistics,
Bowling Green State University, Bowling Green, OH 43403. Additionally,
anyone interested in playing checkers may write Charles C. Walker, Secre
tary of the American Checker Federation, Post Office Drawer 365, Petal,
MS 39465.

Marion F. Tinsley (1927-1995), whose checker play is described above,
passed away after this article was written. For more information on Tinsley,
see "Setting the Record Straight," The Keystone CheckerReview, Septem
ber 1995, pp. 939-940.
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KME WWW Information Request

Yes, there is a national Kappa Mu Epsilon World Wide Web home
page! Its URL is:

http://www.cmich.edu/kme.html

Local chapters with WWW pages should send their URL's to our na
tional president, Arnold Hammel(a.hammel@cmich.edu), so that links from
the national page to local pages may eventually be added. A link from each
local chapter's page to the national page would also be appreciated!
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I Think Knot

Saylar Craig, student

Iowa Alpha

University of Northern Iowa
Cedar Falls, IA 50614

Presented at the 1995 National Convention

When we were children, a knot was either a major crisis in dressing
ourselves or a good reason to climb a tree. The former is closer to the
type that mathematicians study rigorously. Knot researchers have and are
continuing to develop theories and classifications regarding their own kinds
of knots. In this paper, I shall lead the reader through an investigation
of these theories, their history, and some of the useful applications of the
mathematics in other fields.

A knot, in useful knot theory, is an entanglement of a strand whose
ends are ultimately joined together to form a "knotted loop." Then, we
could say that a circle is a knot. Since it is the most trivial case of a knot,
it has been nicknamed the "unknot." Other more interesting simple knots
include the trefoil and the figure-eight knot (see figure 1).

(_r*c.i-S iREFOIu flOG-oee. circ-HT

Figure 1

One of the simplest methods of generating new knots is to count the
number of times it crosses itself, called simply the number of "crossings."
The knots with up to 8 crossings (Epstein [1]) are in figure 2.
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Understandably, the number of "different" knots we could possibly form
is infinite. So, it would be nice to know what knots are actually the same
(or equivalent), and which are completely different, and maybe even some
sort of classification system that is more useful and more elaborate than
just a counting of the crossings.

Even though knots were used elaborately in artwork all over the world
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as early as the 8th century, it wasn't until the mid-19th century that they
were considered to have anything to do with mathematics. Karl Friedrich
Gauss was the first to look at a knot as a mathematical unit. One of his
students, Johann Listing, also studied them extensively. Later that century,
when scientists all over the world were trying to understand the structure
of the atom, Lord Kelvin theorized that atoms were vortex tubes of ether,
and he and his colleague Peter Tait thought the tubes could be tangled in
knots. So, they placed themselves on the path still being traveled today by
knot theorists. By trial and error, they were able to classify knots of up to
11 crossings, which took years to develop. But, they eventually gave up,
not knowing whether their lists we're complete, and with no perfect way to
tell whether two knots were actually equivalent (Watson [8]).

It was early in this century that we saw a better way to determine
knot congruence. Kurt Reidemeister, in the 1920's, developed what are
now known as the famous Reidemeister moves. He set down formal rules
governing how one could deform a knot without actually changing its sig
nificant properties (Watson [8]). There are three Reidemeister moves (see
figure 3).

11
n

<*-=±? i \

Figure 3
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This, as simple as it may seem, opened up many doors for researchers.
These, however, as we'll later see, are not enough to show equivalence of
any two knots which are truly equivalent (Kauffinan [3]). Later, in 1928,
James Waddell Alexander came up with a very different way to classify
knots. His idea was to gather information about a knot in such a way
that a certain polynomial would be generated. This classification system
actually goes pretty well up to about 9-crossing knots, where it starts to
trip up (Watson [8]).

Also, some knots are "chiral." This means that they have "handed
ness," or that the mirror image of a knot is not equivalent to the original
knot. The trefoilknot can be considered to be either left- or right-handed,
and the two cannot be deformed into each other using legal Reidemeister
moves (see figure 4). Another problem with the Alexander polynomial is
that it does not distinguish between two knots that are mirror images of
each other, but not equivalent using Reidemeister moves. The most signif
icant contribution of Alexander was the proposition that knot theory and
algebra were somehow linked (Watson [8]).

sm"1 - handed
o»/\".c^-h oJ

Figure 4

British mathematician John Horton Conway invented a very simple
but effective invariant in knots. It is called the skein relation, and involves
oriented knots (where strand(s) have a given direction). It defined three
types of relationships at crossing regions (Jones [2]; see figure 5). Then,
the skein relation states that

(l/t)VL+-tVL_ =t-JfVLo,
where t is the invariant of the knot. This turns, out to be quite useful in
discovering basic differences between knots. This idea of an invariant was
expanded on greatly by future knot theorists.
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Other simple values used in many different theories about knots are
the twist, writhe, and linking numbers of a given knot. We use a crossing
number similar to the skein (Kauffman [3]; see figure 6).

+ l

Figure 6

The linking number is then half of the sum of these crossing values of
all of the different links of the knot configuration. It follows that if two
knots are in fact linked, the linking number will be nonzero. If they are
not linked, the linking number will be zero. We cannot say, however, that
two links are not linked if they cannot be disentangled (Kauffman [3]). See
figure 7. The writhe number is the sum of the crossmg values obtained
from the crossings within a single-link knot.

Consider a knot along with a parallel strand which follows the same
crossing orders as the original knot. Now, we can compute the linking
numbers again (Kauffman [3]; see figure 8).
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L.^k = \ L,^-=- -1

Now, what if we were able to twist the parallel strands one full positive
revolution, and then compute the new linking number for the entire con
figuration? After this development, we define the knot's twisting number
to be 1. It is easily proven that the linking number is always the sum of
the writhe number (of the generating 1-link knot) and the twist number
(Kauffman [3]; see figure 9). These numbers show up all over the place in
many other approaches to knot theory.

The next significant work in the study of knots was done by Vaughan
Jones in the early 1980's. He eventually devised another polynomial to
classify knots. His work involves the use of braids, formed by the four
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braid generators (see figure 10). He showedthat any knot could be formed
by ordering these braid generators (top to bottom), then connecting the
loose ends at the bottom with the loose ends at the top. But, there are
cases when more than one braid algorithm can be used to produce a given
knot.

Braid generators can be manipulated, as an "operation," much like the
way integers are manipulated in modern algebra, to form "groups" of knots.
The Jones polynomial is actually calculated through a series of rules about
how to cut up a knot or link into its simplest components. The algorithm
records a factor for each part of the knot (Watson [8]).

To understand the Jones polynomial more thoroughly, it makes sense
to first consider the bracket polynomial for knots. This method uses two
knot components (much like the t and j components of vectors), paired
with variables A and B in the following axiom (see figure 11):
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These crossings represent those present in unoriented knots, that is,
knots with no direction put on the strand(s). An unoriented crossing yields
two of each kind of region between strands. If we splice "across the .4-way,"
we get the diagram in the A bracket, and the "fl-way" gives us its diagram.
This is true in both equations of the axiom. An example of how this is used
to break up knots is in figure 12.

The other axiom in bracket theory states that we can rename any num
ber n of disjoint simple closed curves as d". See, for example, figure 13.

The polynomial we obtain for any knot K is denoted [K], and has
component parts in A, B, and d. This, of course, may require a few Reide
meister moves and such to get started, especially if using braid generators
to come up with new candidates for evaluation. This was the basis that the
next pair of knot theorists needed for the discovery of the decade.

In May 1984, Vaughan Jones was meeting with Joan S. Birman, who
had been studying the topological side of knot and braid theories for quite
some time. Jones had vast experience in Von Neumann algebras, whose
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Figure 12

3

Figure 13

equations and properties happened to bear a strong resemblance to expres
sions found in knot theory and topological braid relations, thought Jones
during their meetings. Using this combination, in concert with what he
had learned about the Alexander polynomial and the skein relation, Jones
invented a new invariant polynomial method for distinguishing knots. He
knew that it would also be useful in statistical mechanics (which will be
discussed later in the paper). After the word traveled, many other knot
theorists went to work on another invariant: a two-variable polynomial
composed of aspects of the Jones and Alexander polynomials, called HOM-
FLY (an acronym using the names of its inventors). Until 1990, it was the
best one around (Jones [2]).

Although the Jones polynomial proved not to be the ultimate in knot
invariants, it made an astonishing impact on the theory of knots. It does
a better job of distinguishing knots than the Alexander method, since it
picks up differences the Alexander polynomial misses, such as handedness;
but the Jones polynomial is hard to compute for complex knots. So, Tait
could have devised his tables in an exponentially shorter length of time.
Subsequently, Jones earned the Fields Medal in 1990 for bis work (Watson
[8])-
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The next popular method for dealing with knots was to first consider
the space surrounding the knot, or the knot's complement. Intuitively, we
can think of a bowl of jelly with a knot tube removed. This complement
is considered to be a space, much like a topological or metric space. The
3-dimensional spaces, conceptually, make the most sense, although this is
not a requirement of complement spaces (Epstein [1]). Jones and Birman
sometimes considered knot compliments existing in continual dimensional
space, meaning that it would have x dimensions, where x is any real number,
including irrationals (Kolata [4]).

Then, in this complement space, the order of symmetry is considered
one of the classification elements. Another way to form these knot comple
ments is to consider an n-dimensional space, where n is the number of links
in the knot. Researchers then bend the axes (with respect to hyperbolic
and/or elliptic geometry) into the shape of the knot, then examine the re
sulting space. If you do this with the Borromean rings, you get a rhombic
dodecahedron (Epstein [1]; see figure 14).

Figure 14. Borromean rings.

The limitation of this method is that is doesn't distinguish all knots
-Jhat are different. Some different knots will generate the same space, but
these are quite complex knots. So, we have yet another useful method (if
conceivable by the involved persons) of knot classification.

Other methods of dealing with this problem have been explored in great
detail, but sometimes to no avail. Bracket methods have been expanded and
explored, but don't do as much as the Jones polynomial. The method of
alternating knots and links involves the shading (in the diagram) of the dif-
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ferent regions set apart in the knot; this method works only in knots where,
if one travels along the strand, one encounters crossings in an alternating
fashion: under, over, under, over, under, etc. Then, either all regions adja
cent to A crossings (from bracket methods) or B crossings can be shaded
without losing internal consistency. Counting the number ofshaded regions
yields the degree of the knot (Kauffman [3]). But, as mentioned earlier, it
does not apply to all knots.

Braid generators can easily be related to algebraic structures, as men
tioned earlier, and in the work of Birman and Jones. But, like the alter
nating knots and links, not all knots can be created with braid generators.
And, distinguishability remains a problem (Kauffman [3]).

The Tutte polynomial is computed by determining how many loops and
isthmus (loop with the strand running back through it) the knot has (but
not at this oversimplified level). It is a recursive definition, and uses more
variables than most other polynomials. Consequently, the ordering system
is more in a tree format.

Countless mathematicians have tried to expand the HOMFLY polyno
mial, or combine other methods, much like the way HOMFLY was devised
(Kauffman [3]). But, most have made little progress as a blanket method
for all researchers.

In the field of topology, where knot theory is most often classified, all
knots are considered to be homeomorphic to each other, since the topolog
ical definition of a knot states that a subset K of 3-space is a knot if there
is a homeomorphism that maps the unit circle onto K. In other words, a
knot is homeomorphic to any "closed curve" in topology. Sometimes it is
useful to think of knot theory as a branch of 3-dimensional topology (Patty
[5])-

As we investigate further, it is quite simple to show that knot equiva
lence (through Reidemeister moves) is indeed an equivalence relation. If a
knot contains a finite number of crossings (or, considered to be the union
of a finite number of line segments), it is defined to be a polygonal knot,
and these segments are called its edges. The endpoints (intuitively, the
"turning points") are the vertices of the knot. If a knot is equivalent to a
polygonal knot, it is defined to be tame; if not, it is wild. Obviously, tame
and wild knots will never be equivalent (Patty [5]).

Like most other methods of dealing with knots, topologists choose to
consider the 3-dimensional knots using their 2-dimensional "shadows," but
with visible order given to the types of crossings. The point in 2-space
that the crossing gets "mapped down to" is called a double point. If the
position of the knot is such that more than one "layer" gets mapped down
to one point, this point is called a triple point, quadruple point, or "n-tuple
point," as a general multiple point. Define a knot in regular position to
have a finite number of multiple points which are all double points, where
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none of these double points is at a vertex of the knot. In each double point,
the point whose 2-image is larger is called the over-crossing; the other, the
under-crossing (Patty [5]).

Here's where the real topology kicks in: any polygonal knot can be ro
tated into regular position. Also, the Reidemeister moves can be explained
topologically using the notions of homotopy and isotopy (Patty [5]). Now,
we are starting to get another classification system, although it's almost
too rigorous to be useful in some cases.

Deeper into the topology, we use triangulationof a 3-manifold to form
a topological tetrahedron and/or other 3-dimensional (Euclidean) solids
which have corresponding knots, using their edges and vertices as in the
above "knot" definitions. In this mode, it is quite easy to tell whether or
not a knot will be chiral, by trying to put an orientation along the edges of
the corresponding polyhedra (Patty [5]).

There are definitely those aspects of knot theory that are generally
agreed upon (i.e., Reidemeister "equivalence" rules), and those parts of
knot theory that are surrounded by conflict (polynomials, generators, etc.).
However, we cannot discard knot theory in the face of uncomfortable con
flict within mathematics or the shadow of internal inconsistencies, since,
as we shall soon see, knot theory has practical applications that are useful
and in high demand in other fields.

Even though knot theory seemsto be too abstract for intuition at times,
much less reality manifestation, there are caseswhere it has shown up out
side conceptual mathematics. For example, the method of computing knot
invariants that involves cutting and re-tying of the knot (bracket method)
is a lot like the way that enzymes break up strands of protein, or even
DNA molecules, and then recombine them. So, molecular biology is very
interested in these recombination moves of knot theory. Previously, biolo
gists did what early mathematicians did. They took photographs with the
electron microscopes, then got out the string and tried to make their own
discoveries about the knots. That is, until they discovered that the math
ematicians were already workingon it. The math was especially helpful in
determining if and how many algorithm(s) of Reidemeister moves and/or
orders of recombinations existed. Then, they could track what actually
happened to the molecule when exposed to the enzyme — step by step
(Peterson [6]).

Then, with this data, they were able to predict what other types of
strands and configurations could and do exist. In many cases, they have
found their predictions existing in the natural world. But, they believe
that these problems are sufficiently solved; any knot that will show up in
this type of biology work willbe easily classifiable in the system they use
(Peterson [6]).

In addition to Lord Kelvin's theories of knots and their relationship



Spring 1996 49

to the study of physics, scientists now believe that there is a connection
between the theory of knots and the interactions of elementary particles.
The crossings in a (schematic) diagramof a knot are used to represent the
different types of interactions. The specific knot is a sort of summation of
all of the different types of interactions the two particles (each having its
own link) can have (Peterson [6]).

Topics of importance in statistical mechanics include the behavior of
molecules in a condensing vapor and the lining up of electron spins when
a material becomes magnetized. Knot theorist Louis Kauffman says, "In
a physical situation, you often have a summation over a lot of different
interactions that can happen, and the [knot] invariants seem to be ...
averages over all these different possibilities." Some mathematicians have
even been leaning on the physicists for the equations they use to try to
come up with new invariants. In any case, both fields are finding out that
these physical theories have a lot to do with the mathematics, and vice
versa. A problem in either one could be converted into a problem for the
other to deal with, and perhaps more easily (Peterson [6]).

Some physicists are now theorizing that the fundamental nature of
reality is composed much like that of a very complex coat of chain mail.
Abhay Ashtekar and Lee Smolin at Syracuse University are investigating
the behavior of the sub-sub-microscopic fabric of space and time. If their
theories are correct, it is all best understood as a densely woven skein of
loops, coils, and braids. A lot of this theory relates directly to the big bang
theory of the creation of the universe. However, they pride themselves in
using data based on the "solid ground" of Einsteinian relativity and gravity
theories and quantum mechanics, which are arguably hard to grasp [7]. If
they are correct, the demand for progress in knot theory will be staggering,
and the possibilities endless.

Aftera roughsurveyofknot theory, it is intendedthat the readershould
be able to explain the basicconcepts and the motivationsbehind someof the
related methodologies of knot theory. Also, it is important to consider the
various applications that have turned up for knot theorists. Even though
the theory of knots is in its developing stages, it has come a long way,
manifesting itself as a definite necessity in the world of mathematics.
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The Problem Corner

Edited by Kenneth M. Wilke

The Problem Corner invites questions of interest to undergraduate stu
dents. As a rule the solution should not demand any tools beyond calculus.
Although new problems are preferred, old ones of particular interest or
charm are welcome, provided the source is given. Solutions should ac
company problems submitted for publication. Solutions of the followmg
problems should be submitted on separate sheets before January 1, 1997.
Solutions received after the publication deadline will be considered also
until the time when copy is prepared for publication. The solutions will
be published in the Spring 1997 issue of The Pentagon, with credit being
given to student solutions. Affirmation of student status and school should
be included with solutions. Address all communications to Kenneth M.
Wilke, Department of Mathematics, 275 Morgan Hall, Washburn Univer
sity, Topeka, Kansas 66621 (e-mail: xxwilke@acc.wuacc.edu).

PROBLEMS 495-499

Problem 495. Proposed jointly by Sammy and Jimmy Yu, students at the
University of South Dakota, Vermillion, South Dakota.

Evaluate

cos (¥hm°»£r)
if sin a + sin 6 + sin c = cos a + cos 6 + cos c = 0.

Problem496. Proposedby Bob Prielipp,University ofWisconsin—Oshkosh,
Oshkosh, Wisconsin.

Find the smallest positive integer that can be increased by 50% by
moving the digit on the extreme right to the extreme left.

Problem 497. Proposed by Charles Ashbacher, Cedar Rapids, Iowa.
The Smarandache function S(n) is defined in the following way: S(n) =

m is the smallest integer such that n evenly divides m!. The Euler phi
function <f>(n) is defined by letting <f>(n) be the number of positive integers
less than or equal to n that are relatively prime to n. Prove the followmg:

(a) The equation S($(n)) = n has no solution.
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(b) The equation n —S(4>(n)) = 1 hasan infinite number of solutions.

Problem 498. Proposed by Oscar R. Casteneda, Southwest High School,
San Antonio, Texas.

Let ABC be an arbitrary triangle with sides of lengths a, b and c.
Contract squares facing outward on each of the sides of the triangle. Prove
that the length of the line segment S1S2 connecting the centers of two
adjacent squares equals the length of the line segment CS3 connecting the
center of the third square with the common point of the other two squares.
Also provethat these two line segments are perpendicular.

Problem 499. Proposed by Russell Euler, Northwest Missouri State Uni
versity, Maryville, Missouri.

The Fibonacci numbers are defined by F0 = 0, Fi = 1 and Fn+2 =
F„+i + F„ for n = 0,1,2,— Evaluate the following expression for all
integers n > 1:

Fm+iFto-! - F2n2 - Fn+12Fn.i2 + 2Fn+1Fn7F„.l - Fn*.

Please help your editor by submitting problem proposals.
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SOLUTIONS 477, 485-489

Problem 477. Proposed by Bob Prielipp, University of Wisconsin—Oshkosh,
Oshkosh, Wisconsin.

Let n be an integer > 2. Express

SWQ4=2

as a binomial coefficient and prove that your equality is correct.

Soiution by Carl Libis, University of Southwestern Louisiana, Lafayette,
Louisiana.

More generally we shall show that

£(^)CK2-",>
Repeated use ofthe relation (™) = (m;OCfcli) and the fact that (T) =°
for i > m yields the following proof.

( 2n\_( 2n-0 \_ / 2n-l \ / 2n-l \
U-J7 " \n-j-0j [n-j-Oj +\n-j-l)

-Sffit-7-i)
--£G)C-7-"O-S0C-;-O
-£0G;i)-gC=O0-gG^C9-

In particular for j = 2 we have

£(-)©=(»-%)•
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Also solved by: David Bayne, Missouri Western State College, St.
Joseph, Missouri; Clayton Dodge, University of Maine—Orono, Orono,
Maine; Russell Euler, Northwest Missouri State University, Maryville, Mis
souri and the proposer.

Problem 485. Proposed by BobPrielipp, University ofWisconsin—Oshkosh,
Oshkosh, Wisconsin.

Find the sum of the following infinite series.

,m-l
(-1)

«<£)m=l \m

Solution by Russell Euler, Northwest Missouri State University, Maryville,
Missouri.

It is well known [1] that if x < 1 then

W S (2m +1)! " VT+^
(-l)m22CT(m!)Vm+1 ln(x+ VT+x*)

(2m +1)!

In particular, if * = .5 then (1) becomes

y, (-l)-(m!)a ln(.5 +VT25)
^02(2m+l)! VT25

and so we have

(2)
f> (-lr-'Rm- 1)!]' 21n((1 +V5)/2)
£j 2(2m-l)! - V5

Note that

(3)
[(m-l)f]> _ (m!)2 1

Substituting (3) into (2) shows that the sum of the given series is

(2/>/S)ra((l +VS)/2).

Also solved by: the proposer. One incorrect solution was received.

[1] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and
Products, fifth edition, Academic Press, 1994, p. 53.
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Problem 486. Proposed by T. Yau, Pima Community College, Tucson,
Arizona.

Consider the Smarandache function S(n) which is defined as the small
est integer such that S(n)\ is divisible by n. Find max{5(n)/n} over all
positive composite integers n ^ 4.

Solution by Troy VanAken, University of Evansville, Evansville, Illinois.

We shall show that the maximum of 5(n)/n over all positive composite
integers n ^ 4 is 2/3. When n is even, n divides (n/2)! for n > 4. Hence
S(n)/n < (n/2)/n = 1/2. When n is odd we distinguish two cases.

Case (a). Suppose that n = pa for some odd prime p. Then S(n) = 2p
so S{n)/n = 2/p < 2/3 with equality for p = 3.

Case (b). Suppose that n = pm where p is the smallest prime divisor
of n, m is odd and positive and m>p. Then S(n) < m and thus S(n)/n <
m/n = 1/p < 2/3. This completes the proof.

Also solved by: Charles Ashbacher, Des Moines, Iowa; Clayton Dodge,
University of Maine—Orono, Orono, Maine; Bob Prielipp, University of
Wisconsin—Oshkosh, Oshkosh, Wisconsin and the proposer.

Editor's comment. Bob Prielipp notes that this same problem appeared
as problem 4528 in the May 1995 issue of School Science and Mathematics.

Problem 487. Proposed by the editor.
Suppose that the sides of triangle ABC are all integers. If the measure

of angle A is four times the measure of angle B, find the smallest possible
integer lengths for the sides of triangle ABC.

Solution by Sammy and Jimmy Yu, jointly, students at the University of
South Dakota, Vermillion, South Dakota.

By the Law of Cosines, since a, b and c are integers, 2cos B = (a2 +
c2 —b2)/ac is a rational number. Let 2cosB = m/n where m and n are
both positive integers and (m, n) = 1. Now applying the Law of Sines, we
have

a/b = sin A/ sin B = sin 4Bj sin B
= 2(2 sin Bcos B)(2cos2 B - 1)
= (2 cos B)3- 2(2 cos B)

(1) = (msn - 2mn2)/n3.

Also

c/b = sinCf sinB = sin(ir—SB)/ sin B = sin52?/sin B
= (sin 4B cosB + cosABsin B)/ sin B
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= ((2 cos B)3 - 2(2 cos B)) cos B+ 2(2 cos2 b- l)2 - 1
(2) = (2 cos B)A - 3(2 cos B)2 + 1= (m4 - 3m2n2 + n*)/n*.

Combining (1) and (2) we have

(3) a : b: c = m3n - 2mn3 : n4 : m4- 3m2n2 + n4.

Then since (m, n) = 1, the highest common factor above is 1 and we can
take a = m3n - 2mn3, 6 = n4, and c = m4 - 3m2n2 + n4. Next, since
A + B + C = t = 5B + C, then 0<5B<jror0<5< ir/5. Hence

(4) cos(jt/5) < m/2n < cosO or 1.618 < m/n < 2.

The smallest integers m and n such that (m,n) = 1 which also satisfy (4)
are m = 5 and n = 3, which result in the triangle ABC having the smallest
integral sides a, b and c with a = 105, 6 = 81 and c = 31.

Also solved by: Clayton Dodge, University of Maine—Orono, Orono,
Maine; David Bayne, Missouri Western State College, St. Joseph, Missouri;
and Jackie Roehl, student, Austin Peay University, Clarksville, Tennessee.
One incorrect solution was received.

Problem 488. Proposed by the editor.
Prove or disprove that

V5 +\/26+2\/l7 =yjli +2v^8+y18 - 2v^8+2^65 - 10\/38.

Solution I by Clayton W. Dodge, University of Maine—Orono, Orono,
Maine.

Since we have

(Vb +\Zl3-2V38") =5+2y/f>\JlZ - 2^38+13 - 2\/38
(1) =18 - 2V38 +2\/65 - 10V58,
then

(2) y18 - 2v/38+2^/65 -10\/38 =VE +\/lZ - 2>/§8.
Next we see that

(3) 2\/l7 = 2V169 - 152
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and

(4) 26 +2>/l7 = 13 +2^+2^169- 4-38 + 13 -2^38.

Taking square roots of both sides of (4) we have

or

y/26 +2y/U=y/l3 +2Vo:8 +\/l3-2Vor8

v/5 +V/26 +2VT7=^/l3+2v/38 +v/5 +V/l3-2v/38,
and finally using (2) we have

Vo" +̂ 26 +2>/l7 =^13 +2\/38 +y18 - 2>/38 +2^65 - 10^38.

Solution II by Sammy and Jimmy Yu, jointly, students at the University of
South Dakota, Vermillion, South Dakota.

Let

(1) p±2V5=(V5±V^)2=(a +j8)±2v/^9
where p, q,a and j9 are all positive and a>0. Then a + /3 = p and a0 = q
so that a and /? are the roots of the equation x2 —px+ q = 0 where a>fi.
Now the given equality can be shown as follows:

RHS =\/l3 +2V38 +y18 - 2>/38 +2^65 - 10^38

=Vf13 +2>/38 +y5+(13 - 2V^8) +2^5^13 - 2\/38
(2) =^13 +2V38 +>/5 +)/l3 - 2V58.

Now consider \/l3 + 2V3~8. By taking p = 13 and q = 38 in (1) and taking
a and 0 as the roots of the equation x2 - 13a: + 38 = 0, a = (13 + y/VJ)/2
and 0 = (13 - vTf)/2. Hence

^/l3 +2V38 =-/(13 +Vl7)/2 +y/(13 - >/l7)/2
and

V^13 - 2\/38 =^/(13 +v/17)/2 - ^(13 - \Zl7)/2.
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Thus

^13 +2V38 +\/5 +^13-2^38
=y/(13 +v/l7)/2 +^(13 - %/l7)/2 +V§

+^(13 +v/17)/2 - -/(13 - >/l7)/2
=2^/(13+ Vl7)/2 +vy5
=>/5 +v/26+2\/l7= LHS,

which completes the proof.

Also so/ved by: David Bayne, Missouri Western State College, St. Jo
seph, Missouri; Robyn M. Carley, student, Austin Peay University, Clarks
ville, Tennessee; Russell Euler, Northwest Missouri State University, Mary
ville, Missouri; Bob Prielipp, University of Wisconsin—Oshkosh, Oshkosh,
Wisconsin; and Jackie Roehl, student, Austin Peay University, Clarksville,
Tennessee. One incomplete solution and one incorrect solution were also
received.

Editor's comment. Most solutions were similar to Dodge's solution.
The other solution was given to show a more general approach. For a
related problem, see problem 169, Crux Mathematicorum (Eureka) Vol. II,
1976, pp. 233-234.

Problem 489. Proposed by Russell Euler, Northwest Missouri State Uni
versity, Maryville, Missouri.

The Pell numbers Pn and their associated numbers Q„ satisfy the rela
tions P„+2 = 2Pn+i+P„, P0 = 0, Pi = 1, and Qn+2 = 2Q„+i+Q„, Q0 = 1,
Qi = 1. Show that (a) P„+1 = (Q„ + Q„+i)/2 and (b) Qn+1 = P„ + Pn+i.

Solution by Scott H. Brown, Auburn University, Auburn, Alabama.

The Pell numbers, which satisfy the recurrence relation

(1) Pn+2 = 2P„+i + P„, Po = 0, Pi = 1,

have the Binet form

(2) Pn = (an-/3n)/V8

for n a nonnegative integer. The associated numbers Qn in this problem,
which satisfy the recurrence relation

(3) Q„+2 = 2Qn+i + Q„, Qo = l,Qi = 1,
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have the Binet form

(4) Qn = (an+/?")/2

for n a nonnegative integer. Note that a = 1+ >/2 and /? = 1—%/2 satisfy
both recurrence relations (1) and (3). To prove part (a) we have

Pn+1 =(a"+1 - /?n+1)/v/8 =(on(l +y/2) - /r»(l - \/2)) /V§
(5) =(an(V2 +2)/2 +/3"(2 - V2)/2) /2

and

(Q„ +0n+i)/2= ((<*" + /3")/2 + («n+1 + /?"+l)/2) /2
= (a"((l + a)/2)+/3"((l + /9)/2))/2

=(an(V5 +2)/2 +/3"(2 - V5)/2) /2
= -Pn+i (by (5)).

To prove part (b) we have

Qn+1 =(an+1 +ir+1)/2 =(a"(l +V§) +/3"(1 - V5)) /2
=(an(>/2 +2) +F(V2 - 2)) /V8
= (a"(a+l)+ /?"(-/?-1))/V8
= (an - (P)/V8 + (an+1 - ^+1)/>/8
= Pn +Pn+1-

Also solved by: Charles Ashbacher, Cedar Rapids, Iowa; Oscar Robert
Casteneda, Southwest High School, San Antonio, Texas; Paul R. Coe,
Rosary College, River Forest, Illinois; Clayton Dodge, University of Maine—
Orono, Orono, Maine; Carl Libis, University of Southwestern Louisiana,
Lafayette, Louisiana; Todd Mateer, Grove City College, Grove City, Penn
sylvania; Bob Prielipp, University of Wisconsin—Oshkosh, Oshkosh, Wis
consin; Jackie Roehl, student, Austin Peay University, Clarksville, Ten
nessee; Troy VanAken, University of Evansville, Evansville, Illinois; and
the proposer.

"Those who have solved have triumphed."
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Kappa Mu Epsilon News

Edited by Mary S. Elick, Historian

Newsof chapter activities and other noteworthy KMEevents should be sent
to Mary S. Elick, Historian, Kappa Mu Epsilon, Mathematics Department,
Missouri Southern State College, Joplin, Missouri 64801.

CHAPTER NEWS

AL Beta Chapter President — Miranda Williams
University of North Alabama, Florence 26 actives, 10 associates

Other 1995-96 chapter officers: Tamra May, vice president; Caacie
Brown, secretary; Eddy J. Brackin, corresponding secretary; Patricia Ro-
den, faculty sponsor.

AL Gamma Chapter President — Jamie Tallie
University of Montevallo, Montevallo 5 associates

Other 1995-96 chapter officers: Timo Langerwerf, vice president; Kim
Snider, secretary; Terra Cottingham, treasurer; Larry Kurtz, corresponding
secretary; Don Alexander, faculty sponsor.

AR Alpha Chapter President —Cindy Nicholson
Arkansas StateUniversity, State Univenity 27 actives, 10 associates

Other 1995-96chapter officers: DonnaShepherd,secretary; Odis Cook,
treasurer; William Paulsen, correspondingsecretary/faculty sponsor.

CA Delta Chapter President — Sean Smith
California State Polytechnic University, Pomona 10 actives, 3 associates

Activities of CA Delta included weekly meetings, problem solving ses
sions, and planningsessions. Other 1995-96 chapter officers: Steven Guer-
tin, vice president; Jennifer Baird, secretary; Maria Munoz, treasurer;
Richard Robertson, corresponding secretary; Jim McKinney, faculty spon
sor.

CO Gamma Chapter President — Daren Gemoets
Fort Lewis College, Durango 25 actives

Two meetings were held during the fall semester. On November 15,
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three new members were initiated. Pizza and soft drinks were served.
Plans are underway to attend the RegionV Convention at Mesa State Col
lege in April of 1996. Other 1995-96 chapter officers: Tom Bruckner, vice
president; Ben Moore, secretary; Stevan Scott, treasurer; Richard Gibbs,
corresponding secretary; Deborah Berrier, faculty sponsor.

CO Delta Chapter President — Scott B. Davis
Mesa StateCollege, Grand Junction 14 actives

CO Delta chapter began the 1995-96academic year with a September
picnic in Hawthorne Park. Keys and certificates were presented to those
initiated last April; the members who attended the Thirtieth Biennial Con
vention in Durango reported to the group; and plans for the academic year
were discussed. In October, the decision was made to host the 1996 Region
V Convention. This meeting will be held jointly with the Rocky Moun
tain and Intermountain Sections of the MAA on April 19-20, 1996, on
the Mesa State College campus. Other 1995-96 chapter officers: Venus L.
Martinez, vice president; Natisha R. Kimminau, secretary; Tammi I. Giroir,
treasurer; Donna K. Hafher, corresponding secretary; Clifford C. Britton,
faculty sponsor.

CT Beta Chapter President — Kerry Foust
Eastern Connecticut State University, Willimantic 12 actives

Other 1995-96 chapter officers: Margaret Weaver, vice president; Laura
Dawley, secretary; Terri Boshka, treasurer; Mizan Khan, corresponding
secretary/faculty sponsor.

FL Beta Chapter President — Tammy Causey
Florida Southern College, Lakeland 18 actives

Other 1995-96 chapter officers: Shannon Tomarchio, vice president;
Bradley Hof, secretary; Gayle S. Kent, corresponding secretary/faculty
sponsor.

GA Alpha Chapter President — Chris Flournoy
West Georgia College, Carrollton 25 actives

The Georgia Alpha chapter of KME once again sponsored a food and
clothing drive for the needy. The Fall Social, held in November at a local
restaurant, was enjoyed by all who attended. Other 1995-96 chapter offi
cers: Helga Floodquist, vice president; Amy Westbrook, secretary; Darron
Robbins, treasurer; Joe Sharp, corresponding secretary/faculty sponsor;
Mark Faucette, faculty sponsor.

Hi Beta Chapter President — Andrew Gherna
Eastern Illinois University, Charleston 37 actives

In September, at the first meeting of the year, members heard a talk
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by Dr. Gregory Galperm entitled "Geometric Kaleidoscope." In addition
to holding regular meetings, members enjoyed a Math Club/KME picnic
in the fall and a Christmas party in December. Other 1995-96 chapter
officers: Lisa Stranz, vice president; Amanda Fejedelem/Sheila Simmons,
secretaries; Sarah Schuette/Jennifer Feig, treasurers; Lloyd Koontz, corre
sponding secretary; Lloyd Koontz/Patrick Coulton, faculty sponsors.

IL Delta Chapter President — Mike Mravle
College of St. Francis, Joliet 10 actives

Other 1995-96chapter officers: Heather McNulty, vicepresident; Linda
Wunder, secretary; John Salzer, treasurer; Rick Kloser, corresponding sec
retary/faculty sponsor.

IN Delta Chapter President —Steven Broad
Universityof Evansville, Evansville 84 actives, 24 associates

Other 1995-96chapter officers: Carl Bergh, vice president; Glen Tem-
pleton, secretary; Troy D. VanAken, corresponding secretary; Mohammad
Azarian, faculty sponsor.

IA Alpha Chapter President — Jack Dostal
University of Northern Iowa, Cedar Falls 34 actives

Students presenting papers at Iowa Alpha chapter meetings included
Julie Rullan on "A Brief Overview of Transfinite Numbers," Jim Coons on
"An Introduction to Carmichael Numbers," and Matt Schafer on "Prob
abilistic Combinations in the Game of Blackjack." Brad Klaes gave the
banquet address for the fall initiation of six new members. His topic
was "Econometric Analysis of Land Values in Iowa." The annual KME
Homecoming Coffee was held on October 7, 1995, at the home of Pro
fessors Emeritus Carl and Wanda Wehner. KME members assisted with
the Fall Phonathon for the Mathematics Department and helped with the
Mathematics-Science Symposium in November. Other 1995-96 chapter
officers: Andrew Christianson, vice president; Jim Coons/Andy Schafer,
secretaries; Mary Pittman, treasurer; John S. Cross, corresponding secre
tary/faculty sponsor.

IA Gamma Chapter President — Jason Shriver
Momingude College,Sioux City 8 actives

Other 1995-96 chapter officers: Jared Elwein, vice president; Heath
Hopkins, secretary; Heather Schott, treasurer; Steve Nimmo, corresponding
secretary/faculty sponsor.

IA Delta Chapter President — Gretchen Roth
WartburgCollege, Waverly 39 actives, 2 associates

The first meeting of the year was held on September 20. Adam Sanford
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reported on the April, 1995 KME National Meeting in Durango, Colorado,
and presented "Special Curves Connected," the paper he had given at that
meeting. Charles Leohr, Operations/Network Manager for the Wartburg
Computer Center, presented "Surf the NET" at the October 18 meeting.
On November 29, members helped decorate a Christmas tree for the Festival
of Trees and enjoyed refreshments at the Christmas party. Other 1995-96
chapter officers: Adam Sanford, vice president; Lori Melaas, secretary;
Amy Betz, treasurer; August Waltmann, corresponding secretary; Robin
Pennington, faculty sponsor.

KS Alpha Chapter President — Shelly Milledge
Pittsburg State University, Pittsburg 60 actives, 4 associates

The chapter held monthly meetings in October, November, and De
cember. Fall initiation was held at the October meeting. Four new mem
bers were initiated at that time. The meeting was preceded by a pizza
party. The chapter hosted a guest speaker for the November meeting. Dr.
Dene H. Morgan of the University of Missouri—Rolla presented an inter
esting program on "Weird Dice and Polynomials." In December, a special
pre-final exam and pre-Christmas social event was held at the home of
Dr. Harold Thomas, Kansas Alpha corresponding secretary. The group
viewed one of the award-winning paper presentations given at the Du
rango, Colorado, national convention. They also enjoyed several culinary
delights prepared by faculty members or spouses. Other 1995-96 chap
ter officers: Bethany Schnackenberg, vice president; Shannon Wilkinson,
secretary; Melissa Marsalis, treasurer; Harold L. Thomas, corresponding
secretary; Cynthia Woodbum/Bobby Winters, faculty sponsors.

KS Beta Chapter President — Kendra Dawson
EmporiaState University, Emporia 33 actives, 11 associates

Other 1995-96 chapter officers: Ryan Karjala, vice president; Dustin
Frank, secretary; Justin Elliott, treasurer; Connie S. Schrock, correspond
ing secretary; Larry Scott, faculty sponsor.

KS Gamma Chapter President — Dawn Weston
Benedictine College,Atchison 14 actives, 11 associates

Early in the fall semester, chapter members met at lunch in the cafe
teria to elect officers and formulate plans. A "bogie night" followed soon
after on September 24 in Schroll Center. The chapter sponsored two cof
fee nights at the Roost as a fund-raising effort. Dawn Weston became
Professor Raven for the problems which appear in the campus newspaper
each issue. Initiation of Christie Engelbert was held on October 30. Fol
lowing the initiation, math education students demonstrated their "home
pages" which they had prepared for a course for teachers. On Decern-
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ber 5, Kansas Gamma sponsored student presentations. Jimmy Wang and
Gregory Boucher demonstrated a software application which they devel
oped as a CS Seminar project. Gregory also gave the fractal talk which
he presented at the national convention last spring. Retired professor Jim
Ewbank hosted the chapter for the KME wassail at his home on December
8. Other 1995-96 chapter officers: Seth Spurlock, vice president; Christie
Engelbert, associate vice president; Bryan Speck, secretary/treasurer; Eric
Schultz, Stugo Rep; Jo Ann Fellin, OSB, corresponding secretary/faculty
sponsor.

KS Delta Chapter President — Daniel Wessel
Washburn Univenity, Topeka 37 actives

Kansas Delta chapter joined with the Washburn Mathematics Club
for two events during the fall semester. A mathematics picnic was held
in September and in November, Jeff Brown, a recent graduate of the de
partment, discussed the field of actuarial science. Also in November, many
KME students assisted the department with its annual Math Day. On this
day a competitive examination was given to 500 area high school students.
Other 1995-96 chapter officers: Kim Bell, vice president; Jim Stinson, sec
retary; Alex Alejandro, treasurer; Allan Riveland, corresponding secretary;
Gary Schmidt, faculty sponsor.

KS Epsilon Chapter President —Crystal Holdren-Vacura
Fort Hays State University,Fort Hays 26 actives, 1 associate

Other 1995-96 chapter officers: Amy Kresin, vice president; Jerrod
Hofaker, secretary/treasurer; Ellen Veed, corresponding secretary; Mary
Kay Schippers, faculty sponsor.

KY Alpha Chapter President — Crystal Colwell
EasternKentucky Univenity, Richmond 25 actives

The semester began with a fund raiser, the sale of floppy disks to stu
dents in the computer literacy class and the Mathematica class. Officers
were elected the first meeting of the year and were installed following the
election. In September, new faculty member Ray Tennant gave a lively talk
on "Non-Euclidean Tessellations and the Incredible Hyperbolic Shrinking
Fish." In mid-October a picnic for faculty and students was held at Million
Park. The event featured volleyball, softball, and good food. The Novem
ber meeting included viewing a videotape of one of the talks from the
1995 National KME Convention. The last activity of the semester was the
Christmas party with the traditional white elephant gift exchange. Rules
were changed slightly so that a gift could only be stolen three times. There
were a lot of good gifts brought this year; one male Chinese grad student
ended up with earrings. Other 1995-96 chapter officers: Eva Richardson,
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vice president; Susan Mattingly, secretary; Rachel Scott, treasurer; Pat
Costello, corresponding secretary.

KY Beta Chapter President — Tessie Hale Black
Cumberland College, Williamsburg 20 actives

On September 4, 1995, chapter officers helped host an ice cream party
for the freshmen math and physics majors. Along with the Mathematics
and PhysicsClub, the chapter held a picnicat Briar CreekPark on Septem
ber 11. Several members of the chapter traveled to Marshall Space Flight
Center in Huntsville, Alabama, on November 11. On the last day of classes,
December 12, the entire department, including the Math and Physics Club
and the Kentucky Beta chapter, had a Christmas party with over 55 peo
ple in attendance. Other 1995-96chapter officers: Eric Alan Thornsbury,
vicepresident; Sherri Michelle McGeorge, secretary; William Patrick Giles,
treasurer; Jonathan E. Ramey, corresponding secretary; John A. Hymo,
faculty sponsor.

MD Alpha Chapter President — Regina Geiman
College of Notre Dame of Maryland, Baltimore 11 actives, 7 associates

During the fall semester several activities were held. These included
an interdepartmental volleyball game, a fund-raising activity, and a pre
sentation by Amy Poling, '96, who spoke concerning her research while an
intern at Los Alamos Research Lab in New Mexico. Other 1995-96 chapter
officers: Shannon Spicer, vice president; Jenny Dunning, secretary; Ana
Casas, treasurer; Sr. Maria A. Dowling, corresponding secretary; Joseph
DiRienzi, faculty sponsor.

MD Beta Chapter President — Kathy Gaston
Western Maryland College, Westminster 18 actives

Other 1995-96 chapter officers: Ivy Burklew, vice president; Leslie
Huffer, secretary; Steve Eckstrom, treasurer; Toni Smith, historian; James
Lightner, corresponding secretary/faculty sponsor.

MD Delta Chapter President — Jesse Siehler
Frostburg State University, Frostburg 33 actives

Maryland Delta chapter met twice during the fall semester, not count
ing a rained-out picnic in September. In October the group viewed a video
dealing with the life of the Indian mathematician Ramanujan. In Novem
ber, KME President Jesse Siehler gave a presentation on "The Brouwer
Fixed Point Theorem." Other 1995-96 chapter officers: Dennis Moon, vice
president; Amanda Sherman, secretary; Carla White, treasurer; Edward T.
White, corresponding secretary; John P. Jones, faculty sponsor.
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MI Beta Chapter President — Kristen Williams
Central Michigan University, Mount Pleasant 18 actives

The MI Beta chapter is proud that President Kristen Williams had her
project paper, "Button's NeedleProblem," published in the Fall 1995Michi
gan Council of Teachers of Mathematics journal, Mathematics in Michi
gan. KME, along with the Central Michigan University Mathematics De
partment and the Actuarial Club, Gamma Iota Sigma, hosted a Home
coming Alumni picnic in late October. Other 1995-96 chapter officers:
Chris Pesola, vice president; Curt Hanson, secretary; Tom Keller, trea
surer; Arnold Hammel, corresponding secretary/faculty sponsor.

MS Alpha Chapter President —Jon V. Rost
Mississippi University for Women, Columbus 13 actives, 2 associates

In addition to regular meetings and a November initiation, Mississippi
Alpha sponsored a Problem Solving Contest, posting a new problem each
month. The first person to solve the problem was given a certificate. Other
1995-96 chapter officers: Bethany J. Sims, vice president; Katheryn Kelly
Flynn, secretary; Jamie C. Rohling, treasurer; Jean Ann Parra, correspond
ing secretary; Shaochen Yang, faculty sponsor.

MS Delta Chapter President — Trade McLemore
William Carey College,Hattiesburg 18 actives

Other 1995-96 chapter officers: Vickie Pickering, vice president; Lynn
McShea, secretary; Joy Russell, treasurer; Charlotte McShea, correspond
ing secretary/faculty sponsor.

MS Epsilon Chapter President — Danny Carpenter
Delta State University, Cleveland 13 actives

Other 1995-96 chapter officers: Renee Upton, vice president; Debra
Joel, secretary; David James, treasurer; Paula Norris, corresponding secre
tary; Rose Strahan, faculty sponsor.

MO Alpha Chapter President — Matthew Brom
Southwest Missouri State University, Springfield 15 actives, 4 associates

Missouri Alpha, in conjunction with the Student Chapter of MAA,
sponsored two social events: a fall picnic and an end of the semester pizza
party. Both were open to members, prospective members, faculty and
staff. Regular monthly meetings of KME were conducted with programs
presented by both faculty and students. One student presented a paper
he had written as a special project for honors. Other 1995-96 chapter
officers: Catherine Montgomery, vice president; Brian Spicer, secretary;
Jason Plumhoff, treasurer; Ed Huffman, corresponding secretary/faculty
sponsor.
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MO Beta Chapter President — Heather Scully
CentralMissouri State University, Warrensburg 25 actives, 10 associates

Missouri Beta Chapter organized an intramural volleyball team during
the fallsemester (and actually won someof their games!!). Eli Bowman and
Tammy Hutto were named last year's top freshmen. Joy Birchler received
the ACM-KME Merit Scholarship. Programs for the semester included the
topics "TaxicabGeometry" and "Raindropsand Rainbows." A committee
was formed to design a KME sweatshirt. The new sweatshirts have the
KME crest on the back and the letters KME on the front. Other activities
for the semester included a book sale, tutoring in the Math Clinic, and
a Christmas party. Other 1995-96 chapter officers: Ken Petzoldt, vice
president; Lynn Graves, secretary; Chad Doza, treasurer; Joy Birchler,
historian; Rhonda McKee, corresponding secretary; Larry Dilley, Phoebe
Ho, and Scotty Orr, faculty sponsors.

MO Gamma Chapter President — LeAnn Lotz
William Jewell College, Liberty 14 actives

In the fall, a special program presentation was given by Dr. Leo Reid
of the Mathematics Department at Southwest Missouri State University,
Springfield. Other 1995-96 chapter officers: Stephanie Pauls, vice pres
ident; Kay Brock, secretary; Joseph T. Mathis, treasurer/corresponding
secretary/faculty sponsor.

MO Epsilon Chapter President —Beth Monnette
Central Methodist College, Fayette 13 actives

Other 1995-96 chapter officers: Eric Kennedy, vice president; Sara
Weiss, secretary; Lynn Klocke, treasurer; William D. Mcintosh, correspond
ing secretary; Linda O. Lembke, faculty sponsor.

MO Eta Chapter President — Doug Cutler
Northeast Missouri State University, Kirksvffle 24 actives, 4 associates

Missouri Eta sponsored a spades tournament for the entire Math Divi
sion and organized a faculty/student softball game. Other 1995-96 chapter
officers: Karen Van Cleave, vice president; Amanda Nixon, secretary; Sarah
Schwab, treasurer; Mary Sue Beersman, corresponding secretary; Joe Hem-
meter, faculty sponsor.

MO Iota Chapter President — Jolena Gilbert
Missouri Southern State College, Joplin 15 actives, 10 associates

The first meeting of the semester was organizational in nature and in
cluded the election of new officers. Chapter members again worked conces
sion stands at the home football games as a fund-raising activity. All who
worked three or more games were eligible for a $50.00 drawing; An Pham
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was the winner. A Problem Solving Group was formed under the direction
of Dr. Chip Curtis and student Richard Williamson. In October, a careers
talk was given by MSSC graduate, Phillip Brown. Preliminary plans were
made for a spring service project. A Christmas party and traditional white
elephant gift exchange at the home of Mrs. Mary Elick closed out semester
activities. Other 1995-96 chapter officers: April Dickens/An Pham, vice
presidents; Jennifer Schumaker, secretary; Vicki Nelson, treasurer; Mary
Elick, corresponding secretary; Chip Curtis, faculty sponsor.

MO Kappa Chapter President — Pat Roper
Drury College, Springfield 11 actives, 4 associates

The first activity of the semester was a pizza and movie rush party
for the potential KME members held at the house of the new department
chair of mathematics, Dr. Carol Collins. The winners of the annual math
contest this year were Aaron Wilson, Calculus II and above division, and
Dena Wisner, Calculus I and below division. Prize money was awarded to
the winners at a pizza party held for all the contestants. A bonfire was held
at Dr. Allen's house. A luncheon was held at which Kate Good and Mike
West gave math talks for their senior assessment. The math club has also
been running a tutoring servicefor both the day school and the Continuing
Education Division, Drury Evening College, as a money-making project.
The semester ended with a Christmas party at the home of Dr. Ted Nick-
les. Other 1995-96 chapter officers: Mark Garton, vice president; Michelle
Biggers, secretary/treasurer; Charles Allen, corresponding secretary; Don
Moss, faculty sponsor.

MO Lambda Chapter President — Brian Bettis
Missouri WesternState College, St. Joseph 43 actives, 12 associates

Fall initiation of six new members was held on October 22. Social

activities of the semester included a "Welcome Back" picnic in September
and a Thanksgiving Potluck Dinner in mid November. Two KME members
gave presentations in early December. Three additional meetings were held
during the semester for organization and planning. Other 1995-96 chapter
officers: Devon Kerns, vice president; Linda Meyer, secretary; Cindy Ready,
treasurer; John Atkinson, corresponding secretary; Jerry Wilkerson, faculty
sponsor.

NE Alpha Chapter President — Rick Pongratz
Wayne State College, Wayne 20 actives

The Nebraska Alpha chapter had two fund-raising activities during the
fall 1995 semester. The first of these, selling coupons for Godfather pizzas,
netted the organization $180. The second activity involved serving as se
curity escorts from 10 p.m. to midnight for students going to and from the
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library during finals week. The escortingservicewasfunded by Wayne State
College student senate and the club earned $50. Other 1995-96chapter offi
cers: Trevor Rasmussen, vice president; Kathy Dalton, secretary/treasurer;
John D. Fuelberth, corresponding secretary; James Paige, faculty sponsor.

JVJE? Gamma Chapter President — Tricia Taylor
Chadron State College, Chadron 25 actives, 3 associates

Other 1995-96 chapter officers: J.J. Fernandez, vice president; Kacy
Carpenter, secretary; Ken Schultz, treasurer; James Kaus, corresponding
secretary; Monty Fickel, faculty sponsor.

NE Delta Chapter President — Adam Newman
NebraskaWesleyan University, Lincoln 17 actives

Other 1995-96 chapter officers: Charles McCutchen, vice president;
Justin Rice, secretary; Justin Horst, treasurer; Gavin Larose, corresponding
secretary; Bill McClung/Gavin Larose, faculty sponsors.

NH Alpha Chapter President — Richard Elliott
Keene State College, Keene 25 actives

Chapter activities included a fall picnic and participation in Keene's
autumn pumpkin festival. Other 1995-96 chapter officers: Lisa Smith, vice
president; Sharon McCormick, secretary; Rodney Sleith, treasurer; Charles
Riley, corresponding secretary; Ockle Johnson, faculty sponsor.

JVM Alpha Chapter President — Brian Sanchez
University of New Mexico, Albuquerque 76 actives, 12 associates

Other 1995-96 chapter officers: Larry Montano, vice president; Chris
Blackwood, secretary; John Snyder, treasurer; Archie G. Gibson, corre
sponding secretary/faculty sponsor.

NY Alpha Chapter President — Aaron Riddle
HofstraUniversity, Hempstead 21 actives, 4 associates

Chapter members heard a presentation given by Aaron Riddle con
cerning his experiences as an actuarial intern. Social activities included
three student/faculty volleyball games, a dinner to honor new inductees,
and a holiday party. Other 1995-96 chapter officers: Brandi York, vice
president; Paul Ryan, secretary; Lisa Fontana, treasurer; Aileen Michaels,
corresponding secretary/faculty sponsor.

NY Eta Chapter President — Ken Krawczyk
Niagara University, Niagara University 12 actives

Other 1995-96 chapter officers: Emily Hurlbert, vice president; Re
becca Bauer, secretary/treasurer; Robert Bailey, corresponding secretary;
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Kenneth Bernard, faculty sponsor.

NY Kappa Chapter President — Jennifer Smith
Pace University, New York 20 actives, 6 associates

Other 1995-96chapter officers: TeresaLester, vicepresident; Geraldine
Taiani, corresponding secretary; BlancheAbramov, faculty sponsor.

NY Lambda Chapter President —Joseph D.Sprague
C. W. Post Campus—Long Island University, Brookville 20 actives

Other 1995-96 chapter officers: Joseph Glorioso, vice president; Jus
tine D. Bello, secretary; Colin R. Grimes, treasurer; Andrew M. Rockett,
corresponding secretary; Sharon Kunoff, faculty sponsor.

NY Nu Chapter President — Clifford A. Baxter, IV
Hartwick College, Oneonta 22 actives

Other 1995-96 chapter officers: Karen A. Martin, vice president; John
Painter, secretary; Jennifer L. Sutphen, treasurer; Gary E. Stevens, corre
sponding secretary/faculty sponsor.

OH Eta Chapter President — AmyGaiser
Ohio Northern University, Ada 40 actives

Other 1995-96 chapter officers: Marlon Price, vice president; Angi
Creason, secretary; Ken Fisher, treasurer; Tena Roepke, corresponding sec
retary; Harold Putt, faculty sponsor.

OK Alpha Chapter President — Carrie O'Leary
NortheasternOklahoma State University, lahlequah 28 actives, 7 associates

Fall initiation ceremonies for eleven students, held in the banquet room
of a local restaurant, were attended by over thirty faculty and students. The
chapter continues to sponsor a monthly math contest. In other activities,
members viewed the video "There is Life After Math," and added $97 to
their treasury via the annual book sale. The Christmas "pizza party" was
again a success! The game of the evening was "Win, Lose, or Draw." John
Callaway is working on setting up a database that will contain information
about past and current chapter membership. Other 1995-96 chapter offi
cers: Jeana Wood, vice president; John Callaway, secretary; Peter Butz,
treasurer; Joan E. Bell, corresponding secretary/faculty sponsor.

OK Gamma Chapter President — Terry Price
Southwestern Oklahoma State University,Weatherford 20 actives

One faculty and eight students traveled together to Oklahoma City
for an evening of fun; they visited "Brick Town" and the Brick Town
Spook House. Other 1995-96 chapter officers: Tracy Sipe, vice president;
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Kristin Biddy, secretary/treasurer; Wayne Hayes, corresponding secretary;
Rochelle Beatty, faculty sponsor.

PA Alpha Chapter President — Karey Kustron
Westminster College, New Wilmington 15 actives

Other 1995-96 chapter officers: Daniel Coffman, vice president; Laura
Williams, secretary; Jason Thiel, treasurer; Miller Peck, corresponding sec
retary; Warren Hickman/Carolyn Cuff, faculty sponsors.

PA Gamma Chapter President — Jacob Trombetta
Waynesburg College, Waynesburg 14 actives, 3 associates

Other 1995-96 chapter officers: Frank Luzar, vice president; Leslie
Zak, secretary; Jason Hoover, treasurer; A.B. Billings, corresponding sec
retary/faculty sponsor.

PA Delta Chapter President — Kim Fisher
Marywood College, Scranton 4 actives

Other 1995-96chapter officers: MelissaMang, vicepresident; Ann Con-
flitti, secretary/treasurer; Sr. Robert Ann von Ahnen, IHM, corresponding
secretary/faculty sponsor.

PA Iota Chapter President — Derek Smith
Shippensburg Univenity of Pennsylvania, Shippenaburg 19 actives, 3 associates

Fall initiation was held at the home of Dr. Fred Nordai, Assistant De
partment Chair. Dr. and Mrs. Nordai were gracious hosts, entertaining
KME officers, new initiates, and several faculty members in what was a
delightful evening. Plans are underway for more activities in the spring.
Other 1995-96 chapter officers: Melissa Gladding, vice president; Todd
Bittinger, secretary; Rebecca Shubert, historian; Fred Nordai, treasurer;
Michael Seyfried, corresponding secretary/faculty sponsor.

PA Kappa Chapter President — Leanne Majors
HolyFamily College, Philadelphia 5 actives, 3 associates

Society members hosted a "Cabaret in the Commons" on October 29.
Plans for a high school math competition were formulated; however, due
to minimal response, the event was postponed until Spring 1996. Members
met to make plans for the chapter's 25th Anniversary which occurs on Jan
uary 23, 1996. The celebration will take place on March 29 in conjunction
with the annual installation of officers and induction of new members. All
HolyFamily KME alumni will be invited. Sr. Grace Kuzawa, CSFN, one of
the founding chapter members, will be honored for her dedication to the PA
Kappa Chapter and for her 40 years of service in the Math Department at
Holy FamilyCollege. Anotherfounding chaptermember, Mr. LouisHoelzle,
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Math Chairman at Bucks County Community Collegeand adjunct faculty
member at Holy Family, will also be recognized for 25 years of membership
in KME. Other 1995-96 chapter officers: Kimberly Doll, vice president;
Nicholas Gross, secretary/treasurer; Sr. Marcella Wallowicz, corresponding
secretary/faculty sponsor.

PA Mu Chapter President — Colleen Connors
Saint Francis College, Loretto 23 actives

The highlight of the fall semester was the poster session for senior
seminar projects. Posters, available on Thursday, December 7, 1995, were
viewed by faculty and students from across campus. The topics included
"The Analysis of a Continuing Education Student Survey," "The Space
Shuttle Challenger," "Technologyin the Mathematics Classroom," "Driv
ing Record," "Ordinary and Symmetric Derivatives," "The Analysis of Con
clusions Drawn by the Authors of the Bell Curve," "A Look at Two Popular
Compression/Decompression Algorithms," "Projectile Motion," and 'The
Tacoma Narrows Disaster." The Department of Chemistry, Mathematics,
and Physical Science has created a newsletter entitled CHEMAPS (the
CHEmistry, MAthematics and Physical Science newsletter). The first is
sue was published in the fall of '95. This newsletter gives an update of
SFC students, Department News, The KME Honor Society, Department
Awards, and any special announcements. A KME update is also given in
the Department Home Page on the Internet system. Other 1995-96 chapter
officers: Jennifer Ropp, vice president; Richard Roth, secretary; Heather
Barnick, treasurer; Peter Skoner, corresponding secretary; Adrian Baylock,
faculty sponsor.

TJV Delta Chapter President — Lori George
Carson-NewmanCollege, JeffersonCity 14 actives

Chapter activities included a fall picnic and also a Christmas party.
Other 1995-96 chapter officers: Alexander J. Mutterspaugh, vice presi
dent; John Tarwater, secretary; Amy S. Smith, treasurer; Catherine Kong,
corresponding secretary/faculty sponsor.

TX Iota Chapter President — David Gregory Warden
McMurry University, Abilene

Other 1995-96 chapter officers: Kory D. Okerstrom, vice president;
Karen Chronister, secretary; Dianne Dulin, corresponding secretary; Bill J.
Dulin, faculty sponsor.

TX Kappa Chapter President — Mary Cook
University of Mary Hardin-Baylor, Belton 6 actives, 1 associate

Other 1995-96 chapter officers: Lisa Hitt, vice president; Riki Perkins,
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secretary; Katharine Eversoll, treasurer; Peter H. Chen, corresponding sec
retary; Maxwell M. Hart, faculty sponsor.

VA Alpha Chapter President — Debra Marks
Virginia State University, Petersburg

The Virginia Alpha chapter of Kappa Mu Epsilon, in conjunction with
the Walter E. Johnson Mathematics Club and the Student Chapter of the
Mathematics Association of America presented an "Afternoon of Papers"
on November 1, 1995. Papers were presented by Dr. Christopher Barat,
professor of mathematics at Virginia State University and Mr. Romon
Williams, graduate student and former vice-president of Kappa Mu Ep
silon, Virginia Alpha chapter. Dr. Barat presented a paper entitled "The
History of Mathematics," highlighting the course that he is presently teach
ing on that subject. Mr. Williams presented a paper entitled "Laser Doppler
Anemometry Measurements of a Pulsatile Flow Within a Pediatric Left
Ventricular Assist Device," which described the research that he performed
this past summer at Pennsylvania State University. These presentations
were open for faculty, students, and the general public. Other 1995-96
chapter officers: Omar Khan, vice president; Barbara Montgomery, secre
tary; Emma B. Smith, treasurer; Joycelyn F. Josey-Harris, corresponding
secretary; Azzala Owens, faculty sponsor.

WI Beta Chapter President — Kathleen Freese
Univenity of Wisconsin—River Falls, River Falls 15 actives, 12 associates

The chapter held meetings every other Monday at 3:20 p.m. Addi
tional activities included a picnic, a bake sale, and a senior send-off party.
Other 1995-96 chapter officers: Stacie O'Connor, vice president; Catherine
Bernhardt, secretary; Debra Robinson, treasurer; Robert Coffman, corre
sponding secretary.

WI Gamma Chapter President — Steve Wall
University of Wisconsin—Eau Claire, Eau Claire 20 actives, 10 associates

Other 1995-96 chapter officers: Kady Hickman, vice president; Brenda
Bychinski, secretary; Mike Lockwood, treasurer; Marc Goulet, correspond
ing secretary/faculty sponsor.

Top Ten

Most current consecutive appearances in KME News: 1. Iowa Alpha,
49; 2. Kansas Alpha, 47; 3. Missouri Epsilon, 37; 4. Nebraska Alpha, 35; 5.
Maryland Delta, 26; 6. Pennsylvania Kappa, 23; 7. Oklahoma Alpha, 20;
8. Iowa Delta, 18; T9. Michigan Beta and Missouri Iota, 17.
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Announcement of the Thirty-First Biennial

Convention of Kappa Mu Epsilon

The Thirty-First Biennial Convention of Kappa Mu Epsilon will be
hosted by the three chapters Missouri Alpha, Missouri Theta, and Missouri
Kappa in Springfield, Missouri. The convention will take place April 3-5,
1997. Each attending chapter will receive the usual travel expense reim
bursement from the national funds as described in Article VI, Section 2, of
the Kappa Mu Epsilon Constitution.

A significant feature of our national convention will be the presentation
of papers by student members of Kappa Mu Epsilon. The mathematical
topic selected by each student speaker should be of interest to the author
and of such scope that it can be given adequate treatment in a timed
oral presentation. Student talks to be judged at the convention will be
chosen prior to the convention by the Selection Committee on the basis of
submitted written papers. At the convention, the Awards Committee will
judge the selected talks on both content and presentation. The rankings
of both the Selection and Awards Committees will determine the top four
papers.

Who may submit a paper?

Any undergraduate or graduate student member of Kappa Mu Epsilon
may submit a paper for consideration as a talk at the national convention.
A paper may be co-authored. If selected for presentation at the convention,
the paper must be presented by one (or more) of the authors.

Presentation topics

Papers submitted for presentation at the convention should discuss
material understandable by undergraduates who have completed only dif
ferential and integral calculus. The Selection Committee will favor papers
that satisfy this criterion and which can be presented with reasonable com
pleteness within the time allotted. Papers may be original research by the
student(s) or exposition of interesting but not widely known results.

Presentation time limits

Papers presented at the convention should take between 15 minutes
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and 25 minutes. Papers should be designed with these time limits in mind.

How to prepare a paper

The paper should be written in the standard form of a term paper.
It should be written much as it will be presented. A long paper (such
as an honors thesis) must not be submitted with the idea that it will be
shortened at presentation time. Appropriate references and a bibliography
are expected. Any special visual aids that the host chapter will need to
provide (such as a computer and overhead projection system) should be
clearly indicated at the end of the paper.

The first page of the paper must be a "cover sheet" giving the following
information: (1) title, (2) author or authors (these namesshould not appear
elsewhere in the paper), (3) student status (undergraduate or graduate),
(4) permanent and school addresses and phone numbers, (5) name of the
local KME chapter and school, (6) signed statement giving approval for
considerationof the paper for publication in The Pentagon (or a statement
about submissionfor publication elsewhere) and (7) a signed statement of
the chapter's Corresponding Secretary attesting to the author's membership
in Kappa Mu Epsilon.

How to submit a paper

Five copies of the paper, with a description of any charts, models,
or other visual aids that will be used during the presentation, must be
submitted. The cover sheet need only be attached to one of the five copies.
The five copies of the paper are due by February 4, 1997. They should be
sent to:

Dr. Patrick Costello, KME President-Elect
Dept. of Math, Stat, CSC
Eastern Kentucky University
Richmond, KY 40475-3133

Selection of papers for presentation

A Selection Committee will review all papers submitted by undergrad
uate students and will choose approximately fifteen papers for presenta
tion and judging at the convention. Graduate students and undergraduate
students whose papers are not selected for judging will be offered the op
portunity to present their papers at a parallel session of talks during the
convention. The President-Elect will notify all authors of the status of their
papers after the Selection Committee has completed its deliberations.
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Criteria used by the Selection and Awards Committees

Each paper willbe judgedon (1) topicoriginality, (2) appropriateness
to the meeting and audience, (3) organization, (4) depth and significance
of the content, and (5) understanding of the material. Each presentation
will be judgedon (1) styleof presentation, (2) maintenance of interest, (3)
use of audio-visual materials (if applicable), (4) enthusiasm for the topic,
(5) overall effect, and (6) adherence to the time limits.

Prizes

All authors of papers presented at the convention will be given two-
year extensions of their subscription to The Pentagon. Authors of the four
best papers presented by undergraduates, as decided by the Selection and
Awards Committees, will each receive a cash prize of $100.

Publication

All papers submitted to the convention are generally considered as
submitted for publication in The Pentagon. Unless published elsewhere,
prize-winning papers will be published in The Pentagon after any necessary
revisions have been completed (see page 2 of The Pentagon for further
information). All other papers will be considered for publication. The
Editor of The Pentagon will schedule a brief meeting with each author
during the convention to review their manuscript.

Has Your Subscription Expired?

Your Pentagon subscription expires with the volume and number that
appears in the upper right corner of your address label (see back cover).
Since this issue is Volume 55 Number 2, if the code 55-2 appears on your
label then THIS IS YOUR LAST ISSUE!

To renew, pleasesend your check —just $10 for four more issues (do
mestic individuals only; see page 2 for rates for libraries and foreign sub-
sciptions) — together with your name and address and a copy of your old
address label to:

The Pentagon Business Manager
Division of Mathematics and Computer Science

Emporia State University
Emporia, KS 66801 USA

Please renew promptly to avoid gaps in your journal collection.
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Kappa Mu Epsilon National Officers

Arnold D. Hammel President

Department of Mathematics
Central Michigan University, Mt. Pleasant, Michigan 48859

a.hammel@cmich.edu

Patrick J. Costello President-Elect

Department of Mathematics, Statistics and Computer Science
Eastern Kentucky University, Richmond, Kentucky 40475

matcostello@acs.eku.edu

Waldemar Weber Secretary
Department of Mathematics and Statistics

Bowling Green State University, Bowling Green, Ohio 43403
kme-nsec@mailserver.bgsu .edu

A. Allan Riveland Treasurer
Department of Mathematics and Statistics

Washburn University, Topeka, Kansas 66621
zzrive@acc.wuacc.edu

Mary S. Elick Historian
Department of Mathematics

Missouri Southern State College, Joplin, Missouri 64801
elick@vm.mssc.edu

Kappa Mu Epsilon, Mathematics Honor Society, was founded in 1931. The
object of the Society is fivefold: to further the interests of mathematics
in those schools which place their primary emphasis on the undergraduate
program; to help the undergraduate realize the important role that mathe
matics has played in the development of western civilization; to develop an
appreciation of the power and beauty possessed by mathematics due to its
demands for logical and rigorous modes of thought; to provide a Society for
the recognition of outstanding achievement in the study of mathematics at
the undergraduate level; and to disseminate the knowledge of mathematics
and familiarize the members with the advances being made in mathemat
ics. The official journal of the Society, The Pentagon, is designed to assist
in achieving these objectives as well as to aid in establishing fraternal ties
between the Chapters.
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Active Chapters of Kappa Mu Epsilon
Listed by date ofinstallation.

Chapter

OK Alpha
IA Alpha
KS Alpha
MO Alpha
MS Alpha
MS Beta

NE Alpha
KS Beta

NM Alpha
IL Beta

AL Beta

AL Gamma

OH Alpha
MI Alpha
MO Beta

TX Alpha
TXBeta

KS Gamma

IABeta

TN Alpha
NY Alpha
MI Beta

NJ Beta

IL Delta

KS Delta

MO Gamma

TX Gamma

WI Alpha
OH Gamma

CO Alpha
MO Epsilon
MS Gamma

IN Alpha
PA Alpha
IN Beta

KS Epsilon
PA Beta

VA Alpha
IN Gamma

CA Gamma

TNBeta

PA Gamma

VA Beta

NEBeta

Location Installation Date

Northeastern Oklahoma State University, Tahlequah 18 April 1931
University of Northern Iowa, Cedar Falls 27 May 1931

Pittsburg State University, Pittsburg 30 Jan 1932
Southwest Missouri State Univenity, Springfield 20 May 1932

Mississippi University for Women, Columbus 30 May 1932
Mississippi State University, Mississippi State 14 Dec 1932

Wayne State College, Wayne 17 Jan 1933
Emporia State Univenity, Emporia 12 May 1934

University of New Mexico, Albuquerque 28 March 1935
Eastern Illinois University, Charleston 11 April 1935

Univenity of North Alabama, Florence 20 May 1935
University of Montevallo, Montevallo 24 April 1937

Bowling Green State University, Bowling Green 24 April 1937
Albion College, Albion 29 May 1937

Central Missouri State Univenity, Warrensburg 10 June 1938
Texas Tech Univenity, Lubbock 10 May 1940

Southern Methodist University, Dallas 15 May 1940
Benedictine College, Atchison 26 May 1940
Drake University, Dea Moines 27 May 1940

Tennessee Technological University, CookevQle 5 June 1941
Ho&tra Univenity, Hempstead 4 April 1942

Central Michigan University, Mount Pleasant 25 April 1942
Montclair State Univenity, Upper Montdair 21 April 1944

College of St. Francis, Joltet 21 May 1945
Washburn University, Topeka 29 March 1947

William Jewell College, Liberty 7 May 1947
Texas Woman's University, Denton 7 May 1947

Mount Mary College, Milwaukee 11 May 1947
Baldwin-Wallace College, Berea 6 June 1947

Colorado State University, Fort Collins 16 May 1948
Central Methodist College, Fayette 18 May 1949

University of Southern Mississippi, Hattiesburg 21 May 1949
Manchester College, North Manchester 16 May 1950
Westminster College, New Wilmington 17 May 1950

Butler University, Indianapolis 16 May 1952
Fort Hays State University, Hays 6 Dec 1952
LaSalle University, Philadelphia 19 May 1953

.Virginia State Univenity, Petersburg 29 Jan 1955
Anderson University, Anderson 5 April 1957

California Polytechnic State Univenity, San Luis Obispo 23 May 1958
Eaat Tennessee State University, Johnson City 22 May 1959

Waynesburg College, Waynesburg 23 May 1959
Radford University, Radford 12 Nov 1959

University of Nebraska—Kearney, Kearney 11 Dec 1959
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IN Delta University of Evansville, Evansville 27 May 1960
OH Epsilon Marietta College, Marietta 29 Oct 1960
MO Zeta University of Missouri—Rolla, Rolla 19 May 1961
NE Gamma Chadron State College, Chadron 19 May 1962
MD Alpha College of Notre Dame of Maryland, Baltimore 22 May 1963
IL Epsilon North Park College, Chicago 22 May 1963
OK Beta University of Tulsa, Tulsa 3 May 1964
CA Delta California State Polytechnic University, Pomona 5 Nov 1964
PA Delta Marywood College, Scranton 8 Nov 1964
PA Epsilon Kutztown Univenity of Pennsylvania, Kutztown 3 April 1965
AL Epsilon Huntingdon College, Montgomery 15 April 1965
PA Zeta Indiana University of Pennsylvania, Indiana 6 May 1965
AR Alpha Arkansas State University, State University 21 May 1965
TN Gamma Union University, Jackson 24 May 1965
WI Beta Univeraity of Wisconsin—River Falls, River Falls 25 May 1965
IA Gamma Momingaide College, Sioux City 25 May 1965
MD Beta Western Maryland College, Westminster 30 May 1965
IL Zeta Rosary College, River Forest 26 Feb 1967
SC Beta South Carolina State College, Orangeburg 6 May 1867
PA Eta Grove City College, Grove City 13 May 1967
NY Eta Niagara University, Niagara University 18 May 1968
MA Alpha Assumption College, Worcester 19 Nov 1968
MO Eta Northeast Missouri State University, KirksviUe 7 Dec 1968
IL Eta Western Illinois University, Macomb 9 May 1969
OH Zeta Muskingum College, New Concord 17 May 1969
PA Theta Susquehanna University, Selinsgrove 26 May 1969
PA Iota Shippensburg Universityof Pennsylvania,Shippensburg 1 Nov 1969
MS Delta William Carey College, Hattiesburg 17 Dec 1970
MO Theta Evangel College, Springfield 12 Jan 1971
PA Kappa Holy Family College, Philadelphia 23 Jan 1971
CO Beta Colorado School of Mines, Golden 4 March 1971
KY Alpha Eastern Kentucky University, Richmond 27 March 1971
TN Delta Carson-Newman College, Jefferson City 15 May 1971
NY Iota Wagner College, Staten Island 19 May 1971
SC Gamma Winthrop University, Rock Hill 3 Nov 1972
IA Delta Wartburg College, Waverly 6 April 1973
PA Lambda Bloomsburg Univeraityof Pennsylvania, Bloomsburg 17 Oct 1973
OK Gamma Southwestern OklahomaState University,Weatherford 1 May 1973
NY Kappa PaceUniversity, New York 24 April 1974
TX Eta Hardin-SimmonsUniversity, Abilene 3 May 1975
MO Iota Missouri Southern State College,Joplin 8 May 1975
GA Alpha West Georgia College, Carrollton 21 May 1975
WV Alpha BethanyCollege, Bethany 21 May 1975
FL Beta FloridaSouthern College,Lakeland 31 Oct 1976
WI Gamma University of Wisconsin—Eau Claire, Eau Claire 4 Feb 1978
MD Delta Frostburg State University, Frostburg 17 Sept 1978
IL Theta Illinois Benedictine College, Lisle 18 May 1979
PA Mu St. Francis College, Loretto 14 Sept 1979
AL Zeta Birmingham-Southern College, Birmingham 18 Feb1981
CT Beta EasternConnecticut State University, Willimantic 2 May 1981
NY Lambda C.W. PostCampusofLongIslandUniversity, Brookville 2 May 1983
MO Kappa Drury College, Springfield 30 Nov 1984
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CO Gamma Fort Lewis College, Durango 29 March 1985
NE Delta Nebraska Wesleyan University, Lincoln 18 April 1986
TX Iota McMurry University, Abilene 25 April 1987
PA Nu Ursinus College, Collegeville 28 April 1987
VA Gamma Liberty University, Lynchburg 30 April 1987
NY Mu St. Thomas Aquinas College, Sparkill 14 May 1987
OH Eta Ohio Northern University, Ada 15 Dec 1987
OK Delta Oral Roberts University, Tulsa 10 April 1990
CO Delta Mesa State College, Grand Junction 27 April 1990
NC Gamma Elon College, Elon College 3 May 1990
PA Xi Cedar Crest College, Allentown 30 Oct 1990
MO Lambda Missouri Western State College, St. Joseph 10 Feb 1991
TX Kappa University of Mary Hardin-Baylor, Belton 21 Feb 1991
SC Delta Erskine College, Due West 28 April 1991
SD Alpha Northern State University, Aberdeen 3 May 1992
NY Nu Hartwick College, Oneonta 14 May 1992
NH Alpha Keene State College, Keene 16 Feb 1993
LA Gamma Northwestern State University, Natchitoches 24 March 1993
KY Beta Cumberland College, Williamsburg 3 May 1993
MS Epsilon Delta State University, Cleveland 19 Nov 1994

Starting a KME Chapter

Complete information on starting a chapter of KME may be obtained
from Arnold Hammel, National President (see address on p. 77). Some
information is given below.

An organized group of at least ten members may petition through a
faculty member for a chapter. These members may be either faculty or
students; student members must meet certain coursework and g.p.a. re
quirements.

The financial obligation of new chapters to the national organization
includes the cost of the chapter's charter and crest (approximately $50)
and the expenses of the installing officer. The individual membership fee
to the national organizationis $20per memberand is paid just once, at that
individual's initiation. Much of this $20 is returned to the new members in
the form of membership certificates and cards, keypin jewelry, a two-year
subscription to the society's journal, etc. Local chapters are allowed to
collect semester or yearly dues as well.

The petition itself, which is the formal application for the establish
ment of a chapter, requests information about the petitioning group, the
academic qualifications ofthe eligible petitioning students, the mathematics
faculty, mathematics course offerings and other facts about the institution.
It also requests evidence offaculty andadministrative approval andsupport
of the petition. Petitions are subject to approval by the National Council
and ratification by the current chapters.


