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The Jacobi Symbol

Onecia Gibson, student

Kentucky Alpha

Eastern Kentucky University
Richmond, Kentucky 40475

Presented at the 1991 National Convention.

The Jacobi symbol, which was introduced by Carl Jacobi, is useful in
eliminating the possibility of a number being prime. Since the Jacobi
symbol is a generalization of the Legendre symbol, a discussion of the
Legendre symbol will be presented first and then generalized to the
Jacobi symbol.

Definition. Let p be an odd prime and a an integer not divisible by p.
Then the Legendre symbol (jj) is defined by

(«- {-;,::
x2 = a (mod p) for some x

x2 =£ a (mod p) for any x

That is, (p) =1 if a is a quadratic residue of x and (£) = —1 if a is a
quadratic nonresidue of x.

"Euler's Criterion" can be used to determine the value of a Legendre
symbol.

Euler's Criterion. Let p be an odd prime and l<a<p —1. (1) If
a(P- >f = i (mod p), then a is a quadratic residue. (2) If
a\p - )l = _ i (mod p), then a isa quadratic nonresidue.

Combining the definition of the Legendre symbol with Euler's
Criterion, we have
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(£) =«<*-»>/» (mod p).

The Legendre symbol has the following properties:

(1) If a=6(mod p), then (f) =(|).

« (»)•»)-(♦)•

(3) f̂ I^ =J*' if P"X(m°d 4)
*p> j-1, ifp= -l(mod4)

(4) ( %-1 = 1if a isnot divisible by p.

(5) (I) = (- l)(p "1)/8 if Pis an odd prime.

Let us give a proof for property (2); that is, that the product of two
residues will be a residue, the product of two nonresidues will be a
residue and the product of a residue and a nonresidue will be a
nonresidue. By Euler's Criterion,

(f) =^-^(modp),^) =6("-1>/2(modp)

(#) =M)(p-1)/2(modp).

(f)'(t) =«(p-1)/2-t(p-1)/2(modp)

=(a6)("-1)/2(modp) =(f).

and

Thus

These properties are useful to evaluate Legendre symbols. For
example,

(2) =(_if2-D/* =(_i)6 =1
by property (5),
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(♦)-(*)-
by property (4), and

(?) =(?)•(?) - '•(») =(f)
by property (2) and our first example, and then by Euler's Criterion,

(2) =3(7-1)/2(mod7) =33(mod7) = -l(mod7)
so that . „

(f)--1-
As stated previously, the Jacobi symbol is a generalization of the

Legendre symbol.

Definition. Let n be an odd positive integer with prime factorization

« = Pi1 P22-'Pm

and a an integer relatively prime to n. Then the Jacobi symbol (£) is
defined by

(S)=U*~*)=(*) (*) •••(*)
where the symbols on the right-hand side are Legendre symbols.

For example,

Km) - Ux7xiiJ - rg-ATvnrJ
and then, using the properties of the Legendre symbols, this is

-«)»)(«) - ($)($)m
-l.l.(Tjl)--l,

since 11 = —1 (mod 4).

Note that the value of the Jacobi symbol does not tell us whether or
not x2 = a (mod n) has a solution (the value of the Legendre does give
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this information). However, if x2 = a (mod n) has a solution, the Jacobi
symbol (#) = 1. For example,

(4)-8)d)-(-H-i)-
(using Euler's Criterion). If this were a Legendre symbol, we could now
say that x2 = 2 (mod 15) has a solution. But this is a Jacobi symbol and
we cannot draw this conclusion. In fact, x2 = 2 (mod 15) has no solution
since we have that

12=1 62 = 6 ll2 = 1
22 = 4 72 = 4 122 = 9
32 = 9 82 = 4 132 = 4 (mod 15).
42 = 1 92 = 6 142 = 1
52 = 10 102 = 10

The Jacobi symbol has properties similar to those of the Legendre
symbol.

(1) Ifa =6(mod n), then (g) =(£) .

(2) (#) =(«)•(*)•

(3) (-^) =(-l)(-1)/2.

(4) © =(-D("2-1)/8.

We now prove properties 1, 2 and 3. Let n = pj1 p22 ••• p^J*. For (1),
we have that a = b (mod n); recall that if p is a prime divisor of n, then
a = b (mod p) as well (i. e., if 13= 1 (mod 12), then 13= 1 (mod 3)).
Therefore,

»• (4(4 •{4"=WW-M'"=(4)

{4{4{4${4{4

(§) =

as needed. For (2),
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-(WW-(4")((*)"(*r-(*n-<'»»
To show (3), we use Euler's Criterion (jty =(- l)*p~1)/2 to find

(^) =(^)"(^f-(4
= (.^MPl-1)/2 .(-l)'^"1)/2 ...(.x/m^m"1)/2

= (_1)*l(Pl-1)/2 +t2(P2-1)/2 +"-+tm(Pm-1)/2.

If we can show that

(n-l)/2 = (1(p1-l)/2+«2(p2-l)/2 +- +UPm-1)/2M2)-

then our proof will be complete. By adding and subtracting one to each
prime, we may rewrite the factorization of n as

n=(l +(Pl - l))'l (l +(p2 - l))'2 •••(l +(pm -1))'-
Since each p,- is an odd prime, pt- —1 is even and by the binomial
theorem it follows that

(l +(Pi "I))*'' = 1+ ti(Pi-I) (mod 4).
Further, since p,- and p •are odd primes, p,- —1 and pj —1 are even and
so

(l +*,-(P,-l))-(l +<i(Pi-l))
= 1+ «,•(!»,• -1) + tj(Pj-1) (mod 4).

Combining these two observations,

„=(n-(p1-i))ti(i +(p2-l))t2...(l +(pm-l))t«.
=(l +tl(Pl - 1)) (l +t2(p2 - 1)) •••(l +tjpm - 1)) (mod 4)

= l + t1(p1-l) + t2(p2-l) + '" + tm(pm-l)(m0d4).
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So

n-1 s t1(p1-l) + i2(p2-l) + - + tm(pm-l)(mod4)>

(n-l)/2 = «1(Pi-l)/2 + <2(P2-l)/2 + - + UPm-l)/2(mod2)

and we are done.

We now state the "law of reciprocity," which is also true for the
Legendre symbol and which will be used in my last example.

Reciprocity Law for the Jacobi SymboL Let n and m be relatively
prime odd positive integers. Then

(ft) = (#)

if either n = 1 (mod 4) or m = 1 (mod 4) or both, or if both n = 3 (mod
4) and m = 3 (mod 4).

For example,
n009\ _ / 1009 N _ A009\ /1009\
U307>/ ~ \3xm) ~ \~5~)'vm)

and, by property (1) for these Legendre symbols, this is

- (l\ f240\ - i (24x3xb\
~ \3J \769J ~ l V 769 J

= 1769") "(769X761) = X'(765A769J *
Since 769 = 1 (mod 4), reciprocity gives that this is

and then by property (1) and Euler's Criterion,

(§H^) =M-'>(5-,,/2 ='-

In conclusion, one method of using Jacobi and Legendre symbols to
eliminate numbers as possible primes will be presented.

Fermat's "Little Theorem" states that if p is a prime, then bp ~1 = 1
(mod p). The contrapositive of this theorem can be used to eliminate
numbers as possible primes. That is, if bn ~2 £ 1 (mod n), then n is
composite. However, if bn ~*= 1 (mod n), n may or may not be prime.
In this case, where 6n ~! = 1 (mod n), we can further test n by using
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Jacobi symbols: if the congruence b*n ~X''2 =(&) (mod n) fails, then n is
composite (if the congruence holds, n may or may not be prime). For
example, let us try the number 3186821. Trying the contrapositive of
Fermat's Little Theorem, we find

2(3i8682i-i) _ l (mod 3186821).

Therefore, we cannot determine whether 3186821 is prime or composite.
We can now use Jacobi symbols to further test the number. By property
(4) of Jacobi symbols,

( 2 \ _ /_n(31868212-l)/8 _ _,
13186821/ ~ \ l> - i ,

while by Euler's Criterion

2(3l8682l -l)/2 s +j ^mod 3186821) .
Since

(si5br)*2(3,8M21"1)/2c»°d3186821)'
the number 3186821 is composite (in fact, 3186821 = 11x 281x 1031).

Acknowledgement. I would like to thank my faculty advisor, Dr. Patrick
J. Costello, for his help with this project.

Bibliography.
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Generalized Inverses of Rectangular Matrices
and Applications

Michael L. Hirsch, student

Iowa Alpha

University of Northern Iowa
Cedar Falls, Iowa

Many students and instructors of mathematics are familiar with
inverses of square matrices, as well as numerous uses for those inverses.
However, data are not always so kind as to fit into neat little square
matrices. Although it is not possible to create an actual inverse, as such,
for a rectangular matrix, it is possible to construct several matrices which
have a number of the same properties of an actual inverse.These matrices
are called generalized inverses, g-inverses, pseudo-inverses or conditional
inverses. The term "generalized inverse" will work quite efficiently for
our purposes, so it will be used hereafter. The primary difference between
a generalized inverse and an "actual" inverse is that an actual inverse
B~ 1of a square matrix B must satisfy B~1B= I, whereas a generalized
inverse A ~ of a rectangular matrix A must satisfy AA ~A = A.

In a effort to demonstrate one procedure for determining generalized
inverses for rectangular matrices and to illustrate one use of such
inverses, let us consider the following hypothetical situation.

Barbara recently graduated from college with a Bachelor of Science
degree in mathematics. She was quickly hired by the Hewlett Packard
Corporation and placed in charge of three machines. Each of these three
machines worked upon four different models of calculators, the first
machine did all of the soldiering, the second molded the outside casings,
and the third did the final assembly.

On her second day at work, Barb's boss presented her with the
following assignment: find a way to keep all three machine busy for eight
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hours every day given that each machine must operate on each model of
calculator for the length of time specified in the following table.

Model #1 Model #2 Model #3 Model #4

Machine #1
Machine #2
Machine #3

1 2 1 2

3 1/2 2 0

1 3/2 1/6 4

Time required per calculator.

The table states, for instance, that machine number three must work on
each calculator of model number two exactly one and one-half hours.

Barb realized that since she had four products, three machines and
each machine was to work exactly eight hours, she could call the
products nv n2, n3 and n4 and write the following equations:

lnx + 2ri2 + ln3 + 2n4 = 8

3nx + (l/2)n2 + 2n3 + 0n4 = 8

lnx + (3/2)n2 + (l/6)n3 + 4n4 = 8

This system of equations was of the form Ax = y where

A =

12 12

3 1/2 2 0
1 3/2 1/6 4

"l 8

, 1 =
112

"3

"4

and y = 8

8

so that Ax = y was the matrix equation

12 12

3 1/2 2 0
1 3/2 1/6 4

["1 8
"2 — 8
"3 8

L"4 J •- -1

Barbara then recalled that if she could determine an inverse for the

matrix of linear coefficients, she could also determine a solution to the
system of linear equations. She noticed, however, that the data formed a
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rectangular matrix instead of a square matrix. After pondering over this
complication for a while, Barb suddenly remembered that she needed to
find a generalized inverse for the rectangular matrix — since it was not
possible to find a true inverse. She used the following algorithm.

Step 1. In matrix A
mxm find any nonsingular submatrix W of order

rA, where rA is the rank of matrix A.

Note that it is not necessary for W to come from rA adjacent rows and
columns of A.

Given the original equations, the matrix A Barb used was

A =

12 12

3 1/2 2 0
1 3/2 1/6 4

and rA = 3. The rank of A was determined by reducing A to row echelon
form and then counting the number of nonzero rows. (In the interest of
time, these computations have not been included.) Thus, Barbara simply
needed to find a 3 x 3 submatrix W of the original matrix. She chose

W =

1 2 2

3 1/2 0
1 3/2 4

The algorithm stipulated, however, that W must be nonsingular and
thus Barb had to test her choice of W. One method of checking for
nonsingularity of a matrix is to determine if W has an inverse (if an
inverse exists, then W is definitely nonsingular; if no inverse exists, then
W may or may not be nonsingular). Barbara proceeded as follows.

1 2 2 | 1 0 0
3 1/2 0 J 0 1 0
1 3/2 4 j 0 0 1

Using elementary row operations,

row a

row b

row c

1 2 2

0 -4 -12

0-1/2 2

I 1 0 0

0 1 -3

-1 0 1

(b-3c)
(c-a)
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1 2 2

0 1 3

0 0 7/2

1

0

-1

0 0

-1/4 3/4
-1/8 11/8

1 0 -4 | 1 1/2 -3/2
0 1 0 J 6/7 -1/7 -3/7
0 0 1 j-2/7 -1/28 11/28

10 1|-l/7 5/14 1/14
0 1 0 J 6/7 -1/7 -3/7
0 0 1|-2/7 -1/28 11/28

(-1/4)6
c +(1/2)6

(a - 26)
(6-3c)
(2/7)c

(o + 4c)

13

So she had obtained an identity matrix J3 for W. In an attempt to make
sure no arithmetic errors had been made, she checked to see if W1
satisfied thecondition that W~lW = J3.

-1/7 5/14 1/14 1 2 2 1 0 0

6/7 -1/7 -3/7 3 1/2 0 = 0 10

-2/7 -1/28 11/28 1 3/2 4 0 0 1

and so W was equal to

-1/7 5/14 1/14
6/7 -1/7 -3/7

-2/7 -1/28 11/28

This showed that W was nonsingular and that Barb was ready for step
number two.

-lyrStep 2. Invert and transpose W to find (W )

If B= (6,-•) is an mx n matrix, the transpose BT of B is the nx m
matrix (c-) where ctJ- =6jV From Step 1, Barb already had W-1 and
so

Now, on to

-1\t _(W~ir =
-1/7 6/7 -2/7
5/14 -1/7 -1/28
1/14 -3/7 11/28
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Step 3. Form a new matrix A* as follows. In the original matrix A,
replace each element used in the submatrix W with the corresponding
element of (W~a)T and replace all other elements of A with zeros.

In Barb's case, the matrices A, W and (W~ 1)T were

A =

and

Thus,

12 12 1 2 2

3 1/2 2 0 ,W = 3 1/2 0
1 3/2 1/6 4 1 3/2 4

-1\T _(w-1? =
-1/7 6/7 -2/7
5/14 -1/7 -1/28
1/14 -3/7 11/28

4* =
-1/7 6/7 0 -2/7
5/14 -1/7 0 -1/28
1/14 -3/7 0 11/28

At last, Barb was ready for the final step!

Step 4. Transpose A* to find A~, a generalized inverse for the original
matrix A.

Transposing A*, Barbara found

A~ =

-1/7 5/14 1/14
6/7 -1/7 -3/7
0 0 0

-2/7 -1/28 11/28

But Barb wanted to be very careful; with so many computations, it
would have been extremely easy to make a mistake. So she decided to
check her work. She remembered that any generalized inverse A ~ of a
matrix A must satisfy the condition AA ~ A = A. In this particular case,
AA~ is

12 12

3 1/2 2 0
1 3/2 1/6 4

-1/7 5/14 1/14
6/7 -1/7 -3/7

0 0 0

-2/7 -1/28 11/28

which equals J3. So, AA'
A ~ is a valid generalized inverse for A.

A = I3A. But this equals A by definition, so
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Now Barb was extremely happy! Since the original equations were of
the form Ax = y, she knew that A~y would provide one solution to the
system. So she multiplied

and got

" -1/7 5/14 1/14
6/7 -1/7 - 3/7
0 0 0

-2/7 -1/28 11/28

8

8

8

16/7
16/7
0

4/7

Thus, one solution to Barb's problem was to let r»j = 16/7, n2 = 16/7,
n3 = 0 and n4 = 4/7. Suddenly, Barbara was totally crushed. She could
not suggest to her supervisor that Hewlett Packard no longer make any
model number three calculators. Model number three was the best selling
calculator last year!

Sullenly, she started to find another solution. She went back to step
number one and chose a different submatrix of order three and proceeded
as follows.

W =

2 1 2

1/2 2 0
3/2 1/6 4

,w-* =
48/49 -22/49 -24/49

-12/49 30/49 6/49
-5/14 1/7 3/7

(W~if =
48/49 -12/49 -5/14

-22/49 30/49 1/7
-24/49 6/49 3/7

A* =
0 48/49 -12/49 -5/14
0 -22/49 30/49 1/7
0 -24/49 6/49 3/7

A~ =

0 0 0

48/49 -22/49 -24/49
-12/49 30/49 6/49
-5/14 1/7 3/7

Finally, she had determined a second generalized inverse,
second solution could be found.

Now a
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0 0 0

48/49 -22/49 -24/49
-12/49 30/49 6/49
-5/14 1/7 3/7

The Pentagon

0

16/49
192/49
12/7

Unfortunately, this solution also demanded that one model of calculator
be eliminated from production. Feelings of total defeat washed over her.

Abruptly, in a whirl of excitement, Barbara remembered that certain
linear combinations of two solutions to the system also yield solutions to
that system. Thus an infinite number of solutions could be determined as

16/7
16/7

0

4/7

+ P

0

16/49
192/49
12/7

where a + 0 = 1 and a, ft > 0, and the two matrices are the two solutions
determined earlier. So Barbara substituted a = 1/2 and /? = 1/2, and
found:

(1/2)

16/7
16/7

0

4/7

+ (1/2)

0

16/49
192/49
12/7

8/7 0 8/7
8/7

+
8/49 64/49

0 96/49 96/49
2/7 6/7 8/7

Thus a third solution had been determined, and this solution accounted
for the production of all four models of calculators.

The applications of generalized inverses extend well beyond the
aforementioned, simple example. Generalized inverses are also used in
regression analysis, scientific experimentation, economic and ecological
predictions, and numerous other areas. Similarly, many different methods
for determining generalized inverses also exist. The general conclusion,
however, is that generalized inverses are extremely useful and powerful
tools in a multitude of fields.

As for Barbara? After several hours of grueling work and brimming
with pride and accomplishment, she presented her final solution to her
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employer. Her employer was impressed with her thoroughness and
mathematical skill, but was quite baffled as to why Barbara had not
used her computer to solve the problem; the software was available, and
the computer was capable of finding the same solution in about ten
minutes. As a result, her supervisor found her lacking in resourcefulness
and demoted her to "machine operator." She calculates, however, that
she should be CEO of the company within twelve years — provided her
initial equations are correct and she has made no errors while finding the
generalized inverse of her linear system ...
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Mysterious Modeling

Yvonne Shaw, student

Missouri Kappa

Drury College
Springfield, Missouri 65802

Presented at the 1992 Region IV Convention and
awarded FIRST PLACE by the Awards Committee.

The human body is governed by a delicate balance of processes. The
question has been set forth of whether the body's functions can be
modeled. Significant advances have been made in modeling the
mechanical motion of the limbs. Likewise, modeling of many of the
body's internal organs has greatly improved in recent years. However, the
inner complexities of the brain have remained, for the most part, a
mystery.

Can the activities fo the human mind be modeled? To be specific,
consider the sense of sight. To model this process, we require a thorough
understanding not only of how the eyes transmit information to the
brain, but also of how the brain interprets, analyzes and categorizes that
information. The process that must be examined is not only sight, but
optical perception.

This paper addresses only a portion of the task of understanding
optical perception. Consider the so called "Mach bands effect." This
phenomenon occurs as a result of neuron processing in the brain and is,
in fact, an enhancement (rather than a mere reception) of the optical
input from the eye. The received image is altered so that a given surface
appears darker when next to a lighter surface and lighter when next to a
darker surface. Green looks greener next to red, etc. [4] In effect, the eye
provides an optical illusion for the body's benefit. For instance, picture a
cliff, a staircase or even the side of a bed: perception of these edges is
enhanced for safety's sake. This paper focuses on the process of locating
edges.
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The image must be described as a numerical display before the edges
in an image can be found. For example, consider the image of a
mountain range in Figure 1. This image can be given a numerical
representation such as that given in Figure 2. The numbers in the boxes
denote values assigned for the intensity of reflected light at each point in
the image. On a scale of 1 to 10, 1 is the highest intensity and 10 the
lowest. On a TV screen the number would represent the number of
electrons fired at a given position on the screen, in the eye they would
represent the number of photons imposed upon the retina, etc. These
numerical representations will be referred to as images. The next step is
to actually find the edges within these images.

Figure 1.
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10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10

10 10 10 10 10 4 10

10 4 4 4

1 4 4 4

1 1 4 4

1 1 1 4

1 1 1 1

1 1 1 1

Figure 2.

1 7 10

1 1 7

1 1 1

Figure 3.

An edge detector is a device based upon characterizing an edge as a
local intensity discontinuity. The intensities in a local region of the image
are examined and an edge value and orientation is assigned to each point
in the image based upon the change of intensity within that local region
[2]. Take a 3 x 3 section of the image, as shown in Figure 3, and consider
the center point in relation to the others immediately surrounding it.
Notice the areas with minimal differences between numbers as opposed to
those areas with greater differences between numbers. In this way, the
location of edges in the image can be determined. Think of sliding a
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square window across the image looking for these patterns in each 3x3
area. That is, in effect, an edge detector. The brain has its own built-in
edge detector for which two models will be presented, both based upon
the gradient operator.

Ritter, Wilson and Davidson [6] describe a new algebra system
developed by the Air Force Armament Laboratory of the Air Force
Systems Command in conjunction with the Defense Advanced Research
Projects Agency fo the Department of Defense. Their paper "Image
Algebra: An Overview" is an effort to unify and organize current
techniques in the development and implementation of image processing.

The fundamental concept upon which the image algebra rests is the
notion of an image. An image is basically a function from Rn into a
specific set of numbers. Several definitions are needed to formalize this
concept. A coordinate set X is any subset of R" describing location or
position in a spatial reference. A value set F is any one of the following
sets: R (the real numbers), C (the complex numbers), I (the integers),
( —oo,oo) (the extended real numbers), or binary numbersof fixed length
lb. An image a is a = {(x,a(x)):x € X} where a(x) € F. For example,
suppose F = 0and X = {(0,0), (1,0), (0,1), (1,1)} and then choose

a={((0,0),8), ((1,0),4), ((0,1),5), ((1,1),9)}
or, for a clearer visualization,

a =

5 9

8 4

Henceforth, the word "image" will be used only with this definition
whereas in preceding paragraphs it was used less formally with the
implied definition of a picture or scene.

Their paper further describes the binary and unitary operations on
these images. Basic binary operations (addition, multiplication and dot
product) are defined point-wise; that is, at a particular point in the
coordinate set operations are made on the values at that point in the
respective images. Note that the dot product of two images yields a
number, not another image.

a+ 6 = {(i, c(x)):c(x) = a(x) + b(x),x € X}
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axb = {(x,c(x)):c(x) = a(x)'b(x),xeX)

a-b = ^ a(x)-b(x)
xgX

For example, if a is as before and

6={((0,0),3), ((1,0),6), ((0,1),7), ((1,1),1)},
or rather

6 =

7 1

3 6

then these images operations are:

a+b={((0,0),11),((1,0),10),((0,1),12),((1,1),10)}
axb ={((0,0),24),((1,0),24),((0,1),35),((1,1),9)}

a-b = 8-3 + 4.6 + 5-7 + 9-1 = 92,

or rather

a + b =

12 10

11 10

and axb =

35 9

24 24

"Templates" can now be defined in terms of images. Given X and Y
as coordinate sets and F as a value set, then for each y € Y, t(y) € Fx
where the template t is defined as

t(v) = {(*,*„(*))=* €X}.

Note that t is a function from Y to the set of images on X. Y is the
domain of t, called the target domain and X is called the range space of
t. The values ty(x) are called the weights of the template at y. According
to the authors, templates and template operations are the most powerful
tools of the image algebra. The local edge detector is really just a
specialized template in that it takes a portion of the original images and
"blows it up" in order to look at the image on a very localized scale.
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The foundation for defining and constructing an edge detector must
be laid before the operations on one may be discussed [3]. Refer again to
the definition of an image. Note that an image is a function. The
maximum rate of change in the intensity values of an image is known to
occur along a line perpendicular to the edge. To find this maximum rate
of change, the gradient operator must be applied to the function. In
calculus texts (see, for instance, [7]), a theorem may be found which
states: "Suppose that / is a differentiable function of two or three
variables. The maximum value of the directional derivative Du/(i) is
|V/(i) | and it occurs when u has the same direction as the gradient
vector V/(x)."

The first edge detector considered is taken straight from the
gradient's definition,

*/--£• 1L
By

Moreover, the partial derivatives are defined as

8f _ 1:„ f(x + h,y)-f(x,y)
= lim

h—0

and

dx

*L = lim /(«.» +*)-/(*.»)
ay fc-»o ft

Letting h = 1, the partial derivatives are approximately

and

dx

df_
dy

(0,0)

(0,0)

/(l,0)-/(0,0)
1

/(Q,i)-/(o,o)
1

/(o,i) /(1.1)

/(0,0) /(i.o)

Figure 4.
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Consider the image shown in Figure 4 and let /(0,0) = a, /(1,0) = 6,
/(0,1) = c and /(l, 1) = d. Then it is easy to see that

dx (0,0)
= b — a and

dy
= c — a

(0,0)

However, the partial derivatives may also be given by the dot product of
the image and a mask, where this mask is the vertical (or horizontal)
component of the edge detector. So

and

1L
dx

8y

(0,0)

(o.o)

c d

a 6

c d

a 6

Therefore, the masks must be

9 A

e /

0 0

-1 1

and

= b-a

= c — a

9 h

e f

9' h'

e' r

9' h!

e' f

1 0

-1 0

These are the horizontal and vertical masks which, when applied to
the image, yield the gradient approximated at (0,0). This is a simple
method, but helpful for understanding the technique.

The second edge detector follows from Prewitt [5], who suggests, "A
more precise estimate is obtained by fitting a quadratic surface over a
3x3 neighborhood by least squares and then computing the gradient for
the fitted surface." Consider the 3x3 region shown in Figure 5. Now
suppose the image is given by f(x, y) and define a quadratic function

F(x,y) = ax2 + by2 + cxy+ dx+ ey+ f.

Using the least squares method to fit F(x,y) to /(x,y), the function
S(a,b,c,d,e,f) is given by
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/(0,2) /(1.2) /(2,2)

/(o,i) /(l.l) /(2,1)

/(0,0) /(l.O) /(2,0)

Figure 5.

s= £ (n*,v)-f(x>y)f >
x = 0,l,2
y = o,i,2
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Let f(0,0) = g, /(l,0) = n, /(2,0) = .\ /(0,l) = j, /(l,l) = t, /(2,1)
= /, /(0,2) = m, /(l,2) = n and /(2,2) = o. Substituting these values

into the equation for S yields

S=(f - of +((a+d+f)-hf +((4a +2d+f)-if
+((6 +e+/) - jf +((a+6+c+d+e+f) - kf

+((4a +6+2c+2d+e+/)-/)2 +((4& +2e +/)-m)2
+((a +46 +2c +d+2e+/) - n)2

+((4a +46 +4c +2d +2e +/) - oV.
S is minimized by taking the partial derivatives of S, setting each equal
to 0 and solving for the variables a, 6, c, d, e and /. The partial
derivatives are:

-g- =2((a+d+/)-ft)+8((4a +2d+/)-i)
+2((a+6+e+d+e+/)-Jb)+8((4a +6+2c +2d +e+/)-/)

+2((a +46 +2c +d+2e +/) - n\
+8((4a +46 +4c +2d+2e +/) - o)

-^ =2((6 +e+/) - i)+2((a -h 6+c+rf +e+/) - Jb)
+2((4a +6+2c +2d +e+/) -/)+8((46 +2e +/) - m)
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+&((a +4b +2c +d+2e + f)-n\
+8((4a+46+4c +2d +2e+/)-o)

-|2- =2((a+6+c+d+e+/)-Jb)+4((4a+6-|-2c-|-2d-|-e +/)-/)
+4((a+46-|-2c+d+2e +/)-n)

+8((4a +46 +4c+2d+2e +/) - o)
-|£- =2((a+d+/)-n)+4((4a+2d+/)-i)

+2((a+6+c+d+e+/)-Jb)+4((4a+6+2c+2d-re-|-/)-/)
+2((a+46 +2c +d+2e+/)-n)

+4((4a +46 +4c +2d +2e +/) - o\
-^- =2((6+c+/)-i)+2((a +6+c+d+e+/)-Jb)

+2((4a+6+2c +2d+e+/)-/)+4((46+2e +/)-m)
+4((a+46 +2c+d+2e +/)-n)

+4((4a +46 +4c +2d+2e +/) - o)
-|f- =2(/-ff)-r2((a+d+/)-»)-r2((4a +2d+/)-i)

+2((6 +e+/)-j)+2((a+6+c+d+e+/)-Jfc)
+2((4a+6+2c +2d+e+/)-/)-|-2((46 +2e-|-/)-m)

+2((a+46 +2c +d+2e+/)-n)
+2((4a +46+4c +2d +2e +/)-o).

Simplifying yields the following:

-|£- = 102a +506-r54c+54d +30e +30/
-2(n + 4i + Jfc + 4/ + n + 4o)

-^ = 50a +1026 +54c +30d +54e +30/
-2(i + t + / + 4m + 4n + 4o)

-Of- = 54a +546 +50c +30d +30e +18/
-2(Jk + 2/ + 2n + 4o)

-|f- = 54a +306 +30c +30d +18e +18/
-2(A + 2t + Jfc + 2/ + n + 2o)
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-^ = 30a + 546 + 30c + 18d + 30e + 18/
8e

-2(j + * + / + 2m + 2n + 2o)

-||- = 30a +306 +18c +18d +18e +18/
1 -2((7 + ft + t+ j + i + /+ m-|-n-|-o).

Each of these partial derivatives was set equal to 0 and two methods
were used to solve the resulting system of equations: Gaussian
elimination (by hand) and DERIVE [1], a mathematical computer
program. The solution of these equations is

a = -^-(ff-2n +»+j'-2Jb +/-|-m-2n-|-o)
6= -|-(flf +ft +t-2i-2ik-2/ +j7i +n+o)

c = -^-(g-i-m+oj
d= •^2-(-9ff+8/» +i-6j +8ib-2/-3m+8n-5o)
e= -^-(-9a-6n-3t+8i+8* +8/ +m-2n-5o)
/ = -i-(29s +8n-i+8j'-4Jfc-4/-m-4n +5o).

These values are then substituted into the equation for F and the
gradient of F is given by

r/P_ 8F ; . dF ,

while the partial derivatives are found to be

-££- = 2ar +cy +d and -4^- = 2by +cx +e.

Hence,
VF= (2ax + cy + d)i + {2by + ex + e) j

Evaluated at (1,1), the center point in the region under consideration,
this gives

VF = (2a + c + d) i + (26 + c + e) j

and substituting the above values for a, 6, c, d and e, we find

2a +c+d = -|-(-a+i-j+/-m-|-o)
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26 +c+e =4-(-fl-n-i+m+n+oJ.
As before, the horizontal and vertical masks are obtained by the
following steps.

and

dF
dx

dF

dy

(Li)

= -^•[-g +i-j+l-m+o)

(1.1)

=-g-(-o-ft-»+m+n+oJ

These equations are solved to obtain

and
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or

1 7 10

1 1 7

1 1 1

29

Figure 6.

The true test of the edge detectors is in their application. Choose a
local region from the original mountain range, as shown in Figure 6. Now
apply the two edge detectors to this local region. The first edge detector
yields:

and

7 10

1 7

7 10

1 7

0 0

-1 1

1 0

-1 0

= -1+7 = 6

= 7-1 = 6

Both the x and y components of the gradient are 6 and yield a line at 45°
from the x-axis. The edge lies perpendicular to this line and is thus
located at 135° from the x-axis (see Figure 7). Clearly, this edge matches
the edge in the region under consideration.

Figure 7.
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The second edge detector yields:

1 7 10

1 1 7

1 1 1

-1 0 1

-1 0 1

-1 0 1

= -1 + 10-1 + 7-1 + 1 15

and

1 7 10

1 1 7

1 1 1

The Pentagon

= 1 + 7 + 10-1-1-1 = 15.

Both masks give 15 and so again yield a line at 45° from the x-axis and
the edge 135° from the x-axis. For the image of the mountains given in
Figure 1, the two edge detectors accurately determine the edge at the
given point. However, this image is quite simplified in comparison to an
actual physical image. Increasing the number of points within an image
will improve accuracy, but at this point data can no longer be recorded
and calculated by hand. Instead, a computer of sufficient memory is
needed.

The next step in modeling optical perception is the linking of point
edges to form actual edges. Modeling of such phenomena as the Mach
bands effect will require additional techniques of edge enhancement.
Optical perception can be, and is being, modeled. The future will
continue to produce improved techniques as the human mind is
understood more and more.

Acknowledgement. A sincere "thank you" is extended to Dr. Allen, my
mentor, as well as to Dr. Moss, Dr. Weber, Dr. Smith, Dr. Flikkema,
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There are many mathematical structures in the field of computer
science. One such structure is the automaton. This paper will provide an
elementary definition and explanation of an automaton and some of the
terms and concepts associated with it.

An automaton A is defined to be a triple A = (S, E,6) where 5 is a
set of states, E is a non-empty set of inputs and &SxE*—»5 is a
transition function such that if seS and x,y€E*, then
6(s,xy) = 6(6(s,x),y) and 6(s,e) = s. (E* is defined to be the set of all
sequences formed from the elements of E, including the empty string e.)
The automaton A is called the empty automaton <0> if and only if
5 = 0.

An example of an automaton is given in Figure 1. In this example,
5 = {A,B,C,D} and E = {0,1}. The explicit definition of the transition
function 6 restricted to S x E is given in Table 1.

*(A,0) = B 6(A,1) = C
«(B,0) = B 5(B,1) = C
«(C,0) = D tf(C,l) = D
tf(D,0) = A 6(D,1) = B

Table 1.

It is easy to see from this example that the transition is a function
from all pairs of S X E* to S. Note that the set S has a finite number of
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elements. Thus, this example is called a finite automaton. Finite
automata will be the basis for this paper.

Figure 1.

We have now seen two different representations of an automaton, the
state diagram and the explicit method. There is a third representation
known as a transition table. For the previous example, the transition
table is given in Table 2. Of these three representations, the transition
table and the state diagram are the most frequent representations used.
This is because both types offer better visual assistance in understanding
the automaton than the explicit transition representation. However, it
should be noted that the transition table and the state diagram are only
applicable to finite automata and not infinite automata.

A

B

C

D

0 1

B C

B C

D D

A B

Table 2.
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An important aspect of the study of automata is the subautomaton.
B = (T,E,5') is a subautomaton B < A of the automaton A = (5,E,£)
if and only if (1) TCS, (2) 6' is the restriction of 6 to T x E* and (3)
tf(*,x) € T for f € T and all x GE*. In other words, B must be closed
under the set of transitions. A subautomaton is a proper automaton if
and only if B # A and B # 0. Note that although T C 5, the set E of
inputs remains the same for any subautomaton.

Consider the automaton A = (S, E, 6) given in
transition table for this automaton is given in Table 3.

1,23

Figure 2.

Figure 2. The
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A

B

C

D

E

D D C

C C E

D D E

C E D

E E E

Table 3.
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We can generate all of the subautomata of A by using the specially
developed algorithm given in [Bavel, 137-139]. The transition tables
achieved by the use of this algorithm and all of the subautomata are
given in Table 4.

A

B

C

D

E

1 2 3

D D C

C C E

D D E

C E D

E E E

Successor Set

{A,D,C,E}
{B,C,E,D}
{C,D,E}
{D,C,E}

{E}

Successor Set

*(A)U*(B) {A,B,C,D,E}

Table 4.

In these transition tables, the successor set for s £ 5 is denoted by
6(s). This represents the set of all states that can be reached from the
state 8 by any and every input sequence. For this example, there are six
subautomata, four of which are proper. The set of states for each of the
proper subautomata and for the improper subautomaton that is the
automaton itself are exactly the successor sets given in the previous
transition tables. The state sets for all the subautomata are {A,D,C,E},
{B.C.E.D}, {C,D,E}, {E}, {A,B,C,D,E} and 0.

There are several different ways to classify automata. One of these
classifications is the retrievable automaton. An automaton A is

retrievable if and only if for every s£S and for every a 6 E, there is an
x € E* such that 6(s, ax) = s. In other words, an automaton is retrievable



36 The Pentagon

if from any state, you can begin with each input and find a non-empty
input string such that the transition of the input together with this string
is the original state. The automaton given in Figure 1 is a retrievable
automaton since

tf(A,0100) = A
£(B,00) = B

£(C,001) = C
J(D,011) = D

6(A, 100) = A
*(B,111) = B
5(C,111) = C
5(D,110) = D

For an example of a non-retrievable automaton, consider the
automaton R given in Figure 3. This is clearly not retrievable since for
any non-empty input string x we have 6(A,x) = C yet C ^ A.

Figure 3.

Another type of classification is that of a strongly connected
automaton. An automaton A is strongly connected if and only if S ^ 0
and t G6(s) for every s,t GS. Thus, any state can be reached from any
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of the states. Here again, the automaton in Figure 1 can be used as an
example. This automaton is easily shown to be strongly connected by
considering the following transitions:

*(A,0110) = A 6(A,0) = B 6(A,1) = C tf(A,010) = D
*(B,110) = A £(B,0) = B 6(B,1) = C 6(B,U) = D
tf(C,10)=A *(C,01) = B S(C,001) = C tf(C,l) = D
*(D,0) = A *(D,1) = B tf(D,01) = C £(D,111) = D

For an example of an automaton that is not strongly connected, refer
again to Figure 3. Note that this is not strongly connected since
6(C,x) = C for x G E*. Hence, the state A can not be reached from the
state C.

Note that the strongly connected automaton in Figure 1 was also
retrievable. We shall now see that this is true for every strongly
connected automaton.

Theorem. If A = (5,E, 6) is a strongly connected automaton, then A is
retrievable.

Proof. Since A is strongly connected, 5^0. Thus, let s G S. Since
E ^ 0, let a GE. There are two cases to consider: (i) S = {s} and (ii)
S?{s}.

(i) Let x ^ c GE". Now, since 6: S x E*-»5 and crx GE*, 6(s,ax) GS.
However, S = {«} so 6(s, ox) = s. Thus, A is retrievable.

(ii) Since 5 ^ {«}, 3r GS such that r ^ s. Since A is strongly
connected, Sx,y € E* such that 6(6(8,<r),x) = 6(s,<rx) = r and 6(6(r,a),y)
= 6(r,o-y) = s. Thus, 6(s,axay) = s and 6(r,oycx) = r. Hence, A is

retrievable and the proof is finished.

Thus, every strongly connected automaton is retrievable. However, it
is not the case that every retrievable automaton is strongly connected.
Consider the automaton given in Figure 4 as an example of a retrievable
but non-strongly connected automaton. This automaton is clearly not
strongly connected since there is no input string where the transition of
the string on the state A will yield the state C.

I would like to point out that the study of automata involves a
unique combination of pure and applied mathematics. The automaton is
used in the study of formal language theory, compiler design and in the
study of Turing machines and "busy beavers." Yet there is research
currently being done that is based more on the theoretical side of
automaton.
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Figure 4.

This concludes my introduction to automata. It is my hope that this
paper has given some insight into the mathematical side of computer
science. It is also my hope that you will be able to relate the study of
automata to that of group theory, graph theory or other areas of
mathematics.
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On Asymptotes of the Graphs of Algebraic Functions
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and
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Although an asymptote is not a part of the graph of a function, it
helps to visualize how the graph behaves in distant regions of the
coordinate plane and, consequently, it helps to sketch a more accurate
graph. The purpose of this article is to offer an alternative technique for
finding asymptotes (if any) of the graph of an algebraic function. We
begin with the following definition of an asymptote.

Definition 1. A nonvertical line L with equation y = mx + n is
asymptote for the graph of a function / if f(x) - (mx+ n), the vertical
separation between the line and the graph, tends to zero as | x |
approaches infinity (see Figure 1).

Figure 1.

an
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Before we discuss our proposed method, let us consider the standard
method.

Standard technique. From the definition it follows that a nonvertical
line y = mx + n is an asymptote for the graph of a function / if and only
if

fix)
m = JHSo-r- and n = JiSSo (/(*)-»»*)

°r fix)m = lim_ —y-^- and n = lim (f(x) —mx) .
X—* — 00 * X—* — OO w v ' '

We need the following two lemmas to prove our first theorem that
plays an important role in developing our proposed method. We state
and prove these lemmas for the case in which x—•oo, but they are valid
when x-* —oo, too. First, we observe that if / is an algebraic function
defined on an interval (a,oo), then either lim f(x) exists or lim fix)

v ' x—»oo v ' x—»oo * v '
= ±00.

Lemma 1. If Jim x/(x) = L < 00, then lim fix) = 0.
*—»0O * » ' » X—»oo ' v '

Proof. Suppose that Jim^ f(x) £ 0. Then, as x-»co, either f(x) has
an infinite limit or a nonzero finite limit. In either case, x/(x) has an
infinite limit, which is a contradiction. Therefore, lim fix) = 0.

' *-»oo * v '

Lemma 2. If / and g are defined on an interval (a,00) and lim (f(x)
-9(x)) = 0, then Jim, f(x) =Jim, g(x). a~°°

Proof. Since / and g are algebraic functions, we have

j!& /(*) =Jligo ((/(*) - *(*» +9(x))

= ° + J^> *(*) = JijBb *(*)•

Now we are in position to prove our theorem.

Theorem 1. The line y = mx+ n is an asymptote of the graph of a
function / if and only if m = lim f'(x) and n = lim (f(x) - xf'(x)) or

m=*-Limco /'<*) Mdn =^r=C°(/(*)"*/'(*))~°°
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Proof. We prove the theorem for the case in which x—♦oo. A similar
proof can be given for the case in which x—» —oo. First, suppose that
y = mx + n is an asymptote for the graph of /. Then m = lim /(x)/x
and n = lim (f(x) —mx). The second limit can be written as

f(x)
n = lim (/(x) —mx) = lim x [-4-^ —m) = lim —^_ .x-«oo w v ' ' x-*oo \ X / x-»oo JL_

X

Since the limits of both the numerator and the denominator in the last

limit are zero, we apply L'Hospital's Rule and obtain

x/'(x)-/(x)

n = lim *-t = lim (f(x) - xf'(x))x—»oo _ 1 x—»oo w v ' ' v "

Now, to show m = lim f'(x), we note that
' x—»oo ' v ''

n= Jim (/(x)-x/'(x)) =Jim *(4?L-/'(x)).
Therefore, it follows from Lemma 1 that

Jim(4^-/'(x)) =0.
Hence, Lemma 2 implies that

lim f'(x) = lim -^- = m.
X—»0O ' v ' X—»oo x

Conversely, let us assume that

m = x'isSo '̂W and " = JhSoM*) - */'(*))•

Since

n= Jim (f(x)-xf'(x)) =Jim>x(^—/'(x)),
it follows from Lemma 1 that

Jim(i^-/'(x))=0.
Therefore, Lemma 2 implies that
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lim -^- = lim f'(x) = m.
X—»oo * x—>oo * v '

To complete the proof, we must show that n = lim (/(x) —mx). We
observe that

f(x)
lim (f(x)-mx) = lim x[—gr^—m] = lim x + .

x—>oo »* v ' ' X—»oo \ * / x—»oo 1
~x~

Again, we apply L'Hospital's Rule and obtain

x/'(x)-/(x)
2

lim (fix) —mx) = lim £_,
x—»oo w v ' ' X—>oo 1

This shows that y = mx + n is an asymptote for the graph of / and the
theorem is proved.

We know that the line y = mx + n is tangent to the graph of / at
the point (c,f(c)) if and only if m = f'(c) and n = f(c) —cf'(c). This
suggests the following definition, which is needed for our proposed
method.

Definition 2. Suppose / is a function defined on an interval (a,oo) or
(-00,6). If Jim, f'(x) =m and lim (f(x)-xf'(x)) = n, or Hm^
f'(x) = m and lim (f(x) —x/'(x)) = n, then we say that the line
y = mx + n is tangent to the graph of / at infinity.

In view of Theorem 1 and Definition 2, the line y = mx + n is an
asymptote for the graph of / if and only if it is tangent to the graph of /
at infinity. We will make use of the following definition (see [2]) to
establish our next theorem.

Definition 3. Consider the polynomial equation

a0xn +a1xn_1+ ••• +a„_1x+an = 0.

The nonzero number p is a root of this equation if and only if 1/p is a
root of the equation

a„xn +a„_1xn-1+ ... +0^ +00 = 0
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obtained from the first equation by replacing x by 1/x. When an—»0, at
least one of the solutions of the original equation approaches zero and,
consequently, at least one of the solutions of the second equation
approaches infinity. In particular, when an = 0, the first equation has a
zero root and in this case we say that the second equation has a root at
infinity.

Theorem 2. The nonvertical line L with equation y = mx + n is an
asymptote of the graph of an algebraic function / if and only if the
equation

(1) f(x) = mx + n

has multiple roots at infinity.

Proof. It was shown in [1] that L is tangent to the graph of / at the
point (c,f(c)) if and only if c is a root of (1) with multiplicity greater
than one. By the observation made right after Definition 2, L is an
asymptote for the graph of / if and only if it is tangent to the graph of /
at infinity. Therefore, it follows that L is an asymptote of the graph of /
if and only if (1) has multiple roots at infinity. This completes the proof
of the theorem.

We note that the equation

a0xn + a1x"-1+ ••• +an_1x+ an = 0

has k repeated zero roots if and only ifan = a„_i=,,- = an-* + l=0
but an _ k^ 0. Therefore, it follows that the equation

anxn + an_ixn_1+ ••• +aix + a0 = 0

has Jfc roots at infinity if and only if on= an-l = ••• = an_k +1= 0 but
aB_fc#0(see[2]).

We now present the alternative method.

Alternative method. To find the equations of the nonvertical
asymptotes (if any) of the graph of an algebraic function /, proceed as
follows:
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(i) Form the equation

(1) f(x) = mx + n .

If (1) is a rational or a radical equation, convert it to a
polynomial equation

(2) P(x) = 0

arranged in order of descending powers of x.

(tt) Form the system of equations obtained by setting the
coefficients of the two highest powers of x in (2) equal to
zero and solve this system for m and n. If this system has
no solution, then stop here and the graph of / has no
nonvertical line as an asymptote. If the system has a
solution, go to the next step.

(tit) If f(x) does not contain a radical expression with an even
index, then y = mx + n is an asymptote; otherwise, since
we raised both sides of (1) to an even power to obtain (2),
we must check for extraneous results. To determine if
y = mx + n is actually an asymptote, f(x) —(mx + n) must
be approximately zero when | x | is large.

The following examples illustrate this procedure.

Example 1. Find the equations of the asymptotes of the graph of

f(x) = 3>|x3+l + 1.

Solution, (f) Equation (1) is

>|x3 + l + 1 = mx+ n .

This implies

•Jx3 + 1 = mx+(n-l) .

Equation (2), obtained by cubing both sides of this equation and
regrouping the terms, is

(m3 - l)x3+ 3m2(n - l)x2 +3m(n - l)2x + (n - l)3-1 = 0 .
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(tt) Setting thecoefficients of x3 and x2 equal to zero results in

m3-l = 0

l3m2(n-l) = 0

The solution of this system is m = 1, n = 1. Therefore, the line y = x + 1
is the slant asymptote for the graph of / (see Figure 2).

Figure 2.

Applying the limit method to this example, we see that
3

m = lim x = lim
>|xJ + l + 1

and

|x|-oo x I —»oo

>*

= 1

n = lim (f(x) - mx) = lim ( >jx3 + l + 1 - x )
| X I —»0O IX I—MSO

= lim
2 - 3x + 3x2

1*1 ^~ ^(x3 +l)2 - (l-x)>JxT+T + (1-x)2
= 1

Therefore, y = x +1 is the slant asymptote for the graph of / and this
confirms the result obtained using our proposed method.
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If in step (tt) of the above procedure the solution to one of the
equations in the system makes the other equation an identity, then we
set the next highest leading coefficient equal to zero and use this equation
in finding m and n. This is shown in the next example.

y

Figure 3.

Example 2. Find the nonvertical asymptotes of the graph of

/w =^4*±-
Solution, (t) Equation (1) is

>|x2 + l
= mx + n ,

-*• X
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which is equivalent to

aJx2 + 1 = mx2 + nx .

To obtain (2), we square both sides of this equation and regroup the
terms. Then we have

m2x4 + 2ronx3 + (n2 - l)x2-1 = 0.

(tt) Setting the coefficients of x4 and x3 equal to zero yields

{
m2 = 0

mn = 0

The solution of the first equation makes the second equation an identity.
Thus, we replace mn = 0 with n2 -1 = 0 and we obtain m= 0, n = ± 1.
Therefore, y = 1 and y = —1 are the equations of the horizontal
asymptotes for the graph of / (see Figure 3). The graph of this function
does not have a slant asymptote.

As we mentioned earlier, if f(x) contains a radical expression with an
even index, then we may obtain extraneous results, as shown in the next
example.

Example 3. Find the asymptotes of the graph of

f(x) = V +l-V-1.

Solution, (t) Following the pattern of the previous examples, we find
that equation (2) is

(m4 - 4m2)x4 + 4ron(m2 - 2)x3 + (6mV- 4n2)x2 + 4mn3x + n4 +4 = 0 .

(tt) The solutions of the system

{
m4-4m2 = 0

4mn(m2-2) = 0

are m = 0,n = 0, m = 2,n = 0 and m = - 2,n = 0. Therefore, we obtain
y = 0, y = 2x and y = —2x.

(iit) It is clear that (•Jx2 + l->|x2-l)±2x is not close to zero when
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| x | is large. Thus, neither y = 2x nor y = —2x is an asymptote. How
ever, y = 0 is the horizontal asymptoteof the graph of / (see Figure 4).

Figure 4.

This method can be applied to algebraic functions defined implicitly.
This is demonstrated in the next example.

Example 4. Find the asymptotes of the hyperbola y2 + 2xy —2x = 0.

Solution, (t) Equation (2), obtained by substituting mx+ n for y in
the equation of the hyperbola and regrouping the terms, is

(m2 + 2m)x2 + 2(mn + n-l)x + n2 = 0.

(tt) By setting the coefficients of x2 and x equal to zero, we obtain

m2+2m = 0

Imn + n —1 = 0

The solutions of this system are m = 0,n = l and m= -2,n= —1.
Therefore, y = 1 and y = —2x —1 are the equations of the asymptotes of
the hyperbola (see Figure 5).

We conclude by using our method to find the equations for the
asymptotes of a general hyperbola.
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>X

Figure 5.

Example 5. Find the asymptotes of the hyperbola

Ax2 + Bxy + Cy2+ Dx+ Ey + F = 0

where B2 - 4AC > 0.

Solution, (t) Equation (2), obtained by substituting mx + n for y in
the equation of the hyperbola, is

(Cm2 + Bm + A)x2 + (Bn + 2Cmn + Em + D)x + (Cn2 + En + F) = 0 .

(tt) If C ^ 0, the solutions of the system

Cm2 + Bm + A = 0

Bn + 2Cmn + Em + D = 0

are

{
m _ -B±-\B2-4AC . „ Em + D
m = ?m and n = — • !

2C B + 2Cm
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Therefore, in this case the equations of the asymptotes of the hyperbola
are given by y = mx + n, where m and n are as above. If C = 0, then
B £ 0 and the equation of the hyperbola becomes

„ _ Ax2 + Dx + F
y ~ Bx+ E •

In this case, the vertical line x = —E/B is the vertical asymptote and

A T , EA-BD
y ~ —Tx + £3

is the slant asymptote.

\2 /.. l\2Tf (*-*> (y-*r _ ,If —-5 ^— - 1

is the standard equation of a hyperbola with horizontal transverse axis,
then we have

62x2 - a2y2 - 2b2hx + 2a2Jfcy + b2h2 - a2k2 - a2b2 = 0 .

Comparing this equation to the general form of the equation of a
hyperbola, we see that A = 62, B = 0, C = - a2, D = - 262h, E - 2a2k
and F = 62n2 - a2k2 - a2b2. Therefore, m = ± b/a, n = k=f bh/a and the
equations of the asymptotes are y = k±b(x —h)/a. If the hyperbola has
a vertical transverse axis, then a similar calculation shows that
y = k ± a(x —h)jb are the equations of the asymptotes.

References.
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Notice

"The Hexagon" section has been discontinued. Papers intended for
that section should be submitted directly to the Editor.
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The Problem Corner

Edited by Kenneth M. Wilke

The Problem Corner invites questions of interest to undergraduate
students. As a rule the solution should not demand any tools beyond
calculus. Although new problems are preferred, old ones of particular
interest or charm are welcome, provided the source is given. Solutions
should accompany problems submitted for publication. Solutions of the
following problems should be submitted on separate sheets before 1
January 1994. Solutions received after the publication deadline will be
considered also until the time when copy is prepared for publication. The
solutions will be published in the Spring 1994 issue of The Pentagon,
with credit being given to student solutions. Affirmation of student
status and school should be included with solutions. Address all
communications to Kenneth M. Wilke, Department of Mathematics, 275
Morgan Hall, Washburn University, Topeka, Kansas 66621.

PROBLEMS 465-469.

Problem 465. Proposed by Stanley Rabinowitz, Westford, Maine. Three
circles with centers A, B and C are mutually tangent externally (see
Figure 1 on page 52). Circles A and C touch at X. Circles B and C touch
at Y. Prove that the line through X and Y passes through the point
where the common external tangents to the circles A and B meet.

Problem 466. Proposed by the Editor. It can be shown that the standard
deviation s of any three consecutive integers is itself an integer.
Characterize those integers n which have the property that the standard
deviation s of n consecutive integers is also an integer. Find two values of
n > 3 which have this property. (For a related problem involving the
mean and variance — but not the standard deviation — of n consecutive
integers, see Crux Mathemaiicorum 18 (November 1992), problem 1786).

Problem 467. Proposed by Russell Euler, Northwest Missouri State
University, Maryville, Missouri. Let m and n be the lengths of the chords



52 The Pentagon

of arcs AB and BC, respectively, on a circle with a radius of length r. If
p is the length of the chord of arc AC, prove that

P =
mN4r •n + n>|4r2 -

2r

m

Problem 468. Proposed by the Editor. Young Leslie Morely shuffled a
standard deck of playing cards (not a pinochle deck) which contained no
jokers. When he finished, he started turning over cards one at a time
from the top of the deck until he found a jack after turning over the
sixteenth card. Assuming that the deck contained four jacks and that
young Leslie repeated this experiment several times, what would be the
average number of cards which he would have to turn over before finding
a jack?

Problem 469. Proposed by the Editor. After finishing the statistics
experiment described in the previous problem, young Leslie Morely
discovered an interesting number while playing with his computer. The
number which he discovered has a cube which ends in 0987654321, the
string of digits in reverse order with the zero having been moved to the
front. Find the smallest positive integer n which has this property.

Please help your editor by submitting problem proposals.

Figure 1 (see Problem 465).
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SOLUTIONS 451 (Corrected) and 455-459.

Problem 451. Proposed by Bob Prielipp, University of Wisconsin-
Oshkosh, Oshkosh, Wisconsin. Find the value of the following limit.

lim e-n(1+lf
(Corrected) Solution by Sean Forbes, student, Drake University, Des
Moines, Iowa.

Let

y =
Then

In y = -n +n2ln(l+4-)
Thus we can rewrite In y as

In y = -
-4- + ln(l +-i-)

1

n2

which is a "0/0" form to which L'Hospital's rule applies. Applying
L'Hospital's rule and simplifying, we get

n-2 +(_„-«)(!+(!/„))-!
lim In y = lim

n—»oo * n—*oo

= lim

-2n-3
-"(!/") _ 1

** 2(l +(l/n)) " "2
Therefore

lim y = e-1'2 = -L-.
n—too " \e

Also solvedby The Alma College Problem Solving Group, Alma College,
Alma, Michigan; Russell Euler, Northwest Missouri State University,
Maryville, Missouri; and the proposer. Two incorrect solutions were
received.

Editor's comment. Russell Euler's sharp eyes noticed that the y in line 7
of the published solution should be replaced with In y as shown above.
The Editor apologizes to the featured solver for this proof reading error.
The Editor also apologizes for inadvertently omitting Russell Euler's
name from the list of solvers in the original publication of this solution.



54 The Pentagon

Problem 455. Proposed by Russell Euler, Northwest Missouri State
University, Maryville, Missouri. Rays r1 and r2 are concurrent at O. Let
{aj and {6,-} be increasing sequences of points on r1 and r2 respectively,
such that d(0,a^) = d(0,6,) for t = 1, 2, 3, .... If Af,- is the midpoint of
the line segment aJbit prove that the points {M,-} are collinear.

Solutionby Michael White, University of Chicago, Chicago, Illinois.

We may assume that rx is the x-axis and that r2 has the equation
y = mx. On rt we have the points (a{, O) and on r2 we have the points
(6itm6,). Thus

a,- = >j62 +m262 = 6, ,H+^5 . (1)

Also

Af;,. =(J!i+£L,„4). (2)
We shall show that the slope m12 of the line connecting the points Afj
and M2 equals the slope m23 of the line connecting the points M2 and
M3. We have

Similarly,

(m62 —m6j)/2

mi2 = (*a-*i)/2 +(«2-«i)/2

m(62 ~ 6i) _ m
(62-61) +(o2-a1) i+^l +m2

moo —'23 1+>JT „2, + m'

Thus, since the slopes are equal and each line segment contains the point
M2, we have Mv M2 and M3 are collinear. It follows that the points
{A/,-} are collinear.

Also solved by Charles Ashbacher, Cedar Rapids, Iowa; and the proposer.

Problem 456. Proposed by the Editor. Hy Potenuse, president of the
Society of Pythagoreans, announced that starting this year all members
would celebrate certain special days as "Pythagorean Days." By
definition, a Pythagorean Day occurs when the numerical value of the
month and day are the legs of a right triangle whose sides are all
integers. How many Pythagorean Days are there in a year and when do
they occur?
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Solution by Scott H. Brown, Stuart Middle School, Stuart, Florida.

Let a be an integer from 1 to 12. By [1], we can let the sides 6 and c
be written as 6= (a2 - d2)/2d and c= (a2 + d2)/2d, where d is an
arbitrary integer. Using these formulas for 6 and c with d < a, the
following twelve Pythagorean triples were found which meet the
conditions of the problem: (a,6,c) = (3,4,5), (4,3,5), (5,12,13),
(6,8,10), (7,24,25), (8,6,10), (8,15,17), (9,12,15), (10,24,26), (12,5,13),
(12,9,15) and (12,16,20). Thus the twelve Pythagorean days are March
4th, April 3rd, May 12th, June 8th, July 24th, August 6th, August 15th,
September 12th, October 24th, December 5th, December 9th and
December 16th.

Also solved by Matthew Amoroso, St. Bonaventure University, Saint
Bonaventure, New York; Charles Ashbacher, Cedar Rapids, Iowa; Wanda
G. Cahill, Mississippi University for Women, Columbus, Mississippi;
Agostino Iallonardo, Baruch College, New York, New York; Bob Prielipp,
University of Wisconsin-Oshkosh, Oshkosh, Wisconsin; Tim Rittenbush,
Chadron State College, Chadron, Nebraska; J. Sriskandarajah, University
of Wisconsin Center, Richland Center, Wisconsin; Nandor Szentkiralyi,
Bowling Green State University, Bowling Green, Ohio; and Michael
White, University of Chicago, Chicago, Illinois.

Problem 457. Proposed by Albert White, St. Bonaventure University,
Saint Bonaventure, New York. In a standard bridge deck, assign the
value 11, 12, and 13 to the jack, queen and king, respectively. Aces may
assume the value 1 or 14. If four cards are selected, what is the
probability that the cards are of the same suit and the numbers of the
cards are consecutive with the first card having the smallest value? What
is the probability if the cards do not have to be of the same suit?

Solution by Charles Ashbacher, Cedar Rapids, Iowa.

First, we assume that all four cards are in the same suit. Suppose
that the first card is an ace. Assign it the value of 1. The probability
that the next card is a two in the same suit as the ace is 1/51. The
probability that the next card is a three in the same suit is 1/50. The
probability that the next card is a four in the same suit is 1/49. But
there are four suits from which the first ace can be chosen. Then the

probability of the four cards being in the same suit and in consecutive
ascending order is

_i_._i_._L_._J_ - I m
52 51 50 49 1624350 ° K'
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The result in (1) holds whenever the first card is any card from the ace
to the jack. Finally, since the first card can be anything from the ace to a
jack, this represents 11 mutually exclusive events depending only upon
the value of the first card chosen. Hence the desired probability is
11/1624350 = 0.00000677.

Now we remove the requirement that all cards be in the same suit.
Proceeding as before, if the value of the first card is in the range from ace
to jack, the probability for the first card is 4/52. Then the probability of
the second card is 4/51. The probability for the third card is 4/50 and
the probability for the fourth card is 4/49. Then the probability that the
four cards are in serial ascending order is

4 4 4 _4_ _ 32
52 "W"W 49 ~ 812175 *

As before, there are 11 mutually exclusive ways to do this and the
desired probability is (11 -32)/812175 = 0.0004334.

Also solved by the proposer.

Problem 458. Proposed by Michael White, Portville, New York and
Albert White, St. Bonaventure University, Saint Bonaventure, New
York. Find

lim \-K-\i-
n—>oo _—

k =

v „ L (-j)n-k\

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh,
Wisconsin.

Let L denote the value of the given limit. In this solution, the
following well known results will be used:

* X-
fc_"0

and

k = \

We have that

__•*- = « w
:= 0 *'

J2 (-l)fc +1fc(j) = 0 for n>2. (2)

V X(!___!_____} - V * _ V (~1)W"<
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= v x.
__. „t

Jk = l *•

(-1)" ^ (-l)-*Jbn!
«! fc4*o «(n-*)I

n — 1 „ / i \n — 1 n . . .

•Ei-hS-_(-fl,t,«
fc = o fc = l x '

n —1 (_iy» —1 n —1

=,5_^T! JH ° = S„ TfcT '_____

fc_"0 "" "' Jk_"0

by (2), assuming n > 2. Thus by (1)

L= lim f_ Xfl- (71)W_r,fc>) =«•
(For (2), see 0.154.2 on page 4 of Gradshteyn and Ryzhik, Table of
Integrals, Series, and Products, New York: Academic Press, Inc., 1980.)

Also solved by Charles Ashbacher, Cedar Rapids, Iowa; and the proposer.

Problem 459. Proposed by the Editor. A Heronian triangle has integral
sides and an integral area. Find an infinite family of such triangles which
have two consecutive integers and a third odd integer for sides and such
that the sides are not in arithmetic progression. Are there any Heronian
triangles whose sides include two primes and two consecutive integers?
For the purpose of this problem, right triangles also are excluded from
consideration. An example of a right triangle which satisfies the problem
is (11,60,61).

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh,
Wisconsin.

Let

2j2 +1, 2j2 +2 and 4j2+ 1 , (*)

where j > 1 is an integer, be the sides of the triangle. Since
(2j2 +2)+ 1= 4j2+ 1, where j is a positive integer, holds if and only if
j = 1, the sides of the triangle of type (*) is not a right triangle.
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From Heron's Formula, the area of the triangle of type (*) is

A = ,j(4j2 +2)(2.2 +l)(2j2)(l) = 2j(2j2 +l),

where A is an integer > 36.

Hence, if j is an integer > 1, then 2j2 +1, 2j2 +2 and 4j2+1 are
the sides of a Heronian triangle which is not a right triangle and such
that the sides are not in arithmetic progression. Setting j = 3 yields the
Heronian triangle with the sides 19, 20 and 37. The sides of this Heronian
triangle include two consecutive integers and two primes.

Also solved by Charles Ashbacher, Cedar Rapids, Iowa.

Editor's comment. Ashbacher supplied the numerical solutions (a,b,c,A)
= (3,148,149,210), (4,193,195,336), (5,29,30,72) and (5,509,510,
1248). These solutions, and many like them, can be obtained from Pell-
type equations. For example, one can arbitrarily choose 3 as one of the
sides of a triangle and take p —1 and p as the other two sides. Applying
Heron's formula for the area of the triangle, as suggested in our featured
solution, one obtains the Pell type equation

(f)'-*(4-)2 =
where x = 2p —1 and A is the area of the triangle. All solutions of this
equation are given by the relations

Xn +Yj2 =(3 +2^2)"
for n a positive integer. Here x = 3Xn and A = 3Fn. Ashbacher's
(3,148,149) corresponds to n = 3.
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Kappa Mu Epsilon News

Edited by Mary S. Elick, Historian

News of chapter activities and other noteworthy KME events should be
sent to Mary S. Elick, Historian, Kappa Mu Epsilon, Mathematics
Department, Missouri Southern State College, Joplin, Missouri 64801.

INSTALLATION OF NEW CHAPTERS

New Hampshire Alpha
Keene State College, Keene, New Hampshire

The installation of the New Hampshire Alpha Chapter of Kappa Mu
Epsilon was held on February 16, 1993, in the Great Hall of Holloway
Hall on the campus of Keene State College. Prof. Charles E. Brusard,
corresponding secretary of Massachusetts Alpha, conducted the
installation ceremony. Dr. Charles A. Riley, of the Department of
Mathematics at Keene State, served as Conductor during the ceremony.
Eighteen students and six faculty constituted the founding group of the
new chapter at Keene State College. Those initiated were:

Students: Bethany Andrews, Erik Barbere, Eileen Depecol,
Cathleen J. Farnsworth, Daniel Fischer, Daniel Grummon,
Matthew Gwinn, Robert J. Hastings, Elise Lachance,
Pamela Moore, Shayne Noyes, Stephen Rack, Kevin
Roderick, Stephanie G. Rogers, Tracy Smith, James
Stewart, Tracey Thibeault, and Emily J. Weber.

Faculty: Dr. Vincent Ferlini, Dr. Stuart Goff, Dr. Ockle
Johnson, Dr. Charles A. Riley, Dr. Joseph Witkowski, and
Dr. Edwin Wolf.

Following the 6:00 p.m. installation ceremony, Prof. Brusard gave a brief
history of honor societies in colleges and universities and, in particular,
the founding of Kappa Mu Epsilon. A banquet was then held at 7 p.m.
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Officers installed during the ceremony were Eileen Depecol, president;
Tracey Thibeault, vice-president; Bethany Andrews, secretary; Elise
Lachance, treasurer. Faculty members Charles A. Riley and Ockle
Johnson accepted the responsibilities of the corresponding secretary and
faculty sponsor, respectively.

CHAPTER NEWS

Alabama Beta University of North Alabama, Florence
Chapter President - Kim Weems
34 actives

Other 1992-93 officers: Rachel Powers, vice president; Vicky Locker,
secretary; Eddy Joe Brackin, corresponding secretary; Patricia Roden,
faculty sponsor.

Alabama Zeta Birmingham-Southern College, Birmingham
Chapter President - Heath Gatlin
35 actives

Sixteen new members were initiated. The chapter heard Dr. Arthur
C. Segal speak on "Demography and Mathematics." Several KME
members conducted mathematics review sessions for students preparing
for the Graduate Record Examination. Other 1992-93 officers: Erica
Taylor, vice president; Kelly Eliott, secretary/treasurer; Lola F. Kiser,
corresponding secretary; Shirley Branan, faculty sponsor.

ArkansasAlpha Arkansas State University, State University
Chapter President - Leslie Mitchell
20 actives, 10 associates

Other 1992-93 officers: Melinda Luehrs, secretary; Gary Austin,
treasurer; Andy Talmadge, corresponding secretary/faculty sponsor.

California Gamma California Polytechnic State University, San LuisObispo
Chapter President - Eric Bauer
30 actives

Early in the fall quarter officers of California Gamma gave their
unqualified support to assist with the Cal Poly Mathematics
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Department's Annual Math Contest should the Department decide to
revive the contest which was cancelled in the spring of '92. Due to the
cancellation of last year's contest, the chapter was left with a large
number of sweatshirts which the club had hoped to sell during the
contest. As a result, the annual sale evolved into an on-going sale of tee
shirts and sweatshirts. The chapter continued to be career oriented,
inviting representatives from business and industry to give presentations
to the club. Doug Rosenfeld of Anderson Consulting addressed the
October 1, 1992, meeting of KME. He spoke about the role majors in the
mathematical sciences play in the world of industry, and in particular at
Anderson Consulting. His presentation was followed by a question period
and a pizza buffet luncheon. Later that month interested KME members
were invited to a special information session to be hosted by Anderson
Consulting in early November. In other activities, the group assisted the
College of Science and Mathematics with its phon-a-thon and sponsored
a canned food drive for the needy during the holiday season. Other 1992-
93 officers: Jennifer Courter, vice president; Michael Bailey, secretary;
Henry Mesa, treasurer; Eric Gordon and Sabrina Hale, pledgemasters;
Sabrina Hale, representative to the School Council; Jeff Goldstein,
representative to the Mathematics Department curriculum committee;
Raymond D. Terry, corresponding secretary/faculty sponsor.

California Delta California State Polytechnical University, Pomona

Chapter Presidents - Tracy Baughn and Patti Chamroonrat
15 actives, 10 associates

Chapter activities included pizza parties, on-campus service for
academic meetings, and the annual trip to Las Vegas to study laws of
probability. Other 1992-93 officers: Eric Laszlo, treasurer; Jim McKinney,
corresponding secretary/faculty sponsor.

Georgia Alpha West Georgia College, Carrollton
Chapter President - Debbie Ingle
25 actives

Once again, Georgia Alpha sponsored a Food and Clothing Drive for
the needy. Items collected were taken to the Community Shelter for
distribution. Fifteen people attended a fall social held at a local
restaurant. Other 1992-93 officers: Denise Askins, vice president; William
Pottorf, secretary; Joy McCallie, treasurer; Thomas J. Sharp,
corresponding secretary/faculty sponsor.
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Illinois Beta Eastern IllinoisUniversity, Charleston
Chapter President - Laura Tougaw
38 actives

In addition to a fall picnic and a Christmas party, the chapter held
regular meetings and attended the 44th Annual ICTM Meeting at Peoria
Civic Center. Fall speakers included Peter Andrews who spoke on
"Images of the Chaos Game," and William Slough. Other 1992-93
officers: Rodney Johnson, vice president; Wendy Coplea, secretary;
Andrew Rice, treasurer; Lloyd Koontz, corresponding secretary;
Rosemary Schmalz, faculty sponsor.

Illinois Delta College of St. Francis, Joliet
Chapter President - Mark Mitchell
14 actives, 5 associates

Highlight of the semester was the December meeting featuring three
KME graduates: a secondary school teacher, a sports statistician, and an
employee of Arthur Anderson Corporation. A taffle apple fund raiser was
held in October. Other 1992-93 officers: Molly Sullivan, vice president;
Jennifer Hoffman, secretary; Carrie Briscoe, treasurer; Sister Virginia
McGee, corresponding secretary/faculty sponsor.

Iowa Alpha University of Northern Iowa, Cedar Falls
Chapter President - Julie Beck
37 actives

The annual KME Homecoming Coffee, held October 3 in the faculty
lounge of the newly refurbished Wright Hall, was well attended by
students, faculty, and alumni. Students presenting papers at local KME
meetings included Jennifer Puffett on "A Mathematical Description of
Aluminum Toxicity in Rice," Julie Beck on "Computer Assisted
Instruction—A Calculus Student's Friend," and Kevin Hesner on "The
Fibonacci Sequence." Jason Sash addressed the KME initiation banquet
held at the Broom Factory on December 8 on "Computed Tomography:
Algebraic Reconstruction Technique." Steven Walk was awarded a one
year membership in the Mathematics Association of America. Other
1992-93 officers: Ted Juhl, vice president; Jennifer Puffett, secretary;
Karen Brown, treasurer; John S. Cross, corresponding secretary/faculty
sponsor.
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Iowa Gamma Momingaide College, Sioux City

Chapter President - Doug Rants
10 actives

Other 1992-93 officers: Vimal Kumar, vice president; Taylor Guo,
secretary; Mike Murray, treasurer; Steve Nimmo, corresponding
secretary/faculty sponsor.

Iowa Delta Wartburg College, Waverly

Chapter President - Nancy Wirth
32 actives, 11 associates

The program for the September meeting, "What an MAA Governor
Does," was presented by Dr. Lynn Olson, Wartburg faculty member and
new governor for the Iowa Section of MAA. Other fall programs included
a video, "Mathematics in a New Era," and a presentation by Bret Hoyer
entitled "Discrete Mathematics and Coorperative Learning Strategies."
Hoyer, an alumnus, teaches high school mathematics. The traditional
Christmas Party was held in December. Projects during the fall included
the Roy's Egg-Cheese Sandwich Stand at homecoming and plans for the
1993 Wartburg Math Field Day. Other 1992-93 officers: Jeffrey Isaacson,
vice president; Melissa Dodd, secretary; Nicole Lang, treasurer; August
Waltmann, corresponding secretary/faculty sponsor.

Kansas Alpha Pittsburg State University, Pittsburg
Chapter President - Barry Smith
60 actives

Fall semester activities focused on initiation of nine new members in
October. A pizza party was held preceding the initiation. Kansas Alpha
chapter sponsored a guest speaker, Tim Flood, for the November
meeting. Tim is a PSU alumnus currently working on a PhD at
Oklahoma State University. He spoke about his research on "The
Hyperbolic Geometry of the Upper Half-plane." The final fall semester
meeting was an ice cream and cake social held at the home of faculty
member. Dr. Gary McGrath.The program included viewing the Chaos
videotape. Barry Smith was also elected president for the spring semester
due to the resignation of Ed Morris. Other 1992-93 officers: Thein
Maung. secretary; Jerri Lott, treasurer; Harold Thomas, corresponding
secretary: Bobby Winters, faculty sponsor.
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Kansas Beta Emporia State University, Emporia
Chapter President - Dave Herrs
14 actives

Other 1992-93 officers: Sheila Nutter, vice president; Christel Meyer,
secretary/treasurer; Connie S. Schrock, corresponding secretary; Larry
Scott, faculty sponsor.

Kansas Gamma Benedictine College, Atchison
Chapter President - David Klenke
12 actives, 21 associates

Kansas Gamma welcomed new students at a pizza party in
September. In October, student members presented information on the
lives of various mathematicians. Faculty member Jim Ewbank discussed
with the group some of the mathematical shapes, such as the involute of
the circle, that he uses in making stained glass windows. In November
former faculty member Larry Schultz spoke to the chapter about his
current research and software development involving math/computer
interface. Pamela Clearwater, December graduate, was honored at the
annual, traditional Wassail Party at the home of Jim Ewbank in
December. Other 1992-93 officers: Pamela Clearwater, vice president;
Tiffany Opsahl, secretary/treasurer; Jo Ann Fellin, corresponding
secretary/faculty sponsor.

Kansas Delta Washburn University, Topeka
Chapter President - Jennifer Hudson
24 actives

Other 1992-93 officers: Jessica Dyck, vice president; Michelle Reed,
treasurer: Allan Riveland, corresponding secretary; Ron Wasserstein,
faculty sponsor.

Kansas Epsilon Fort Hays State University, Hays
Chapter President - Donna Weninger

Fall activities enjoyed by Kansas Epsilon included monthly meetings,
a fall picnic, a Halloween party, and a Christmas party. Other 1992-93
officers: Dale Brungardt, vice president; Anita Lessor, secretary/treasurer;
Charles Votaw, corresponding secretary; Mary Kay Schippers, faculty
sponsor.
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Kentucky Alpha EasternKentucky University, Richmond
Chapter President - Eddie Robinson
22 actives, 3 associates

The highlight of the fall semester picnic, held at the Costello house,
was the student versus faculty volleyball game. Crystal Pendygraft was
nominated in September for homecoming queen. The October meeting
included a panel discussion on graduate school. The November program
was a tasty talk by Professor Mary Fleming entitled "Have Your Data
and Eat It Too!" The semester ended with a Christmas party featuring
good food, music and a wild White Elephant exchange. Other 1992-93
officers: Mike Mattingly, vice president; Susan Popp, secretary; Crystal
Pendygraft, treasurer; Pat Costello, corresponding secretary; Kirk Jones,
faculty sponsor.

Maryland Beta Western Maryland College, Westminster
Chapter President - Brenton Squires
18 actives

Fall chapter activities included an induction meeting and several
planning meetings. Plans were made to sponsor a career night in the
spring, as well as a picnic and spring induction. Other 1992-93 officers:
Sin Yee Wu, vice president; Todd Wizotsky, secretary; G. William
Yankosky, treasurer; James Lightner, corresponding secretary; Linda
Eshleman, faculty sponsor.

Maryland Delta Frostburg State University, Frostburg
Chapter President - Steven Smith
33 actives

Maryland Delta Chapter enjoyed a pizza/puzzle party in September
and made plans to induct new members in February. Other 1992-93
officers: Christine Bittinger, vice president; Thomas Currier, secretary;
Diana Beisel, treasurer; Edward White, corresponding secretary; John
Jones, faculty sponsor.

Michigan Beta Central Michigan University, Mt. Pleasant
Chapter President - Matt Ayotte
20 actives

The Michigan Beta Chapter celebrated its 50th Anniversary during
the 1992 year. The group hosted a pre-game picnic for alumni, faculty,
and present members before the CMU Homecoming Football Game in
October. Activities at meetings included a viewing of the MAA video
"The Story of Pi," a talk by member Matt Ayotte on the Pigeonhole
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Principle, and a discussion with mathematics students about
mathematics course offerings for spring semester. The semester closed
with a Christmas party at the home of advisor Arnie Hammel. Other
1992-93 officers: Dave Koester, vice president; Jenny Blake, secretary;
Tami Hanson, treasurer; Arnold Hammel, corresponding
secretary/faculty sponsor.

Missouri Alpha Southwest Missouri State University, Springfield
Chapter President - Susan Gibiser
35 actives, 5 associates

Missouri Alpha met monthly during the fall semester. In a
cooperative agreement, KME meets jointly with the SMSU student
chapter of MAA. Highlights of the semester included the KME/MAA fall
picnic attended by approximately 80 students, faculty and staff, and the
end of semester KME/MAA pizza party. Other 1992-93 officers: Mike
Jones, vice president; Chrissy Hixon, secretary; Mae Rivera, treasurer; Ed
Huffman, corresponding secretary; Mike Awad, faculty sponsor.

Missouri Beta Central Missouri State University, Warrensburg
Chapter President - Jay Rowland
15 actives, 10 associates

The school year started off with a chapter welcome-back picnic and
barbecue. At the first meeting several students talked about internships
they had held during the previous summer. The fall initiation was held in
September. In October the chapter got together for a Halloween Party
and a very cold night-time barbecue. A visiting professor from Budapest,
Hungary,presented a program on Simulation Modeling for the November
meeting. The chapter also held a semi-annual book sale and volunteered
hours for the mathematics department's clinic. The semester ended with
a bowling and pizza Christmas Party. Other 1992-93 officers: Russell
Savage, vice president; Jennifer Ritzo, secretary; Tracy Rouchka,
treasurer; Rhonda McKee, corresponding secretary; Larry Dilley, Homer
Hampton, Phoebe Ho, Debbie Detrick, faculty sponsors.

Missouri Gamma William Jewell College, Liberty
Chapter President - Mark Decker
12 actives

Other 1992-93 officers: Reggie Hoog, vice president; Scott O'Neill,
secretary; Joseph Mathis, treasurer/corresponding secretary/faculty
sponsor.
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Missouri Epsilon Central Methodist College, Fayette
Chapter President - Mary Ann Neal
10 actives

Other 1992-93 officers: Roselyn Magosha, vice president; Ed La
Valle, secretary; Holly Toler, treasurer; William D. Mcintosh,
corresponding secretary; Linda O. Lembke, faculty sponsor.

Missouri Eta Northeast Missouri State University, Kirksville
Chapter President - Jason Lott
28 actives, 3 associates

In addition to monthly meetings, the chapter held a Christmas Party
for its members, sponsored a faculty-student softball game, and visited
the local nursing home to play cards with the residents. Other 1992-93
officers: Scott Niemeyer, vice president; Deanne Reber, secretary; Angela
Hahn, treasurer; Mary Sue Beersman, corresponding secretary; Shelle
Palaski, faculty sponsor.

Missouri lota Missouri Southern StateCollege
Chapter President - Jeannie Cambers
10 actives, 12 associates

Missouri Iota again worked football concessions to raise revenue. A
volleyball game/cookout was held at the home of Mrs. Mary Elick in
September. In October the group heard Mr. Chip Curtis speak on "Some
Interesting Matrices," and in November KME alumnus Tom Bartkowiak
spoke concerning his work at Eagle Picher. The semester activities ended
with a Christmas pizza party and white elephant exchange at the home
of Dr. Linda Noel. Other 1992-93 officers: Laura Jay and Diane Hoch,
vice presidents; Kim Tarnowieckyi, secretary/treasurer; Mary Elick,
corresponding secretary; Linda Noel, faculty sponsor.

Missouri Lambda Missouri Western StateCollege, St. Joseph
Chapter President - Joseph Shawn Crawford
28 actives, 8 associates

The organization enjoyed a picnic and softball game early in the
semester, and sponsored a booth at Family Day September 19. Eight new
members were initiated in October. Other activities included business
meetings and a bake sale. Other 1992-93 officers: Tammy Resler, vice
president; Tracy Schemmer, secretary; Denise Fuller, treasurer; John
Atkinson, corresponding secretary; Jerry Wilkerson, faculty sponsor.
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Missouri Kappa Drury College, Springfield
Chapter President - Bill Davis
11 actives, 7 associates

The first activity of the semester was a rush party; potential KME
members were treated to pizza and a movie. The social activities
continued with a bonfire - weiner roast held at Dr. Allen's house. The
winners of the Annual Campus Math Contest were Ingo Schranz
(Calculus I and below) and Bill Davis (Calculus U and above). Prize
money was awarded to the winners at a pizza party held for all
contestants. At a luncheon for the chapter, Bill Davis gave a report on
his undergraduate research project. The organization ran a tutoring
service for both the day school and the evening college as a money
making project. The end of the semester was celebrated with a Christmas
Party. Other 1992-93 officers: Cindy Schwab, secretary/treasurer; Charles
Allen, corresponding secretary; Don Moss, faculty sponsor.

Nebraska Alpha Wayne State College, Wayne
Chapter President - Amy Anderson
22 actives

Throughout the semester club members monitored the Math-Science
Building in the evening to earn money for the club. The club participated
in the college homecoming activities by cooperatively building a float for
the homecoming parade. Amy Anderson who was enrolled in the Honors
Program gave her paper at a faculty-student seminar in December. The
title of the paper was "Complex Number System And Its Use In
Computer Software." Social activities included a fall picnic with the
Math-Science faculty and other clubs in the building, a pizza-movie party
at Dr. Paige's home and a bowling party. Other 1992-93 officers: Susan
Sorensen, vice president; Jaime Tiller, secretary/treasurer; Wendy
Stanley, historian; Fred Webber, corresponding secretary; Jim Paige,
faculty sponsor.

Nebraska Beta University of Nebraska, Kearney

Chapter President - Anita Lutz
20 actives, 3 associates

Nebraska Beta assisted an area educational service unit with Math
Fun Day, a competition for high school students. December math and
statistics graduates were honored at a holiday reception hosted at the
school's Alumni House by chapter members. Other 1992-93 officers:
Brooke Bernhardt, vice president; Cara Ullerich, secretary; Mark
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Schnitzler, treasurer; Charles Pickens, corresponding secretary; Lutfi
Lutfiyya, faculty sponsor.

Nebraska Gamma Chadron State College, Chadron
Chapter President - James Collins
17 actives

Other 1992-93 officers: Jereme Patterson, vice president; Brandon
Herdt, secretary; Todd Zitlow, treasurer; James Kaus, corresponding
secretary; Monty Fickel, faculty sponsor.

Nebraska Delta Nebraska Wesleyan University, Lincoln
Chapter President - Shawn Clymer
21 actives

Other 1992-93 officers: Matt Meyer, vice president; Chris Roth,
secretary; Rachel Bunting, treasurer; Muriel Skoug, corresponding
secretary/faculty sponsor.

New York Alpha Hofstra University, Hempstead
Chapter President - Jason Lieberman
10 actives, 5 associates

New York Alpha enjoyed a fall volleyball game. Other 1992-93
officers: Lee Ann Molten and Susanne Morscher, vice presidents; John
Veniger and Elizabeth Connolly, secretaries; Theresa Vecchiarelli,
treasurer; Aileen Michaels, corresponding secretary/faculty sponsor.

New York Eta Niagara University, Niagara University
Chapter President - Paul Schreiner
12 actives, 18 associates

Fall activities have been focused on planning for the national
convention which the chapter will host in April. Other 1992-93 officers:
Richard Inserra, vice president; Lisa Maselli, secretary/treasurer; Robert
Bailey, corresponding secretary; Kenneth Bernard, faculty sponsor.

New York Kappa Pace University, New York
Chapter President - Paula Murray
40 actives

Other 1992-93 officers: Ricky Gocool, vice president; Eileen
Lawrence, secretary; Geraldine Taiani, corresponding secretary; John W.
Kennedy, faculty sponsor.
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New York Lambda C. W. Post Campus/Long Island University, Brookville
Chapter President - Myleen Rojano
16 actives, 3 associates

The primary efforts of New York Lambda focused on working with a
student science club to encourage more associate members and to
encourage interaction with the other sciences. Other 1992-93 officers:
Suzanne Hecker, vice president; Nicholas Ramer, secretary; Lisa Evans,
treasurer; Sharon Kunoff, corresponding secretary; Andrew Rockett,
faculty sponsor.

New York Nu Hartwick College, Oneonta

Chapter President - Eric P. DeJager
13 actives, 5 associates

Ten KME members and associates accompanied by two faculty KME
members, attended the Seaway Section Meeting of MAA at Cornell
University in November. Other 1992-93 officers: Jacalyn M. O'Connor,
vice president; Timothy C. French, secretary; John A. Pape, treasurer;
Gary Stevens, corresponding secretary/faculty sponsor.

North Carolina Gamma Elon College, Elon College

Chapter President - Varun Rao

The chapter held two joint meetings with Elon's MAA student
chapter in October and November. These meetings featured short talks
on math and math-related games. Plans were made for more frequent
informal gatherings in the spring. Other 1992-93 officers: Miguel
Johnston, vice president; Kristie Collins, secretary; Charles Tonron,
treasurer; Jeffrey Clark, corresponding secretary; Rosalind Reichard,
faculty sponsor.

Ohio Alpha Bowling Green State University, Bowling Green
Chapter President - Kevin P. Davis
70 actives, 5 associates

Other 1992-93 officers: Diana Nietz, vice president; Holly McDaniel,
secretary/treasurer; Waldemar Weber, corresponding secretary; Neal
Carothers, faculty sponsor.
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Ohio Zeta Muskingum College, New Concord
Chapter President - Janet Gongola
19 actives

The program for the September meeting was a presentation by Jim
Buddenberg entitled "Nearest Scalar Matrix." Induction of new members
was held in October. The chapter heard Drs. Joe Kennedy and Dave
Groggel, visiting speakers from Miami University, in December. Other
1992-93 officers: Steve Miller, vice president; Sabrina Fuller, secretary;
Jim Buddenberg, treasurer; James L. Smith, corresponding secretary;
Russell Smucker, faculty sponsor.

Oklahoma Alpha Northeastern State University, Tahlequah
Chapter President - Stephanie Monks
39 actives, 4 associates

Oklahoma Alpha continues to have joint activities with NSU's
student MAA chapter. The group sponsored a welcome back party in
September featuring subway sandwiches and the game "Mathematical
Jeopardy." Fall initiation ceremonies for 14 students were held in the
banquet room of a local restaurant. Other activities included the annual
book sale, a monthly math contest, and a Christmas Party. Other 1992-
93 officers: S. Kalen Dodson, vice president; Okcha Cockrum, secretary;
Donna Baughman, treasurer; Joan E. Bell, corresponding secretary/
faculty sponsor.

Oklahoma Delta Oral Roberts University, Tulsa
Chapter President - Brian Augenstein
19 actives

Oklahoma Delta sponsored a team to compete on the National
Putnam Exam. Other 1992-93 officers: Stephanie Wall, vice president;
Amy Amsler, secretary; Lisa Brecheisen, treasurer; Debra Oltman,
faculty sponsor; Roy Rakestraw, faculty sponsor.

Pennsylvania Alpha Westminster College, New Wilmington
Chapter President - Monica Mundo
23 actives

Pennsylvania Alpha continued to provide tutoring as a service to
math students through the Learning Center and Westminster's Life Long
Learning Program. The chapter sponsored an ice cream social for faculty
and perspective math students and majors. A career night is going to be
organized to inform members of career opportunities in mathematics and
plans are being made for participation in Math Awareness Week. Other
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1992-93 officers: Amy Shannon, vice president; Jennifer Peelor, secretary;
Kelly Hughes, treasurer; J. Miller Peck, corresponding secretary; Warren
Hickman, faculty sponsor.

Pennsylvania Beta La SalleUniversity, Philadelphia
Chapter President - Michael Scafidi
15 actives

Other 1992-93 officers: Angela Rowbottom, vice president; Joseph
Evangelist, secretary; Richard Wojnar, treasurer; Hugh N. Albright,
corresponding secretary; Carl McCarty, faculty sponsor.

Pennsylvania Gamma Waynesburg College, Waynesburg
Chapter President - Christy Barclay
6 actives, 4 associates

Other 1992-93 officers: Michelle Armbrust, vice president; Bob
McNulty, secretary; Pete Massung, treasurer; A. B. Billings,
corresponding secretary/faculty sponsor.

Pennsylvania Delta Marywood College, Scranton
Chapter President - Kelly Curtin
9 actives

Other 1992-93 officers: Alice Ward, vice president; Marsha Galgon,
secretary; Kathleen Hanlon, treasurer; Sister Robert Ann von Ahnen,
corresponding secretary/faculty sponsor.

Pennsylvania Epsilon Kutztown University, Kutztown
Chapter President - Laura Perola
10 actives, 3 associates

Other 1992-93 officers: Amy Catalano, vice president; Cheryl
Kilpatrick, secretary; Margaret Reodinger, treasurer; Cherry C. Mauk,
corresponding secretary; Randy Schaeffer, faculty sponsor.

Pennsylvania Eta Grove City College, Grove City
Chapter President - Kristi Kowalski
36 actives

Fall semester activities included the initiation of new members in
October and the annual Christmas Party at Jack Schlossnagel's residence
in December. Other 1992-93 officers: Vajeera Dorabawila, vice president;
Tracy Plieninger, secretary; Steve Swartzlander, treasurer; Marvin Henry,
corresponding secretary; Dan Dean, faculty sponsor.
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Pennsylvania Zeta Indiana University of Pennsylvania, Indiana
Chapter President - Mark Rayha
15 actives, 3 associates

Other 1992-93 officers: Laurie Valowe, secretary; Steve Spratt,
treasurer; Arlo Davis, corresponding secretary; Dan Burkett, faculty
sponsor.

Pennsylvania lota Shippensburg University of Pennsylvania, Shippensburg
Chapter President - Mamie Paul
24 actives

Pennsylvania Iota Chapter, along with Math Club, sponsored a
successful fall picnic for students and faculty members. On November 15,
six new members were initiated at the home of Dr. and Mrs. Rick Ruth.

Plans are underway to send representatives to the National Convention
at Niagara University in April. Other 1992-93 officers: Jeff Rady, vice
president; Lisa Nesbitt, secretary; Susan Waltimyer, historian; Michael
Seyfried, corresponding secretary/faculty sponsor.

Pennsylvania Kappa Holy Family College, Philadelphia
Chapter President - Kevin Carsley
7 actives, 10 associates

The major focus of the meetings was on problem solving. Tutoring of
underprivileged children was initiated in October. Plans for a March
induction of new members were discussed. Other 1992-93 officers: David

McCabe, vice president/secretary/treasurer; Sister M. Grace Kuzawa,
corresponding secretary/faculty sponsor.

Pennsylvania Lambda Bloomsburg University, Bloomsburg
Chapter President - Kathleen Szymczak
15 actives

Math tutoring sessions were held on Tuesday and Wednesday
evenings. Programs included a talk by faculty member Helmut Doll on
Knot Theory. A Halloween party was hosted by the chapters for all math
students and faculty. Other 1992-93 officers: Thaddea Puzio, vice
president; Katie Yarington, secretary; Todd Rider, treasurer; Jim
Pomfret, corresponding secretary; John Riley, faculty sponsor.
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Pennsylvania Nu Ursinus College, Collegeville
Chapter President - Deborah Collinge
15 actives, 2 associates

Pennsylvania Nu sponsored two lectures during the fall semester. The
first was a presentation in October by Professor Louise Berard of Wilkes
University entitled "Turing Machines and Decidability." The second,
entitled "Uh Oh! My Diagnostic Test is Positive," was given in
November by Professor Kay Somers of Moravian College. Other 1992-93
officers: Beth Carkner, vice president; Reid Gilbert, secretary; Kara
Raiguel, treasurer; Jeff Neslen, corresponding secretary; Richard
Bremiller, faculty sponsor.

South Carolina Delta Erskine College, Due West

Chapter President - Jodi Dixon Long
11 actives, 2 associates

The group met three times during the fall. Activities were somewhat
limited as two of the officers were practice teaching. A more active spring
is expected. Other 1992-93 officers: Dawn Alison Smith, vice president;
Lindi Latham, secretary/treasurer; Ann Bowe, corresponding
secretary/faculty sponsor.

South Dakota Alpha Northern State University, Aberdeen
Chapter President - Ann Vidoloff
10 actives

South Dakota Alpha had a fall initiation and gained three new
members. Their first semester as a new chapter was spent getting
established on campus, making plans for the spring national convention,
and organizing for spring activities. Student members were Secret Santas
for the entire math faculty during the end of the semester and revealed
their identities at a KME student-faculty Christmas Party. Other 1992-93
officers: Joe Brooks, vice president; Marci Leberman, secretary; Brenda
Rook, treasurer; Abid Elkhader, corresponding secretary; Raj Markanda,
faculty sponsor.

Tennessee Alpha Tennessee Technological University, Cookeville
Chapter President - Molly Slaughter
15 actives, 1 associate

Other 1992-93 officers: Leanne Link, vice president; Jennifer Kite,
secretary; Lori Robbins, treasurer; Frances Crawford, corresponding
secretary; Jake Beard, faculty sponsor.
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Tennessee Delta Carson-Newman College, Jefferson City

Chapter President - Laurie Plunk
19 actives

Tennessee Delta enjoyed a picnic at Panther Creek Park in
September. In November, Dr. Don Hinton of University of Tennessee
visited to discuss graduate school opportunities. A Christmas Party was
held at Lisa Fox's house in December. Other 1992-93 officers: Chris
Knight, vice president; Rebecca Sowder, secretary; Lora Brogan,
treasurer; Verner Hansen, corresponding secretary; Carey Herring, faculty
sponsor.

Texas Alpha Texas Tech University, Lubbock
Chapter President - Troy R. Smith
48 actives

Other 1992-93 officers: Chris Norden, vice president; Nina Nelson,
secretary; Brian D. Ashcraft, treasurer; Robert Moreland, corresponding
secretary; Gary Harris, faculty sponsor.

Texas Kappa University of Mary Hardin-Baylor, Belton
Chapter President - Becky Hunt
15 actives, 10 associates

Ms. Sherrie Kivlighn, manager of SSC education programs, spoke to
the club in the fall about the ongoing superconducting super collider
project located at Waxahachie, TX, and its associated employment
opportunities. She also presented an audio-visual demonstration and
performed several simple physics demonstrations involving super
conducting magnetism. Other 1992-93 officers: Tim Collins, vice
president; Shirley Feild, secretary; Scott Callaway, treasurer; Peter H.
Chen, corresponding secretary; Maxwell M. Hart, faculty sponsor.

Texas Eta Hardin-Simmons University, Abilene

Chapter President - Louis Revor
12 actives, 5 associates

Texas Eta Chapter decided in September to form a student Math
Club which would include those who do not meet KME requirements but
are interested in involvement. In October the chapter, in conjunction
with Math Club, held a hamburger cookout and volleyball game. The
group assisted with the UIL Math Meet for high school students in
November. Other 1992-93 officers: Jill Sims, vice president; Kristen
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Hieronymus, secretary; Amy Garrison, treasurer; Frances Renfroe,
corresponding secretary, Charles Robinson, Edwin Hewett, and Dan
Dawson, faculty sponsors.

Wisconsin Alpha Mount Mary College, Milwaukee
Chapter President - Jill Rogahn
5 actives, 5 associates

Chapter members, along with the Mathematics/Computer Science
Department, sponsored a Mathematics Contest for junior and senior high
school women. The top individual was awarded a $2000 renewable
scholarship to Mount Mary College. Other 1992-93 officers: Jill Rogahn,
secretary; Sister Adriene Eickman, corresponding secretary/faculty
sponsor.

Wisconsin Beta University of Wisconsin, River Falls
Chapter President - Dixie Carroll
15 actives

Wisconsin Beta, in conjunction with the computer science club on
campus, sponsored the annual fall picnic. Special guests were the
freshman math majors/minors. Despite the rain, those attending enjoyed
volleyball and frisbee. A fund raising bake/weinie sale was held in
October as part of Science Day activities. Members also assisted in other
ways with the Science Day event. In addition to tutoring on campus,
members did volunteer tutoring at local junior high schools. Other
activities included designing and ordering KME sweatshirts and teeshirts,
an outing to the Science Museum of Minnesota in St. Paul, and the
annual Christmas Party at a local establishment, followed by some
rousing games of darts. Other 1992-93 officers: Greg Redding, vice
president; Michael Weber, secretary; Timothy Stroth, treasurer; Robert
Coffman, corresponding secretary/faculty sponsor.

Wisconsin Gamma University of Wisconsin-Eau Claire, Eau Claire
Chapter President - Lara Whitehead
21 actives, 22 associates

Meetings were held regularly twice a month, each featuring one or
two student speakers. At several of the meetings mixers of mathematical
games and puzzles were utilized. Popcorn and used books were sold for
revenue. Other 1992-93 officers: Jeff Ion, vice president; Jacqueline
Hoffman, secretary; Jodi Hanson, treasurer; Tom Wineinger,
corresponding secretary/faculty sponsor.
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Kappa Mu Epsilon National Officers

Harold L. Thomas President
Department of Mathematics

Pittsburg State University, Pittsburg, Kansas 66762

Arnold D. Hammel President-Elect
Department of Mathematics

Central Michigan University, Mt. Pleasant, Michigan 48859

Robert L. Bailey Secretary
Department of Mathematics

Niagara University, Niagara University, New York 14109

Jo Ann Fellin Treasurer
Mathematics and Computer Science Department

Benedictine College, Atchison, Kansas 66002

Mary S. Elick Historian
Department of Mathematics

Missouri Southern State College, Joplin, Missouri 64801

Kappa Mu Epsilon, Mathematics Honor Society, was founded in
1931. The object of the Society is fivefold: to further the interests of
mathematics in those schools which place their primary emphasis on the
undergraduate program; to help the undergraduate realize the important
role that mathematics has played in the development of western
civilization; to develop an appreciation of the power and beauty possessed
by mathematics due to its demands for logical and rigorous modes of
thought; to provide a Society for the recognition of outstanding
achievement in the study of mathematics at the undergraduate level; and
to disseminate the knowledge of mathematics and familiarize the
members with the advances being made in mathematics. The official
journal of the Society, The Pentagon, is designed to assist in achieving
these objectives as well as to aid in establishing fraternal ties between the
Chapters.
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Active Chapters of Kappa Mu Epsilon

Chapter

OK Alpha

IA Alpha

KS Alpha

MO Alpha

MS Alpha

MS Beta

NE Alpha

KS Beta

NM Alpha

ILBeta

AL Beta

AL Gamma

OH Alpha

MI Alpha

MO Beta

TX Alpha

TX Beta

KS Gamma

IA Beta

TN Alpha

NY Alpha

MI Beta

NJ Beta

IL Delta

KS Delta

MO Gamma

TX Gamma

WI Alpha

OH Gamma

CO Alpha

MO Epsilon

MS Gamma

Listed by date of installation.

Location Installation Date

Northeastern Oklahoma State University, 18 April 1931

Tahlequah

University of Northern Iowa, Cedar Falls 27 May 1931

Pittsburg State University, Pittsburg 30 Jan 1932

Southwest Missouri State University, Springfield 20 May 1932

Mississippi University for Women, Columbus 30 May 1932

Mississippi State University, 14 Dec 1932

Mississippi State College

Wayne State College, Wayne 17 Jan 1933

Emporia State University, Emporia 12 May 1934

University of New Mexico, Albuquerque 28 March 1935

Eastern Illinois University, Charleston 11 April 1935

University of North Alabama, Florence 20 May 1935

University of Montevallo, Montevallo 24 April 1937

Bowling Green State University, Bowling Green 24 April 1937

Albion College, Albion 29 May 1937

Central Missouri State University, Warrensburg 10 June 1938

Texas Tech University, Lubbock 10 May 1940

Southern Methodist University, Dallas 15 May 1940

Benedictine College, Atchison 26 May 1940

Drake University, Des Moines 27 May 1940

Tennessee Technological University, Cookeville 5 June 1941

Hofstra University, Hempstead 4 April 1942

Central Michigan University, Mount Pleasant 25 April 1942
Montclair State College, Upper Montclair 21 April 1944

College of St. Francis, Joliet 21 May 1945

Washburn University, Topeka 29 March 1947

William Jewell College, Liberty 7 May 1947

Texas Woman's University, Denton 7 May 1947

Mount Mary College, Milwaukee 11 May 1947

Baldwin-Wallace College, Berea 6 June 1947

Colorado State University, Fort Collins 16 May 1948

Central Methodist College, Fayette 18 May 1949

University of Southern Mississippi, Hattiesburg 21 May 1949
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IN Alpha Manchester College, North Manchester 16 May

PA Alpha Westminster College, New Wilmington 17 May
IN Beta Butler University, Indianapolis 16 May

KS Epsilon Fort Hays State University, Hays 6 Dec

PA Beta LaSalle University, Philadelphia 19 May

VA Alpha Virginia State University, Petersburg 29 Jan

IN Gamma Anderson University, Anderson 5 April

CA Gamma California Polytechnic State University, 23 May

San Luis Obispo

TN Beta East Tennessee State University, Johnson City 22 May 1959

PA Gamma Waynesburg College, Waynesburg 23 May 1959

VA Beta Radford University, Radford 12 Nov 1959

NE Beta Kearney State College, Kearney 11 Dec 1959

IN Delta University of Evansville, Evansville 27 May 1960

OH Epsilon Marietta College, Marietta 29 Oct 1960

MO Zeta University of Missouri - Rolla, Rolla 19 May 1961

NE Gamma Chadron State College, Chadron 19 May 1962

MD Alpha College of Notre Dame of Maryland, Baltimore 22 May 1963

IL Epsilon North Park College, Chicago 22 May 1963

OK Beta University of Tulsa, Tulsa 3 May 1964

CA Delta California State Polytechnic University, Pomona 5 Nov 1964

PA Delta Marywood College, Scranton 8 Nov 1964

PA Epsilon Kutztown University of Pennsylvania, Kutztown 3 April 1965

AL Epsilon Huntingdon College, Montgomery 15 April 1965

PA Zeta Indiana University of Pennsylvania, Indiana 6 May 1965

AR Alpha Arkansas State University, State University 21 May 1965

TN Gamma Union University, Jackson 24 May 1965

WI Beta University of Wisconsin - River Falls, River Falls 25 May 1965

IA Gamma Morningside College, Sioux City 25 May 1965

MD Beta Western Maryland College, Westminster 30 May 1965

IL Zeta Rosary College, River Forest 26 Feb 1967

SC Beta South Carolina State College, Orangeburg 6 May 1967

PA Eta Grove City College, Grove City 13 May 1967

NY Eta Niagara University, Niagara University 18 May 1968

MA Alpha Assumption College, Worcester 19 Nov 1968

MO Eta Northeast Missouri State University, Kirksville 7 Dec 1968

IL Eta Western Illinois University, Macomb 9 May 1969

OH Zeta Muskingum College, New Concord 17 May 1969

PA Theta Susquehanna University, Selinsgrove 26 May 1969

PA Iota Shippensburg University of Pennsylvania, 1 Nov 1969

Shippensburg

MS Delta William Carey College, Hattiesburg 17 Dec 1970

MO Theta Evangel College, Springfield 12 Jan 1971
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PA Kappa Holy Family College, Philadelphia 23 Jan 1971

CO Beta Colorado School of Mines, Golden 4 March 1971

KY Alpha Eastern Kentucky University, Richmond 27 March 1971

TN Delta Carson-Newman College, Jefferson City 15 May 1971
NY Iota Wagner College, Staten Island 19 May 1971

SC Gamma Winthrop University, Rock Hill 3 Nov 1972

IA Delta Wartburg College, Waverly 6 April 1973

PA Lambda Bloomsburg University of Pennsylvania, 17 Oct 1973

Bloomsburg

OK Gamma Southwestern Oklahoma State University, 1 May 1973

Weatherford

NY Kappa Pace University, New York 24 April 1974

TX Eta Hardin-Simmons University, Abilene 3 May 1975

MO Iota Missouri Southern State College, Joplin 8 May 1975

GA Alpha West Georgia College, Carrollton 21 May 1975

WV Alpha Bethany College, Bethany 21 May 1975

FL Beta Florida Southern College, Lakeland 31 Oct 1976

WI Gamma University of Wisconsin - Eau Claire, Eau Claire 4 Feb 1978

MD Delta Frostburg State University, Frostburg 17 Sept 1978

IL Theta Illinois Benedictine College, Lisle 18 May 1979
PA Mu St. Francis College, Loretto 14 Sept 1979

AL Zeta Birmingham-Southern College, Birmingham 18 Feb 1981

CT Beta Eastern Connecticut State University, Willimantic 2 May 1981

NY Lambda C. W. Post Center of Long Island University, 2 May 1983

Brookville

MO Kappa Drury College, Springfield 30 Nov 1984

CO Gamma Fort Lewis College, Durango 29 March 1985

NE Delta Nebraska Wesleyan University, Lincoln 18 April 1986

TX Iota McMurry College, Abilene 25 April 1987

PA Nu Ursinus College, Collegeville 28 April 1987

VA Gamma Liberty University, Lynchburg 30 April 1987

NY Mu St. Thomas Aquinas College, Sparkill 14 May 1987

OH Eta Ohio Northern University, Ada 15 Dec 1987

OK Delta Oral Roberts University, Tulsa 10 April 1990

CO Delta Mesa State College, Grand Junction 27 April 1990

NC Gamma Elon College, Elon College 3 May 1990

PA Xi Cedar Crest College, Allentown 30 Oct 1990

MO Lambda Missouri Western State College, St. Joseph 10 Feb 1991

TX Kappa University of Mary Hardin-Baylor, Belton 21 Feb 1991

SC Delta Erekine College, Due West 28 April 1991

SD Alpha Northern State University, Aberdeen 3 May 1992

NY Nu Hartwick College, Oneonta 14 May 1992

NH Alpha Keene State College, Keene 16 Feb 1993


