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Error Correction for Basic Codes

Karen S. Brown, student
Iowa Alpha

University of Northern Iowa
Cedar Falls, Iowa 50613

Presented at the 1993 National Convention and
awarded FOURTH PLACE by the Awards Committee.

In many areas of science and technology, it becomes necessary to
transmit information from one source to another, as in the transfer of
data from one computer to another. Such was the case with the
photographs taken of Mars by Mariner 6. In order to transmit
information, it must first be converted into some type of code, which can
easily be decoded by the receiver. Upon transmission, however, the code
may possibly be modified due to human or random error. Usually, if an
error occurs a code can be re-transmitted, and the error corrected.
However, many times messages cannot be sent again. Therefore, it is
necessary to determine a process for detecting and correcting errors in a
code. In 1950, Robert W. Hamming published a paper on error-correction
for linear codes, which pioneered the further study of coding theory. The
purpose of this paper will be to study the general properties of codes and
then proceed to a discussion of simple linear codes and their
corresponding methods of error-correction.

This paper will focus on binary block codes, in which all information
is transmitted as a string of zeros and ones. A codeword is such a string
of n 0’s and 1’s, which consists of ¥ (k <n) message digits and r
(r=n—k) parity check digits. The total number of possible
combinations of strings of length n using only 0’s and 1’s as digits is 2.
For example, the total number of strings of length 5 is 25, or 32. Of these
32 strings, not all are codewords, but only a certain few. Suppose that
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the previous string contained only 3 message digits and 2 parity check
digits. Since the parity check digits are determined by the message digits,
the actual number of codewords will only be 23, or 8. Hence, not all
possible strings of length 5 are codewords, and therefore a method of
error-detection must be found that will determine actual codewords from
strings of digits. It must also be noted that binary coding is defined over
addition modulo 2. Hence, 1 + 1 = 0.

Before looking at specific types of codes, a general overview of basic
properties of codes and error correction must be reviewed. The Hamming
distance — named after R. W. Hamming — is defined as the number of
digits that are different between two strings. For example, if d(z,y) is the
symbol denoting the Hamming distance between z and y, then d(011010,
000110) = 3, because the second, third and fourth digits differ. In the
first string, these digits are 1, 1 and 0 respectively; in the second string,
they are 0, 0 and 1 respectively. The first, fifth and sixth digits in both
sets do not differ; they are 0, 1, and 0 respectively in both strings.
Therefore, since three digits differ, the Hamming distance is three. This
can be rewritten as d(z,y)= Y, I'_|2;~y;| for all strings z and y of
length n. This is obvious, because the only time the sum is incremented
is if the digits between z and y differ.

The Hamming distance is in fact a metric, in that it satisfies the
three basic properties of metrics, as I shall now show.

Property 1: d(z,y) is greater than zero for all z,y and if d(z,y) =0,
then z = y. Since d(z,y) is defined in terms of the summation of absolute
values, then by properties of absolute value d(z,y) is always positive.
Also, d(z,y) = 0 if and only if z; = y; for all i. This is only true if z = y.

Property 2: d(z,y)=d(y,z) for all z and y. Now, d(z,y) =

?—1lz;—y;|. By properties of absolute values, this equals
2= 1ly;—z;|. Therefore, by the definition of distance, this becomes
d(y,z). So, d(z,y) = d(y, ).

Property 3: d(z,2) <d(z,y)+d(y,z). By use of the triangle
inequality for real numbers and properties of absolute value, we have

n n
d(z,2) = 3 lzi=%| = ) |lzi—vity—zl

i=1 1=1
n n
< Y lz—yl + ) lyi—2| = dzy) +d(y,z2) .
i=1 i=1

Therefore, since d satisfies all properties of metrics, the Hamming
distance is a metric.



Spring 1995 5

Now, in order to detect an error, the error must convert a codeword
to a non-codeword. Therefore, there must be a minimum number of
digits that are different between each individual codeword. This is called
the minimum Hamming distance, or d. If d =1, then code words only
differ in one digit, so errors would be impossible to detect. For example,
suppose that the digit string 001010 was sent and the string 001011 was
received. If d =1, then 001011 would also be a codeword and the error
would not be discovered. The greatest number of errors that can be
detected in a code is d — 1. This is obvious because if there are d number
of errors in a code word, then the original word would be received as a
different code word.

Detecting errors and correcting them are two very different matters.
Although d —1 errors can be detected, even fewer can be corrected. For
example, using the code with words 000000 and 111111, d = 6 since the
minimum Hamming distance between the two “words” is 6. Therefore,
up to 5 errors can be detected. However, if the string 010111 is
transmitted, errors can be detected but cannot be corrected, because it
cannot be determined which of the code words was meant to be sent. In
most cases, though, it can be assumed that since d(000000, 010111) = 4
and d(111111, 010111) = 2, the string to be sent was 111111.

This “error-correcting” method is called the nearest-neighbor rule.
Using this rule, all errors which are in fewer than d/2 digits can be
corrected. If fewer than d/2 errors are made, then there is exactly one
codeword to which the incorrect word is closest and to which it can
therefore be corrected. If there are d/2 or more errors, many code words
are of equal distance from the incorrect word. Therefore, the string
received cannot be corrected. Using the example above, 010111 has less
than d/2 errors that are detected; it can be corrected to 111111. Suppose
instead that 010101 was received. This string has d/2 or 3 detectable
errors. It is clear that this cannot be corrected, since it is of equal
distance from both 000000 and 111111. The number of errors which can
be corrected then from the nearest neighbor rule is [(d/2) — 1] where [z]
is the least integer greater than or equal to z. From this principle comes
the following result.

Theorem 1. Suppose that d is the minimum Hamming distance between
two codewords in the binary code C. Then no error-detecting rule can
detect more than d—1 errors and no error-correcting rule can correct
more than [(d/2) - 1] errors.

Proof. From the discussion above, it is clear that no error-detecting rule
can detect more than d—1 errors. However, the error-correction
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conclusion is a bit more difficult to explain. First, the following lemma
must be proved.

Lemma. Let C be a binary code with minimum Hamming distance d. If
o and B are codewords such that d(a,8) = d, then there exists a digit
string 7y such that d(a,v) <[d/2] and d(8,v) <[d/2].

Proof. Without loss of generality, assume that o and g differ in the first
d digits. Now let v be the string that matches « in its first [d/2] digits
and matches A in the next d—[d/2] digits. Now, d(a,7)=
d—[d/2] <[d/2]. Also, d(B,7)=[d/2]. Therefore, there always exists a
7 such that d(a,7) <[d/2] and d(8,7) <[d/2].

The second part of the theorem can now be proved. Suppose that a
method of error-correction exists which can correct [d/2] errors. Now let
a and S8 be two codewords where d(a, 8) = d. From the previous lemma,
there exists a ¥ where d(a,7) <{d/2] and d(8,7) < [d/2]. Now, without
loss of generality, suppose « is sent and v is received. This word could be
corrected to either o or f. Since this is not permitted, the error-
correction method is not valid, and therefore any error-correction method
can correct at most [(d/2) — 1] errors. Q.E.D.

Now that the groundwork has been established, the paper can
proceed to the discussion of different types of codes and their
corresponding error-correction methods.

It has already been stated that the parity check digits are determined
by the message digits; therefore there must be some rule for ascertaining
what these will be. This is known as the encoding problem. Ideally, an
encoding technique should send as many message digits as possible, while
subsequently limiting the number of parity check digits. The information
rate of a code is calculated by dividing the number of message digits by
the total number of digits in the string. Obviously, a higher information
rate is desired.

The first type of codes to be studied is repetition codes. The parity
check digits are simply the message digits repeated a pre-determined
number of times. For example, when £ =1 and n =5, the two possible
codewords would be 00000 and 11111. These codes could generally be
easily corrected using the nearest neighbor rule. However, repetition codes
have a very low information rate which will never be greater than one-
half.

A type of code which has an extremely high information rate is the
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single-parity-check code. To find the one parity check digit, the message
digit string is added modulo 2, and the parity check digit is given the
resulting sum. Hence, the sum of the digits in every codeword is 0. (This
can also be done having the sum always equal 1.) Because of this trait,
one error is extremely easy to detect, by simply adding the digits in the
string. If there are two or any even number of errors, though, an error
would not be detected, and the string might pass for an intentionally
transmitted word. Moreover, it would be impossible to find the error, as
all of the digits have an equal probability of error. Despite the high
information rate, the single-parity-check code has many disadvantages.

The compromising solution is to find a method of encoding which
has both a moderate information rate and reasonable level of
correctability. Suppose a message digit string of length k is encoded by
multiplying it by a matrix which consists of the kx k identity matrix
augmented by a kx(n—k) matrix to generate parity check digits. This
maitrix will be known as the generator matrix M. For example, if 010 is a
string of message digits and M is

1 00 11 0
010 0 1 1|,
00 1 1 0 1
the codeword received would be
1 0 0 1 1 0
[010]010011=[010011].
00 1 1 0 1

Obviously, when k message digits are multiplied by a generator matrix,
the first k letters of the resulting string are the message digits, because of
the presence of the identity matrix in the generator matrix. Hence, to
determine the original string, only the parity check digits need to be
dropped. However, the parity check digits are extremely useful in
locating and correcting errors.

The generator matrix has already been shown to be [ I, G ] with G
as a kx(n—k) matrix. Now let GT be the transpose of the matrix G.
Also, let H be called the parity check matrix where H is the transpose of
G augmented by the (n—k) identity matrix, or [ GT I(n_ k) ]. In the
previous example, the transpose of G is

1 0 1
GT=|11 0
0 1 1

which makes the parity check matrix
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H =

[— 3
— @
L — ]
[— I —
[— I —)
(ol — 2 —]

From this comes the following;:

Definition. A code is said to be a linear code (or a “group code”) if and
only if its codewords are the set of vectors C which satisfy an equation of
the form He™ = 0.

In fact, the repetition codes and single-parity-check codes are linear
codes with corresponding parity check matrices. For the repetition code
of length n, H=[11...1], where 1 is repeated an n number of times. The
single-parity-check codes’ parity check matrix is the kxn matrix
consisting of a column of 1’s augmented by a k x k identity matrix. For
example, if n =4,

1 1 0 0
H=|1 01 0
1 0 0 1

The parity check matrix can be used to identify codewords, and therefore
determine if an error has been made.

Theorem 2. In a linear code, a block a=a,a,...a; is encoded as
X = 2,2,...Z, if and only if a; = z; for all i less than or equal to k and
Hx™ = 0 (where 0 is the row matrix of all zeros).

Proof. By the definition of encoding, a is multiplied by the generator
matrix to get x, so, as explained above, the first £ digits of x will be the
same as the first k digits of a. Therefore, a; = z; for all i less than or
equal to k. Secondly, H times the transpose of x, or Hx', is equal to
H(a[I; G])*, by definition. Then, by properties of transpose of matrices,
this equals H[I, G]Ta™. Now, by substituting the definition of H and
further properties of transposes, we obtain

L
HXT = [GT I(fl—k)] G_r aT.

Since [GT k)] isa(n—k)x(k+(n—k))=(n-k)xn matrix and the
second matrix in the product is a (k4 (» — k) x k = n x k matrix, the two
matrices can be multiplied. Since both contain an identity matrix, it can
easily be proven that their product results in (GT+ GT). Therefore,
HxT = (GT + GT)a”. But, (GT+GT) is equal to 0, since the addition is
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modulo 2. Hence, Hx" = 0a’ = 0.

Conversely, suppose that a; = z; for all i less than or equal to k and
Hx" = 0. Suppose further that a is encoded as y = y,y,...y,- Then as
shown above, a; =y; for all i less than or equal to k and, further,
Hy” = 0. But Hx™ = 0 is also true. It follows that x = y. Q.E.D.

Therefore, it has been proved that in order for a string of digits x to
be a codeword, HXT must equal 0. Now the syndrome is defined as
8T = Hr", where r is a word that has been received. Therefore, x is a
codeword if and only if the syndrome of x is 0. To illustrate this, we turn
to the previous example.

Case 1: Suppose that the string of digits received using the given

generator matrix is 000101. This is x. Then the transpose xT is

-
|
[l — R — A — I —

and when x" is multiplied by H, the syndrome is

HXT

i

S =
— O
[ —
o0 -
[— 2 —]
-0 o

L=~ = = —]

I

=

e -

Since this is not equal to 0, then 000101 must not be a codeword.

Case 2: Now take x = [001101]. The transpose of x is

0
0
1
1
0
1

and when xT is multiplied by H, the syndrome is 0, so the string is
actually a codeword:
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S i i
[l o ]
L —
(= — ]
[— 2 o~
L — N~
[k — I = ]
I
oo

In fact, the set S of strings of length n is actually an Abelian group
with respect to addition, and the set C of codewords is a subgroup of
that group.

Proof (that the set of strings of length n is an Abelian group). (1)
Closure. Let a, b € S. Since addition is defined over modulo 2, a+4-b is
also an element of S. (2) Associativity. Since addition is associative in
modulo 2, then associativity holds over the elements of S. (3) Identity.
The identity will be the string of 0’s of length n, which is an element of
S. (4) Inverse. In modulo 2 addition, each element will be the inverse of
itself. Therefore S is a group. (5) Commutativity (Abelian Group). Since
addition is commutative in modulo 2, S is also commutative. Hence, S is
an Abelian group. Q.E.D.

Proof (that the codewords are a subgroup). The set C of the
codewords is a subset of S. Now, C is associative since S is associative.
Also, the identity element is contained in C. Since each element of C is
its own inverse, it suffices to show that C is closed. Let a, b € C. Then,
as a and b are codewords, HaT = 0 and HbT = 0. Thus 0 = Ha” — HbT
= H(a™ — bT) = H(a—b)™. By definition, (a—b) € C. Since the subgroup
is defined over addition modulo 2, (a—b) = (a+b). Hence, (a+b) € C.
Therefore, C is a subgroup of S. Q.E.D.

Now, the following theorem can be easily explained and proved.

Theorem 3. Suppose that the columns of the parity check matrix H are
all nonzero and all distinct. Suppose that a codeword y is transmitted
and a word x is received. If x differs from y only on the i-th digit, then
HxT is the i-th column of H.

Proof. Since y is a codeword, it follows that Hy” = 0. Since x differs
from y, there is a string e such that x = y +e (every digit in x whose
corresponding digit is different in y has a one in that digit in e and every
digit that is the same contains a 0). Then Hx' = H(y +¢)* = H(y" +eT)
= Hy" + He™ = 0+ He” = He®. Therefore, if exactly one error is made,
then, when the string is multiplied by the parity check matrix, the result
must be one of the columns of the matrix. The number of the column is
the digit which is incorrect in the string. Q.E.D.
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Using “Case 1” of the example, since the result was [(ll)], then that

matches with the third column of the matrix. Therefore, the third digit
of the original string is incorrect and can be corrected to 001101, which,
as shown by “Case 2,” is indeed a codeword.

If, on the other hand, Hx” is not one of the i-th columns of H, then
more than one error has occurred and the string cannot be corrected
using this code. Again using the example, suppose instead of receiving
001101, x = 000111 is received. This obviously has two errors. Then

0
1 011 0 0 g 1
Ex* =1 1 0 0 1 0 L= 1
0 1.1 0 0 1 1 1

|1

Since E] is not one of the columns of H, then 000111 has more than two
errors and cannot be corrected.

Using the given generator matrix for codewords of length three with
three parity digits added, the minimum Hamming distance is also three.
By Theorem 1, this means that up to [(d/2)—1], or one digit, can be
corrected. Hence, the example satisfies Theorem 1 also. The information
rate for the example used is 1/2, since the six digit string only had 3
message digits; however, this number will vary depending upon the size
of the generator matrix used.

There are several different types of codes and error-correction
methods which are much more complex and efficient than the ones
presented in this paper; only basic studies have been discussed. New
breakthroughs are being found about the relationship error-correcting
methods have with genetic coding, and coding is being used by NASA to
aid in space exploration. Coding and error-correction are just a few of the
relatively “new” areas of mathematics which are proving to be beneficial
in many fields.

Acknowledgements. 1 would like to thank my KME advisor, Professor
Tim Hardy, UNI’s KME faculty sponsor, Professor John Cross, and
others for their assistance in preparing this paper for presentation.
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We have all experienced the frustration of trying to go across town
at rush hour. Suppose you need to go to the airport on the other side of
the city. The problem is not that the distance to the airport is so great,
but that the roads are very congested. There is only a limited amount of
time. If you are late, the plane will leave without you. You wish they
would put in a new road to the airport since so many cars are trying to
use the routes currently available. Surely an additional route would help
everyone get to their destination on time.

Our intuition tells us that adding more routes will make the system
flow faster. Unfortunately, a new route added to a congested transporta-
tion system may or may not help traffic flow any faster. This paper will
examine a transportation system which exhibits paradoxical behavior as
well as a mechanical example presented by Cohen and Horowitz [2] to
explore the reasons why an additional route added to a congested system
may actually increase travel time for everyone.

Background.

In 1968, German operations researcher Dietrich Braess suggested that
the addition of an additional route to a congested network could lead to
an overall slowdown of the system [1]. This phenomenon, known as
“Braess’ paradox,” has applications beyond traffic flow studies. Other
applications can be found in physics, in hydraulics and in electrical
network systems.
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In general, all applications of the paradox occur on some form of a
transportation network. A transportation network is a simple, weighted
and directed graph with the following properties (see [5]):

i) exactly one vertex, the source, has no incoming edges;

ii) exactly one vertex, the sink, has no outgoing edges;

ili) the capacity of an edge is a nonnegative number; and

iv) the undirected graph obtained from the network by
ignoring the directions of the edges is connected.

In our traffic example, the time it takes to traverse each edge is not
simply tied to the distance traveled. Other factors like road condition,
number of lanes, type of road surface and number of traffic lights will
have an effect on the amount of time a car will spend on a section of
roadway. The greater the number of cars on the road, the more the
driving time will increase for each section of roadway. We can express
driving time as a function of a given number of cars using each edge on
the graph. Integer amounts are used in our route time functions. In
modeling a particular situation, these functions could be adjusted so that
the number of cars would remain an integer amount.

D

x+30 2x

x+30
2x

Figure 1.
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A Traffic Example.

We begin by adapting the simple network presented by Braess to our
airport problem as shown in Figure 1. There are two possible routes from
the source at vertex A to the sink at vertex D:

Route 1: AB, BD
Route 2: AC, CD

Travel time is expressed as a function of the number z of cars on the
edge. The edges have the following travel time functions:

AB=CD =2z
AC=BD=z+30.

Traveling alone to the airport, we could easily catch our flight. We could
travel on either route in 2(1)4+(1+30) = 2431 = 33 minutes. Unfor-
tunately, our trip must take place during rush hour. We will need to add
additional cars to the system to see what really happens when we drive
the route in heavy traffic.

Suppose 12 cars are traveling on our road system. Six cars traveling
each route will have the following travel times:

Route 1: AB + BD = 2(6) + (6+30) = 12+36 = 48 minutes
Route 2: AC + CD = (6+30) + 2(6) = 36+12 = 48 minutes.
By adding more cars to the system, our travel time has increased by
more than 45%.

Now suppose a new road BC is constructed with travel time function
z+14 as shown in Figure 2. Now we have the following routes available:

Route 1: AB, BD
Route 2: AC, CD
Route 3: AB, BC, CD .
Traveling alone on the third route, we could reach the airport in

Route 3: AB+BC+CD = 2(1) + (1+14) + 2(1) = 19 minutes!

Traveling alone, the new route would save us 14 minutes. This is a time
savings of over 42% from our previous trip alone.



16 The Pentagon

x+30 2x

x+30
2x

A
Figure 2.

While the third route saves us a great deal of time when we travel
the route alone, consider the congested system where 12 cars are enroute
to the airport. Four cars will travel on each of the routes. (We will
explain why later.) From our origin point A, the 8 cars taking routes 1
and 2 set out on AB. The four remaining cars, traveling route 3, take
edge AC. At vertex B, four of the cars from edge AB take edge BC while
the other four cars from edge AB take edge BD. The four cars traveling
edge BC on route 2 now join the four cars from route 1 to give us a total
of eight cars traveling edge CD to the airport. With the additional edge
on our graph, we now have the following travel times for each of the
routes:

Route 1: 2(8) + (4+30) = 50 minutes
Route 2: (4430) + 2(8) = 50 minutes
Route 3: 2(8) + (4+14) + 2(8) = 50 minutes.

By adding another route to the system and adding enough cars, we have
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encountered Braess’ paradox on the network. Although travel time was
greatly decreased when a single user traveled the network alone, travel
time on the expanded network was increased for everyone when the
network was congested. Instead of the new route decreasing travel time
for rush hour users, drivers now experience a 4% increase in travel time.
We can see that adding a route may not always be a good idea.

In this example, cars traveled each route in equal numbers. The basis
for this can be found in game theory. This transportation network is a
model of a non-cooperative game. This means that if a driver manages to
shorten his travel time, he does not gain time at the expense of other
drivers. It is certainly true that his decision will have an effect on other
drivers, but it will not directly cause them to lose an amount of time
equal to the time he gains. Since all drivers are aware of all routes and
the travel times associated with them, the traffic pattern will settle into
an equilibrium. No user will have any incentive to change his choice of
route (3).

The distribution of traffic in a transportation network is governed by
“Wardrop’s principles” as stated in [7]:

System Optimization “The total travel cost is a minimum.”

User Optimization “The travel cost on all origin-destination
paths joining the origin and the destination actually used
are equal, and less than those which would be experienced
by a single user on any unused OD path.”

User optimized flow on a network does not always minimize total travel
time as we have seen in this example. In fact, total travel time was
increased for all users on the congested system.

A Mechanical Example.

Cohen and Horowitz [2] describe a network of strings and springs
which exhibits paradoxical behavior similar to that found in our traffic
example. In this mechanical example as shown in Figure 3, we have a
spring suspended from a support. A second spring is suspended from the
first by a 3/8 meter length of string. Safety strings, each 1 meter long,
are suspended from the support to the top of spring 2 and from the
bottom of spring 1 to the 1/2 newton weight. In their example, springs
are assumed to have zero unstretched length and spring constant k=I.
Strings are considered to be inelastic. Initially, both safety strings are
slack. The distance from the support to the weight is 11/8 meter, as
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shown in Figure 3. When the linking string is cut, we would expect the
weight to sink. However, cutting the linking string causes the weight to
rise after the system settles to equilibrium. The distance between the
support and weight now measures 5/4 meter, as shown in Figure 4.
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We can explain this behavior by observing that in Figure 3 the
springs act in series to support the 1/2 newton weight. Each spring is
supporting 1/2 newton. When the linking string is cut and the system
settles once more into equilibrium, each of the springs in Figure 4 is
supporting half the weight, or 1/4 newton. This system is analogous to
our traffic example. Length, in their mechanical example, corresponds to
time in our traffic example. Adding weight to their mechanical example
would be the same as increasing the number of cars on our road system

(see [2])-
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The graph in Figure 5 shows how the network behavior at
equilibrium is analogous to our traffic example. Without loss of
generality, we will consider the reverse order where the linking string is
being added instead of being eliminated. Qur vertices are labeled as in
our traffic example. The system is attached to the weight at vertex A
and to the support at vertex D. The lengths of the springs are a function
of the weight w added to the system. Letting « be a constant, we can
describe the spring length where k=1 for both springs as AB = CD =
aw. Since we are given that the string is inelastic, we can let the constant
B represent the length of the safety strings and let the constant #
represent the length of the linking string. Now our routes in Figure 4 can
be represented on the graph in Figure 5 as

Route 1: AB+ BD =aw+ 4
Route 2: AC+CD=f+aw.
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D (at support)
B ow
B C
ow B
A (at weight)
Figure 5.

With the addition of the linking string, a third route is created, as in
Figure 6. Thus we will have

Route 3: AB4+BC+CD = aw+0+aw.

In their mechanical example, routes 1 and 2 have been abandoned
because the lengths AB+BC < AC and BC+CD < BD. This is consistent
with Braess behavior since the new route, BC, is used. The mechanical
example does fit the criteria for a transportation network.

In this particular example, once the system has reached equilibrium,
the weight will rise for values of # between 1/4 meter and 3/4 meter [2].
With a linking string length of 1/4 meter, the system length would be 1-
1/4 meter in both networks. The energy flow on the system plays a non-
cooperative game. As Cohen and Horowitz point out in [2], “.. at
equilibrium, the whole network has less potential energy after the string
is cut than before.”
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Conclusion.

Examples of Braess’ paradox do exist in the real world. In [1], Cohen
states, “I know of at least one real-life example. In Stuttgart they built a
new road through the area around the Schlossplatz. But traffic through
the city moved even slower than before, so they closed down the road.
Nobody has looked at it mathematically, but I wouldn’t be surprised if
this was a case of Braess’ paradox at work.” A 1977 study regarding the
addition of new and upgraded low quality (earth and gravel) roads in the
Awash province of Ethiopia turned up surprising results [4]. Road
improvements would be expected to increase efficiency; however, traffic
flow efficiency would have been sacrificed had the improvements been
made, so the best strategy was to do nothing.

Contrary to its name, Braess’ paradox is not, in fact, a paradox. As
we can see from the examples, this behavior can be explained using game
theory and physical laws. The paradoxical behavior can best be described
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as counterintuitive. While behavior of this type can be explained, it
presents unpleasant consequences for those who fail to plan for its
appearance. Steinberg [6] noted in 1988 that Braess’ paradox is about “as
likely to occur as not occur” on congested networks.

Our examination of Braess’ paradox made it clear that making
improvements to a network without regard to user behavior may lead to
an overall slowdown of the system. By following our feeling that more is
better and arbitrarily increasing network capacity, we observed an overall
decrease in efficiency. There are many places in life where following your
intuition can be fatal. Exploring Braess’ paradox is valuable in reminding
us of that fact.

Acknowledgment. 1 would like to thank Mr. Mike Adams for his encour-
agement in the preparation of this paper.
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There are two main topics that I will be discussing in this paper:
genetic algorithms and error-correcting codes. After giving some brief
descriptions and important definitions from these topics, I will move on
to how the concepts work together. Genetic algorithms are a relatively
new search technique that seemed to have a potential for finding the
minimum distance of a code. My corresponding professor, Mr. Adams,
and I tested this possibility by adapting a program written by David E.
Goldberg for our problem in coding theory.

Genetic algorithms are search algorithms based on the mechanics of
natural selection and natural genetics. A genetic algorithm is an
optimization technique which combines the idea of survival of the fittest
with a randomized information exchange. They are different than
traditional optimization methods because: they search from a population
of points, rather than a single point; they evaluate the fitness of the
element, but they do not use auxiliary knowledge; they use probabilistic
rules, and are not deterministic (Goldberg, 7).

I will begin with a discussion of the terminology associated with
genetic algorithms. It will be helpful to think of strings, or messages, in a
genetic algorithm as the chromosomes in biological systems. A string is a
finite sequence of the alphabet over which we are working. For instance,
if the alphabet is {0,1}, a string could be 01100. Chromosomes are
composed of genes in biological systems. However, when working with
artificial systems, strings are composed of features, or positions, which
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take on different values. For example, given the string above, position
two (counting from the left) has a value of 1.

A genetic algorithm is composed of a reproduction operator, a
crossover operator, and a mutation operator. These are all important
components of the process of natural selection. A genetic algorithm starts
with a randomly generated population of strings, and it generates the
successive patterns of strings. The randomly generated population is
called the initial population. It can be produced by using a coin toss,
where heads = 1 and tails = 0, to generate any number of strings of a
given length. After this point, all subsequent strings are generated by the
algorithm.

The reproduction operator is the process by which individual
messages are copied according to their fitness values. These values are
determined by a function, called the fitness function, which is positive
valued. The messages that produce higher fitness values have a higher
probability of contributing one or more offspring to the next generation.
The probability is found by dividing the fitness value of a given string by
the sum of the total population. For example, given the strings z,, Ty
z3, 4 and their fitness values: f(z,), f(zp), f(z3), Jf(z4), the
probability of z; reproducing is f(z,)/(f(z,) + f(z;) + f(z3) + f(z,))-
This is an artificial simulation of natural selection.

The crossover operator is a process in which members of the newly
reproduced messages in the “mating pool” are “mated” at random. Two
new strings are created by randomly choosing a position along the two
messages and swapping all the characters between that position and the
ends of the messages, including the last position (see Figure 1). Crossover
allows the messages with the highest fitness values to combine
information and possibly produce strings with higher fitness values.

Before After
String 1 AAA|AARA New string 1 AAABBRB

R R

String 2 BBB |BBBB New string 2 BBBAAAA

crossing site

Figure 1.
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The mutation operator is the final step, providing occasional random
alteration of the value of a string position. This alteration has a small
probability of natural occurrence. Mutation is important because the
reproduction and crossover search “may become overzealous and lose
some potentially useful genetic material® (Goldberg, 14), or messages in
the space. By introducing a random factor, we ensure that the search will
not fixate solely on one part of the set of strings.

The nature of genetic algorithms makes them useful in problems
that require searching through large sets of strings. A problem that arises
in coding theory is that of finding minimum weight vectors in a code,
and we decided to study the effectiveness of genetic algorithms for this
purpose (as of this date, we have not found any articles that have been
published which link genetic algorithms to finding minimum weight
vectors in a code). We used a genetic algorithm designed for Turbo
Pascal by David E. Goldberg. The original program was modified by me
to meet our needs.

Error-correcting codes originated in response to problems in the
reliable communication of digitally encoded information. Their objective
is to “... add redundancy so that the original messages can be correctly
decoded” (Pless, 6). They are used in many aspects of everyday life.
Some of these uses include communications channels, compact discs, and
bar code scanners. I will next give some definitions involving error-
correcting codes.

A binary linear code can be defined as the set of all linear
combinations of k independent vectors in V, where V is the space of all
n-tuples of 0’s and 1’s, with addition of vectors done componentwise mod
2. A linear code C is called cyclic if whenever the codeword
z; =(ag,ay,..48, _q) is in C, then z, = (a, _,,90,0y,..,8, _,) is in C
(Pless, 6). We dealt with binary cyclic codes in our program.

There is a nice correspondence between a codeword and a
polynomial. Consider the codeword z, from above. The polynomial
fz (z)=ao+alz+a2z2+-~+an_1z"'l can represent z;. Cyclic
codes are nice to work with because they have generator polynomials
which make encoding a message simple. When a message is received, it is
first expressed as a polynomial and then by multiplying it with the
generator polynomial we obtain the polynomial corresponding to the
codeword.

An important function in the study of cyclic linear codes is the
Hamming weight, or simply the weight. The weight of a vector z is the
number of nonzero components it contains and is denoted wi(z). The



26 The Pentagon

minimum weight of a code is the weight of the nonzero vector of smallest
weight in the code.

A code C is called an [n,k,d] code, where n, k¥ and d are the
parameters of C. The length of the code is given by n, and the dimension
of the code (as a subspace of V) is given by k. The third parameter, d, is
the minimum distance of the code. The distance between two vectors u
and v is defined as the number of positions in which they differ and is
written d(u,v). Minimum distance is defined to be the minimum d(u,v)
for all u,v € C, where u # v.

One advantage of linear codes is that their minimum weight and
minimum distance are equal values (MacWilliams and Sloane, 9). This is
true for all linear codes because for all u,v € C, u—v € C, so wi(u—v)
= d(u,v). This made it possible for us to have our program search for a
message which encoded to a minimum weight codeword in order to
obtain the minimum distance of the code.

For an example illustrating the parameters of a code, we will look at
the Hammmg [7,4,d] code (given below) and find d. Notice that there
are 2 = 16 codewords in the code and each is of length 7. In order to
find d, we will simply list the 16 possible codewords (see Figure 2), using
{1011000, 0011000, 0010110, 0001011} as a basis, and find d by
inspection. Because there are no nonzero codewords with weight less than
3, the minimum weight is 3. Also, because we know the minimum
distance equals the minimum weight, the minimum distance is 3. Thus
the Hamming code is a [7,4, 3] code.

1011000 1000101 1110100 0100111
0101100 1100010 0111010 1010011
0010110 0110001 0011101 1101001
0001011 0000000 1001110 1111111

Figure 2.

The minimum distance d is an important parameter because of the
information about the code that can be obtained from d. For example,
there is a theorem which states that a code C can correct ¢ = [(d —1)/2]
or fewer errors, where [z] denotes the greatest integer less than or equal
to = (Pless, 12). So, the [7,4,3] Hamming code can correct ¢ = [(3 —1)/2]
=[2/2] =[1] =1 or fewer errors.

The reader has now been exposed to some basic definition from error-
correcting codes, as well as the basic form of a genetic algorithm. I will
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continue with a description of the program and our results. First,
however, I must note that I modified the program given by Goldberg so
that it would correctly encode a message by using the generator
polynomial. The message was changed to a polynomial and then
multiplied by the generator polynomial in order to obtain the codeword.
We also changed the fitness function as well as the appearance of the
output.

In our program, we used the messages from the vector space as our
chromosomes. This allowed reproduction, crossover and mutation to
occur without the possibility of creating a new vector that was not in the
code. The messages were only encoded to determine their Hamming
weight and fitness values.

We applied several different fitness functions to the problem. When
we were testing the program, we used the [7,4,3] Hamming code with an
almost linear, non-negative fitness function. The function was the weight
(wt(z)) subtracted from the length of the code (n), unless the weight was
zero, in which case the function returned a zero. So, the fitness function
was (see Figure 3):

n—wi(z if wi(z)#£0
oy 2] et @)

0 if wi(z)=0
This function gave higher fitness values for lower weight codewords,
except for the zero codeword (which we did not want to have a high
fitness value). The algorithm found a message which encoded as a

minimum weight vector in the first test run. Remember, however, that
this code has only 16 vectors.
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Bose-Chaudhuri-Hocquenghem (BCH) codes are linear, cyclic codes
defined in terms of the roots of their generator polynomials and designed
to correct a certain number of errors (Pless, 114). There is a specific
function of BCH codes that we are interested in, called the BCH bound.
This says that the minimum weight d of a BCH code C of designed
distance & is at least § (Pless, 115). The BCH bound is a lower bound,
and not all BCH codes have their minimum distance equal to 8. Our goal
was still to find a message which encoded to a minimum weight
codeword. However, applying the algorithm to a BCH code, a message
which encoded to a codeword of weight 6 would then verify the BCH
bound for that code.

o)
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Figure 4.

Our original fitness function was not giving values which would
enable the population to approach the minimum weight vectors. It
appeared that a small change in the weight of a vector did not create a
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big enough change in the fitness value. So, I designed a new function.
The function I decided on involved an exponential function of the
Hamming weight, namely the following (see Figure 4):

f(z) = { el ifutlz) #0
1 if wi(z) =0

Using this function, a slight decrease in the weight corresponds to a large
percentage of increase in the fitness value. However, a weight of zero
gives us the lowest possible fitness value.
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Figure 5.

We then ran the program on the BCH [127,92,d] (where d > 11 by
the BCH bound) code. The smallest weight vector we found was wi(z)
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= 16. Keep in mind that 2%2 is extremely large and we were searching a
very small percentage of those codewords. We did, however, gain some
useful information. Namely, that once again, we needed to examine the
curve of our fitness function and try to make it steepest around low
weight codewords. We also realized that a large initial population helped
the algorithm in its search for low weight vectors. So, we changed our
fitness function to the following (see Figure 5):

1 ifwi(z)=0

where k = [In(n — §)/(n - §)).

This function worked well, and using an initial population of 250 we
were able to locate a minimum weight codeword for a [63,42,7] BCH
code in 49 generations. It is worth noting that the probability of finding
a minimum weight codeword by a single random selection in the
[63,42,7) code is

# of minimum weight codewords = 9x5x31 = 1395
# of codewords = 242 = 4.398 x 1012
giving us
1395 -10
— = 3.172x 10
4.398 x 1012

(MacWilliams and Sloane, 282). We found the codeword in generation
number 49. Because we started with an initial population of 250 vectors,
we examined at most 49x250 = 12,250 codewords. This is not very
many (proportionately only 2.000 x 10 ~?) of the 242 codewords possible.
Had we examined 12,250 randomly selected codewords, the probability
that we would not select a minimum weight codeword is ((2%2 — 1395)/
242)12250 _ 9 9999611 x 10 ~ 1. Thus, the probability that we would select
one or more minimum weight codewords is 1— ((2%2 — 1395)/24%)12250
= 3.8855243 x 10 €.

The genetic algorithm was successful at finding a minimum weight
vector when the possibility of finding one was extremely low. The search
methods it employed found a minimum weight codeword relatively
quickly. We would like to continue our research by experimenting with
different fitness functions and crossover operators, as well as mutation
and crossover probabilities. We would like to run the program on some
BCH codes for which the minimum distances are unknown. Combining
genetic algorithms with coding theory appears to be worthwhile. In
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conclusion, we were successful in applying a genetic algorithm to the
problem of finding a minimum weight vector in a cyclic binary BCH
code.
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Introduction.

Volleyball, like most things in life, can be analyzed by the study of
mathematics. The aspect of volleyball that we are going to focus on is
the serve, but first let us concentrate on some of the basic rules, goals
and restrictions that we will need to consider.

Volleyball serves are actually more than just hitting the ball over the
net. The most effective serve is one that either travels extremely fast or
one that drops as it floats through the air. One serve that accomplishes
both of these is the “top-spin” serve. By contacting the ball toward the
top of the surface instead of directly in the middle, a downward spin is
put on the ball. Now the ball is not only affected by gravity but also by
a spin factor. Qur goal is to compare a range of successful serves with
spin to a range of successful serves without spin and see which is more
effective.

Explanation of acceleration and spin.

The ball’s acceleration through the air is given by A=A4,—A,
where A, is the acceleration due to spln and A is the acceleration due to
gravity. The acceleration due to spin is found using the equation
A ,=cS,xV, where ¢ is the surface constant that takes into
consideration the surface of the ball, S, is the spin vector and V is the
velocity vector, and is found by setting up the cross product. Its matrix

will look like this:



Spring 1995 33

i J k
0 ¢S 0 | =(cSV,)i+(—cSV )k
Ve Vy V,
The first row represents the ¢, j and k vectors defined as i =(1,0,0),
j=1(0,1,0) and k=(0,0,1). The second row represents the contribution
of the spin vector, where S is measured in revolutions per second. The
third row represents the velocity at which the ball is traveling through
the air. Since we are working with three dimensions, we have velocities in
each of the z-, y- and z-directions.

From this cross product, we can conclude that the acceleration in the
z-direction (that is, horizontal) is given by dV_/dt =cSV (), the
acceleration in the z-direction (vertical) is dV,/dt = — ¢SV (1) - g, and
the acceleration in the y-direction (side to side) is dV /dt =0. We
subtract gravity in the second equation because only vertical acceleration
is affected by it.

Serves without spin.

Using our equation for acceleration, we know that dV _/dt = ¢SV ,(?)
and dV, /dt = —cSV _(t)—g. In this case, our equations are going to
become very simple because considering the fact that there is no spin, §
is 0, the derivative of V' is 0 and the derivative of V, is —g. We know
that this is true because gravity is the only factor affecting acceleration
and it is only in the vertical direction.

To solve for our velocities in both directions, we must integrate their
two equations, add in their constants, and solve for V_ and V. In the
case of this real life problem, the constants are going to be the initial
conditions. Integrating, we find that V_ = constant and V,= —gt+
constant. The initial conditions then give V_=Vj(cosd) and
V, = V(sin 8) — gt, where @ is the angle the ball is served at and V is
the initial velocity the ball is served at.

To solve for the positions in both directions, we integrate the two
equations for velocity and add in the initial conditions for position to get
that P, = V(cos 8)t and P, = V(sin #)t — gt3/2.

Serves with spin.

Figuring out the equations for the serves with spin is a bit more
complicated because the spin constant is not zero anymore. To solve for
these equations, we will use differential equations instead. What we are
going to do is take another derivative of our original equation for vertical
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velocity: dV, /dt= —¢cSV_(t)—g. The second derivative is
d?V , [fdt? = —cS-dV [dt = —cS-cSV (t) = — 23SV (2).

Using this equation and the following initial conditions, we are able
to solve for our velocity functions. Our initial conditions for this portion
are (a) V_(0) = X;,;;, the horizontal velocity the ball is serve at, which
is given by X .. =V, cos @ where V, is the initial velocity and & is the
angle the ball is served at; (b)V,(0) = Z,,,;,, the vertical velocity the ball
is served at, which is given by Z,,, =V, sin 8; (c) dV (0)/dt = cSV (0)
= ¢5Z;,; the initial conditions for the horizontal acceleration; and (d)
dV (0)/dt = —cSV (0) = —cSX;,;» the initial conditions for the
vertical acceleration. Solving the differential equations, the two new
functions for the horizontal and vertical velocities are

V.(t) = - (g ha cSX,:g) cos(cSt) + Z ;i1 8in(cSt)

and
)= (9+eSX;n00) sm(cSt)

Vz(t) = Zim’t cos(cSt cS

The initial conditions for the position are (a) P, (0) =0, the ball’s
initial distance traveled and (b) P,(0) = h,, the ball’s initial height at
the time of the serve. We integrate the velocity functions to find the
equations for the horizontal and vertical position:

 Zinis— 9= Z iy co8(cS) + X sm(cSt) g sin(cSt)

Pr(t) = init cS ~ 52
and
— Xt + X cos(cSt)+ Z ., sin(cS t) g cos(cSt)—g
Pz(t) = h0+ init init 5 init 252 .

Physical conditions.

Now that we have our equations ready to apply to a real life
situation, we must consider the physical conditions in which we are
experimenting. The most important factors to concentrate on are the
physical restrictions of the volleyball court and net. After it is served, the
first thing the ball must do is clear the net, which is 7.33 feet high.
However, we must also take the ball’s size into consideration. The ball is
approximately 8.28 inches in diameter and, because we want it to go over
the net without touching it, we will require the center of the ball to go at
least 7 feet 9 inches off the ground when it passes over the net (or it
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would hit the net and the serve would be a failure). The second point we
must consider is the ceiling height. Although outdoor players do not
necessarily need to worry about this, the indoor players do. For our
purposes, we are going to assume that the ceiling is 22 feet 9 inches high
(15 feet above the net). The third thing to consider is the length of the
court. The court size is 29.5 feet by 29.5 feet on either side, giving the
serve a restriction of 59.0 feet in horizontal length. The last point,
though a minor one, is the constraint that the serve peaks in at most 2
seconds, because if it takes any longer than that, the ball is either going
to hit the ceiling or land out of bounds. In general, we are looking for
serves that are between 7 feet 9 inches and 22 feet 9 inches high when
they reach the net and land in the court (within the court’s length of 59
feet).

Our constant ¢ (the surface constant) is derived using the fact that it
would probably be proportional to the surface constant of a baseball,
which is estimated at 0.005. Taking into consideration the different
texture of the surface, due to softer leather and the lack of laces, we
estimate the surface area constant ¢ to be 0.015. We will estimate our
spin constant S to be 15 revolutions per second. This spin constant will
determine how much pressure will be put on the ball due to the fact that
the ball is spinning in the opposite direction that it is traveling. In our
problem, the ball will be at an initial height of 6 feet when served.

70¢
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Figure 1.

To find our range of successful serves we develop two graphs by
taking a very large range of velocities and angles and computing where
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they will land on the ground and at what height they will cross the net.
We then take these values and eliminate those serves which either hit the
net, hit the ceiling, land out of bounds, or do not reach their maximum
height within 2 seconds. Figure 1 shows those successful serves with spin
where the x-axis is the angle (in degrees) and the y-axis is the initial
velocity at which the ball was served. Figure 2 is a similar plot of
successful serves without spin.
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Figure 2,

Conclusions from the graphs.

The two graphs seem very similar at first glance because of their
shapes. However, the differences they have are just what we would expect
and do mean a great deal in the sport of volleyball. Some of the
conclusions that can be made from the graphs are as follows.

(1) By comparing the two graphs, it is obvious that the serves with
spin can be served at much higher speeds than those without spin. With
spin, we can have serves as fast as 65.5 ft/sec while without spin the
fastest serve is 54.5 ft/sec. This is true because the added spin on the ball
makes the serve drop faster as it travels through the air. In effect, a serve
that would have landed out of bounds without spin drops much faster
with spin and now lands in bounds. In volleyball, the faster the serve the
better because it gives the opponent less time to react. A serve with an
initial angle of 13 degrees can be served 11 ft/sec faster when spin is
added, which is a 20% improvement and is very significant given that we
are only playing on a 59 foot court. However, because we are adding
spin, we do have to hit the ball harder. The slowest serve we could hit
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with spin had a velocity of 33.5 ft/sec, but without spin we could hit one
as slow as 32 ft/sec. From these observations, it is obvious that adding
spin to a serve is a definite improvement.

(2) By finding the area of each graph (in effect counting the
successful serves), we can see which type of serve is less sensitive. The
serve with the greatest number of serves in its graph is less sensitive
because it is less likely that the serve will fail. In the case of our two
figures, Figure 2 had only 1461 successful serves while Figure 1 had 1880
successful serves, which is more than a 28% improvement. We are able to
conclude that the serve with spin is less sensitive.

(3) We are also able to use the graphs to see which specific velocities
and angles account for the greatest number of successful serves.
Examining serves without spin, we see that balls served at an angle of 50
degrees have the widest range of successful serves (horizontal) or lowest
sensitivity to initial conditions, which means that if someone were to
serve the ball at this angle, they could serve it anywhere between 32 and
42 ft/sec and it would still land in the court. Using a similar analysis, we
determined that the initial velocities which have the largest range of
acceptable angles were 35.5 ft/sec and 36 ft/sec.

(4) Examining serves with spin in the same manner, we see that balls
served between 46 and 53 degrees have the widest range of success with
velocities (a range of 33.5 to 43.5 ft/sec) and that serves at 36.5 or 37
ft/sec have the largest range of successful angles.

Consistency plays a major role in volleyball. A volleyball player who
is able to consistently serve successfully is much more valuable than a
player who occasionally serves successfully but usually fails. By serving
within our optimal range of serves, we are guaranteed a greater chance
that the serve will be successful, which in turn will make a more valuable
volleyball player. Because the range of successful serves is smaller for the
serve without spin, it makes sense that a player would want to serve
using spin.

This project took a real life situation, applied mathematical tools
and theory so that we could study the results and make conclusions to
improve the situation. In this specific case, we concentrated on taking a
normal serve and changing it by adding spin. From this change we were
able to see if, in the long run, it was actually going to be an
improvement. Using differential equations, we took a situation that was
dependent on velocity, angle, and time and put it into a mathematical
model. From there, we analyzed the model’s acceleration, velocity, and
position functions, and were then able to experiment and calculate the
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serves that were most successful according to the constraints that were
set by the playing rules, restrictions, and conditions.

There are many opportunities for further study using this project.
For example, we concentrate on the most successful range of serves, but
what is the range of serves, or the serve, that takes the least time to
reach the other side of the court? What are the equations for the curves
on the graphs and why do they have that shape? What effect will air
friction have on these serves? If we vary and test different spins put on
the serves, what would the optimal spin be? We are assuming that the
serve is straight into the other court, but what would happen if the
server turned 26.56 degrees and was now facing the opposite corner of the
court? What would our optimal serves be? These are only a few of the
questions that we could raise. The point is that using mathematical tools
such as differential equations, we are able to answer these questions and
make even more conclusions.

Acknowledgement. 1 would like to thank my advisor, Dr. Mark Snavely,
for his assistance, support and encouragement, and for making this
project such a success.
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In this note we concern ourselves with a simplification of some
results from field extensions. Our inspiration was problems of everyday
mathematics. The problem we began with was: the equality A4y&
= M+’ (where a, a’, A, X are positive rational numbers and V&, o’
are irrational) implies & = o' and A = X’. This result is easily generalized
when the rank of the radicals is 3 or 4; but there is a question of whether
such equalities are concluded in the general case of A+ "Y&a = X'+ \|_'
We think that the subject is of interest to secondary-school teachers as
well as college students as they often meet problems of this kind; for
instance, solving polynomial equations or studying irrational expressions.

The so-called Abel’s theorem and its generalization by Vahlen-
Capelli’s theorem as well as the theorem of the “simple algebraic field
extensions” (see [2], theorems 295, 427, 428 or {1}, theorem 3 on page
215) may give an answer. Nevertheless it is more convenient for us to use
elementary tools to the extent that this is possible. We are familiar with
the tools of European secondary education and presume the definitions of
elementary structures such as group, ring, field, vector space, the
elementary properties of determinants, and the Euclidean algorithm for
integers and polynomials in one variable z. In particular, we use the fact
that if the polynomials a(z) and b(z) are prime to each other, there are
polynomials ¢(z) and d(z) such that a(z)-c(z) + b(z)-d(z) = 1.

As usual, Q is the set of rational numbers (@ the set of positive
rational numbers), Q[z] is the ring of polynomials in one variable z and
Q(d) is the field generated by 3 over Q. We call primitive n-th root of
unity every root of unity which does not satisfy any equation F—-1=0
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for 1<k<n. A monic polynomial is a polynomial in which the
coefficient of the greatest z’s power is 1.

§1. The equality A+ ™ a = N+ "*l? with n prime.
Throughout this section, we symbolize by & the radical "vy@.

Theorem 1. If &, o, A, X belong to @, n is a prime and @ o are not
n-powers of ratlonals, then the equation A4+™a =M+ *l——’ implies
a=c and A=)

We begin the proof with the following lemmas.

Lemma 1. The numbers 8%, with k € {1,2,...,n —1}, are irrational.

Proof. Since (n,k) = 1, there exist integers s, such that sn+ tk = 1.
Thus § = ' = °". % = (a")° -(8%)*. If 6* € Q, then & € Q, which is a

contradiction.

Lemma 2. The polynomial z" — a, where n is a prime, a € Q* and it is
not an n-power of a positive rational, is a monic polynomial over Q
which has 8 as a root and is of minimum degree.

Proof. The polynomial h(z) = 2" —~« is irreducible over Q. In fact,
its zeros are the numbers j 8 where j is a primitive nth root of unity
and k € {0,1,2,...,n—1}. If A(z) = p(z)q(z), where p(z) and ¢(z) belong
to Q[z], then each of them would be factorized into

(z=310)-(z— 28)- - -(z—j*r0)

where A; <n, i €{1,2,...,7} C {0,1,2,...,n—1}. But such an expression
is not a polynomial over Q, since at least the constant term is not
rational because of Lemma 1. So, if r(z) € Q[z] has 3 as a zero and is of
degree < n, then it is relatively prime to h(z) and there exist two
polynomials f,(z) and fy(z) such that f,(z)h(z)+ fo(z)r(z) =1, which
fails at z = 8. Contradiction.

Lemma 3. If n is a prime, the elements 1,8,...,6" ~! constitute a basis
of Q(3).
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Proof. Let E be the set of all the sums of the form 3 P} a,0"
where o, € Q. We prove that E = Q(8).

Clearly, E C Q(8). Thus it remains to be proved that E is a field and
that @ C E. First, we see that every element of the form Y} _ aka
0 €E, can be written as ) 7= aka since 8" = a. Note that for any
A,B € E, we have A+B€Eand A- B¢ E. It remains to be shown that

~leE.

Let A= Z"‘l o, 9% and g(z) = Y rI} a2k By Lemma 2, g(z)
and h(z) =2" —a are prime to each other over Q. So there exist
polynomials f,(z) and f,(z) such that

F1(®)g(=) + fo(2)h(z) = 1. (1)

Slnce 9(9) = A, by (1) we have f,(3)-A=1. Since f,(8)€E, then
A~ 1= f,(8). Hence Q(8) CE.

Corollary to Lemma 3. If n is a prime, then each element of Q(8) can be
written uniquely in the form g(d) where g(z) € Q{z].

Proof of the theorem. According to the proof of Lemma 3, every
element of Q(8) can be written in a unique way as

g(8) = nz—:l a0  (where a; €Q). (2)
k=0

Suppose A+ "&@ = X'+ Na'. Then "o = (A — X) + "\@ and so
= (/\—/\')"+n(/\—,\’)"‘16+_-_l)(,\ ,\:)n—282+

+"("2‘1)(,\_,\:)23u—2+n()_/\l)@ﬂ-l +a

where § = "y@. Now, by (2) and the fact that a and o' are rational,
o' = (A= X)" 4+« (constant terms) and A— X = 0 (radical terms). Thus,
A=MNand a =2

Corollary 1. If n is a prime and @ (as above) is a zero of a polynomial
p(z) over Q, then the polynomial is divisible by h(z) = z" —a.

Proof. The polynomial h(z) has the j*@ as zeros, where jis a
primitive root of unity and & € {0,...,n—1}. If p(z) is the polynomial,
then

P(z) = hz)-9(2)+ A, 12" "1+ A, _2" P4k Az + 4y,
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where A, €Q, 0<k<n~-1. Since p(8)=0, A, =0 for all k and it
follows that p(;*8) =0.

Corollary 2. If n is prime and u+8 (4 € Q and 8 as above) is a zero of
a polynomial over Q, then the polynomial is divisible by (z — )" — a.

Proof. We apply Corollary 1 for p(z — pu). The polynomial has the
4+ j*0 as zeros.

We give another sufficient condition for "y& = @ in order for the set
{1,9,...,6"~ l}n to constitute a basis and for the equation
A+™a=MN+ Yo toimply a =o' and A= X.

Definition 1. A radical ™@ (¢€Qt and "@¢ Q) is called an
irreducible radical if it cannot be written in the form ~\|f with fe Q@+
and m < n.

Proposition 1. If "V&a =0 (where a € Q%) is irreducible, the numbers
1,8, ..., 8"~ are linearly independent.

Proof. By Lemmas 2 and 3, the only thing that has to be proved is
that 8%, k € {1,...,n — 1}, are irrational.

Suppose that n = p© where p is a prime and ¢ € N.
If (k,p€) = 1, then the proof is as in Lemma 1.
If k =1tp°1, (¢, p) =1 and ¢; < ¢, we have

c

p T g
1 p
o'P " = ‘Jat

where ¢ =c—c¢;. For pqﬁ irrational, (¢, p%) = 1, there are integers A, B
such that tA+4 Bp?=1 and

@ = (qu)A(qu )B

k €1/.C ) €1
For cha) rational, atp /p = at/ pi_P o' is rational, which is
absurd.

9/ ¢ €1
Icf pq\IE:ﬁEQ, then a:ﬂpq and pc\m'=ﬂp /p =ﬂ1/p
=P lﬁ, and the element pc\r& would not be irreducible.

Inductively the proposition is proved if n= p‘l:l ----- pf.“’ with p;
prime, i € {1,2,...,7}, and ¢; nonzero natural numbers.
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Thus Proposition 1 and Corollaries 1 and 2 may be generalized by
replacing the supposition “n is prime” by the supposition “"\& is an
irreducible radical.” Moreover, we remark that Vahlen-Capelli’s condition
(see [2], theorem 428) fulfills the above condition.

§2. The case of many radicals.

In this section we attempt a generalization of the previous results
referring to two or more radicals. Throughout this section we consider
the symbols d = "y&@ and h = m‘fﬁ, where a and 3 are positive rational
numbers, d and h irrational, and i, 7 are the primitive nth and mth roots
of unity, respectively. Q(8,k) is the smallest field containing Q and the
radicals 8 and h. We use (m,n) for the gcd (greatest common divisor) of
m and n.

Proposition 2. If (m,n) =1 and all A" (where 0 <o <n—-1,0<7<
m—1 and (o,7) # (0,0)) are irrationals, then Q(8, h) = Q(3h).

Proof. Qur first step is to prove that every element of the field
Q(d,k) of the form A,.8°hT can be written in the form A,(8h)* for
some k € {0,1,...,mn —1}. In fact, we define integers y and z such that

P =A 0°%" = Aarmﬂdaam—ﬂrn = A mn\laam +mnyﬁrn + mnz
oT
where A € Q. It is enough to define y and z such that P = A(0h)*, or

om+mny =mk and Tn+ mnz = nk
or
o+ny = k = 7+mz

Because (m,n)=1, the equation ny—mz=7—0 has an integral
solution, so k£ may be defined. Thus Q(3,h) C Q(8h), while the relation
Q(6h) C Q(8, k) is obvious.

Proposition 3. If (m,n) =1 and the numbers 8°h” are irrational for
0<o<n—1,0<7<m-1 and (0,7) # (0,0), then the set B = {(8h)*:
0 <k < nm — 1} constitutes a basis for Q(8, k).

Proof. By Proposmon 2 every element A, 8°hT can be written in
the form Ak(ah) , k €N. According to the method we have already
developed, we prove the following:
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(1) for every 1 <k <nm-1, (8h) is irrational,
(2) 2™" — a™pB" is the minimal polynomial, and
(3) the field Q(dh) coincides with the ring Q{dh].

Relation (1) is evident by the s Eposmon, while the proof of (2) goes as
in Lemma 2. The elements (i"3j )""‘ 1<r<n-land1<k<m-1,
are zeros of the polynomial h(z) = 2™ a™pB", hence if h(a:) is reducible
(that is, h(z) = p(z)¢(=) with p(z) and q(z) in Q[z]), then each of these
polynomials on the right side will be factorized (in a proper extension) in
the form

(z —18)(z — 28).--(z — '78)(z — *1h)(z — j*2h)-- (= — 7 Th)

where 1 <A, <nfor 1<a<n, 1< pug<m for 1 < B <m and (A, pg)
# (n,m). In such a polynomial at least the constant term is not rational.

Relation (3) is proved as in Lemma 3. The number % satisfies

1 <k <nm~—1 and all the elements of Q(dh) are of the form
nm-—1

> a(omy
k=0
since for k = nm we have (8h)™" = a™B" and the elements for £ > mn
are formed respectively. So, every element of the form Zamﬁ"h"
where 0 <o <n, 07 m, (a’,‘r)zé (0,0) and (o,7)# (n,m), is an
element of the form EZ 14,(0R)F and if 3 P25 A, (9R)F =0, then
A =0 for all k; hence the set B constitutes a basis.

Proposition 4. If A+ ™ @+ "\ =X+ & + " \F, where all the letters
are rational posntlve numbers, the radical expressions are irrational,
(n,m) =1 and ( Ja mE7)* for 0 < k <nm—1 are also irrational, then
a=a, =0 and A=)\

The proof is evident.
Corollary 3. If a polynomial has the element "\& m\]? as a zero (with
the restrictions of Proposition 2), then it is divisible by the polynomial
nm Mﬂn

The proof is as in Corollary 1 of §1.

Proposition 5. If (m,n) =1, & and k have the restrictions of Proposition
2, and 8+ h is a zero of a polynomial p over Q, then it has the elements
19 + j7h, where 0 < 0 < n and 0 < 7 < m, as zeros.
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Proof. Consider the polynomial

o(z) = (z— 8 —h)(z —d— jh)-(z -8~ ™~ 'h)
x (z —i8 — h)(z — i0 — jh) -(z —i" 10— ;™ 1h)

We suppose for an instant that ¢(z) € Q[z] and then by the division
algorithm

p(z) = ‘P(z)pl(x) + Anm - l:!:nm_l + Aum—Zznm -2 +eet Alz + ‘40

where p,(z) € Q[z] and Ay, A,,..,4,,,,_, € Q. The equation (z) for
z=0+h gives

Ap 1 O+R)™ 14 A S O+R)"™ 24 A (O +R)+ 4y = 0

and thus A; =0 for all i. So the problem has been reduced to proving
that the polynomial ¢(z) has rational coefficients. As the calculation is
very long, for the sake of the continuity of the subject we prove it in
Appendix 1 (at the end of this article).

We come now to the natural conclusion.

Theorem 2. If o, i € {1,.. k}, are rational numbers, every h; = "‘F is
an 1rratlonal number, all n;’s are prime to each other and the products
hll h22 hk" are irrational numbers, for 0 <7, <n;, (71,79 .0 Tg)
#(nyyng,..0n) and  (71,79,...7) #(0,0,. 0), then the set
(hyhy--hy)™, with 0 < 7 < nyny--np —1, constitutw a basis for the vector
space Q(h,,...,h;) over Q.

This theorem is an inductive conclusion of Proposition 3 since we
have Q(hy,hy,.. k) = Q(hyy. by _1)(he) and finally Q(hy,h,,..., k)
= Q(hyhy - -hy).

§3. Applications.

1. Proposition 5 gives us a great number of new zeros of a
polynomial over Q. For example, if 32 +°\2 is a zero of ?(z) € Q[z),
then we know 14 more zeros of it; and conversely we can find the
minimum polynomial having the above number as a zero.

2. Likewise, by Proposition 4, a radical cannot be a linear
combination of other radicals of positive rational numbers provided that



46 The Pentagon

the indices of all the radicals are prime tosone another. (We assume that
the radicals are not rational numbers.) So “y2 is not a linear combination
of square radicals of positive rational numbers.

3. Proposition 2 implies that the natural numbers «, whose n-th
roots "\a&, for n prime, are irrational numbers, cannot have the same
decimal part. Proposition 4 says that this holds even in the case of more
radicals with the supposition that the indices of the rad"i‘cals are prime to
one another. In the latter case, if (m,n) =1 and ™ @, 4@ are irrational
numbers, the number "N& — m\]ﬁ cannot be an integer.

4. Theorem 1 permits us to write the fractions p(8)/q(&), where
0 ="&, n prime, QGQ+1 Na ¢ Q, and p(z), q(=) € Q[z], free of
radicals in the denominator. In fact in such a case, let h(z) =z"—a.
Because & is not a zero of ¢(z), (h(z),q(z)) =1, so there exist f,(z),
F2(®) € Q[z) such that h(z)f,()+q(z)f(z) = 1. Hence g(8)f,(8) =1
and p(8)/q(8) = p(0)fo(8). Of course, we would say that every fraction
of the form p(8)/q(8) that is an element of Q(8) is always written as a
polynomial of the form 22;}) akak.

5. We now refer to a determinant having many similarities with the
so-called “cyclic determinant.” A cyclic determinant is a determinant of
the form

% ) BRI PO R P |
b T I

n-1 9 Tt Q3 Cp_ 2

It is used (c.f. [2], pages 567 and 733) in the finding of normal bases in
the algebraic extensions of a field. The new determinant is related to the
zeros of " — a as the former was to the zeros of z" — 1.

Since the calculations here are also extensive, we prove the
propositions in Appendix 2 (at the end of this article).

As always, n is a prime, a € Q, "Ja ¢ Q and "Na = d.

We turn our attention to this determinant in order to prove with
elementary tools the independence of the elements 1,8,...,0" ~1. We
consider the equation

ad* =0 (1)
k=0

with o; € Q. By multiplying successively the two sides of (1) by 4, 82,
«eey 871 there results a system with 8°, 8!, ..., 8"~ ! as unknowns,
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whose determinant is the determinant D which we are working on below.

Let ay,..,a, _; € Q, 3 as above. Put

Cn_1 Ap_2 e * @0
an_— 2 an.- 3 oo a_O @, - 1¢
D = : : . : :
al ao e a3a 020
G Op_® .. M o

a) Let iy, i,, ..., i, denote all the n-th roots of unity. Then
7
D = [] (eo+irdey+--+ip~10" 1o, _)
k=1

or n
D = [ (o) + ayigd +---+agif " 10"~ 1)
k=1

and generally
n
D = H (af—l+a‘rika+'"+ar—2i;cl_10n_l)
k=1

for all r € {0,...,n—1}.

b)
@n_1 Qp_y o 1
K -2 %-3 % a
D = o0 : : : :
k=0 o, ag g on-1
@ o _q0° g an

c) If 8; is one of the n-th roots of a,
Fo(Or) =ag+ Oy +agdf+ - +a, 10771,
F10k) =ap _ja+agdy+--+a, 40871, ..., and
fn—1(0k) =aja+aya8, + -+ +agdf ~ 1,

then

n—1
5 A8) = 07fo(B) and Y f.(8;) =ney, _jafor0<T<n—1.
k=0

2

@)
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Appendix 1.

If (myn)=1, a and Bin Q+, Y@ =09 and "B = h are not rational and
i and j are primitive n-th and m-th respectively roots of unity, then the
polynomial

o(z) = (x—0— h)(z — 8 — jh)--(z— - j™ " 'h)
X (z —id — h)(z —i0 - jh)-(z — "~ 19— 7™~ 1h)

belongs to Q[z).

Proof. Since
(z —i*8 — h)(z — %0 — jh)-(z —iF8 - ™~ 1h) = (z—i*)™ -3,

n-1 "
o(@) = [] ((=-i*0y"~5), m<n. (1)
k=0
We develop the right hand side of (1) and write it in the form ag+ a8
+---+an_1ﬁa"'1; the coefficient o is evidently rational, while the
coefficient «,, _, of 8"~ 7, 0 < 7 < n, is given by

tp_r= 3 (1) (z—i10)(e—i20)™ (2 —i'TO)™  (2)
O'k € '5"
where (ky,k,...,k,) =0} is a combination of 7 numbers from the set
N,={0,1,...,n—1} and 7 is the set of all these combinations.

We prove that all the powers of @ in the right side of (2), with the
exception of the term (z™)", equal zero. To this end we consider a term
containing, say, the number 87, 0 < 7 < nm. More precisely, we take the
summand

(z — iF19)™(z — iF29)™ . (z — i*rO)™ 3)

and we consider that 87 arises by multiplying the numbers an,..., a’P,
that is

T

g =8"1...0°, 4)

each of the latter numbers having been picked up from one parenthesis of
(2). The corresponding coefficient of 8™ contains a power of i while the
rest is irrelevant to the process we propose and thus we omit it.

Let us now assume that the coefficient of 8" contains the number

ATyt AgTo b oot A
il'l g7yt p"p. (5)
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In such a case we say that the number 8" defined by (4) corresponds to
the p-ple (A;,Xp,..,2,). We wnll show that if we consider all the
summands of (2) we can pick up 8*’s such that the sum of the powers of
the corresponding i is zero. All 37 are defined by (4). To systematize the
notation, put for every k €N

k=% (mod n), 0 <%k < n. (6)

Assume that corresponding to the 8™ p-ple is (XI,XQ,...,XP). We take the
p-ples

(1+AI’I+A2""’1+AP)’ (2+,\1’2+A2"'.’2+AP)’

ces (=14+An—=1+24..,n=1+2)) (7N

and we form the respective i’s powers
i(l +a)r + 1+ A)rp + 0+ (1 +’\p)fp’
i(2+Al)f1 +(2+A2)f2+"'+(2+xp)fp’ s

i(n-1+4\1)1'1+(n-1+A2)f2+---+(n—l +Ap)rp

(8)
It is evident that from the summands of (2) we could form the numbers
O™ corresponding to the p-ples given by (7). In order to prove that the
sum of (8) is zero, we only have to prove that all these powers of i are
different mod n. In fact, let us suppose that
(FF3)r+ EFR)ry +o+ FFA)r,)

~(FF3)m + F )y 4o+ FEXr,) = no,

where 0 < k< n, 0 <k < n and o is an integer. Then
(k+k')(1'1+1‘2+~-°+1'p) =

Since n is a prime and 7 < n because of (1), the last relation is absurd.

Appendix 2.

Let D be the determinant of application 5 in §3, 8 = "y@&, n prime, and
81,45,..,4, denote all the n-th roots of unity. We now demonstrate
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statements (a), (b) and (c).

(a) Put
Pr = ag+ida, +---+i;c""l@"-lavn_1

for 1 <k < n and add to the last column of D, i} ~ 1571 times the first
column, iz'28"'2 times the second column, ..., and ;.8 times the last
but one column. Then the last column consists of the polynomials

Pis ikapk, izazpk, ey iz—lan“lpk .

Hence p; is a factor of D; furthermore py,p,,..., p, are factors of D.
Since each p; is linear with respect to ag,ay,..,a,_,, and thus
irreducible, p;p,---p, divides D. Hence D =cp,py--p, and by
comparing the terms of the two sides, ¢ = 1.

We change the above process into the following: the addition takes
place not with respect to the last column but with respect to another
column, e.g. the last but one, and we add to this column i}~ 29" ~?2
times the first, i2'33" =3 times the second, ... and i lgn—1 times the
last column. Then the determinant D changes into the form

be]
D = H (ay + gif 0+ -+ + agif ~187 1)
k=1

as desired.

b) Let t = E;c'_:_}, aka". Then multiplication by 8,8%,...,8™ ~1 gives
the system of equations

@y _1Fp_1ttaz ta =
@y 9%yt tagz ta,_ja = 10

CgLy _ 1+t agar, +oja = tgn—1

with the (n— 1)-ple (8, 82,...,0" 1) as a solution. Hence the augmented
determinant D of this system of equations equals zero. Write Din the
form

-1 -2 * 1
= %-2 %m-3 % 0
D = D-t- : : . : :

o ag aza 8"':

ay Q1@ ... aa O™

and the proof is over.
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(c) The first result is evident. On the other hand, since

Sop =0

r=1

for 0 < 7 < n, the first part of (1) implies that

Zfo(ak) = Z(‘-“o‘*’alak'*'“zai'* oy 13"_1)

= ”“0"“'1 Zak""”z Zak"' +an_1k282“ = nay
=1

andforls'rSn lthat

n n
kzlfr(ak) = Z("‘n-f“"‘“n-r+1°'3k+"‘+°'n—f-132—1)

This means that if the values of one of f_ are known for all d;, then all
the values of all the other f,.s are also known and our last equations

give the values of oy, ay,...,a,, _;.

References

[1] Goldstein, L. Abstract Algebra, Prentice-Hall International, London,
1973.

[2] Redei, L. Algebra, Vol. I, Pergamon Press, Oxford, 1967.

[3] Stewart, 1. Galois Theory, Chapman and Hall, London, 1973.

in memoriam
Sister Adrienne Eickman
1937-1994




52 The Pentagon

The Problem Corner

Edited by Kenneth M. Wilke

The Problem Corner invites questions of interest to undergraduate
students. As a rule the solution should not demand any tools beyond
calculus. Although new problems are preferred, old ones of particular
interest or charm are welcome, provided the source is given. Solutions
should accompany problems submitted for publication. Solutions of the
following problems should be submitted on separate sheets before 1
January 1996. Solutions received after the publication deadline will be
considered also until the time when copy is prepared for publication. The
solutions will be published in the Spring 1996 issue of The Pentagon,
with credit being given to student solutions. Affirmation of student
status and school should be included with solutions. Address all
communications to Kenneth M. Wilke, Department of Mathematics, 275
Morgan Hall, Washburn University, Topeka, Kansas 66621.

PROBLEMS 485-489.

Problem 485. Proposed by Bob Prielipp, University of Wisconsin-
Oshkosh, Oshkosh, Wisconsin. Find the sum of the following infinite

series.
io: l)m -1
A ()

Problem 486. Proposed by T. Yau, Pima Community College, Tucson,
Arizona. Consider the Smarandache function S(n) which is defined as the
smallest integer such that S(n)! is divisible by #. Find the maximum of
S(n)/n over all positive composite integers n # 4.

Problem 487. Proposed by the editor. Suppose that the sides of triangle
ABC are all integers. If the measure of angle A is four times the measure
of angle B, find the smallest possible integer lengths for the sides of
triangle ABC.
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Problem 488. Proposed by the editor. Prove or disprove that

V8 + 26 + 217 = 13 + 238 + /18 — 2438 + 2/65 — 10438 .

Problem 489. Proposed by Russell Euler, Northwest Missouri State
University, Maryville, Missouri. The Pell numbers P, and their
associated numbers (), satisfy the relations P, $+2=2P,  1+P,
Py=0, P, =1; and Qny2=2Q, . 1+Q,, @=1, Q, = 1. Show that
(a) Pn+1=(Qn+Qn+l)/2and(b Qn+l=Pn+Pn+l'

Please help your editor by submitting problem proposals.

SOLUTIONS 475, 476, 478 and 479.

Problem 477 remains open.

Editor’s Comment. The Alma Problem Solving Group, Alma College,
Alma, Michigan was inadvertently omitted from the list of solvers of
Problems 471, 473 and 474 in the preceding column. The editor
apologizes for this oversight.

Problem 475. Proposed by Francis E. Masat, Glassboro State College,
Glassboro, New Jersey. Let n and n + 2 be positive integers. Prove that n
and n + 2 are both prime numbers if and only if

(a) a(n) = ¢(n+2)
or
(b) o(n(n+2))é(n(n+2)) = (n+2n+1)(n?+2n + 3).

In this problem, ¢(n) denotes Euler’s Phi function which gives the
number of integers less than n and which are relatively prime to n. Two
integers a and b are relatively prime if ged(a,b) = 1. o(n) denotes the
Sigma function which denotes the sum of all the divisors (including 1 and
n), of the integer n.
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Solution by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh,
Wisconsin.

Part (a) (1). If n and »+2 are both prime numbers, then o(n)
= ¢(n +2). By hypothesis, n and n+2 are both prime numbers, thus 1
and n are the only positive integer divisors of n and 1,2,...,n+1 are the
only positive integers less than or equal to n + 2 which are also relatively
prime to n + 2. Therefore, o(n) =n+1=¢(n+2).

Part (a) (2). If o(n) = ¢(n+2), then both n and n+2 are prime
numbers. By hypothesis, o(n)=¢(n+2). Since o(1)=1# 2= ¢(3),
n>1. Thus n+1 € o(n)= ¢(n+2) < (n+2)—1 = n+1, so o(n)
= n+1 and ¢(n+2) = n+1. Because o(n) = n+1, nis a prime
number. Since ¢(n+2) =n+1, n+2 is also a prime number. Thus both
n and n + 2 are prime numbers.

Part (b) (1). If n and n+2 are both prime numbers, then
a(n(n +2))é(n(n + 2)) = (n? + 2n 4 1)(n? + 2n — 3). By hypothesis, both
n and n+2 are prime numbers and, as such, n and n42 are also
relatively prime. Then since ¢ is a multiplicative function, a(((n)(n + 2))

=o(n)o(n+2)=(n+1)(n+3). Also since ¢ is a multiplicative
function, ¢((n)(n +2)) = ¢(n)é(n +2) = (n — 1)(n + 1). Combining these,
we have o(n(n + 2))é(n(n + 2)) = (n% + 2n + 1)(n® 4 2n - 3).

Part (b) (2). If a(n(n+2))é(n(n+2)) = (n®+2n+1)(n% +2n-3),
then both n and n+2 are prime numbers. By hypothesis,
o(n(n+2))¢(n(n+2)) = (n2 +2n+1)(n*+2n—3) and n is a positive
integer. Since 0o(3)4(3)=4-2=8#£0=(12+2-1+1)(1242-1-3),
n # 1 and so n > 1. We shall need the following lemmas.

Lemma 1. Let n > 1 be an integer. Then a(n)é(n) < n?.

Proof. See Theorem 329 on page 267 of Hardy and Wright’s An
Introduction 1o the Theory of Numbers, Fourth Edition, Oxford
University Press, 1960.

Lemma 2. Let n= p‘l‘lng...p:k where p, < p, <:e<py are prime
numbers and a;,ay..,4; and k are positive integers. If
o(n)é(n) = n?—1then n= PPy Py

Proof. Since ¢ and ¢ are multiplicative functions and since o(n)é(n)
=n? -1, we have that the product

1 1 a +1
o W -P....M)
=1 =1 =1
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a, a ap P1—1 pp—1 pp—1) _ 2a 2a 2a
.(p11p22 cer pkk. pl .T.-.p_k = pl lp2 2...p k_l.

Hence
1 +1 a +1 a, —1 -1 a. -1
OO U ) (I ) (R ) s R el
= p2%1p2%2 ... 520

If a; > 1 for some integer i, 1 <i <k, then p; divides the left side of this
equality but not the right, which is impossible. Thus =g =--=a
=1, making n = p; py - -p;.

Lemma 3. Let n=p‘l‘1p;‘2 p:" where p; < p, <:-- < p; are prime
numbers and @,,ay,..,4; and % are positive integers. If
o(n)¢(n) = n® — 1 then n is a prime number.

Proof. It follows from Lemma 2 that n = p,p,---p;. Then since
a(n)p(n) =n’—1, we have (p,+1)(p,+1)--(p;+1)(p; - 1)(p,—1
--{pp—1) = p2p2 --- p} — 1. Thus (p? - 1)(p2 - 1)--(pk - 12 = p%pg...pk
—1. We shall show that if k is an integer > 2, then (pj —1)(p5—1)
Apg—=1) < pipi---pi—1. Since pp>p 2, pi+p;>2 makes
—(pi+p) < -2. Hemce pipi—(pi+p)+1<pip}—2+1=pip}
—~1. It follows that (p3—1)(p2—1) < p3p2—1, so the claimed result
holds for £ =2 and for k > 2 it now follows by mathematical induction.
Therefore k£ = 1 and n is a prime number.

Lemma 4. If n is a prime number, then o(n)¢(n) = n% 1.

Proof. Since n is a prime number, o(n) =n+1 and ¢(n) =n—1 and
the result follows by multiplication.

An easy corollary is “Let n>1 be a positive integer. Then
o(n)é(n) < n% — 1 with equality if and only if n is a prime number.”

Lemma 5. If o(n(n+2))é(n(n+2)) = (n®+2n+1)(n® +2n—3), then
ged(n,n+2)=1.

Proof. Let d = gcd(n,n + 2). Then d | (n+2 —n) so d | 2. Thus either
d=1or d=2. If n is even, then 2|n and 2|n+2 so that 4|n(n +2).
Then since ¢(n) is even for all integers n > 2 and n(n +2) > 4 whenever
n is an even positive integer, we have ¢(4) =2 and ¢(4) | ¢(n(n +2)).
Thus 2|¢(n(n+2)). But (n®+2n+41)(n®4+2n-3)= (rn=1)(n+1)?
-(n+3) and if n is even, then each of (n—1), (n+1) and (n +3) is odd.
This contradiction shows that n must be odd and thus ged(n,n +2) = 1.
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We are now ready to cstablish the final result. By hypothesis,
o(n(n+2))¢(n(n+2)) = (02 +2n+1)(n* +2n-3)=(n—1)(n+ 1)%(n
+3). From Lemma 5, ged(n,n +2) = 1. Then since both o and ¢ are
multiplicative functions, we have o(n(n + 2))é¢(n(n + 2)) = o(n)o((n +2)
-¢(n)p(n +2) = (n — 1)(n + 1)*(n + 3). Now if either n or n+2 is not a
prime number, then correspondingly either o(n)¢(n) < n?-1 =
(n—1)-(n +1) or o(n+2)¢(n+2) < (n+2)*—1=(n+1)(n+3). This
contradiction shows that both n and n + 2 must be prime numbers.

Also solved by Charles Ashbacher, Cedar Rapids, lowa; Bob Prielipp,
University of Wisconsin-Oshkosh, Oshkosh, Wisconsin (second solution);
and the proposer.

Editor's Comment. Prielipp’s second solution was much shorter due to its
reliance on the following known result “A positive integer m is the
product of two primes differing by 2 if and only if o(m)é(m)
= (m+1)(m +3).” This is Problem 317 in the Canadian Mathematical
Bulletin and was proposed by W.A. Mullin; see Rabinowitz, Index io
Mathematical Problems 1980-1984, Math Pro Press, Westford,
Massachusetts (1992), page 210.

Problem 476. Proposed by J. Sriskandarajah, University of Wisconsin
Center-Richland, Richland Center, Wisconsin. Around equilateral
triangle ABC, circumscribe rectangle PBQR (as shown in Figure 1
below). In general each side of triangle ABC cuts off a right triangle from
the rectangle. Prove that the sum of the areas of the two smaller right
triangles equals the area of the larger right triangle.

R A P Y

Al éo® Az
Cc ¢ ¢
w A3 P ‘00

Figure 1. Figure 2.
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Solution by Fred Horein, Albion College, Albion, Michigan.

In Figure 2 above, let the length of the sides of the equilateral
triangle be one. Let A;, A; and A; denote the areas of the respectively
designated right triangles. Now z = cos a, y = sin a, z = c0s(30° — «) and
w =38in(30"—a). Then 2A4; = (cos(30°— &) —sin a)(cos a —sin(30° — a))
= (cos 30° cos a + sin 30° sin & —sin a)(cos & —sin 30° cos a + cos 30° cos

a) so that
24, = -%—cos asina + ? (cosza—sinza) 1)

Similarly, we have 24, = cos(30° — ) 5in(30° - ) and 245 = cos « sin a.
Then adding and combining, we have

2(Ay+ Az) = co0s(30°— a)sin(30°—a) + cos  sin «
=1 3

= jcosa sin o + T (cosza—-sinza) = 24,.
The desired result follows immediately.

Also solved by Charles Ashbacher, Cedar Rapids, lowa; Tom Chen,
Albion College, Albion, Michigan; Russell Euler, Northwest Missouri
State University, Maryville, Missouri; Bob Prielipp, University of
Wisconsin-Oshkosh, Oshkosh, Wisconsin; and the proposer. One incorrect
solution was received in which the rectangle was assumed to be a square.

Editor's Comment. For a pretty solution of this problem using rotations,
see the item entitled “Mrs. Dijkstra” on pages 19-21 in Ross Honsberger’s
Mathematical Gems III published by the Mathematical Association of
America (1985).

Problem 477. Proposed by Bob Prielipp, University of Wisconsin-
Oshkosh, Oshkosh, Wisconsin. Let n be an integer > 2. Express

n
> (22X3)
k=2 F=2Ak
as a binomial coefficient and prove that your equality is correct.

Since no solution has been received, this problem will remain open
for another issue.

Problem 478. Proposed by J. Sriskandarajah, University of Wisconsin
Center-Richland, Richland Center, Wisconsin. The adjacent pairs of the
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2

q

trisectors of the angles of equilateral triangle ABC meet at the vertices of
triangle A’B'C’ as shown in the figure below. Find the ratio between the
areas of triangles ABC and A'B'C’.

A

\/

ﬁ’

c 5

Solution by Tom Chen, Albion College, Albion, Michigan.

Let s denote a side of equilateral triangle ABC. Let ¢ denote a side of
equilateral triangle A'B'C'. Let r denote the length of each of the
remaining segments in the diagram. Computing the area of triangle
A’BC in two ways, the area is given by (1/2)(r* sin 140°) and also by
(1/2)(rs sin 20°). Therefore s = r(sin 140°/sin 20°). Similarly, the area of
triangle AB‘C’ is given by (1/2)(gr sin 80°) and also by (1/2)(r? sin 20°).
Therefore ¢ = r(sin 20°/sin 80°). The area of triangle ABC is given by
(1/2)(s? sin 60°) and the area of triangle A'B'C’ is given by (1/2)(¢? sin
60°). The ratio of these areas is

2 2 2 2 2 2
s2_[,sin 140° S0 20°) _(sin 140°) (sin 80°) _ [sin 40°) { cos 10°
2 sin 20° sin 80° sin 20° J \ sin 20° sin 20°J \ sin 20°

2 2 2
_ {2 sin 20° cos 20° cos 10° _ {cos 20°
- sin 20° 9sin 10°cos 10°] ~ \sin 10°} °

Also solved by Charles Ashbacher, Cedar Rapids, Iowa; Scott H. Brown,
Auburn University, Montgomery, Alabama; Donovan Diede, Northern
State University, Aberdeen, South Dakota; Rita Kroytor, Pace
University, New York, New York; Fred A. Miller, Elkins, West Virginia;
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Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin; and
the proposer.

Problem 479. Proposed by the Editor. Prove that
(cot 63°)(cot 132°) + (cot 132°)(cot 165°) + (cot 165%)(cot 63°) = 1.
Find all other such instances, if any exist, in which

(cot A)(cot B) + (cot B)(cot C) + (cot C)(cot A) = 1.

Solution by Jimmy and Sammy Yu, jointly, special students, University
of South Dakota, Vermillion, South Dakota.

Let A, B and C not be multiples of 7 so that cot A, cot B and cot C
are well defined. We shall show that if and only if A4+B+C = nw, where
n is an integer, then (cot A)(cot B)+(cot B)(cot C)+(cot C)(cot A)=1. In
this proof we shall use the formula cot(B+C) = ((cot B)(cot C) —1)/(cot
B-t-cot C) where cot B+-cot C # 0.

Necessity. If (cot A)(cot B)+(cot B)(cot C)+(cot C)(cot A) = (cot
A)(cot B+cot C)+(cot B)(cot C) = 1, then cot A = (1 —(cot B)(cot C))
/(cot B+-cot C)=—cot(B+C) = cot( —(B+C)) and so A = ar — (B+C),
so that A+B+C=nw. Note that if cot B+cot C=0, then (cot B)(cot C)=1
so that cot?B=cot?C=-1, which is impossible. Thus cot B+cot C # 0.

Sufficiency. First we shall prove that cot B+cot C # 0. If cot B+cot
C=0, then B=mw — C, where m is an integer. But A+B+C=nr so that
A=(n—m)r, which makes cot A undefined. Thus we must have cot
B+cot C # 0. Now we have that

(cot B)(cot C)—1
~Tcot B+ cot C

(cot A)(cot B) + (cot B)(cot C) + (cot C)(cot A) = 1

cot A = cot(nm — (B+C)) = —cot(B+C) =

or

and this proves the result. Finally, since A+B+C = 63°+132°+-165° = 360°
= 2w, the desired numerical result follows.

Also solved by Rita Kroytor, Pace University, New York, New York, and
Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.
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Kappa Mu Epsilon News

Edited by Mary S. Elick, Historian

News of chapter activities and other noteworthy KME events should be
sent to Mary S. Elick, Historian, Kappa Mu Epsilon, Mathematics
Department, Missouri Southern State College, Joplin, Missouri 64801.

INSTALLATION OF NEW CHAPTERS

Mississippi Epsilon

Delta State University, Cleveland

The installation of the Mississippi Epsilon Chapter of Kappa Mu
Epsilon was held on November 19, 1994, in the University Chapel on the
campus of Delta State University. Dr. Arnold Hammel, National
President of Kappa Mu Epsilon, conducted the installation ceremony.
Professor Louise Rodgers, Kappa Mu Epsilon member initiated by
Missouri Beta and currently on the faculty at Delta State served as the
Conductor. Eleven students and eight faculty, in addition to Rodgers,
constituted the founding group of the new chapter at Delta State. Those
initiated were:

Students: Elizabeth Billingslea, Danny Carpenter, David
James, Debra Joel, Susan Meriwether, Kathy Maosley,
Krystal Spealman, Bobbie Thompson, Jimmy Tullos,
Renee Upton, and Robin Varner.

Faculty: Diane Blansett, Kathy Griffith, Linda Miller,
Paula Norris, James Potts, Beth Rogers, Rose Strahan, and
Robert Waller.

Also in attendance at the 6:30 p.m. installation ceremony were: Dr.
Wayne Blansett, Vice President for Student Affairs, Dr. W. Frank
McArthur, Vice President for Academic Affairs, and Dr. Richard S.
Myers, Dean of School of Arts and Sciences. A banquet was held
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following the ceremony in the Nowell Union following which Dr. Hammel
gave a brief history of honor societies in colleges and universities and, in
particular, the founding, development, and history of Kappa Mu Epsilon.

Officers installed during the ceremony were: Susan Meriwether,
President; Holly Billingslea, Vice President; Danny Carpenter, Secretary;
and Robin Varner, Treasurer. Faculty members Paula Norris and Rose
Strahan accepted the responsibilities of the corresponding secretary and
faulty sponsor, respectively.

CHAPTER NEWS

AL Gamma Chapter President - Jamie Tally
University of Montevallo, Montevallo

Other chapter officers: Timo Langerworf, vice president; Melissa
Ellison, secretary; Aleksis Langerwolf, treasurer; Larry Kurtz,
corresponding secretary; Don Alexander, faculty sponsor.

AR Alpha Chapter President - Cindy Nicholson
Arkansas State University, State University 14 actives, 9 associates

Other chapter officers: Sandy Jett, vice president; Nicole Nelson,
secretary; Odis Cook, treasurer; William Paulsen, corresponding
secretary /faculty sponsor.

CA Gamma Chapter President - Eric Emerton
California Polytechnic State University, San Luis Obispo 13 actives, 2 associates

The chapter sponsored an orientation meeting for new math majors
and hosted a guest presentation on careers. The group also planted trees
as a community project. Other chapter officers: Dylan Retsek, vice
president; Eric Bauer, secretary; Emily Fisher, treasurer; John Van Eps,
corresponding secretary /faculty sponsor.

CA Delta Chapter President - Gillian Robbins
California State Polytechnic University, Pomona 17 actives

Other chapter officers: Deborah Garcia, vice president; Jennifer
Baird, secretary; Kevin Lum, treasurer; Richard Robertson,
corresponding secretary; Jim McKinney, faculty sponsor.
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CO Gamma Chapter President - Ben Moore
Fort Lewis College, Durango 28 actives, 7 associates

CO Gamma held several planning meetings in the fall in preparation
for hosting the 1995 Biennial Convention. A pizza party was held in
conjunction with the induction of seven new members in November.
Other chapter officers: Jody Davis, vice president; Faith Ward, secretary;
Stevan Scott, treasurer; Richard A. Gibbs, corresponding secretary;
Deborah Berrier, faculty sponsor.

CO Delta Chapter President - Scott Davis
Mesa State College, Grand Junction 20 actives

Keys and certificates were presented at the fall meeting to the nine
members initiated at the April 1994 initiation ceremony. Members were
encouraged to plan for the 1995 Biennial Convention in Durango and a
video of student presentations at the 1993 national convention was
viewed. Chapter T-shirts were sold as a fund-raising activity for
convention expenses. Other chapter officers: Joy E. Rayside, vice
president; April R. Galyean, secretary; William J. Haworth, treasurer;
Donna K. Hafner, corresponding secretary; Cliff Britton, faculty sponsor.

FL Beta Chapter President - Tammy Causey
Fiorida Southern College, Lakeland

Activities during the fall semester included business meetings and a
pizza party. Other chapter officers: Dane Mooney, vice president; Jennifer
Harris, secretary/treasurer; Gayle Kent, corresponding secretary/faculty
sponsor.

GA Alpha Chapter President - Polly Quertermus
West Georgia College, Carrollton 25 actives

On November 18 the chapter held its Fall Social at a local
restaurant. Twenty five MAT-CSC faculty, KME members, and guests
enjoyed the event. For the seventh consecutive year, the organization
sponsored a Food and Clothing Drive for the needy. The contributions
obtained during the drive were delivered to the local Interfaith Help and
Service Center to be distributed to those in need. Other chapter officers:
Chad Bean, vice president; Chris Flournoy, secretary; Kristie Hannah,
treasurer; Joe Sharp, corresponding secretary/faculty sponsor; Mark
Faucette, faculty sponsor.
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IL Beta Chapter President - Steve Trepachko
Eastern Dllinois University, Charleston 42 actives

The first meeting of the year was held on September 20th, the
program being given by Dr. Rosemary Schmalz. Her topic was “Wise
Words From this Century’s Mathematicians.” Others who spoke at
chapter meetings included Dr. Gregory Galperin and Dr. Charles
Delman. The organization also enjoyed a faculty sponsored picnic in
September and a Christmas Party in early December. Other chapter
officers: Brittney Zupan, vice president; Jenny Wilhelmsen, secretary;
Curtis Price, treasurer; Lloyd L. Koontz, corresponding secretary/faculty
Sponsor.

IL Zeta Chapter President - Michele Rogalski
Rosary College, River Forest 20 actives

Other chapter officers: Karen Klimara, vice president; Cheri Smith,
secretary; Paul R. Coe, corresponding secretary/faculty sponsor.

IN Delta Chapter President - Chris Thielman
University of Evansville, Evansville 53 actives

Other chapter officers: Dyan Struckmeier, vice president; Denise
Lynam, secretary/treasurer; Troy D. VanAken, corresponding secretary;
Mohammad Azarian, faculty sponsor.

IA Alpha Chapter President - Lisa Gaskell
University of Northern lowa, Cedar Falls 34 actives

Students presenting papers at local KME meetings include: Jack
Dostal on “The Fast Fourier Transform,” Kristina Herbers on
“Motivation for the Semantic Interpretation of Material Implication,”
and Karen Brown on “Introduction to Dynamical Systems.” Jowa Alpha
is experimenting with sending its notices of events to members and
faculty by e-mail. It turns out that some don’t read their e-mail at all!
At the initiation of three new members in early December, Andrew J.
Schafer addressed those assembled on “Fundamental Applications of Hill
Ciphers.” The initiation ceremony was accompanied by a 10 inch snow
fall, so getting back to campus was an adventure!! Other chapter officers:
Dan Gruman, vice president; Jack Dostal, secretary; Chris Dix, treasurer;
John 8. Cross, corresponding secretary/faculty sponsor.
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1A Gamma Chapter President - Dean Stevens
Morningside College, Sioux City 8 actives

IA Gamma held one organizational meeting and continued with their
tutoring program in the area high schools. Most of the year’s activities
are planned for the spring semester. Other chapter officers: Cara Kern,
vice president; Jason Shriver, secretary; Denise Anderson, treasurer;
Steven D. Nimmo, corresponding secretary/faculty sponsor.

IA Delta Chapter President - Wendy Ahrendsen
Wartburg College, Waverly 34 actives

Program for the September meeting, entitled “Statistical Studies of
Chaotic Systems,” was presented by Dr. Dan Black. Dr. Lynn Olson gave
the program in October; it was entitled “Learning Using Geometer’s
Sketchpad.” Student officers Wendy Ahrendsen and Gretchen Roth
presented “Math Recreations - Ideas from the Math Horizons Magazine”
at the November 22nd meeting. A Christmas Party with games and
refreshments was held at Dr. Glenn Fenneman’s home in early December.
Other chapter officers: Kelly Berkeland, vice president; Gretchen Roth,
secretary; Adam Sanford, treasurer; August Waltmann, corresponding
secretary; Lynn Olson, faculty sponsor.

KS Alpha Chapter President - Andrew Buchholz
Pittsburg State University, Pittsburg 45 actives, 10 associates

The chapter held monthly meetings in October, November, and
December. Ten new members were initiated at the October meeting. The
meeting was preceded by a pizza party. The October program included
the viewing of Mitch Richling’s first place paper presentation given at the
29th Biennial Convention at Niagara University. The chapter began
preliminary plans for attending the 30th Biennial Convention to be held
at Ft. Lewis College in Durango, Colorado, in 1995. Dr. Cynthia
Woodburn, PSU faculty member, gave the November program. Her topic
was “Beyond Gaussian Elimination.” In December, a special pre-final
exam and pre-Christmas social was held at the home of Dr. Harold
Thomas. The group viewed the presentation of the second place paper
presented at the Niagara University convention. They also enjoyed
several culinary delights prepared by faculty members or spouses. Other
chapter officers: Bethany Schnackenberg, vice president, Zoeann Michel,
secretary; Sherry Brennon, treasurer; Harold Thomas, corresponding
secretary; Bobby Winters, faculty sponsor.
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KS Beta Chapter President - Jason Henry
Emporia State University, Emporia 27 actives, 7 associates

Other chapter officers: Stacey Walker, vice president; Michelle
Martling, secretary; Sherry Drummond, treasurer; Connie Schrock,
corresponding secretary; Larry Scott, faculty sponsor.

KS Gamma Chapter President - Mary Kay Heideman
Benedictine College, Atchison 12 actives, 16 associates

KS Gamma officers informed new students of KME activities on
“Club Night” at the beginning of the semester. In mid-September the
group welcomed new students with a Mexican dinner in Schroll Center.
Throughout the semester members have met regularly in the cafeteria to
plan activities. KS Gamma again sold tickets this fall during the Casino
Night of Parents’ Weekend as a fund-raising project. In late November
the chapter sponsored a video showing of “The Alhambra.” The
Christmas Wassail party was enjoyed at Jim Ewbank’s home on the
fourth of December. Other chapter officers: Gregory Boucher, vice
president; Jodie Muhlbauer, secretary; Gerard Pineda, treasurer; Jo Ann
Fellin, OSB, corresponding secretary/faculty sponsor.

KS Delta Chapter President- Jeffrey Brown
Washburn University, Topeka 30 associates

During the fall semester the chapter members joined with the
mathematics club for several activities. An afternoon picnic was held in
October with volleyball and other games being played. In November
Mary Wilson and Jennifer Oldham (Hudson), two past presidents of KS
Delta, discussed life after Washburn University. Mary is a graduate
student in statistics at Kansas State University; Jennifer is an actuary
trainee at a local insurance company. Other chapter officers: Vincent
Davis, vice president; Daniel Wessel, secretary; Karen Richard, treasurer;
Allan Riveland, corresponding secretary; Gary Schmidt and Ron
Wasserstein, faculty sponsor.

KS Epsilon Chapter President - Jason Purdy
Fort Hays State University, Fort Hays 26 actives, 7 associates

KS Epsilon held monthly meetings and sponsored three social events:
a fall picnic in September, a Halloween Party, and a Christmas Party.
Other chapter officers: Jerry Braun, vice president; Sherry Kinderknecht,
secretary/treasurer; Charles Votaw, corresponding secretary; Mary Kay
Schippers, faculty sponsor.
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KY Alpha Chapter President - Paula Christian
Eastern Kentucky University, Richmond 20 actives, 10 associates

As a fund raiser, KY Alpha sold floppy disks to students in the
computer literacy class and the Mathematica class. Chapter members,
along with faculty, enjoyed an early October picnic at the Costello house.
The event featured volleyball and round-robin ping-pong. In late
October, Dallas Graves and Jason Nichols took the Virginia Tech
Regional Math Exam, reporting it to be a tough exam this year. A panel
discussion on various aspects of graduate school served as the program
for the October meeting; a videotape of one of the student presentations
at the 1993 National KME Convention was viewed at the November
meeting. The Christmas Party and white elephant gift exchange was held
in December. Dr. Mary Fleming brought her freshman orientation class
and everyone had a great time. Dr. Fleming was especially happy
because she managed to threaten students into making sure she got the
“Puff the Magic Dragon” tape. Other chapter officers: John Ward, vice
president; Andrea Warren, secretary; Andrea McCreary, treasurer; Pat
Costello, corresponding secretary/faculty sponsor.

MD Beta Chapter President - Robert W. Brown
Western Maryland College, Westminster 16 actives, 3 associates

The chapter sponsored a meeting for all mathematics majors
featuring a well-attended talk by faculty member Dr. Robert Boner.
Members also served as presiders, registrars, parking attendants, etc., for
the fall meeting of the Maryland/Virginia Section of the Mathematical
Association of America held on the Western Maryland campus in
November. Plans are under way for a special thirtieth anniversary
Mathematics Homecoming to be held on April 22; all former MD Beta
members (about 235) have been invited to the event. The afternoon will
feature a talk by Dr. Howard Eves, noted mathematician and historian,
as well as short talks by alumni who have made careers in mathematics.
The day will close with a birthday dinner and celebration. The chapter is
very alive and well and quite active this year. Other chapter officers:
Emily Snyder, vice president; Kari Dunn, secretary; Kathy Gaston,
treasurer; James E. Lightner, corresponding secretary/faculty sponsor.

MD Delta Chapter President - John Hughes
Frostburg State University, Frostburg 33 actives

MD Delta Chapter opened the fall semester with a picnic held jointly
with the Computer Science Club at Dan’s Mountain State Park. In
October the group enjoyed the video, “N is a Number: A Portrait of Paul
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Erdés.” In November members viewed the Nova program, “Mathematical
Mystery Tour.” As a fund raising activity, the organization served as
intermediary for students wishing to purchase Casio 7700GE calculators
for their mathematics courses. Other chapter officers: Kileen Baker, vice
president; Karl Streaker, secretary; Melissa Thomas, treasurer; Edward
T. White, corresponding secretary; John P. Jones, faculty sponsor.

M| Beta Chapter President - Nicole Zakrajsek
Central Michigan University, Mount Pleasant 20 actives

Meetings were held every two weeks throughout the fall semester. As
a fund raiser, the chapter co-sponsored a mathematics textbook sale.
Several members of KME contributed monetarily and helped swing
hammers, push wheelbarrows, etc., during the community volunteer
construction of a Playscape playground in Mt. Peasant. Besides co-
hosting a homecoming picnic for faculty, local members, and alumni,
KME joined with the Actuarial Club, Gamma Iota Sigma, in riding in a
float at the homecoming parade. The farm wagon of math faculty
member, Bill Miller, was pulled by the 1938 John Deere B tractor owned
by department chair, Rich Fleming. Professor Miller also spoke at one of
our meetings on Golden Rectangles. Professors Tom Miles and Shu Ping
Hodgson spoke on Careers in Mathematics and Statistics at an open
house meeting. Several members are planning to attend the national
convention in April. Other chapter members: Christine Riggs, vice
president; Tara Kelly, secretary; Rich Lamb, treasurer; Arnold Hammel,
corresponding secretary/faculty sponsor.

MS Alpha Chapter President - Nancy Piper
Mississippi University for Women, Columbus 12 actives, 2 associates

Other chapter officers: Laura Pendergest, vice president; Jill Whites,
secretary; Mary-Margaret Wolff, treasurer; Jean Parra, corresponding
secretary; Shaochen Yang, faculty sponsor.

MS Beta Chapter President - Larry Gariepy
Mississippi State University, Mississippi State 25 actives

Other chapter officers: Brian Parks, vice president; Bobby Jarrell,
secretary; Karen Petersen, treasurer; Michael Pearson, corresponding
secretary; Seth Oppenheimer, faculty sponsor.

MS Gamma Chapter President - Joong Lee
University of Southern Mississippi, Hattiesburg 27 actives, 9 associates

A video presentation, “Fractals: The Colors of Infinity,” was
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sponsored by the chapter. The event was open to everyone on campus.
Approximately thirty KME members and faculty attended the fall
initiation and picnic, held October 25, at USM’s Lake Bryon. Members
and faculty competed in determining the design for the chapter’s first
ever chapter T-shirts. The winning design: KME on the front and a
choice of two fractals on the back. Other chapter officers: Davor
Cubranic, vice president; Kathy Jones, secretary; Alice Essary,
treasurer/corresponding secretary; Barry Piazza, Jeff Stuart, Karen
Thrash, Lida McDowell, faculty sponsors.

MO Beta Chapter President - Steve Shattuck
Central Missouri State University, Warrensburg 25 actives, 5 associates

MO Beta held monthly meetings during the fall semester. The
September program was a presentation on “Chaos, Fractals and
Dynamics - What are They?” The October initiation of eight new
members featured a talk on prime numbers by one of the graduate
students. In November members watched the video, “Donald in
Mathmagic Land.” The semester ended with a Christmas party at the
home of Dr. McKee. Other chapter officers: Ann Scheffing, vice president;
Mindy Eder, secretary; Chad Doza, treasurer; Rhonda McKee,
corresponding secretary; Scotty Orr, Larry Dilley, Phoebe Ho, faculty
SpONSOrS.

MO Gamma Chapter President - Stephanie Pauls
William Jewell College, Liberty 10 actives

Other chapter officers: Ashley Sherman, vice president; Leann Lotz,
gecretary; Joseph T. Mathis, treasurer/corresponding secretary/faculty
sponsor.

MO Epsilon Chapter President - Heather Warren
Central Methodist College, Fayette 15 actives

Other chapter officers: Jason Graves, vice president; Audrey
Heidekreuger, secretary; Mitu Bajpayee, treasurer; William D. McIntosh,
corresponding secretary; Linda O. Lembke, faculty sponsor.

MO Eta Chapter President - Douglas Cutler
Northeast Missouri State University, Kirksville 25 actives, 8 associates

MO Eta hosted a Spades tournament night for math students and
division faculty. Plans were also made for hosting the 1995 Mathematics
Exposition for high school students in the spring. Other chapter officers:
Sarah Schwab, vice president; Joshua Aldrich, secretary; Tanya Walter,
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treasurer; Mary Sue Beersman, corresponding secretary; Joseph
Hemmeter, faculty sponsor.

MO Theta Chapter President - Kelly Godzwa
Evangel College, Springficld 11 actives, 3 associates

Other chapter officers: Dan Brewer, vice president; Don Tosh,
corresponding secretary/faculty sponsor.

MO lota Chapter President - Jolena Gilbert
Missouri Southern State College, Joplin 20 actives

New officers for the year were elected at an organization meeting
held in September. Meetings were held monthly featuring presentations
by faculty or students. Vice president Tom Wofford gave two talks on
recreational math topics; faculty member Tim Flood gave a presentation
entitled “Why 1 or 587" Once again chapter members worked concessions
at home football games as a fund raising activity. The club sponsored
Linette Vazquez as a homecoming queen candidate. During the
Christmas shopping season members assisted Salvation Army by
manning one of the bellringing stations. Also, plans were laid to provide
tutoring two hours a week at a local junior high to students in the
Hammonds Program. A Christmas party and white elephant exchange
were held the end of the semester at the home of Dr. Juan Vazquez.
Other chapter officers: Tom Wofford, vice president; Linette Vazquez,
secretary; Jennifer Schumaker, treasurer; Dave Hunter, historian; Mary
Elick, corresponding secretary; Charles Curtis, faculty sponsor.

MO Kappa Chapter President - Mark Garton
Drury College, Springfield 11 actives, 6 associates

Semester activities began with a pizza and movie rush party for
potential KME members (freshmen). The chapter made a trip to the
Argonne National Laboratory for the Graduate Fair held in early
October. Mark Garton won the Annual Math Contest, Calculus I1 and
above division. Prize money was awarded to the winners at a pizza party
held for all contestants. Members enjoyed a bonfire party held at the
home of Dr. Allen. In conjunction with a luncheon, Kate Good gave a
report on her undergraduate research project at the University of
Missouri last summer. The Math Club ran a tutoring service for both the
day school and the Continuing Education Division (Drury Evening
College) as a money-making project. End of semester activities included
a retirement party for KME member Dr. Stephen Rutan, who had been a
member of the Drury College math faculty for over thirty years. Other



70 The Peniagon

chapter officers: Kate Good, vice president; Pat Roper, secretary; Jeanie
Allen, treasurer; Charles Allen, corresponding secretary; Don Moss,
faculty sponsor.

MO Lambda Chapter President - Dawn Powell
Missouri Western State College, St. Joseph 39 actives

Fall semester began with a get-acquainted picnic in early September.
Seven students and one faculty member were initiated in October. The
initiation talk was given by Dr. Keith Brandt, the new faculty initiate.
Chapter participation in homecoming activities included a float in the
parade and an entry in the window decorating contest. In other activities
the club held a bake sale fund raiser and sponsored a booth at Family
Day. Two social events, a Thanksgiving covered dish dinner and a
Christmas Party, brought the semester to a close. Other chapter officers:
Tracy Schemmer, vice president; Ryoko Tamoto, secretary; Henry
Trammell, treasurer; John Atkinson, corresponding secretary; Jerry
Wilkerson, faculty sponsor.

NE Alpha Chapter President - Michelle Roberts
Wayne State College, Wayne 26 actives

Club members once again monitored the Math-Science building
evenings as a money-making project. A fall welcoming picnic was held
jointly with the Math-Science faculty and with other clubs in the science
building. Several of the chapter members are planning to attend the
National Convention in Durango, Colorado. Other chapter officers:
Darrin Brumbaugh, vice president; Robert Schultz, secretary/treasurer;
Todd Koehler, historian; Fred Webber, corresponding secretary; Jim
Paige and John Fuelberth, faculty sponsors.

NE Beta Chapter President - Traci Focke Elwood
University of Nebraska-Kearney, Kearney 10 actives

In mid-September the chapter sponsored a Mathematics and
Medicine Symposium. The event featured a panel discussion composed of
members from the medical community at the local hospital and, also, an
evening banquet with a speaker from University of Nebraska Medical
Center. Both events centered on the importance and necessity of having a
good mathematics background. In November members helped with a
Mathematics Fun Day sponsored by the local Educational Service Unit.
A Food Drive for the local Food Pantry was held in December. Other
chapter officers: Jennifer Sonnefeld, vice president; Beth Jorgesen,
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secretary; Daniel Parkison, treasurer; Charles Pickens, corresponding
secretary; Peggy Miller, faculty sponsor.

NH Alpha Chapter Presidents - Sue Letendre and Tracey Thibeault
Keene State College, Keene 24 actives

NH Alpha took the initiative in revitalizing a math club to include
students not qualified for KME membership. It is expected that this
chapter and the club will act together on many projects. KME activities
included a fall picnic and an end-of-semester social. The chapter
participated in Keene’s annual pumpkin festival, contributing pumpkins
carved with mathematical symbols. Other chapter officers: Tammy
Spearrin, vice president; Tina Haggett, secretary; Shayne Noyes,
treasurer; Charles Riley, corresponding secretary; Ockle Johnon, faculty
sponsor.

NY Alpha Chapter President - Martha Chong
Hofstra University, Hempstead

Chapter activities included volleyball games and an induction dinner.
Other chapter officers: Jeanette Jones, vice president; Christine Kalos,
secretary; Brandi York, treasurer; Aileen Michaels, corresponding
secretary /faculty sponsor.

NY Eta Chapter President - Kenneth Krawezyk
Niagara University, Niagara University 15 actives

Other chapter officers: Emily Hulbert, vice president; Rebecca Bauer,
secretary/treasurer; Robert Bailey, corresponding secretary; Kenneth
Bernard, faculty sponsor.

NY Kappa Chapter President - Andrea Marchese
Pace University, New York 20 actives, 6 associates

Other chapter officers: Teresa Lester, vice president; Geraldine
Taiani, corresponding secretary; John W. Kennedy, faculty sponsor.

OH Alpha Chapter President - Alisha Reesh
Bowling Green State University, Bowling Green

Other chapter officers: Leah Breckstein and Leah Walden, vice
presidents; Kevin Kundert, secretary/treasurer; Waldemar Weber,
corresponding secretary; Stephen McCleary, faculty sponsor.
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OK Alpha Chapter President - Ryan Swank
Northeastern Oklahoma State University, Tahlequah 32 actives, 5 associates

The chapter continues to hold joint activities with the NSU student
chapter of MAA. Fall initiation of nine students was held in the banquet
room of a local restaurant; it was well attended by faculty and students.
Receipts from the annual book sale totaled 71 dollars. The group met
several times to work on problems from The Pentagon, and continues to
sponsor a monthly math contest. A highlight of the semester was the
Christmas “pizza party” featuring a Math Jeopardy game created by
KME member Jana Cole. Other chapter officers: Allison Selby, vice
president; Jennifer Beals, secretary/treasurer; Joan Bell, corresponding
secretary/faculty sponsor.

OK Gamma Chapter President - Terry Price
Southwestern State University, Weatherford 20 actives

Other chapter officers: Kris Kessinger, vice president; Lori Ordway,
secretary/treasurer; Wayne Hayes, corresponding secretary; Radwan Al-
Jarrah, faculty sponsor.

PA Alpha Chapter President - Melissa Napoleon
Westminster College, New Wilmington 18 actives

The chapter hosted an ice cream social for new freshmen. All
members tutored in the Learning Center, a service much appreciated by
students needing help with their math courses. The chapter also sponsors
a Reading Day prior to final exams. On this day pizza and soft drink
study breaks are provided for all math majors. A monthly Problem
Contest sponsored by the chapter features a new problem the start of
each month with three weeks to come up with a solution. The prize is a
large pizza at the local pizza shop. Other chapter officers: Kara Sheets,
vice president; Susan Shaffer, secretary; Karin Speer, treasurer; J. Miller
Peck, corresponding secretary; Carolyn Cuff and Warren Hickmann,
faculty sponsors.

PA Beta Chapter President - Rose Anne Hofmann
La Salle University, Philadelphia 10 actives

Other chapter officers: Mary McAvoy, vice president; Jennifer
Bostak, secretary; Janet Munyan, treasurer; Hugh N. Albright,
corresponding secretary; Carl McCarty, faculty sponsor.
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PA Gamma Chapter President - Gwen Nicklow
Waynesburg College, Waynesburg 11 actives, 5 associates

Other chapter officers: Laura Marquis, vice president; Crystal
Thomas, secretary; Paul Gacek, treasurer; A. B. Billings, corresponding
secretary /faculty sponsor.

PA Delta Chapter President - Ann Conflitti
Marywood College, Scranton 7 actives

Much of fall activities centered on preparation for the Annual Math
Contest provided for high school students in the spring. Other chapter
officers: Abigail Brace, vice president; Kim Fisher, secretary; Melissa
Mang, treasurer; Sr. Robert Ann von Ahnen, IHM, -corresponding
secretary /faculty sponsor.

PA Epsilon Chapter President - Sheri Smucker
Kutztown University of Pennsylvania, Kutztown 9 actives

Other chapter officers: Michelle Wiley, vice president; Brandy Thiele,
secretary; Karen Biesecker, treasurer; Cherry C. Mauk, corresponding
secretary; Randy Schaeffer, faculty sponsor.

PA Eta Chapter President - Kristin Gieringer
Grove City College, Grove City 19 actives, 10 associates

The Spring Picnic which was rained out last spring was rescheduled
for September 18. The picnic featured volleyball, hamburgers, and hot-
dogs. The Schlossnagels hosted the annual KME Christmas party at their
home on December 13. The group sang carols and enjoyed refreshments
provided by Mrs. Schlossnagel. Other chapter officers: Claudine
Desjardins, vice president; Danielle Miller, secretary; Bryan Weet,
treasurer; Marvin C. Henry, corresponding secretary; Dan Dean, faculty
sponsor.

PA lota Chapter President - Jason Baker
Shippensburg University of Pennsylvania, Shippensburg 16 actives, 14 associates

The annual Math Picnic, held in October, was jointly sponsored by
Math Club and KME. Two talks, both well attended, were also co-
sponsored. In conjunction with the Adopt a Highway Program, members
met one Saturday morning to take care of their part of US 11. Fall
initiation was held in November at the home of Dr. and Mrs. Douglas
Ensley. Their gracious hospitality is greatly appreciated by chapter
members and sponsors. Other chapter officers: Angela Foltz, vice
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president; Todd Bittinger, secretary; Jennie Hooper-Gardner, historian;
Fred Mordai, treasurer; Michael Seyfried, corresponding secretary/faculty
sponsor.

PA Kappa Chapter Presidents - Joshua Wagner and Sarah Iskra
Holy Family College, Philadelphia 7 actives, 3 associates

During the fall semester, the PA Kappa members met bi-weekly for
problem solving session with solved problems being submitted for
publication in Math Horizons. Senior members prepared for
comprehensive exams by tackling problems in the GRE math test
practice booklets. A TI-85 graphing calculator session was open to the
entire student body/faculty/staff, with KME members providing
refreshments. Several meetings were also devoted to the viewing and
discussion of two math videos, NCTM’s “Supercalculators in the College
Classroom” and “Women in Mathematics.” Chapter members also staff
the college math tutoring center. Other chapter officers: Leanne Majors,
secretary/treasurer; Sr. Marcella Louise Wallowicz, corresponding
secretary/faculty sponsor.

PA Mu Chapter President - Gerald Albright, Jr.
Saint Francis College, Loretto 33 actives, 11 associates

Seven students and two faculty attended the NCTM Regional
Conference in Charleston, West Virginia, in November. Several KME
members volunteered to help with Science Day. On this day 256 high
school students from 19 high schools were on campus attending
presentations, competing in science bowl, and learning about science
careers. In October the chapter collected road-side litter as part of the
Pennsylvania Adopt-a-Highway Program. Inductions are scheduled for
February. Other chapter officers: Lisa Smith, vice president; Edward
Steinbugl, secretary; Scott Beers, treasurer; Peter R. Skoner,
corresponding secretary; Adrian Baylock, faculty sponsor.

SC Gamma Chapter President - Tiffany Allen
Winthrop University, Rock Hill 11 actives, 2 associates

In conjunction with the Mathematics Club, the chapter entered the
Christmas decorating contest, winning first place for their decorating
efforts in the math department building. This is the third consecutive
year they have won. Other chapter officers: Candace Rogers, vice
president; Jamie Pittman, secretary; Ronald Knox, treasurer; Donald
Aplin, corresponding secretary; James Bentley, faculty sponsor.
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TN Beta Chapter President - Becky Sweeney
East Tennessee State University, Johnson City 17 actives

The first order of business for the fall was the election of chapter
officers for the 1994-95 school year. The group met to have a photo taken
for the college yearbook and also sponsored the fall social at Ryan’s
Steakhouse. Other chapter officers: Brian Heaton, vice president; Michele
Swoager, secretary; Carl Menako, treasurer; Lyndell Kerley,
corresponding secretary/faculty sponsor.

TN Delta Chapter President - Brenda Bleavins
Carson-Newman College, Jefferson City 12 actives

Fall 1994 activities included a fall picnic and a Christmas get-
together. Other chapter officers: Alexander J. Mutterspaugh, vice
president; Amy  Smith, secretary/treasurer; Catherine Kong,
corresponding secretary/faculty sponsor.

TX Alpha Chapter President - Curt Bourne
Texas Tech University, Lubbock 60 actives

Other chapter officers: Nora Chang, vice president; Wes Kirk,
secretary; Chuck Steed, treasurer; Edward J. Allen, corresponding
secretary /faculty sponsor.

TX Eta Chapter President - Ann Meuret
Hardin-Simmons University, Abilene 18 actives

TX Eta Chapter members held a get-together on December 2, at
which time new members present were presented their pins and shingles.
Following the presentations, members watched the movies “Sneakers”
and “Stand and Deliver” and enjoyed snacks and cold drinks. Other
chapter officers: Jeremy Fitch, vice president; Robyn Eads, secretary;
Carmen Turner, treasurer; Frances Renfroe, corresponding secretary;
Charles Robinson, Ed Hewett, and Dan Dawson, faculty sponsors.

TX Kappa Chapter President - James Davidson
University of Mary Hardin-Baylor, Belton 15 actives, 10 associates

TX Kappa Fall Forum, held in November, featured discussions on
prospective jobs and graduate schools for mathematics students. Other
chapter officers: Eric Madsen, vice president; Mary Cook, secretary;
Rachel McWha, treasurer; Peter H. Chen, corresponding secretary;
Maxwell M. Hart, faculty sponsor.
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VA Gamma Chapter President - Gerri Stultz
Liberty University, Lynchburg 25 actives

Fall activities got underway with an organizational meeting held in
September. The October meeting featured a guest speaker, LU graduate
Mike McLeery, who spoke on operations research. Also in October,
members, alumni, and faculty enjoyed a Chili Luncheon prepared by
math faculty. In December the chapter sponsored Christmas caroling at a
local nursing home. The group also caroled at various math faculty
homes, ending up at Dr. Rumore’s home for good food and “White
Christmas.” Other chapter officers: Angela Bolis, vice president; Tricia
Muscato, secretary; John Harrell, treasurer; Glyn Wooldridge,
corresponding secretary; Sandra Rumore, faculty sponsor.

WI Gamma Chapter President - Debbie Bauer
University of Wisconsin-Eau Claire, Eau Claire 9 actives, 7 associates

Monthly meetings were held featuring one or two student speakers.
The group also got together for a pizza party. Other chapter officers: Lisa
Vander Missen, vice president; Bryan Kilian, secretary; Bryce Rudolph,
treasurer; Tom Wineinger, corresponding secretary; Marc Goulet, faculty
sponsor.,

New Editor and Business Manager

The National Council is pleased to announce the appointments, effective
1 June 1995, of the next Editor and Business Manager of The Pentagon.
EDITOR C. Bryan Dawson

Department of Mathematics & Computer Science
Emporia State University, Emporia, Kansas 66801 USA

e-mail: dawsonbr@esuvml.emporia.edu

BUSINESS MANAGER Larry Scott

Department of Mathematics & Computer Science
Emporia State University, Emporia, Kansas 66801 USA

e-mail: scottlar@esuvml.emporia.edu
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Kappa Mu Epsilon National Officers

Arnold D. Hammel President

Department of Mathematics
Central Michigan University, Mt. Pleasant, Michigan 48859

Patrick J. Costello President-Elect

Department of Mathematics, Statistics and Computer Science
Eastern Kentucky University, Richmond, Kentucky 40475

Robert L. Bailey Secretary

Department of Mathematics
Niagara University, Niagara University, New York 14109

Jo Ann Fellin Treasurer

Mathematics and Computer Science Department
Benedictine College, Atchison, Kansas 66002

Mary S. Elick Historian

Department of Mathematics
Missouri Southern State College, Joplin, Missouri 64801

Kappa Mu Epsilon, Mathematics Honor Society, was founded in 1931.
The object of the Society is fivefold: to further the interests of
mathematics in those schools which place their primary emphasis on the
undergraduate program; to help the undergraduate realize the important
role that mathematics has played in the development of western
civilization; to develop an appreciation of the power and beauty possessed
by mathematics due to its demands for logical and rigorous modes of
thought; to provide a Society for the recognition of outstanding
achievement in the study of mathematics at the undergraduate level; and
to disseminate the knowledge of mathematics and familiarize the
members with the advances being made in mathematics. The official
journal of the Society, The Pentagon, is designed to assist in achieving
these objectives as well as to aid in establishing fraternal ties between the
Chapters.
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Active Chapters of Kappa Mu Epsilon
Listed by date of installation.

Chapter Location Installation Date
OK Alpha Northeastern Oklahoma State University, 18 April 1931
Tahlequah
1A Alpha University of Northern Iowa, Cedar Falls 27 May 1931
KS Alpha Pittsburg State University, Pittsburg 30 Jan 1932
MO Alpha Southwest Missouri State University, Springficld 20 May 1932
MS Alpha Mississippi University for Women, Columbus 30 May 1932
MS Beta Mississippi State University, 14 Dec 1932
Mississippi State College
NE Alpha Wayne State College, Wayne 17 Jan 1933
KS Beta Emporia State University, Emporia 12 May 1934
NM Alpha University of New Mexico, Albuquerque 28 March 1935
IL Beta Eastern Nlinois University, Charleston 11 April 1935
AL Beta University of North Alabama, Florence 20 May 1935
AL Gamma University of Montevallo, Montevallo 24 April 1937
OH Alpha Bowling Green State University, Bowling Green 24 April 1937
MI Alpha Albion College, Albion 29 May 1937
MO Beta Central Missouri State University, Warrensburg 10 June 1938
TX Alpha Texas Tech University, Lubbock 10 May 1940
TX Beta Southern Methodist University, Dallas 15 May 1940
KS Gamma Benedictine College, Atchison 26 May 1940
IA Beta Drake University, Des Moines 27 May 1940
TN Alpha Tennessee Technological University, Cookeville 5 June 1941
NY Alpha Hofstra University, Hempstead 4 April 1942
MI Beta Central Michigan University, Mount Pleasant 25 April 1942
NJ Beta Montclair State College, Upper Montclair 21 April 1944
IL Delta College of St. Francis, Joliet 21 May 1948
KS Delta Washburn University, Topcka 29 March 1947
MO Gamma William Jewell College, Liberty 7 May 1947
TX Gamma Texas Woman's University, Denton 7 May 1947
WI Alpha Mount Mary College, Milwaukee 11 May 1947
OH Gamma Baldwin-Wallace College, Berea 6 June 1947
CO Alpha Colorado State University, Fort Collins 16 May 1948
MO Epsilon Central Methodist College, Fayette 18 May 1949
MS Gamma University of Southern Mississippi, Hattiesburg 21 May 1949
IN Alpha Manchester College, North Manchester 16 May 1950
PA Alpha Westminster College, New Wilmington 17 May 1950
IN Beta Butler University, Indianapolis 16 May 1952
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KS Epsilon Fort Hays State University, Hays 6 Dec 1952
PA Beta LaSalle University, Philadelphia 19 May 1953
VA Alpha Virginia State University, Petersburg 29 Jan 1955
IN Gamma Anderson University, Anderson 5 April 1957
CA Gamma California Polytechnic State University, 23 May 1958

San Luis Obispo
TN Beta East Tennessee State University, Johnson City 22 May 1959
PA Gamma Waynesburg College, Waynesburg 23 May 1959
VA Beta Radford University, Radford 12 Nov 1959
NE Beta Keamney State College, Kearney 11 Dec 1959
IN Delta University of Evansville, Evansville 27 May 1960
OH Epsilon Marietta College, Marietta 29 Oct 1960
MO Zeta University of Missouri - Rolla, Rolla 19 May 1961
NE Gamma Chadron State College, Chadron 19 May 1962
MD Alpha College of Notre Dame of Maryland, Baltimore 22 May 1963
IL Epsilon North Park College, Chicago 22 May 1963
OK Beta University of Tulsa, Tulsa 3 May 1964
CA Delta California State Polytechnic University, Pomona 5 Nov 1964
PA Delta Marywood College, Scranton 8 Nov 1964
PA Epsilon Kutztown University of Pennsylvania, Kutztown 3 April 1965
AL Epsilon Huntingdon College, Montgomery 15 April 1965
PA Zeta Indiana University of Pennsylvania, Indiana 6 May 1965
AR Alpha Arkansas State University, State University 21 May 1965
TN Gamma Union University, Jackson 24 May 1965
WI Beta University of Wisconsin - River Falls, River Falls 25 May 1965
IA Gamma Morningside College, Sioux City 25 May 1965
MD Beta Western Maryland College, Westminster 30 May 1965
IL Zeta Rosary College, River Forest 26 Feb 1967
SC Beta South Carolina State College, Orangeburg 6 May 1967
PA Eta Grove City College, Grove City 13 May 1967
NY Eta Niagara University, Niagara University 18 May 1968
MA Alpha Assumption College, Worcester 19 Nov 1968
MO Eta Northeast Missouri State University, Kirksville 7 Dec 1968
IL Eta Western Illinois University, Macomb 9 May 1969
OH Zeta Muskingum College, New Concord 17 May 1969
PA Theta Susquehanna University, Selinsgrove 26 May 1969
PA Iota Shippensburg University of Pennsylvania, 1 Nov 1969
Shippensburg
MS Delta William Carey College, Hattiesburg 17 Dec 1970
MO Theta Evangel College, Springfield 12 Jan 1971
PA Kappa Holy Family College, Philadelphia 23 Jan 1971
CO Beta Colorado School of Mines, Golden 4 March 1971
KY Alpha Eastern Kentucky University, Richmond 27 March 1971
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TN Delta Carson-Newman College, Jefferson City 15 May 1971
NY Iota Wagner College, Staten Island 19 May 1971
SC Gammas Winthrop University, Rock Hill 3 Nov 1972
IA Delta Wartburg College, Waverly 6 April 1973
PA Lambda Bloomsburg University of Pennsylvania, 17 Oct 1973

Bloomsburg
OK Gamma Southwestern Oklahoma State University, 1 May 1973
Weatherford
NY Kappa Pace University, New York 24 April 1974
TX Eta Hardin-Simmons University, Abilene 3 May 1975
MO Iota Missouri Southern State College, Joplin 8 May 1975
GA Alpha West Georgia College, Carrollton 21 May 1975
WYV Alpha Bethany College, Bethany 21 May 1975
FL Beta Florida Southern College, Lakeland 31 Oct 1976
WI Gamma University of Wisconsin - Eau Claire, Eau Claire 4 Feb 1978
MD Delta Frostburg State University, Frostburg 17 Sept 1978
IL Theta Illinois Benedictine College, Lisle 18 May 1979
PA Mu St. Francis College, Loretto 14 Sept 1979
AL Zeta Birmingham-Southern College, Birmingham 18 Feb 1981
CT Beta Eastern Connecticut State University, Willimantic 2 May 1981
NY Lambda C.W. Post Campus of Long Island University, 2 May 1983
Brookville
MO Kappa Drury College, Springfield 30 Nov 1984
CO Gamma Fort Lewis College, Durango 29 March 1985
NE Delta Nebraska Wesleyan University, Lincoln 18 April 1986
TX Iota McMurry College, Abilene 25 April 1987
PA Nu Ursinus College, Collegeville 28 April 1987
VA Gamma Liberty University, Lynchburg 30 April 1987
NY Mu St. Thomas Aquinas College, Sparkill 14 May 1987
OH Eta Ohio Northern University, Ada 15 Dec 1987
OK Delta Oral Roberts University, Tulsa 10 April 1990
CO Delta Mesa State College, Grand Junction 27 April 1990
NC Gamma Elon College, Elon College 3 May 1980
PA Xi Cedar Crest College, Allentown 30 Oct 1990
MO Lambda Missouri Western State College, St. Joseph 10 Feb 1991
TX Kappa University of Mary Hardin-Baylor, Belton 21 Feb 1991
SC Delta Erskine College, Due West 28 April 1991
SD Alpha Northern State University, Aberdeen 3 May 1992
NY Nu Hartwick College, Oneonta 14 May 1992
NH Alpha Keene State College, Keene 16 Feb 1993
LA Gamma Northwestern State University, Natchitoches 24 March 1993
KY Beta Cumberland College, Williamsburg 3 May 1993
MS Epsilon Delta State University, Cleveland 19 Nov 1994



