THE PENTAGON

A Mathematics Magazine for Students

CONTENTS

Fun with Planes 3
John Day
Has Your Subscription Expired? 12
Numerical Integration 13
Julie Holdorf
Application of Number Theory: Cryptosystems 25
Mala Renganathan
Recreational and Educational Computing 41
Reviewed by Brent Marcum
The Problem Corner 45
Mathematics Majors and the Peace Corps 55
Kappa Mu Epsilon News 59
Kappa Mu Epsilon National Officers 77
Active Chapters of Kappa Mu Epsilon 78

Copyright © 1991 Kappa Mu Epsilon. General permission is granted to KME members for noncommercial reproduction in limited quantities of individual articles, in whole or in part, provided complete reference is given as to the source.

Printed in the United States of America.

The Pentagon (ISSN 0031-4870) is published semiannually in December and May by Kappa Mu Epsilon. No responsibility is assumed for opinions expressed by individual authors. Manuscripts of interest to undergraduate mathematics majors and first year graduate mathematics students are welcome, particularly those written by students. Submissions should be typewritten (double spaced with wide margins) on white paper, standard notation conventions should be respected and special symbols should be carefully inserted by hand in black ink. All illustrations must be submitted on separate sheets and drawn in black ink. Computer programs, although best represented by pseudocode in the main text, may be included as an appendix. Graphs, tables or other materials taken from copyrighted works MUST be accompanied by an appropriate release from the copyright holder permitting further reproduction. Student authors should include the names and addresses of their faculty advisors. Contributors to The Problem Corner, The Hexagon or Kappa Mu Epsilon News are invited to correspond directly with the appropriate Associate Editor. Electronic mail may be sent to (Bitnet) PENTAGON@LIUVAX.

Domestic subscriptions: $\mathbf{\$ 3 . 0 0}$ for two issues (one year) or $\$ 5.00$ for four issues (two years); foreign subscriptions: $\mathbf{\$ 5 . 0 0}$ (US) for two issues (one year). Correspondence regarding subscriptions, changes of address or back copies should be addressed to the Business Manager. Copies lost because of failure to notify the Business Manager of changes of address cannot be replaced.

Microform copies are available from University Microfilms, Inc., 300 North Zeeb Road, Ann Arbor, Michigan 48106-1346 USA.

EDITOR

Andrew M. Rockett
Department of Mathematics
C. W. Post / Long Island University, Brookville, New York 11548 ASSOCIATE EDITORS

The Hexagon
Iraj Kalantari
Department of Mathematics
Western Illinois University, Macomb, Illinois 61455
The Problem Corner
Department of Mathematics
Washburn University of Topeka, Topeka, Kansas 66621
Kappa Mu Epsilon News
Mary S. Elick
Department of Mathematics
Missouri Southern State College, Joplin, Missouri 64801
BUSINESS MANAGER
Sharon Kunoff
Department of Mathematics
C. W. Post / Long Island University, Brookville, New York 11548

Fun with Planes

John Day, student
Missouri Iota
Missouri Southern State College
Joplin, Missouri 64801

Presented at the 1989 National Convention.

The problem I will discuss is due to Bruce Daniels, a professor in the Physics Department of Pittsburg State University. The problem deals with an actual airplane pilot's training exercise. Prof. Daniels, concerned with the validity of a statement made by a flight instructor, set out to prove that the so called "instructor's hypothesis" was wrong. I was given a copy of the problem from Prof. Daniels, worked it out, and here is how it goes.

The pilot exercise our problem deals with consists of an airplane flying around a fixed point P on the ground. During the airplane's turn about P , the pilot must always keep one wing pointed at point P . The "instructor's hypothesis" we wish to prove false states that during this exercise an experienced pilot can maintain a constant altitude and airspeed while flying around point P on the ground (see Figure One).

Our two goals in the problem are: (1) to show that the instructor's hypothesis is realistically impossible and (2) to prove that the resulting path of the airplane, as the pilot attempts this exercise, is a conic section whose eccentricity is a function of the plan's airspeed and the speed of the wind. We will be using cylindrical coordinates. Notice that the airplane's wing is pointed at P. The real, external forces acting on the airplane are labeled $\overrightarrow{\mathrm{L}}$ and mg and we neglect wind at this time.

A vector will be denoted \vec{x} and has both direction and magnitude,

$$
\dot{x}=\frac{d x}{d t} \quad \text { and } \quad \ddot{x}=\frac{d^{2} x}{d t^{2}}
$$

Figure One.
where t denotes time. Further,
$\mathrm{h} \quad$ is the airplane's constant altitude.
$\overrightarrow{\mathrm{L}} \quad$ is the net lift vector of the airplane. Its direction is always perpendicular to both wings.
$\vec{r} \quad$ is the position vector of the plane from the z -axis in cylindrical coordinates.
$\mathrm{mg} \quad$ is the net weight vector of the airplane. Its direction is always straight down in the $(-z)$ direction.

We must assume there is exactly enough lift in the z -direction to counter its weigh; i.e., $L \cos (B)=m g$.

Let us now look at an overhead view of the previous diagram, looking down on point P from above (see Figure Two). We will also take wind into our consideration. For simplicity sake, we will define the wind in the $\theta=0$ direction (parallel to the ground). Also, in this diagram L and mg are not drawn. It should be noted that we make the assumption that the airplane's velocity vector (measured with respect to the air) is always perpendicular to the position vector \vec{r} and in the θ direction. Think of this as the pilot always turning about the point P in a consistent manner.

Figure Two.
We use the notations
$\vec{W} \quad$ is the constant wind velocity vector and is measured with respect to the ground.
$\vec{v}_{0} \quad$ is the airplane's velocity vector and is measured with respect to the wind (air).
$\vec{V} \quad$ is the vector sum of \vec{W} and \vec{V}_{0} and yields the velocity of the airplane measured with respect to the ground
$\hat{\theta} \quad$ is a unit vector in the θ direction
$\hat{r} \quad$ is a unit vector in the r direction
F_{θ} is the magnitude sum of all the forces in the θ direction
$\mathbf{F}_{\mathbf{r}}$ is the magnitude sum of all the forces in the \mathbf{r} direction.

From Figure Two we have $\overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{W}}+\overrightarrow{\mathrm{V}}_{\mathrm{D}}=(\mathrm{W} \cos (\theta)) \hat{\mathrm{r}}-(\mathrm{W}$ $\sin (\theta)) \widehat{\theta}+\left(\mathrm{V}_{0}\right) \widehat{\theta}$ and so

$$
\begin{equation*}
\overrightarrow{\mathrm{V}}=(\mathrm{W} \cos (\theta)) \mathrm{F}+\left(\mathrm{V}_{0}-\mathrm{W} \sin (\theta)\right) \hat{\theta} \tag{1}
\end{equation*}
$$

Also, an expression for the velocity in a fixed polar coordinate system is

$$
\begin{equation*}
\overrightarrow{\mathrm{V}}=\dot{\mathbf{r}}=\dot{\mathrm{r}} \hat{\mathrm{r}}+\mathbf{r} \dot{\theta} \hat{\theta} \tag{2}
\end{equation*}
$$

(a proof of equation (2) is given in the Appendix). By equating coefficients in equations (1) and (2), we have:

$$
\dot{\mathrm{r}}=\mathrm{W} \cos (\theta) \text { and } \dot{\mathrm{r}}=\mathrm{V}_{0}-\mathrm{W} \sin (\theta) .
$$

Letting $k=W / V_{0}$, so that $W=k V_{0}$, these equations become

$$
\begin{equation*}
\dot{\mathrm{i}}=\mathrm{k} \mathrm{~V}_{0} \cos (\theta) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{\mathrm{r}} \dot{\theta}=\mathrm{V}_{0}(1-\mathrm{k} \sin (\theta)) . \tag{4}
\end{equation*}
$$

In the same manner as for the proof of equation (2), we can take the derivative of both sides in (2) and, simplifying, we obtain the acceleration vector \vec{a} in polar coordinates:

$$
\begin{equation*}
\overrightarrow{\mathrm{a}}=\ddot{\overrightarrow{\mathrm{r}}}=\left(\mathrm{r}-\mathrm{r} \dot{\theta}^{2}\right) \mathrm{F}+(\mathrm{r} \ddot{\theta}+2 \dot{\mathrm{r}} \dot{\theta}) \hat{\theta} \tag{5}
\end{equation*}
$$

We will now focus our attention on the magnitude of the component of acceleration in the θ direction, a_{θ}, which we have from (5) as

$$
a_{\theta}=r \ddot{\theta}+2 \dot{r} \dot{\theta}
$$

Differentiating both sides of (4) yields

$$
\frac{\mathrm{d}}{\mathrm{dt}}(\dot{\mathrm{r}} \dot{\theta})=\mathrm{r} \ddot{\theta}+\dot{\mathrm{r}} \dot{\theta}=\left(-\mathrm{V}_{0} \mathrm{k} \cos (\theta)\right) \dot{\theta}
$$

which implies

$$
\mathrm{r} \ddot{\theta}=\left(-\mathrm{V}_{0} \mathrm{k} \cos (\theta)\right) \dot{\theta}-\dot{\mathrm{r}} \dot{\theta}=\left(-\mathrm{V}_{0} \mathrm{k} \cos (\theta)-\dot{\mathrm{r}}\right) \dot{\theta}
$$

and, substituting from (3),

$$
\mathrm{r} \ddot{\theta}=\left(-2 \mathrm{~V}_{0} \mathrm{k} \cos (\theta)\right) \dot{\theta} .
$$

Also, from (3) we obtain

$$
2 \dot{\mathrm{r}} \dot{\theta}=2\left(\mathrm{kV} \mathrm{~V}_{0} \cos (\theta)\right) \dot{\partial} ;
$$

hence $\mathrm{a}_{\boldsymbol{\theta}}=\mathrm{r} \ddot{\theta}+2 \dot{\mathrm{r}} \dot{\theta}=0$. Since

$$
\mathrm{a}_{\theta}=\frac{1}{\mathrm{r}} \frac{\mathrm{~d}}{\mathrm{dt}}\left(\mathrm{r}^{2} \dot{\theta}\right)
$$

we obtain

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{r}^{2} \dot{\theta}\right)=0 .
$$

By integrating both sides with respect to dt, we get:

$$
\mathrm{r}^{2} \dot{\theta}=\mathrm{c}
$$

where c is a constant. By using (4) to rewrite $\dot{r} \dot{\theta}$,

$$
c=r\left(V_{0}(1-k \sin (\theta))\right.
$$

or

$$
r=\frac{c / V_{0}}{1-k \sin (\theta)}=\frac{k\left(\frac{c}{k V_{0}}\right)}{1-k \sin (\theta)}
$$

Comparing this with the equation of a conic section in polar form,

$$
\mathrm{r}=\frac{\mathrm{ep}}{\mathrm{l}-\mathrm{e} \sin (\theta)}
$$

we conclude that the path of the airplane is a conic section with focus at the origin, directrix $y=-c / k V_{0}$ and eccentricity $e=k=W / V_{0}$. If $V_{0}>$ W then $\mathrm{e}<1$ and the path of the airplane is an ellipse; if $\mathrm{V}_{0}=W$ then $\mathrm{e}=1$ and the path is a parabola; and if $\mathrm{V}_{0}<\mathrm{W}$ then $\mathrm{e}>1$ and the path is a hyperbola. In reality, the airplane's airspeed will be greater than the wind speed ($\mathrm{V}_{0}>\mathrm{W}$) and the path of our airplane is going to be an ellipse (see Figure Three).

Now that we have shown that the path of our airplane is, in general, a conic section, we have completed one of our two goals. We will now concentrate on disproving the "instructor's hypothesis."

We will proceed just as before from equations (3), (4) and (5) only now we will focus our attention on the acceleration in the r direction, a_{r}, which we have from (5) is $\mathrm{a}_{\mathrm{r}}=\mathbf{r}-\mathrm{r} \dot{\theta}^{2}$.

Figure Three.

Differentiating both sides of (3) we obtain

$$
\mathrm{i}=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{kV} \cos (\theta))=\left(-k V_{0} \sin (\theta)\right) \dot{\theta}
$$

while dividing by r in (4) gives

$$
\dot{\theta}=\left(\frac{\mathrm{V}_{\mathbf{0}}}{\mathrm{r}}\right)(1-\mathrm{k} \sin (\theta)) .
$$

Combining these two results and simplifying yields

$$
\mathrm{r}=\left(-\mathrm{k} \mathrm{~V}_{0} \sin (\theta)\right)\left(\frac{\mathrm{V}_{0}}{\mathrm{r}}\right)(1-\mathrm{k} \sin (\theta))
$$

$$
=\left(\frac{-\mathrm{k} \mathrm{~V}_{0}^{2}}{\mathrm{r}}\right)(\sin (\theta))(1-\mathrm{k} \sin (\theta)) .
$$

Since $\mathrm{r} \dot{\theta}^{2}=(\mathrm{r} \dot{\theta})^{2} / \mathrm{r},(4)$ also gives

$$
\begin{aligned}
\dot{r}^{2} & =\frac{1}{r}\left(\mathrm{~V}_{0}(1-\mathrm{k} \sin (\theta))\right)^{2} \\
& =\left(\frac{\mathrm{V}_{0}^{2}}{\mathrm{r}}\right)(1-\mathrm{k} \sin (\theta))^{2} .
\end{aligned}
$$

Substituting into $\mathrm{a}_{\mathrm{r}}=\ddot{\mathrm{r}}-\mathrm{r} \dot{\theta}^{2}$, we obtain

$$
\begin{gathered}
a_{\mathbf{r}}=\left(\frac{-k V_{0}^{2}}{r}\right)(\sin (\theta))(1-k \sin (\theta))-\left(\frac{V_{0}^{2}}{r}\right)(1-k \sin (\theta))^{2} \\
=-\left(\frac{V_{0}^{2}}{r}\right)(1-k \sin (\theta)) .
\end{gathered}
$$

Now that we have found the acceleration of the airplane in the r direction, let us put it all together and find h, the airplane's altitude, as a function of the known variables. To do this, the side view of Figure One given in Figure Four will be helpful.

From Newton's second law of motion, $\mathrm{F}_{\mathrm{r}}=$ ma $_{\mathrm{r}}$ where F_{r} is the magnitude sum of all the real, external forces in the r direction and so

$$
\begin{equation*}
\mathrm{F}_{\mathrm{r}}=\mathrm{m}\left(\frac{-\mathrm{V}_{0}^{2}}{\mathrm{r}}\right)(1-\mathrm{k} \sin (\theta)) . \tag{7}
\end{equation*}
$$

By our earlier assumption, $\mathrm{L} \cos (\mathrm{B})=\mathrm{mg}$. We can see now why we must place this restriction on the airplane. Since the lift $\overrightarrow{\mathrm{L}}$ and the weight $\mathrm{m} \overrightarrow{\mathrm{g}}$ are the only forces on the airplane in the z direction, we must have L $\cos (B)=m g$ or else we will have a net acceleration of the airplane in the z direction (by Newton's second law, $F_{z}=\mathrm{ma}_{\mathrm{z}}$). And if the airplane is accelerating in the 2 direction we cannot have a constant altitude, as proposed in the "instructor's hypothesis." Also, we can see from Figure Four that $L \sin (B)=F_{r}$. That is, $m \vec{g}$ has no component in the r
direction (it is always perpendicular to $\hat{\mathrm{r}}$). Only $\overrightarrow{\mathrm{L}}$ has a component in the r direction; i.e., $\mathrm{L} \sin (\mathrm{B})$.

Figure Four.

Forming the quotient, we obtain $\tan (\mathrm{B})=(\mathrm{L} \sin (\mathrm{B})) /(\mathrm{L} \cos (\mathrm{B}))=$ $F_{r} / m g$ so that $F_{r}=m g \tan (B)$. Combining with (7),

$$
m g \tan (B)=m\left(\frac{-V_{0}^{2}}{r}\right)(1-k \sin (\theta)) .
$$

The negative sign in this equation came about because F is in the - r direction. We can drop the negative sign since we are only interested in the magnitude of the above expression. Therefore, we have

$$
\tan (\mathrm{B})=\left(\frac{\mathrm{V}_{0}^{2}}{\mathrm{gr}}\right)(1-\mathrm{k} \sin (\theta))
$$

while from Figure Four

$$
\tan (B)=\frac{h}{r}
$$

These last two equations result in:

$$
\mathrm{h}=\left(\frac{\mathrm{V}_{0}^{2}}{\mathrm{~g}}\right)(1-\mathrm{k} \sin (\theta)) .
$$

From this last equation we see that θ changes independent of \mathbf{B}. Therefore, we have proven that the "instructor's hypothesis" is false: it is impossible to keep both V_{0} and h constant while pointing the airplane's wing at point P.

Appendix.

Figure Five.

Let \hat{i} be a unit vector in the x direction and \widehat{j} be a unit vector in the y direction (see Figure Five). Then $\vec{r}=r \hat{r}$ and $\overrightarrow{\mathrm{V}}=\dot{\vec{r}}=\dot{\mathrm{r}} \hat{\mathrm{r}}+\dot{\mathrm{r}} \dot{\mathrm{r}}$ while from Figure Five

$$
\widehat{\mathbf{r}}=\widehat{i} \cos (\theta)+\widehat{j} \sin (\theta)
$$

and

$$
\widehat{\theta}=\widehat{\mathrm{j}} \cos (\theta)-\hat{\mathrm{i}} \sin (\theta) .
$$

Thus

$$
\begin{aligned}
& \dot{\hat{\mathrm{r}}}=-\hat{\mathrm{i}} \sin (\theta) \dot{\theta}+\hat{\mathrm{j}} \cos (\theta) \dot{\theta} \\
& =\dot{\theta}(\hat{\mathrm{j}} \cos (\theta)-\hat{\mathrm{i}} \sin (\theta))=\dot{\theta} \hat{\theta}
\end{aligned}
$$

Making the substitution of $\dot{\mathbf{r}}$, we obtain:

$$
\overrightarrow{\mathrm{V}}=\dot{\overrightarrow{\mathrm{r}}}=\dot{\mathrm{r}} \hat{\mathrm{r}}+\mathrm{r} \dot{\theta} \hat{\theta} \hat{n}
$$

which is our desired result.

Has Your Subscription Expired?

Your Pentagon subscription expires with the Volume and Number that appears in the upper right corner of your address label (see back cover). Since this issue is Volume 50 Number 2, if the code $50-2$ appears on your label then THIS IS YOUR LAST ISSUE! Please send your renewal check -- just $\$ 5$ for 4 more issues -- together with your name and address to:

> Business Manager
> The Pentagon
> c/o Department of Mathematics
> C. W. Post / Long Island University
> Brookville, New York 11548 USA
(Single year subscriptions are $\$ 3$ per year; foreign subscriptions are $\$ 5$ (US) per year). Please renew promptly to avoid gaps in your journal collection.

Numerical Integration

Julie Holdorf, student
Iowa Alpha
University of Northern Iowa
Cedar Falls, Iowa 50614
Presented at the 1989 National Convention.

From the Fundamental Theorem of Calculus we learn how to evaluate a definite integral by a two step process. First, we treat the integral as an indefinite integral and find the antiderivative of the integrand. Next, we evaluate the antiderivative, also a function, between the limits given by the definite integral by subtracting the antiderivative evaluated at the lower limit from the antiderivative evaluated at the upper limit. However, the first step of the process poses a problem with certain integrals.

Often times it is difficult or even impossible to express the antiderivatives in terms of familiar functions. Consequently, we are unable to compute the exact numerical values of these definite integrals. As a result, we must look to numerical integration methods to find close approximations of these definite integrals. This is achieved by estimating the areas under the corresponding curves between the limits. Two such numerical integration techniques are the "trapezoidal method" and "Simpson's method." With computer applications of these methods, we can speed up the process, avoid tedious computations, and evaluate integrals using large numbers of subdivisions which would be overwhelming by hand. In addition, the estimates can be calculated to any desired degree of accuracy, taking into consideration that a round-off error will limit the capability somewhat.

The simplest (though far from most accurate) method of finding the area under a curve is by approximating that area with a series of trapezoids, known as the "trapezoidal method." Details of the following explanation are taken from [1]. Given a function f that is continuous and
nonnegative throughout $[\mathrm{a}, \mathrm{b}]$, we take a partition that divides the interval into n subintervals of equal length (b-a)/n. We join each pair of points ($x_{k-1}, f\left(x_{k-1}\right)$) and ($x_{k}, f\left(x_{k}\right)$) on the graph of f by a straight line, thereby creating trapezoidal regions (see Figure One). We obtain the sum of the areas of the trapezoids as an approximation of the integral:

$$
\frac{b-a}{2 n}\left(\left(f\left(x_{0}\right)+f\left(x_{1}\right)\right)+\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right)+\cdots+\left(f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)\right)
$$

which is simplified into the "trapezoidal rule:"

$$
\frac{b-a}{2 n}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

Figure One.

The $n^{\text {th }}$ trapezoidal rule error E_{n} is the error incurred in using this rule to approximate the integral; $\mathrm{E}_{\mathrm{n}}=\mathrm{A}_{\mathrm{n}}$-I where I is the exact value of the definite integral and A_{n} is the approximate area calculated using n subdivisions. The formula for an upperbound of E_{n} is

$$
\left|E_{n}\right| \leq \frac{(b-a)^{3} M}{12 n^{2}}
$$

where M denotes the maximum absolute value of the second derivative of
f over the interval $[\mathrm{a}, \mathrm{b}]$. A derivation of this formula, which can be found in [2], involves Taylor series and could be the focus of a different paper. From this formula, we can see that n^{2} is inversely proportional to the error term; therefore, as the number of subdivisions \mathbf{n} increases, the error term decreases.

Applying these concepts, let us look at two approximate areas resulting from different numbers of subdivisions, for example 10 and 20:

$$
A_{10}=I+E_{10} \quad \text { and } \quad A_{20}=I+E_{20}
$$

Subtracting these two equations,

$$
A_{10}-A_{20}=E_{10}-E_{20}
$$

we find that the difference between the areas is directly proportional to the difference between the error terms. As the number of subdivisions increases, the error decreases; moreover, the difference between two error terms resulting from approximations with large values for n will decrease. At the same time, the difference of the areas calculated for these large values of n will decreases as n increases and eventually converge to a close approximation fo the definite integral, if not the exact value. This concept of the difference between successive areas is used in the computer application of this method, as well as in Simpson's method.

Simpson's method, though similar to the trapezoidal method, varies in that we try to approximate the area under the curve by a series of parabolic segments (see Figure Two) as opposed to non-horizontal lines, hoping it will more closely match a given curve. The following description of the method is taken from [2]. Given the function \mathbf{f}, we partition it on $[\mathrm{a}, \mathrm{b}]$ into n subintervals, this time assuming n is an even number. We then pick a point \mathbf{c} midway between a and b and construct the following points: $\mathrm{A}=(\mathrm{a}, \mathrm{f}(\mathrm{a})), \mathrm{B}=(\mathrm{b}, \mathrm{f}(\mathrm{b}))$ and $\mathrm{C}=(\mathrm{c}, \mathrm{f}(\mathrm{c}))$. These three points define a unique parabola $y=\alpha x^{2}+\beta x+\gamma$ which passes through these points.

Using the trapezoidal method to find the area between $x=a$ and x $=c$, we would use the formula ($w / 2$) $(f(a)+f(c))$ of the general form $\operatorname{Pf}(\mathrm{a})+\mathrm{Qf}(\mathrm{c})$ where $\mathrm{P}=\mathrm{Q}=\mathrm{w} / 2$. To match the curve with a parabola, we try to derive a formula with a similar form, $\mathrm{Pf}(\mathrm{a})+\mathrm{Qf}(\mathrm{c})+\operatorname{Rf}(\mathrm{b})$. This should give us the area between $x=a$ and $x=b$ if the values of P, Q and R are chosen properly. We use a method called "undetermined coefficients" to find P, Q and R . Simpson's method should give exact answers for any function which is either a constant, a line or a parabola,
since the graph of a parabola can match any of these exactly.

Figure Two.

Specifically, Simpson's method should give exact integral answers for the following three integrals:

$$
\begin{gathered}
I_{1}=\int_{-w}^{+w} 1 d x=\left.(x)\right|_{w} ^{+w}=(+w)-(-w)=2 w \\
I_{2}=\int_{-w}^{+w} x d x=\left.\left(\frac{1}{2} x^{2}\right)\right|_{w} ^{+w}=0 \\
I_{3}=\int_{-w}^{+w} x^{2} d x=\left.\left(\frac{1}{3} x^{3}\right)\right|_{w} ^{+w}=\frac{2}{3} w^{3}
\end{gathered}
$$

We assume $\mathrm{a}=-\mathrm{w}, \mathrm{b}=+\mathrm{w}$ and the midpoint $\mathrm{c}=0$ in each case and try to find the exact area from an equation of the form $\operatorname{Pf}(a)+\operatorname{Qf}(\mathrm{c})+$ $\operatorname{Rf}(\mathrm{b})$, so that for the three functions we have:

$$
I_{1}=P(1)+Q(1)+R(1)=P+Q+R=2 w
$$

$$
\begin{gathered}
I_{2}=P(-w)+Q(0)+R(+w)=-P w+R w=0 \\
I_{3}=P(-w)^{2}+Q(0)^{2}+R(+w)^{2}=P w^{2}+R w^{2}=\frac{2}{3} w^{3} .
\end{gathered}
$$

From the second equation $P w=R w$ so $P=R$ for any w. Using this equality in the third equation gives us

$$
2 P w^{2}=\frac{2}{3} w^{3}
$$

so that $P=R=w / 3$. From the first equation

$$
Q=2 w-P-R=2 w-\frac{2}{3} w=\frac{4}{3} w .
$$

Hence, we have derived the equation for Simpson's method to be

$$
\begin{aligned}
\operatorname{Pf}(\mathrm{a})+\mathrm{Qf}(\mathrm{c}) & +\operatorname{Rf}(\mathrm{b})=\frac{\mathrm{w}}{3} \mathrm{f}(\mathrm{a})+\frac{4 \mathrm{w}}{3} \mathrm{f}(\mathrm{c})+\frac{\mathrm{w}}{3} \mathrm{f}(\mathrm{~b}) \\
& =\frac{\mathrm{w}}{3}(\mathrm{f}(\mathrm{a})+4 \mathrm{f}(\mathrm{c})+\mathrm{f}(\mathrm{~b})) .
\end{aligned}
$$

It is useful to subdivide the interval to be integrated into an even number n of strips. We can then use Simpson's method to find the area of two adjacent strips at a time lying between x_{i-1}, x_{i} and x_{i+1} using the equivalents $x_{i-1}=a, x_{i}=c$ and $x_{i+1}=b$. However, evaluating the equation above for every two subdivisions involves many computations for a large number of subdivisions. This equation can be expressed in a more general form to avoid unnecessary calculations:

$$
\frac{b-a}{3 n}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right) .
$$

As with the trapezoidal method, we expect the difference between the actual value of the integral and the estimated value to decrease as the number of subdivisions increases. The formula for an upperbound of the $n^{\text {th }}$ Simpson's method error E_{n} is

$$
\left|E_{n}\right| \leq \frac{(b-a)^{5} M}{180 n^{4}}
$$

where M denotes the maximum absolute value of the fourth derivative
over [a,b]. As with the trapezoidal method, a derivation of this formula involves Taylor series and can also be found in [2]. The same concepts derived from the trapezoidal error term formula can be derived from this formula.

Using the trapezoidal method and Simpson's method, I have written an interactive computer program to approximate definite integrals of polynomial functions (see Appendix One). By evaluating the integrals using both methods, we can compare and contrast the two methods by analyzing the results we obtain. The program operates by recalculating the area under the graph of the function until the desired tolerance is achieved, doubling the number of subdivisions with each successive calculation. To run the program, the user must input the degree of the polynomial, the coefficients of the terms from the highest to the lowest degree term, the left and right endpoints, and the tolerance or error to allow between successive calculated areas.

Figure Three.

A sample run of the program to calculate the integral

$$
\int_{-2}^{3} 4 x-1 d x
$$

is shown in Figure Three. Using the fundamental theorem of calculus, we obtain the same results:

$$
\int_{-2}^{3} 4 x-1 d x=\left.\left(2 x^{2}-x\right)\right|_{-2} ^{3}=\left(2(3)^{2}-(3)\right)-\left(2(-2)^{2}-(-2)\right)
$$

$$
=(18-3)-(8+2)=5 .
$$

I used this integral to test the program for execution accuracy. Since the function is a first degree polynomial, one application of the trapezoidal method should be sufficient to obtain the exact value. This is evident if we look at the formula for an upperbound of the error term. M, which is positioned in the numerator of the fraction, is the maximum absolute value of the second derivative over the specified interval. The second derivative of a first degree polynomial is always equal to zero; for example, $f(x)=x$ gives $f^{\prime}(x)=1$ and $f^{\prime \prime}(x)=0$. Therefore, M will equal zero and thus the error term will be zero, meaning the estimated value of the integral equals the exact value.

DIVISIONS	AREA(T)	IA(N)-A(N-2):	AREA(S)	iA(N)-A(N-2):
2	0.3125		0.2500	
4	0.2656	0.0469	0.2500	0.0000
8	0.2539	0.0117	0.2500	0.0000
16	0.2510	0.0029	0.2500	0.0000
32	0.2502	0.0007	0.2500	0.0000
64	0.2501	0.0002	0.2500	0.0000
128	0.2500	0.0000	0.2500	0.0000

Figure Four.

To test Simpson's method, I evaluated the integral of the third degree polynomial \mathbf{x}^{3} over the interval $[0,1]$:

$$
\int_{0}^{1} x^{3} d x=\left.\left(\frac{1}{4} x^{4}\right)\right|_{0} ^{1}=\left(\frac{1}{4}(1)^{4}\right)-\left(\frac{1}{4}(0)^{4}\right)=\frac{1}{4}
$$

and then ran the program using the same function. Theoretically, the exact value should result after one application of Simpson's method for the same reason as the previous example with the trapezoidal method. The only difference is that M is now the absolute maximum of the fourth derivative. From Figure Four, we can see the expected results were obtained and that more than one pass was required using the trapezoidal method as would be expected. Approximations of other integrals are included for comparison in Appendix Two. In deciding which integrals to calculate, I chose examples with varying characteristics to demonstrate the applicability of the program. For example, I chose limits with positive and negative values, constants with real and integer values,
polynomials with some degree terms missing, and functions whose graphs lie above the x -axis or waver above and below.

Focusing on the structure of the program, the procedure GETDATA supplies the user with instructions on the data to input and reads in this data. In writing this program, I took advantage of the similarities between the two methods to increase programming efficiency. The number of subdivisions is initialized to two and by doubling the number for each successive calculation remains even throughout execution of the program. This allows us to apply Simpson's method as well as the trapezoidal method to each integral for grounds of comparison. Since n is doubled each time, the width is always half the width of the preceding approximation.

The function DECPLACES is used to find the number of decimal places in the tolerance. This is then used to round the approximations and to adjust the spacing in the tables. The function FUNC evaluates the function at a specific x value by building up the polynomial in a loop. To reduce the number of times the computer has to evaluate a function at certain values of x, temporary variables are used. For example, the value of the function at the left endpoint plus the value at the right endpoint is stored in ATEMP because it is used in the original calculations of the integrals (when $n=2$) for both methods, and in each successive calculation with different values of n. MID is only used for each initial calculation of the function (when $n=2$), and stores the value of the function at the midpoint, which is them multiplied by two for the trapezoidal method and multiplied by four for Simpson's.

A loop is used to recalculate the area until the approximation is within the desired tolerance. Each approximation is calculated in the following way. From 1 to $n-1$, TEMP stores the value of the function at the current value of x. This is multiplied by two and added to the variable ANEWT, which already contains the sum of the function evaluated at the previous subdivisions and includes ATEMP (the sum of the values at the endpoints). If the current number of subdivision is odd, then two times TEMP is added to ANEWS, which is the variable that at this point has only stored two times the function value at each oddnumbered subdivision. Having processed each subdivision, the final approximation value for Simpson's method is found by adding ANEWT (the trapezoidal value before dividing by two and multiplying by the width) plus ANEWS to get the sum of the function values at each x value appropriately taken times two (at the even-numbered subdivisions) or four (at the odd-numbered subdivisions) or left alone (at the endpoints). This value is then multiplied by the width and divided by
three. The final approximate value using the trapezoidal method is found by multiplying ANEWT by the width and dividing by two. The error is then calculated using both methods by subtracting the area of the previous approximation from the area just calculated, unique for each method. The present values calculated, ANEWT, ANEWS and the error terms, are then added to the table.

Having completed the program to approximate definite integrals for given polynomial functions, I then revised the program by replacing the function FUNC with one whose antiderivative is impossible to find,

$$
f(x)=\sin (x)+e^{x^{2}}
$$

This is a distinct advantage of the computer application. The results are shown in Figure Five.

DIUISIONS	AREA (T)	(A $(N)-A(N-2):$	AREA	
2	2.02166		1.93559	
4	1.94798	0.07368	1.92342	0.01217
8	1.92881	0.01917	1.92242	0.00100
16	1.92397	0.00484	1.92235	0.00007
32	1.92275	0.00121	1.92235	0.00000
64	1.92245	0.00030	1.92235	0.00000
128	1.92237	0.00008	1.92235	0.00000
256	1.92236	0.00002	1.92235	0.0000
512	1.92235	0.00000	1.92235	0.00000

Figure Five.

From the results obtained by approximating the three integrals given as examples (and the others in Appendix Two), it is evident that Simpson's method is a more accurate approximation than the trapezoidal method; therefore, less subdivision are required to find the area within the desired tolerance. For this reason, the program was written to recalculate the area until the tolerance is achieved using the trapezoidal method. The methods discussed are only two of the possible approximation methods which can be used to estimate the area under the graph of a function. Other estimation techniques to research are "Romberg integration" and "Gauss quadrature."

Appendix One.

PROGRAM INTEGRATCINPUT, DUTPUT: :

```
TYPE
    REALARRAY = ARRAY [1..20] GF REAL!
VAR
    DECFL, <NUIARER DF HFCIIAL FLACES 1OLERANCE CONTAINS)
    H.
    DEO,
    1: INTEGER:
    AOLDT,
AOLOS, {PREUIOUS ESTIMATION USIHB SIHPSON'S RULE}
    AMEHT.
ANENT, {CURRENT FSTIHATION USIHG GIHPSON'S RULE}
    W,
    DifFg.
    DIFFT:
TOL. <TOLERANCE INPUT)
L:
L:
MIIT,
ATEHF:
TEMF: REAL:
C: REALARRAY:
(NUMKER DF SURDIUISIONS)
<OEGREE OF POLYNOHIAL JNFUT`
\OEGREE OF POLYNOHIAL JNFUI}
{PREUIOUS ESTIMATION USING TRAPEZOIDAL RULE)
AMEHT. {CURRENT ESTIHATION USINO TRAPEZOIDALL RULE\
{CURREKT FSTIIIATION USIHB GIHPGON'S RULE?
(WIDTH OF EACH SURDIVISIOM)
CDIFFFREREE BETHEEN CURRENT E FREUIOUS ESTIMATE USING SIMFS
(DIFFERENCE &FITMEEN CURREHT & FREVIIIUS F.RTIMATF. USTHG TRAF)
    CLEFT ENDFOIMT INFUTS
GRIGHT ENBPOINT IHPUTS
    <STORES THE FUNCTIOH EVALUNTE| AT THE MINPGINT OF [A,BJ)
    <STORES SUHI OF THE FUNCTION EVALUATED AI HIIH F.MDFOINIE)
    <STORES THE FUNCTION EUALUNTESH AT A SFECIFIC X VALUE)
    <STORES THE COFFFICIENTS DF THE POLYNOMIAL TERHS>
```


*

LEFT AND RIOHT ENDPOINTE, AND DESIREN TOLERANCE.
+

PROCELIURE GETGAIASVAR DEG: IHTFARR: VAR C: REALARRAY: UAR L, R;TOL: KEALJB
UAR
It INTEGER I

```
BEOIN
    URITFLHG'ENTER THE DEGRFE. OF THF. FILYHONIAL;')I
    READLN(BEG):
    GRITELH&'ENTER THE COEFFICIENT OF THE HINHEST DEGREE TERM:'|
    READLN(CC13):
    FOR I := 2 10 (DF:O & 1) ED
            BEGIN
                    WRITELNC'ENTER THE COEFFIGIERT OF THF N&ST TERM:*)
                    READLN&CCIJ)
            ENDI
    URITELH&'EHTER THE LEFT ANN RITHY EHNPOJKTS GEPARATED OY A EPACE:'J:
    READLN(L,R):
    URITELN('EHTER THE DESIRED TOL.ERAHCF\IF < O. EHTER 0...-=|:*)&
    READLH(TOL)
ENDI (GETDATA)
```



```
    * THIS FUNCTION RETURNS THE NUHDEK DF MET:IMAL FLACES IK THE GIVEN
    TOLERANEE TO USE FDR ROUHDING THF AFPROXIMATIOHS AHD SPACIMG IN
    IN THE TABLEB.
```



```
FUNCTION DECPLACES\TOL: REALI: INTEOERI
UAR
    DEC: INTEGERI
8EO1N
    DEC := Of
    UHILE \TOL < I\ DO
        BEOIN
            TOL i= TOL * 101
            DEC im DEC + $
        END:
    OECPLACES I= DEC
END| CDECPLACES%
```


FUNETION FUNC\&C: REALARRAYI DEG: IHTEDER; X: RFALS: REAL:
NAR
F: REAL:
I: IHTEGER
BEGIN
F:-CIIJ:
FOR i i= 1 TO nec Do
$F:=F: x+C[I+1]$
FUHC : $-F$
EHD: SFUN)
BEGIN CINTEGRAT)
DETOATAIDEG.C.L.RITDLII
N : = 2!
WIU (R - い) / 2
DECPL i= DECPLNCES\{TOL):

URITELN:
ATEHP \& = FUNC(C.DEB.L) • FUNC(CrDEDsR)I
HID i= FUNC(C,DEOHL+H)I
AOLOS $1=\omega$ (ATEHP + 4 (MID) 13
AOLOT i= M (ATEHP + 2 MIt $/ 21$

REPEAT
N (nN 21
Wi= $4 / 21$
ANELT i \oplus ATEHP:
ANEWS i= Oi
FOR I :- 1 TO ($\mathrm{H}-1$) DO
EEGIN
TEHP 1: FUNC(CIHEG,L+ItEI:
AHEWT : a ANEUT +2 \& TEMP:
IF (I HON 2×1) THEN
ANENS : * ANEWS +2 t TEMP
END

ANENT :- ANEUT $4 / 2!$
IIFFT : A ABS(ANEUT - AOLSTI:
BIFFS i- ARS(ANEHS - AOLHS):
URITELN(N IS. ANEHT : (13+DECFL):DECFL, DIFFT i(1010ECFI.): NECPL.
ANEWS : (104DECPL): DECPL, DIFFS : (IOHDECPL):DECPL;
AOLDT 8 - ANEUTS
AOLDS :A ANEUS
UNTIL (DIFFT < TOL)
END. CINTEGRATS

Appendix Two

Example One．$f(x)=0.9 x^{2}-3.6 x-2.3$ with $[a, b]=[1,4]$ ．

DIUISIONS	AREA ${ }^{\text {S }}$ ）	$(A(N)-A(M-2):$	AREA（3）	1A（N）－A（N－2）：
2	－13．98750		－15．00000	
4	－14．74688	0.75938	－15，00000	0.00000
8	－14．93672	0.18984	－15．00000	0.00000
16	－-14.98416	0.04746	－15．00000	0.00000
32	－14．99604	0.01197	－15．00000	0.00000
64	－14．99901	0.00297	－15，00000	0.00000
128	－14．99973	0.00074	－15．00000	0.00000
256	－14．99994	0.00019	－15．00000	0.00000
312	－14．99998	0.00005	－15，00000	0.00000
1024	－15．00000	0.00001	－15．00000	0.00000
2040	－15．00000	0.00000	－15．00000	0.00000

Example Two．$f(x)=x^{4}-1.9 x^{3}-2 x^{2}-1$ with $[a, b]=[-2,3.5]$ ．

DIUESIOMS	AREA（T）	$\|A(N)-A(N-2)\|$	AREA（S）	（A）（N）－A ${ }^{\text {（N－2）}}$ ：
2	02．8096		50，2878	
4	28．8799	53.7307	10.9887	39.3191
8	13.8031	15.2758	0.3112	2.4574
16	9.6690	3.9341	0．3576	0.1536
32	8.6783	0.9907	0． 3480	0.0098
44	8．4301	0.24181	8.3474	0.0006
123	日． 3601	0.0621	8.3474	0.0000
256	8.3526	0.0155	Q． 3474	0.0000
512	8.3407	0.0039	8.3474	0.0000
1024	Q． 3477	0.0010	8.3474	0.0000
2048	8.3475	0.0002	6． 3474	0.0000
4096	0．3474	0.0001	8.3474	0.0000

Example Three．$f(x)=x^{6}+3 x^{5}-4 x^{4}-2 x^{2}+x-1$ with $[a, b]=[-1,1]$ ．

DIVEBIONS	AREA（T）	（ $\mathrm{A}(\mathrm{N})-\mathrm{A}(\mathrm{H}-2) \mathrm{l}$	AREA（S）	IA（N）－A $\mathrm{N}-2)$ ：
2	－7．000000		－5．333333	
4	－5．234375	1.765625	－4．645833	0.687500
B	－4．793701	0.440674	－4．646日10	0.000977
16	－4．604093	0.109408	－4．647550	0.000748
32	－4．656735	0.027359	－4．647615	0.000057
64	－4．649898	0.006937	－4．647619	0.000004
128	－4．64日189	0.001709	－4．647619	0.000000
256	－4．647761	0.000427	－4．647619	0.000000
512	－4．647655	0.000107	－4．647619	0.000000
1024	－4．647628	0.000027	－4，647619	0.000000
2048	－4．647621	0.000007	－4．647619	0.000000
4096	－4．647620	0.000002	－4．647619	0.000000
0192	－4．647619	0.000000	－4．847619	0.000000

［1］Ellis，Robert，and Denny Gulick．Calculus with Analytic Geometry （Srd edition）．Orlando，Florida：Harcourt Brace Jovanovich， 1986.
［2］Stark，Peter A．Introduction to Numerical Methods．New York：The Macmillan Company， 1970.

Application of Number Theory: Cryptosystems

Mala Renganathan, student
Kansas Alpha
Pittsburg State University
Pittsburg, Kansas 66762
Presented at the 1989 National Convention.

Introduction.
Cryptography is the study of schemes to transform a plaintext p into encoded or cipher text c. The encoding process involves constructing a function F from P (the set of admissible plaintexts p) to C (the set of encoded texts c). The following notation is helpful.

$$
F: P \longrightarrow C \quad \text { with } \quad p \mapsto c=F(p)
$$

The encoding map F usually involves a key k, known only to the person who sends the plaintext p and the person who receives the ciphertext c. The basic problem of cryptography is to devise schemes ($\mathrm{P}, \mathrm{F}, \mathrm{C}$) and keys K so that the decoding transformation

$$
\mathrm{F}^{-1}: \mathrm{C} \longrightarrow \mathrm{P} \quad \text { with } \quad \mathrm{c} \mapsto \mathrm{P}=\mathrm{F}^{-1}(\mathrm{c}, \mathrm{k})
$$

is easily computed when the key k is known and is difficult to decipher when the key k is not known.

Recently, cryptography has evolved into a precise mathematical subject. The main new idea is to base the security of a cryptosystem upon well known but intractable problems of number theory. Primality testing and factoring large positive integers are distinct problems. Primality testing asks the question: "Is the positive integer n a prime?" Certainly if n can be factored then n is not a prime. Much of the current cryptography exploits the fact that testing whether or not a positive integer n is a prime is a more tractable problem than factoring n. This is particularly true of the RSA encryption scheme discussed in this paper.

In Part 1, I will give some historical examples of cryptosystems and introduce the concept of integers modulo n. In Part 2, I will discuss Euler's theorem from elementary number theory and an algorithm to compute the inverse of a unit in the ring of integers modulo n. In Part 3, I will treat the RSA encryption scheme in detail. Finally in Part 4, I will indicate directions for further study and exploration in this field.

Part 1. Caesar codes, affine codes and the ring of integers modulo n (see [1], [2]).

Julius Caesar used a substitution cipher shifting each letter in the plaintext p by 3 with $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ mapping around to $\mathrm{A}, \mathrm{B}, \mathrm{C}$, respectively. The letters of the English alphabet $\mathrm{A}, \ldots, \mathrm{Z}$ can be identified with the integers $0, \ldots, 25$ modulo 26. Caesar's encoding scheme can then be described as a translation $p \mapsto c=F(p)=p+k \bmod 26$ with $k=3$ as the key. As an illustration of Caesar's method of encoding a plaintext, consider:

Plaintext:
Remove punctuations:
Identify with $\mathbb{Z}_{\mathbf{2 6}}$:

Translate by $\mathrm{k}=3$:
Return to English
alphabet (ciphertext):

BUILD CASTLES IN THE AIR BUILDCASTLESINTHEAIR

01200811030200181911 04180813190704000817

04231114060503212214 07211116221007031120

EXLOGFDVWOHVLQWKHDLU

Translation codes can be broken by counting the frequency of the characters in the ciphertext and comparing these frequencies with the frequency of English letters in the ordinary English texts. The Appendix is a listing of my computer program that I used to encode the "Gettysburg Address" using Caesar's method. From the observed frequencies (see Figure One), we would guess that an E in the plaintext corresponds to an H in the ciphertext. This gives $F(E)=H$ since $c=$ $F(p)=p+k \bmod 26$. This suggests $7=4+k$ and consequently $k=3$.

*PRINT_FREQUENCIES			
	EXP. FREQ		
$0:$	A	8.0000	
$1:$	B	1.5000	
$2:$	C	3.0000	
$3:$	D	4.0000	
$4:$	E	13.0000	
$5:$	F	2.0000	
$6:$	G	1.5000	
$7:$	H	6.0000	
$8:$	1	6.5000	
$9:$	J	0.5000	
$10:$	K	0.5000	
$11:$	L	3.5000	
$12:$	M	3.0000	
$13:$	N	7.0000	
$14:$	0	8.0000	
$15:$	P	2.0000	
$16:$	0	0.2000	
$17:$	R	6.5000	
$18:$	S	8.0000	
$19:$	T	9.0000	
$20:$	U	3.0000	
$21:$	U	1.0000	
$22:$	H	1.5000	
$23:$	X	0.5000	
$24:$	Y	2.0000	
$25:$	Z	0.2000	

*PRINT_FREQUENCIES $\begin{array}{ll}0: & \text { EXP. FREQ } \\ 8.0000\end{array}$ 1: B 1.5000
2: C 3.0000
3: D 4.0000
5: F 2.0000
6: $\mathrm{O} \quad 1.5000$
8: $1 \quad 6.5000$
9: J 0.5000
11: L 3.5000
12: M 3.0000
13: N 7.0000
14: 08.0000
15: P 2.0000
16: Q 0.2000
17: R 6.5000
19: T 9.0000
20: U 3.0000
21: U 1.0000
22: 41.5000
23: X 0.5000
24: Y 2.0000
25: 20.2000

NO. OF CHARRCTERS= 1148
PCTUAL FREQ
$0 \quad 0.0436$
$10 \quad 0.9146$
0.0430
1018.8415
141.2631
$31 \quad 2.7439$
$58 \quad 5.0958$
16614.5035
$27 \quad 2.3955$
282.4826
$80 \quad 7.0122$
$68 \quad 5.9669$
0.0436
30.3049
$42 \quad 3.7021$
$13 \quad 1.1760$
$77 \quad 6.7509$
938.1446
$15 \quad 1.3502$
10.1307
$79 \quad 6.9251$
$44 \quad 3.8763$
$125 \quad 10.9321$
$21 \quad 1.8728$
$24 \quad 2.1341$
$28 \quad 2.4826$

Figure One.

Affine encoding schemes involve a slight modification of translation codes and the ability to compute inverses modulo 26 . Let $c=F(p)=a p$ $+b$ where a has an inverse modulo 26. By again using frequency counts, we can "guess" that $F\left(p_{1}\right)=c_{1}$ and $F\left(p_{2}\right)=c_{2}$. This yields the linear equations

$$
a p_{1}+b=c_{1} \quad \text { and } \quad a p_{2}+b=c_{2} .
$$

Subtracting the first from the second, we obtain $a\left(p_{2}-p_{1}\right)=\left(c_{2}-c_{1}\right)$ so that $a=\left(p_{2}-p_{1}\right)^{-1}\left(c_{2}-c_{1}\right)$ and then $p=F^{-1}(c)=a^{-1}(c-b)$. I also encoded the "Gettysburg Address" using $c=F(p)=7 p+10$ and the corresponding frequency table is given in Figure Two.

*PRINT_F		NCIES PP. FREO
0 :	A	8.0000
$1:$	日	1.5000
2:	C	3.0000
3:	D	4.0000
4:	E	13.0000
5 :	F	2.0000
6 :	G	1.5000
7:	H	6.0000
8 8:	1	6.5000
$9:$	J	0.5000
10:	K	0.5000
11:	L	3.5000
12:	M	3.0000
13:	N	7.0000
14:	0	8.0000
15:	P	2.0000
16:	0	0.2000
17:	R	6.5000
18:	S	6.0000
19:	T	9.0000
20:	U	3.0000
21 :	U	1.0000
22:	W	1.5000
23:	X	0.5000
24:	Y	2.0000
25:	z	0.2000

0: A 8.0000

MO. OF CHRRACTERS= 1148 ACTUFL FREQ
$28 \quad 2.4826$
242.1341
30.3049
00.0436
938.1446
$58 \quad 5.0958$
$44 \quad 3.8763$
$80 \quad 7.0122$
$28 \quad 2.4826$
$42 \quad 3.7021$
1018.8415
$15 \quad 1.3502$
$166 \quad 14.5035$
$125 \quad 10.9321$
$68 \quad 5.9669$
00.0436
$13 \quad 1.1760$
$14 \quad 1.2631$
10.1307
$27 \quad 2.3955$
$21 \quad 1.8728$
$0 \quad 0.0436$
100.9146
$77 \quad 6.7509$
$31 \quad 2.7439$
796.9251

Figure Two.

From our frequency counts, we conjecture that $F(E)=M$ and $F(T)$ $=\mathrm{N}$ and then

$$
M=F(E)=a E+b \text { and } N=F(T)=a T+b
$$

or

$$
4 a+b=12 \quad \text { and } \quad 19 a+b=13
$$

Subtracting, $15 \mathrm{a}=1$. The inverse of 15 modulo 26 is 7 . Therefore, $\mathrm{a}=$ $15^{-1}=7$. Finally, $b=12-4 a=12-28=-16=10$ modulo 26. Therefore, $c=F(p)=7 p+10 \bmod 26$ and $p=7^{1}(c-10) \bmod 26$ or

$$
\mathrm{p}=15(\mathrm{c}+16) \bmod 26
$$

This example show the necessity of studying the integers modulo n.
We will denote the ring of integers madulo n by $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$. Addition and multiplication are performed modulo n. \mathbb{Z}_{n} is a commutative ring with unity. It can be shown that the following three statements are equivalent: (1) n is a prime, (2) the ring \mathbb{Z}_{n} is an integral domain, and (3) the ring \mathbb{Z}_{n} is a field. A unit x of \mathbb{Z}_{n} is an element of \mathbb{Z}_{n} which has a multiplicative inverse. An element x of \mathbb{Z}_{n} is a unit if and only if it is non-zero and relatively prime to n. We let \hat{U}_{n} denote the set of all units of $\mathbb{Z}_{n} . U_{n}$ is a multiplicative group with $\phi(n)$ elements, where $\phi(\mathrm{n})$ stands for Euler's totient function. Many number theory texts derive the expression

$$
\phi(\mathrm{n})=\mathrm{n}\left(1-\frac{1}{\mathrm{P}_{1}}\right) \cdots\left(1-\frac{1}{\mathrm{P}_{\mathrm{k}}}\right)
$$

where p_{1}, \ldots, p_{k} are the distinct prime divisors of n.
Figure Three shows the multiplication table for U_{26}, the units of \mathbb{Z}_{26}. In Part 2, I will discuss an algorithm for computing the inverse of any given unit x of \mathbb{Z}_{n}.

\times	1	3	5	7	9	11	15	17	19	21	23	25
1	1	3	5	7	9	11	15	17	19	21	23	25
3	3	9	15	21	1	7	19	25	5	11	17	23
5	5	15	25	9	19	3	23	7	17	1	11	21
7	7	21	9	23	11	25	1	15	3	17	5	19
9	9	1	19	11	3	21	5	23	15	7	25	17
11	11	7	3	25	21	17	9	5	1	23	19	15
15	15	19	23	1	5	9	17	21	25	3	7	11
17	17	25	7	15	23	5	21	3	11	19	1	9
19	19	5	17	3	15	1	25	11	23	9	21	7
21	21	11	1	17	7	23	3	19	9	25	15	5
23	23	17	11	5	25	19	7	1	21	15	9	3
25	25	23	21	19	17	15	11	9	7	5	3	1

Figure Three.

Part 2. Some results from number theory.
In this part, I will discuss Euler's theorem and an algorithm that computes the inverse of any unit of $\mathbb{Z}_{\mathbf{n}}$. I shall refer to several basic facts from elementary group theory (see [6] and [7]).

Euler's theorem is a special case of Lagrange's theorem for finite commutative groups. Let G be a finite commutative multiplicative group with $|G|$ elements. $|G|$ is called the order of the group G. A subgroup H of G is a subset of G that is closed under multiplication. Lagrange's theorem for groups asserts that for every subgroup H of a finite group G, the order of H divides the order of G ; that is, $|\mathrm{G}|$ is a multiple of $|\mathrm{H}|$. For any element x of G, the set of positive powers of x form a subgroup $\langle x\rangle$ $=\left\{1, x, x^{2}, x^{3}, \ldots\right\}$ referred to as the subgroup of G generated by x. The order $|<x\rangle$ | of the subgroup $\langle x\rangle$ is called the order of x and will also be denoted by $|x|$. We note that $|x|$ is the smallest power k of x such that x^{k} $=1$. It follows from Lagrange's theorem that $|x|$ divides $|G|$. We can now state Euler's theorem and see its relation to elementary group theory.

EULER'S THEOREM. Let x be a unit of \mathbb{Z}_{n}. Then $x^{\phi(n)}=1$.

That Euler's theorem is a special case of Lagrange's theorem now becomes clear. A unit x of \mathbb{Z}_{n} is by definition an element of U_{n}. Hence its order $|x|$ divides $\phi(n)=\left|U_{n}\right|$; that is, $\phi(n)$ is a multiple of $|x|$. Let
then

$$
\phi(n)=k \cdot|x|
$$

$$
1=1^{k}=\left(x^{|x|}\right)^{k}=x^{(k \cdot|x|)}=x^{\phi(n)} .
$$

We close our discussion with an example. Consider the unit $x=5$ of \mathbb{Z}_{26}.

$$
\langle 5\rangle=\left\{1,5,5^{2}=25,5^{3}=21\right\}
$$

since $5^{4}=1$ again. Thus $|5|=|<5>|=4$ and 4 divides $\phi(26)=12$.
We now consider the question of how to compute the inverse of a unit x of $\mathbb{Z}_{\mathbf{n}}$ (see [4]). In the example above, $5 \cdot 21=1$ in \mathbb{Z}_{26} so that the inverse of $x=5$ modulo 26 is 21 . In fact, this example indicates one method for computing the inverse of a unit x modulo n. Simply take powers of x modulo n until 1 occurs. The last power of x before 1 occurs is the inverse of x. We now discuss a more efficient algorithm.

Let a be a unit of \mathbb{Z}_{n}. Then a and n are relatively prime and so the
linear Diophantine equation $n x+a y=1$ has a solution. Thus the inverse of a in \mathbb{Z}_{n} is y modulo n. A modification of Euclid's algorithm enables us to compute the integral solutions x and y.

Let $r_{0}=n$ and $r_{1}=a$ so that $r_{0}>r_{1}$. Then Euclid's algorithm is:

$$
\begin{array}{lrr}
r_{0}=q_{2} r_{1}+r_{2} & & \text { where } 0<r_{2}<r_{1} \\
r_{1}=q_{3} r_{2}+r_{3} & \ddots & \text { where } 0<r_{3}<r_{2} \\
r_{p-2}=q_{p} r_{p-1}+r_{p} & & \text { where } r_{p}=1
\end{array}
$$

and the additional computations are:

$$
\begin{array}{cr}
r_{0}=n x_{0}+a y_{0}(=n), & x_{0}=1, y_{0}=0 \\
r_{1}=n x_{1}+a y_{1}(=a), & x_{1}=0, y_{1}=1 \\
r_{2}=n x_{2}+a y_{2}, x_{2}=x_{0}-q_{2} x_{1}, y_{2}=y_{0}-q_{2} y_{1} \\
\ddots & \\
r_{p}=n x_{p}+a y_{p} &
\end{array}
$$

Thus the inverse of a in \mathbb{Z}_{n} is y_{p} modulo n .
For example, let $a=15$ and $n=26$. Then the computation of the inverse of 15 modulo 26 proceeds as follows:

r_{i}	r_{i+1}	q_{i+2}	r_{i+2}	x	y
				1	0
				0	1
26	15	1	11	1	-1
15	11	1	4	-1	2
11	4	2	3	3	-5
4	3	1	1	-4	7
$(3$	1	3	0	15	-26

and so the inverse of 15 modulo 26 is 7 .

Part 3. The RSA public encryption scheme (see [4], [5], [6]).
§3.1. The use of keys and the problem of security.
To illustrate the use of keys, I will briefly discuss Vigenère codes. Vigenère codes apply a scquence of translations to encode a plaintext. The sequence of translations to be used is determined by the key. We will identify the letters A to Z with the integers 0 to 25 modulo 26 . The key PSUMATH corresponds to the integers $1518 \quad 2012 \quad 0019 \quad 07$ and determines the sequence of translations $P(x)=x+15, S(x)=x+18$, $\mathrm{U}(\mathrm{x})=\mathrm{x}+20, \ldots, \mathrm{H}(\mathrm{x})=\mathrm{x}+7$. If the plaintext has more than 7 characters, the sequence $P(x), \ldots, H(x)$ is used cyclically. All this sound complicated and can be greatly simplified by the use of a Vigenère table (see Figure Four).

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Figure Four.

As an example of Vigenère encoding, we consider:

Plaintext:
Key:
Cipher:

BRIEF HAPPY TIME
 PSUMATH
 QJCQF AHEHS FIFL

§3.2. The RSA encryption scheme of Rivest, Shamir and Adleman.

I have discussed Vigenère codes to illustrate the use of keys. If both the sender and the receiver of a message know the key, then Vigenère encoding and decoding make sense. Many cryptosystems use keys. The difficulty with the use of keys is security.

The innovation of RSA public encryption schemes is that the decoding transformation $\mathrm{F}^{-1}: \mathrm{C} \rightarrow \mathrm{P}$ is unknown to someone who knows the encoding transformation $\mathrm{F}: \mathrm{P} \rightarrow \mathrm{C}$.

Let p and q be two primes. Let $\mathrm{n}=\mathrm{pq}$ and then $\phi(\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}$ 1). Let e be a unit of $\mathbb{Z}_{\boldsymbol{\phi (n)}}$ with inverse d.

To encode a plaintext, we remove all spaces and punctuation and identify the letters A to Z with 0 to 25 modulo 26 . Let p be a segment of the plaintext. Encode p as follows:

$$
\mathrm{c}=\mathrm{p}^{\mathrm{e}} \bmod \mathrm{n}
$$

To decode the ciphertext c, we raise c to the $\mathrm{d}^{\text {th }}$ power modulo n ; that is,

$$
p=c^{d} \bmod n .
$$

I will discuss three aspects of RSA encryption systems: (a) the inherent simplicity, (b) the scheme works, and (c) security.
§3.2a. The inherent simplicity of RSA cryptosystems.
We illustrate the steps stated above with an example.
Let $\mathrm{p}=3$ and $\mathrm{q}=11$ so $\mathrm{n}=33$ and $\phi(33)=(3-1)(11-1)=20$. Since $e=7$ is a unit in \mathbb{Z}_{33}, we can compute the inverse d of 7 in $\mathbb{Z}_{\phi(33)}$ by Euclid's algorithm to find that $\mathbf{d}=3$.

Plaintext:
Remove punctuation:
Numerical equivalent:

NO CLASS
NOCLASS
13140211001818

To encode, we compute modulo 33: $13^{7}=7,14^{7}=20,2^{7}=29,11^{7}=$ $11,0^{7}=0,18^{7}=6$ and $18^{7}=6$ to obtain

> Encoded text:

07202911000606

To decode, we compute modulo 33: $7^{3}=13,20^{3}=14,29^{3}=2,11^{3}=$ $11,0^{3}=0,6^{3}=18$ and $6^{3}=18$ to obtain

Decoded text:
1314011001818

Thus, we get our original plaintext back!

We note that there are algorithms which compute $b^{\mathbf{x}} \bmod y$ efficiently. An example of such an algorithm can be found in [4].
§3.2b. The scheme works.
To prove that the RSA scheme works, we apply Euler's theorem. Since ed $=1$ in $\mathbb{Z}_{\phi(n)}$,

$$
\mathrm{ed}=1+k \cdot \phi(n)
$$

Therefore,

$$
\begin{aligned}
& \left(x^{e}\right)^{d}=x^{1+k \phi(n)} \bmod n \\
& =\left(x^{1}\right) \cdot\left(x^{\phi(n)}\right)^{k} \bmod n \\
& =(x) \cdot(1) \bmod n \quad \text { by Euler's theorem } \\
& \quad=x \bmod n
\end{aligned}
$$

as desired.
§3.2c. Security: Who knows what? How safe are RSA schemes?
First, I'll discuss who knows what. The receiver knows p, q, d and C, the sender knows P and everybody knows n and e. Since everyone knows n and e, anyone can send an encoded message. The receiver knows d and can decode the ciphertext. The primes p and q are kept secret to prevent an eavesdropper from computing $\phi(n)=(p-1)(q-1)$ and the inverse of e in $\mathbb{Z}_{\boldsymbol{\phi}(\mathrm{n})}$.

Second, we ask: How secure are RSA schemes? The security of an RSA system rests upon several "hard" problems from number theory. "Hard" problems are mathematically solvable but involve prohibitively large amounts of computations; that is, current algorithms for solving hard problems are very costly in terms of computer time as the "size" of the problem increases. The "size" of the problem for RSA cryptosystems is determined by the number of binary digits of n. As the number of binary digits in n grows, breaking an RSA code becomes so costly that the code is for all practical purposes secure.

What are some of the approaches to breaking RSA codes? We discuss three classical problems of number theory and their relation to RSA codes: (1) factoring n, (2) computing $\phi(n)$, and (3) finding large primes p and q.

That a positive integer n can be uniquely factored into a product of primes was known to Euclid. What is amazing is the fastest known algorithm for factoring n requires approximately

$$
e^{\sqrt{\ln (\mathbf{n}) \ln (\ln (\mathbf{n}))}}
$$

steps (see [5], page 126). Mackiw [5] gives the following table of estimates:

Number of binary digits in n	Number of steps in algorithm	Running time of algorithm
50	1.4×10^{10}	3.9 hours
100	2.3×10^{15}	74 years
200	1.2×10^{23}	3.8×10^{9} years

Thus, while we can reasonably expect to declare in a short time whether a 100 digit number is prime, it does not seem reasonable to expect to be able to factor it using current techniques. The outlook for factoring a 200 digit number is much worse!

How hard is it to compute $\phi(\mathrm{n})$? If $\phi(\mathrm{n})$ were known, then p and q could be calculated as follows: (1) since $\phi(n)=(p-1)(q-1)=n-(p+$ $\mathrm{q})+1$, we have that $\mathrm{p}+\mathrm{q}=\phi(\mathrm{n})-\mathrm{n}+1 ;(2)$ since $(\mathrm{p}-\mathrm{q})^{2}=(\mathrm{p}+\mathrm{q})^{2}$ $-4 n$, we can now find $p-q$; and finally (3) we have $p=((p+q)+(p-$ $\mathrm{q})) / 2$ and $\mathrm{q}=((\mathrm{p}+\mathrm{q})-(\mathrm{p}-\mathrm{q})) / 2$. Thus any attempt to compute $\phi(\mathrm{n})$ would yield p and q and consequently factor $\mathrm{n}=\mathrm{pq}$. So computing $\phi(\mathrm{n})$ would be equivalent to factoring, which is a "hard" problem.

Are RSA schemes easy to construct? Can we find large primes? Are they plentiful? What progress is being make in computational number theory? A complete answer to these questions would involve another paper and would necessitate an in depth knowledge of current number theory. But a brief picture of the state of the art is possible. Primality testing is much easier than factoring. Even a brief introduction to pseudoprimes, strong-pseudo primes, Miller's test, and the probabilistic primality test of Rabin, Solovay and Strassen shows that there are efficient algorithms for deciding whether or not a given integer is prime. Primality testing may be a separate topic but it is fruitful and intriguing. The ability to identify large primes makes RSA cryptosystems practical. The difficulty of factoring makes RSA schemes secure.

Part 4. Further explorations.

In addition to primality testing, I would suggest and am personally interested in two directions: current algorithms for factoring integers and implementing RSA schemes and the algorithms of computational number theory on personal computers. This would involve developing multiple precision arithmetic packages and further study -- both of which I am undertaking. I hope you have enjoyed our excursion into RSA cryptosystems and the application of the bastion of pure mathematics known as number theory. But read my lips: "Number theory can be applied (Horrors)!"

Appendix.


```
USES PPSPRINTER,SFHE;
TVPE IT=INTELER;LIT=LONOINT;ET=EXTENOED;RT=ET;ETMEOCEEN;TT=TEXT;
```



```
    SAmPPPFY(0..25] OF 8TRI;
UFR
    OUTF:TT;FHFTE:STP80;OUT_PPT:IT;PROO_NFWE:9TPBO;
PROCEDURE GET_RLPHPBET(UAR IO:TT;UNR ALPHFEET:SA);
UAR S:9TRSO;1,L:IT;OEELNO:BT;
BEBIN
    DEEUO:-TRUE;
    IF DEEUO THEN WAITELN\IO, 'EEE_PLPMFBET'`;
    8:-'RECDEFOHIGL_RODPGRSTIUNXYZ';L:GLENGTK(S);
    FOA 1:=1 TO L DO PLPYMBETII-1):=COPY(S,1,1);
END;
PFOCEDURE FIND_CHPR(UFA 10:TT;FUPHREET:SA;C:STAI;UPA K:IT);
UFR I:IT;
        QUIT,FOND,DESNO:BT;
gegin
    DEE:00:mFALSE;
    IF DEBLD THEH LAITELMCIO,'&FIMD_CHMRFCTER C=',C);
    I:=0;QUIT:=FPLSE;FOUN:DFFLSE;
    #fePERT
        IF C=fl_PHRBET[!] THEM FONDD:-TRNE;
        IF FOUND OR <I=23> THEN QNIT:=TRUE ELSE I:=141;
    GNTIL QUIT;
    IF FONNO THEN K:=| ELSE K:=-1;
END;
PROCEDURE CET_PLAINTEXTSUPR 10:TT;RLPMPEET:SR;
                            UFR 0:TT;URR OMFE:STRSD;UPR FLPB:IT);
UNAF:TT;
    S,T,FNPME:STRBO;C:STR1;
    I,J,K,L:IT;
    CONT,FOUND,OEEVO:BT:
begin
    DEEU0:AFPLSE;
    HAITELH(IO,'"GETPLAIMTEXT');
(SATPLE OATA FILE:
    PLAINTEXT:
    HON IS THE TIME FOR PLI
    GOOO MEN TO COME DO THE
    AID OF THEIR COUNTINV)
    CONT:=TRUE;
    HHILE CONT DO
        BEOIH
        URITE(' FILE NPTE ? ');REROLM(FTRNE);
        IF FFFIE=" THEH BEBIH FLRO:=1;CONT:&FFLEE; END
        ELSE
            BEOIM
                FLRO:--1;
                HRITELKKIO, FILE MATE M ',FMRHE);
                LRITE(' CORRECT FILE MPIE ? (Y/N)' );PEPOLM(S);
                IF S=": THEN 8EOIM CONT:-FFLSE;FLRB:=1;EDD
                ELS
                    BEOIN
                                    S:=copy(s,1,1);
```



```
                    ELGE
                    IF (cs-'Y') OR (S"'y')) THEN EEOIH CONT: FRLSE;FLSO:00;ED;
                    ED;
```

```
        ED;
    EM;
IF FLAGMOTHTSN
    850IM
        GMPTE: [COMCAT (FINTE,'.T');
        FELRITE(G,ONPHE);
        WAITEM(B,ONHE);
    RESET(F,FHOTE);
    fEsOLN(F,S); IF DEBUO THEN LRITEMN(10,' *,9;;
    1:=0;
    MHILE NOT EOFSF) DO
            BEOIH
                1:-1+1;
                REFDLX(F,8); IF OE&NO THES LRITEUN(10,* *,8);
                L:&(ENOTH(S);T:='!
                IF L?O THEN
                    FOR J:=1 TO L DO
                    egain
                        C:=C0PY(S,N, 1);
                    IF Cs. "Thai
                            BEOIN
                                    FIND_OMFR(10,FLPHPBET,C,K);
                                    IF K=-1 THEN FLFB:=1;
                                    T:=COHCAT\T,C\;
                                    ED;
                ED;
            {(PITEMKIO," ',T>;)
                HBITELKO,T>;
        ED;
    LRITELH(10);
    CLOSE(F);ClOSE(B);
    I
    RESETCO,ONHTE);
    MHILE NOT EOF(G) DO
        gEGIM
            RGPOM(0,8);मRITEM(10,' ',S);
        ENO;
    4/15DN(10);
    CLOSE(0);
    }
    I
```



```
    }
    ED;
EN:
PPRCEDUFE EICODESUFR 10:TT;RLPHPBET:SR;UPR 0:TT;ONFTE:9TRED);
UR E:TT;S,T,EWFTE:8TRG0;C:8TH1;
    i,x,L:IT;
EEOIH
    HRITEN(10, **EMCOOE' ); (PITIMN(10);
```



```
    RGHRITE(E,ENMTE);
    HAITEH(E,EMNTE):
    RESET(O,CHFTE);
    FEO\H(0,8);NBiTELM(10,' •,8):
    LHILE MOT EIF(0) DO
        8ESIM
            REFDLN(0,8);URITEH(10," ",3);L:هLENOTH(3);T:"'';
            FOR 1:=1 10 L DO
                BEO1M
```

```
                    C:=COPY(S, I, 1);FUNO_CHRR(10, FLPWHBET, C,K);
                    K:-**3; (CFESAR'8 cook)
                    (K:a7+k+10;) (GN PFFIFE COOE)
                    K:-* 100 26;
                    C:-FLPHFBET{K];T:=COHCRT(T,C);
                    END;
            MATEIN(E,T);
        En;
    4niter(10);
    CLOSE(B);CLOSE(E);
    RESET(E,EMPIE);
    MHILE HOTT EDF(E) DO
        8EOIN
            RERDUKE,8);RAITEM(10.* ',5);
        ED;
    MRITELHK10%;
    CLOSE(E);
    LRITELKSIO,' DATA FILE MPHE: ',GMPIE);
    gRITEC' STOP FOR UIENIND I CONTIME? ');RERDUN(8);)
Em;
PPOCEDURE DAIVER(UPR 10:TT;PROO_NTHE:STRBO;OUT_DPT:IT);
UPR 0:TT;GWFY:STRBO;
    ALPPGET:EA;FLOD:IT;
    0EPNB:日T;
BEOIM
    IF OUT_OPTESO THEN LAITEMM('SMECONE TO ",PROO_MFIE);
                    HRITELN(10,'PMECOHE 70' 'PFOO_NFIES;
    GET_PLPHPEET(IO,PLPHTEET);
    CET_PLAINTEXT(IO,FLPHPBET,O,GYFYE,FLPO);
    IF FLfB=0 TKEA
        ESBIM
        EHCOOE(10, PLPYPEET,0,OHFYE);
        END;
EN:
EEDIM
    PADO_MMTE:-"CPESAR1';
    OU__PT:=0;
    CABE OUT_DPT OF
    0:DRIUER(OUTPUT,PROO_NPFE,OUT_OPT);
    1:DRIUER(PAIMTER,PFADO_WFE,OUT_OPT);
    2:8E01M
        FHTHE: PPROO_MFIE+'.OUT ';RELRITECOUTF,FMMES;
        DRIUER(OUTF,PROO_NFTE,OUT_OPT);
        HAITEM(OUTF);
        CLOSE(OUTF):
        ED;
END(CPSE);
```



```
EMD.
```


References.

[1] Denning, Dorothy. Cryptography and Data Security. Addison-Wesley, 1982.
[2] Kranakis, Evangelos. Primality and Cryptography. John Wiley, 1986.
[3] Rivest, R. L., A. Shamir and L. Adleman, "A method for obtaining digital signatures and public-key cryptosystems." Communications of the ACM. 21 No. 2 (February 1978), 120-126.
[4] Wilf, Herbert S. Algorithm and Complexity. Prentice-Hall, 1986.
[5] Mackiw, George. Applications of Abstract Algebra. John Wiley, 1985.
[6] Rosen, Kenneth. Elementary Number Theory and Its Applications (2nd edition). Addison-Wesley, 1988.
[7] Niven and Zuckerman. An Introduction to the Theory of Numbers (4th edition). John Wiley, 1979.
[8] Riesel, Hans. Prime Number and Computer Methods for Factoring. Birkhauser, 1985.

Recreational and Educational Computing

Reviewed by
Brent Marcum, student

Kentucky Alpha

Eastern Kentucky University
Richmond, Kentucky 40475

Today's student of the mathematical and computer sciences often becomes so devoted to study that the current computer technology often goes unnoticed. A person can easily become overwhelmed by publications containing software or other computer information. Even if a person is fortunate enough to find a source of quality information, the problem then becomes finding the time to decide what to read. A possible solution to this dilemma is the Recreational and Educational Computing (or $R E C$) newsletter. It provides an overview of the latest popular software releases as well as interesting articles and problems in mathematics and computer science. I have read and will comment on two recent issues of REC.

This newsletter has several attractive features that make it enjoyable and informative to read. One of the most outstanding qualities is the exuberant enthusiasm of the editor, Dr. Michael W. Ecker. Throughout the newsletter, he inputs ideas, comments and suggestions to enhance the overall effectiveness of the publication. His enthusiasm is first evident in the letters department. Here, Dr. Ecker responds to almost every reader letter in such a way as to promote new ideas and challenges for the subscribers. Similarly, he often adds comments following articles submitted to $R E C$ that enhance the ideas of the article.

Another characteristic of REC that is worth mentioning is the continuous encouragement of subscriber participation. REC is pervaded with challenges presented to the readers. These often take the form of programming problems or puzzle challenges. For both, subscribers are requested to present solutions and ideas to REC. Fortunately, subscriber
contributions do not go unnoticed and are published with praise and credit given to the author. The net result of this subscriber/editor interaction is higher quality solutions of problems and puzzles. It also encourages further subscriber participation.
$R E C$ is also very understandable at the student level. While most of the articles could be read and understood by someone who has not had an extensive mathematics/computer science background, a large number are of special interest to mathematics and computer science majors. For example, in the two issues I read there were articles on mathematical black holes, magic squares, fractals and how to solve puzzles. This makes it ideal for students in that it presents a variety of topics in a form that can be interpreted without too much effort.

A similar benefit to students is evident in the software reviews contained in REC. There were several programs that were reviewed, including Mandelbrot 3, Express Publisher, Derive and New Basic. In addition, a few game programs were reviewed. These reviews were generally short and less in depth than one might expect but they were informative. Often the software package being considered is compared to existing, well-known programs. This gives the reader a chance to draw on his/her own experience and compare a new package to one already known. In all cases, complete information was provided concerning the price of the software and where an order could be placed.

Students should also find it helpful to see programming used as a problem solving tool. REC subscribers frequently submit solutions to mathematical problems that involve simple programs that closely approximate actual solutions. This presents a whole new spectrum of programming challenges to the individual who is bored with the standard classroom programming assignments. This could help computer science majors improve their programming skills along with providing pastime entertainment.

Experimenting with programs presented in REC should be little problem to anyone with a computer that has BASIC. A person with very little programming knowledge should have no trouble keying in the example programs and experimenting with the code since most of the examples are written in BASIC. However, in some cases a more thorough knowledge of BASIC is required to completely understand what is taking place. In particular, programs that involve graphics soon become complicated to a person with just a working knowledge of BASIC.

One weak trait of $R E C$ is that sometimes a programming solution is given when an exact mathematical solution would be more appropriate.

This could cause a dependence on programming skills for problem solving and weaken a reader's mathematical skills. One example of such a case was presented in a reader's letter to the editor. The reader criticized the use of a program to solve a problem since a mathematical solution was easier. The original problem was to use initial conditions to find a solution for the millionth case of the scenario that was presented. This was solved by another reader with a one line program that quickly provided a solution. However, the first reader solved the problem using binomial coefficients and then explained that if the original program was altered to find the trillionth case, the run time would be phenomenal whereas the manual calculations could be done in a few minutes.

Overall, $R E C$ is an entertaining publication that suits the needs and interests of anyone who enjoys working in mathematics or computer science. The material contained in each issue is both enjoyable to read and very informative. When this is combined with the enthusiasm of the editor and the comments and inputs provided by the subscribers, $R E C$ becomes a very interesting and enjoyable publication.

Editor's comment. To subscribe for one year (8 issues) of Recreational and Educational Computing, send $\$ 27$ (US introductory rate only) to: $R E C$, Att: Dr. M. Ecker, 909 Violet Terrace, Clarks Summit, Pennsylvania 18411. Three sample issues are available for $\$ 10$, creditable towards subscription.

Kappa Mu Epsilon Jewelry

The Kappa Mu Epsilon Key (Shown above) is available as a charm, pin or tie-tac.

\#805 KEY CHARM	GOLD PLATE \$ 4.75	STERLING SILVER $\$ 7.50$	$\begin{gathered} \text { 10K Gold } \\ \$ 42.00 \end{gathered}$
\# 806 KEY PIN	\$ 5.25	\$ 8.00	\$49.50
\# 807 KEY TIE - TAC	\$ 5.25	\$8.00	\$49.50
Manufactured by			
	Prices subject to change without notice		

(Prices include sales tax)
Orders for Kappa Mu Epsilon Jewelry MUST be placed through your chapter's corresponding secretary.

The Problem Corner

Edited by Kenneth M. Wilke

The Problem Corner invites questions of interest to undergraduate students. As a rule the solution should not demand any tools beyond calculus. Although new problems are preferred, old ones of particular interest or charm are welcome, provided the source is given. Solutions should accompany problems submitted for publication. Solutions of the following problems should be submitted on separate sheets before 1 January 1992. Solutions received after the publication deadline will be considered also until the time when copy is prepared for publication. The solutions will be published in the Spring 1992 issue of The Pentagon, with credit being given to student solutions. Affirmation of student status and school should be included with solutions. Address all communications to Kenneth M. Wilke, Department of Mathematics, 275 Morgan Hall, Washburn University, Topeka, Kansas 66621.

PROBLEMS 445-449.

Problem 445. Proposed by Dave Smith, Messiah College, Grantham, Pennsylvania. Dirk, a junior math major, visited the campus post office to pick up his key for the new year. When he found his mailbox, he noticed that every year his mailbox had been in the same row in the large rectangle that was formed by all of the mailboxes. Hours later, the only thing he remembered about his current mailbox number was that it was somewhere in the 920 's. He recalled that during his freshman and sophomore years, the numbers of his mailbox were \#837 and \#897, respectively. He also remembered that his roommate's mailbox number was \#65 and that it was located seven boxes above the bottom row. If the post office numbers the mailboxes consecutively from top to bottom starting in the upper left corner, what is the number of Dirk's mailbox?

Problem 446. Proposed by Lamarr Widmer, Messiah College, Grantham, Pennsylvania. The composite integer $1991=11 \cdot 181$ is palindromic as are all of its prime factors. What is the next integer after 1991 which has
the same property if (a) single digit primes are allowed? (b) single digit primes are not allowed?

Problern 447. Proposed Don Tosh, Evangel College, Springfield Missouri. The usual Fibonacci sequence is $1,1,2,3,5,8,13, \ldots$ and any term may be found by adding together the two preceding terms. Formally we have $f_{1}=1, f_{2}=1$ and $f_{n}=f_{n-1}+f_{n-2}$ for integers $n>2$. It is well known that the ratio of consecutive terms in the Fibonacci sequence converges to $r=(\sqrt{5}+1) / 2$, the golden ratio; i.e. $\lim f_{n} / f_{n-1}=r$ as $n \rightarrow \infty$. Next, we define a generalized Fibonacci sequence $\left\{x_{n}\right\}$ by choosing any two real numbers a and b (neither of which is zero) and then setting $x_{1}=a, x_{2}=$ b and $x_{n}=x_{n-1}+x_{n-2}$ for integers $n>2$. Prove that the ratio of consecutive terms in this generalized Fibonacci sequence still converges to r; i.e. $\lim x_{n} / x_{n-1}=r$ as $n \rightarrow \infty$.

Problem 448. Proposed by Fred A. Miller, Elkins, West Virginia. Let A, B, C, and D be four concyclic points in the plane such that C and D are separated by A and B. If p_{1}, p_{2} and p_{3} are the lengths of the perpendiculars from D to lines $A B, B C$ and $C A$ respectively, show that

$$
\frac{\mathrm{AB}}{\mathrm{P}_{1}}=\frac{\mathrm{BC}}{\mathrm{P}_{2}}+\frac{\mathrm{CA}}{\mathrm{P}_{3}} .
$$

Problem 449. Proposed by Albert White, Saint Bonaventure University, Saint Bonaventure, New York. Assume that a square is inscribed in a circle whose radius is r . Then a circle is inscribed in the square. A square is inscribed in this circle and this pattern continues ad infinitum. Find the sum of the circumferences of all the circles and the sum of the perimeters of all the squares.

> Please help your editor by submitting problem proposals.

SOLUTIONS 426 and 430-434.

Problem 426. Proposed by Dmitry P. Mavlo, Moscow, U.S.S.R. Prove that an arbitrary plane closed curve of length L as shown in the figure below can be completely placed into a pentagon having perimeter \mathbf{P}
where P is not greater than $(\sqrt{5}-1) \cdot$ L. Consider all cases in which the equality $P=(\sqrt{5}-1) \cdot L$ holds.

Figure 1.
Solution by the proposer.
First we circumscribe the given arbitrary plane curve with an equiangular pentagon as shown in Figure 2. This procedure is always possible. Let the points T_{i} (for $\mathrm{i}=1,2,3,4$ and 5) denote the vertices of the circumscribing pentagon; let the points A_{i} (for $i=1,2,3,4$ and 5) denote the points where the curve contacts the pentagon; let R denote the perimeter of the formed pentagon $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \mathrm{~A}_{4} \mathrm{~A}_{5}$; and let P denote the perimeter of the circumscribing equiangular pentagon (notice that each angle of this pentagon measures 108°) (see Figures 2 and 3).

Figure 2.

Figure 3.

In the notation of Figure 3 we have

$$
\begin{gathered}
P=\left[T_{1} A_{1}+T_{1} A_{5}\right]+\left[T_{2} A_{1}+T_{2} A_{2}\right]+\left[T_{3} A_{2}+T_{3} A_{3}\right] \\
+\left[T_{4} A_{3}+T_{4} A_{4}\right]+\left[T_{5} A_{4}+T_{5} A_{5}\right] \\
=\frac{\left|A_{5} A_{1}\right|}{\sin \left(108^{\circ}\right)}\left(\sin \left(b_{5}\right)+\sin \left(g_{5}\right)\right)+\frac{\left|A_{1} A_{2}\right|}{\sin \left(108^{\circ}\right)}\left(\sin \left(b_{1}\right)+\sin \left(g_{1}\right)\right) \\
+\frac{\left|A_{2} A_{3}\right|}{\sin \left(108^{\circ}\right)}\left(\sin \left(b_{2}\right)+\sin \left(g_{2}\right)\right)+\frac{\left|A_{3} A_{4}\right|}{\sin \left(108^{\circ}\right)}\left(\sin \left(b_{3}\right)+\sin \left(g_{3}\right)\right) \\
+\frac{\left|A_{4} A_{5}\right|}{\sin \left(108^{\circ}\right)}\left(\sin \left(b_{4}\right)+\sin \left(g_{4}\right)\right)
\end{gathered}
$$

$$
\begin{gathered}
+\frac{\left|A_{3} A_{4}\right|}{\sin \left(54^{\circ}\right)} \cos \left(b_{3}-g_{3}\right)+\frac{\left|A_{4} A_{5}\right|}{\sin \left(54^{\circ}\right)} \cos \left(b_{4}-g_{4}\right) \\
\leq \frac{1}{\sin \left(54^{\circ}\right)}\left(\left|A_{5} A_{1}\right|+\left|A_{1} A_{2}\right|+\left|A_{2} A_{3}\right|+\left|A_{3} A_{4}\right|+\left|A_{4} A_{5}\right|\right) \\
=\frac{R}{\sin \left(54^{\circ}\right)}
\end{gathered}
$$

so that

$$
\begin{equation*}
P \leq \frac{4 R}{1+\sqrt{5}} \tag{1}
\end{equation*}
$$

To complete the proof, we should recall that the length of the curve is greater than or equal to the length of the segment connecting the same points. It follows immediately that $L \geq R$ and in view of (1), we have L $\geq R \geq((1+\sqrt{5}) / 4) \cdot P$ so that

$$
\begin{equation*}
\mathrm{P} \leq(\sqrt{5}-1) \cdot \mathrm{L} . \tag{2}
\end{equation*}
$$

The proposer states that the analysis of the necessary and sufficient conditions under which equality holds in (2) is very simple and is therefore omitted.

Editor's Comment. It appears that equality holds only when the original curve is itself an equiangular pentagon; however, I am unable to prove this assertion. Perhaps some reader can supply the missing details or the correct conditions for equality.

Problem 430. Proposed by the editor. John and his brother Bill have ages which when added together produce a perfect cube. Furthermore when John was half as old as Bill is now, Bill's age equaled the square of John's age when Bill was born. Find their current ages.

Solution by Jamie Konrad, Rockford College, Rockford, Illinois.
Let x be Bill's current age, y be John's current age, and z be John's age when Bill was born. Note that $z=y-x>0$. The first sentence
yields the equation

$$
\begin{equation*}
x+y=n^{3} \tag{1}
\end{equation*}
$$

for some integer $\mathrm{n}>0$. Facts from the second sentence, "... when John was half as old as Bill is now ($x / 2$), Bill's age equaled the square of John's age (z^{2}) when Bill was born," yield the equation $x / 2-z^{2}=z$ or

$$
\begin{equation*}
x=2 z(z+1) \tag{2}
\end{equation*}
$$

Substituting (2) into (1) and using $z=y-x$, yields the equation
which reduces to

$$
2 z(z+1)+(2 z(z+1)+z)=n^{3}
$$

$$
\begin{equation*}
z(4 z+5)=n^{3} \tag{3}
\end{equation*}
$$

Thus \mathbf{z} divides n so that $\mathrm{n}=\mathrm{rz}$ for some integer $\mathrm{r}>\mathbf{0}$. Substituting rz for n in (3) and rearranging yields

$$
\begin{equation*}
z\left(r^{3} z-4\right)=5 \tag{4}
\end{equation*}
$$

which implies that $z=1$ or $z=5$. The choice $z=1$ requires $r^{3}=9$ which is impossible. The choice $z=5$ requires that $r=1$ which yields the solution $n=5, x=60$ and $y=65$.

Also solved by Charles Ashbacher, Hiawatha, Iowa; Kendall Bailey, Drake University, Des Moines, Iowa; Jill Carnahan, Eastern Kentucky University, Richmond, Kentucky; Joel Derstine, Messiah College, Grantham, Pennsylvania; Melinda Dolen, Eastern Kentucky University, Richmond, Kentucky; Onecia Gibson, Eastern Kentucky University, Richmond, Kentucky; New York Lambda Problem Solvers, Long Island University, C. W. Post Campus, Brookville, New York; Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin; and Chao Yang, Central Missouri State College, Warrensburg, Missouri.

Problem 431. Proposed by the editor. In a high school math contest, the answer sheet stated that the equation

$$
6^{3 x^{2}-11 x-4}=11^{x^{2}-3 x-4}
$$

had only the solution $x=4$. Prove or disprove the truth of this
statement when x is a real number.
Solution by Richard Giza, Illinois Benedict College, Lisle, Illinois.
We shall disprove the statement that the given equation has only one solution. By taking natural logarithms of both sides of the given equation, we obtain

$$
\begin{equation*}
\left(3 x^{2}-11 x-4\right)(\ln 6)=\left(x^{2}-3 x-4\right)(\ln 11) \tag{1}
\end{equation*}
$$

Let $a=(\ln 6) /(\ln 11)$. Substituting a into equation (1) and rearranging, we have the following quadratic equation in x (since a is not zero),

$$
\begin{equation*}
(3 a-1) x^{2}+(3-11 a) x+4(1-a)=0 \tag{2}
\end{equation*}
$$

From the quadratic formula, we find

$$
\begin{equation*}
x=\frac{(11 a-3) \pm|13 a-5|}{2(3 a-1)} \tag{3}
\end{equation*}
$$

$13 \mathrm{a}-5>0$ is guaranteed by our choice of a because it can be verified easily that $a=(\ln 6) /(\ln 11)>5 / 13$ which is equivalent to $13 a-5>0$. The plus sign in (3) yields the answer $x=4$ while the minus sign yields the solution

$$
x=\frac{1-a}{3 a-1}=\frac{\ln 11-\ln 6}{3 \ln 6-\ln 11}=\frac{\ln (11 / 6)}{\ln (216 / 11)}
$$

Also solved by Charles Ashbacher, Hiawatha, Iowa; Dave Aschbrenner, Drake University, Des Moines, Iowa; Richard A. Gibbs, Fort Lewis College, Durango, Colorado; New York Lambda Problem Solvers, Long Island University, C. W. Post Campus, Brookville, New York; Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin; Kenneth L. Price, Western Illinois University, Rushville, Illinois; Dave Smith, Messiah College, Grantham, Pennsylvania; and Chao Yang, Central Missouri State College, Warrensburg, Missouri.

Problem 432. Proposed by the editor. Let $G(x)$ be a function over the real numbers such that

$$
\left(x^{2}+3\right) \cdot G(x)-x^{2} \cdot G(2-x)=4 x^{3}-x^{2}+6
$$

Determine G(x).

Solution by Chao Yang, Central Missouri State University, Warrensburg, Missouri.

Let $G(x)$ be the desired function such that

$$
\begin{equation*}
\left(x^{2}+3\right) \cdot G(x)-x^{2} \cdot G(2-x)=4 x^{3}-x^{2}+6 \tag{1}
\end{equation*}
$$

Substituting 2-x for \mathbf{x} in the given equation yields the equation

$$
\begin{equation*}
-(2-x)^{2} \cdot G(x)+\left((2-x)^{2}+3\right) \cdot G(2-x)=4(2-x)^{3}-(2-x)^{2}-6 \tag{2}
\end{equation*}
$$

Thus equations (1) and (2) form a system of linear equations having $G(x)$ and $G(2-x)$ as unknowns which can be solved for $G(x)$. Using Cramer's Rule, we have

$$
D=\left|\begin{array}{cc}
x^{2}+3 & -x^{2} \\
-(2-x)^{2} & (2-x)^{2}+3
\end{array}\right|=3\left(2 x^{2}-4 x+7\right)
$$

Similarly,

$$
\begin{gathered}
\mathrm{D}_{\mathrm{G}(\mathrm{x})}=\left|\begin{array}{cc}
4 \mathrm{x}^{3}-\mathrm{x}^{2}-6 & -\mathrm{x}^{2} \\
4(2-\mathrm{x})^{3}-(2-\mathrm{x})^{2}-6 & (2-\mathrm{x})^{2}+3
\end{array}\right| \\
=3\left(\mathrm{x}^{2}-2\right)\left(2 \mathrm{x}^{2}-4 \mathrm{x}+7\right)
\end{gathered}
$$

Therefore

$$
G(x)=\frac{D_{G(x)}}{D}=\frac{3\left(x^{2}-2\right)\left(2 x^{2}-4 x+7\right)}{3\left(2 x^{2}-4 x+7\right)}=x^{2}-2
$$

Also solved by Charles Ashbacher, Hiawatha, Iowa; Sean Forbes, Drake University, Des Moines, Iowa; Richard A. Gibbs, Fort Lewis College, Durango, Colorado; New York Lambda Problem Solvers, Long Island University C. W. Post Campus, Brookville, New York; Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin; Kenneth L. Price, Western Illinois University, Rushville, Illinois; and Dave Smith, Messiah College, Grantham, Pennsylvania.

Problem 433. Proposed by the editor. Consider the family of hyperbolas

$$
\frac{x^{2}}{a_{i}^{2}}-\frac{y^{2}}{b_{i}^{2}}=1
$$

where a_{i} and b_{i} satisfy the relation

$$
\frac{1}{a_{i}^{2}}-\frac{1}{b_{i}^{2}}=5
$$

for $\mathrm{i}=1,2, \ldots, \mathrm{n}$. Find all points which the hyperbolas have in common or prove that none exist.

Solution by Sean Forbes, Drake University, Des Moines, Iowa.
The family of curves

$$
\frac{x^{2}}{a_{i}^{2}}-\frac{y^{2}}{b_{i}^{2}}=1
$$

where $\mathfrak{i}=1,2, \ldots, n$, are hyperbolas. Since these curves also satisfy the condition

$$
\frac{1}{a_{i}^{2}}-\frac{1}{b_{i}^{2}}=5,
$$

we must have

$$
\frac{x^{2}}{a_{i}^{2}}-\frac{y^{2}}{b_{i}^{2}}=\frac{1}{5 a_{i}^{2}}-\frac{1}{5 b_{i}^{2}} .
$$

For this to be true, we must have $x^{2}=y^{2}=1 / 5$. Thus there are four common points of intersection for the family of hyperbolas; i.e. $(1 / \sqrt{5}$, $1 / \sqrt{5}),(-1 / \sqrt{5}, 1 / \sqrt{5}),(1 / \sqrt{5},-1 / \sqrt{5})$ and $(-1 / \sqrt{5},-1 / \sqrt{5})$.

Also solved by Charles Ashbacher, Hiawatha, Iowa; New York Lambda Problem Solvers, Long Island University, C. W. Post Campus, Brookville, New York; and Bob Prielipp, University of WisconsinOshkosh, Oshkosh, Wisconsin.

Problem 434. Proposed by the editor. Let r be a positive rational number. Prove that $(8 r+21) /(3 r+8)$ is a better approximation to $\sqrt{7}$ than r is.

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh,

Wisconsin.
It suffices to establish that

$$
\left|\frac{8 \mathrm{r}+21}{3 \mathrm{r}+8}-\sqrt{7}\right|<|\mathrm{r}-\sqrt{7}|
$$

where r is a positive rational number. We next construct the following collection of equivalent inequalities.

$$
\begin{gathered}
\left|\frac{8 r+21}{3 r+8}-\sqrt{7}\right|<|r-\sqrt{7}| \\
\left|\frac{8 r+21-3 r \sqrt{7}-8 \sqrt{7}}{3 r+8}\right|<|r-\sqrt{7}| \\
\left|\frac{(r-\sqrt{7})(8-3 \sqrt{7})}{3 r+8}\right|<|r-\sqrt{7}| \\
|r-\sqrt{7}|\left(\frac{8-3 \sqrt{7}}{3 r+8}\right)<|r-\sqrt{7}|
\end{gathered}
$$

since $8-3 \sqrt{7}>0$ and $3 \mathrm{r}+8>0$. Also, $(8-3 \sqrt{7}) /(3 \mathrm{r}+8)<1$ because r is a positive rational number, $r-\sqrt{7} \neq 0$. Finally, $8-3 \sqrt{7}<3 r+8$ since $-\sqrt{7}<0<r$ and the solution is complete.

Also solved by Charles Ashbacher, Hiawatha, Iowa; Richard A. Gibbs, Fort Lewis College, Durango, Colorado; New York Lambda Problem Solvers, Long Island University, C. W. Post Campus, Brookville, New York; Kenneth L. Price, Western Illinois University, Rushville, Illinois; and Doug Staz, Messiah College, Grantham, Pennsylvania.

The following public service announcement was prepared by the
Peace Corps especially for The Pentagon's student readers.

Mathematics Majors and the Peace Corps

> Peace Corps - Public Response
> 1990 K Street, N. W.
> Washington, D. C. 20526
> $((202) 606-3000$, extension 755$)$

The Peace Corps is one of many options available to mathematics undergraduates at graduation time. Volunteers with training in mathematics and the physical sciences are in high demand in many of the seventy-three countries where Volunteers serve. The Peace Corps offers opportunities to take a break from the rigors of academia without joining the conventional working world. U. S. citizens over the age of eighteen (though few under twenty-one qualify) are eligible. With the experience gained through Peace Corps service one is better prepared to take advantage of options that present themselves later in life.

Volunteers with undergraduate degrees in mathematics are eligible for many kinds of overseas assignments. The primary placement is direct classroom teaching of mathematics to students of varying ages and abilities, offering opportunities to teach in settings where teachers are
respected and honored. Or one may train teachers so that they can be more effective.

Mastery of basic mathematics, algebra, geometry and trigonometry is required to qualify for entrance into universities. A body of professionals educated in mathematics (such as engineers, architects and urban planners) is essential for a developing country wanting to improve its own situation. "The necessity of a strong mathematics background in such disciplines as engineering, which is of importance to development ... helped to justify the work I was involved in" remembers former Volunteer Janet Lea Barnett. A mathematics course load could be combined with teaching other classes in a skill that the Volunteer possesses such as handicrafts or gardening.

Teaching jobs are not the only possible placements for a person with a degree in mathematics. With a minor in botany and nursery experience, a Volunteer could be placed in a forestry assignment. An assortment of responsibilities fall under this category including managing a national park or wildlife preserve, designing and executing forest management plans, establishing and managing a nursery, establishing woodlots, or directing reforestation. With skills and an interest in the environment, one could develop an environmental education curriculum.

Fisheries assignments are another option for those with a minor in chemistry or biology. Volunteers in this field provide advice to farmers on fertilizing, feeding and stocking ponds, plan production of fish and rice crops in the same area, select suitable pond sights, survey irrigation and
drainage structures, and supervise construction of dikes, trenches and ponds. In addition, a Volunteer could train the host country nationals in fisheries techniques. The connections between mathematics and the sciences are strong enough to make these options viable to many people with a bachelor's degree in mathematics.

Peace Corps service has many benefits, both tangible and intangible. During a Volunteer's service all expenses are paid and complete medical and dental care is provided. Other financial incentives include partial cancellation of eligible "Perkins" loans and deferment of payment on most other government-sponsored college loans. Academic credit could be earned for participation in select certified pre-service and in-service training programs. Upon return to the U. S., a former Peace Corps Volunteer receives a readjustment allowance of $\$ 5,400$ for a typical twenty-seven month tour. The returned Volunteer is eligible for special graduate school scholarships and assistantships. A job search is facilitated by job hunting assistance and easier access to Federal jobs through a preferential hiring status called "non-competitive eligibility."

The real rewards for service are the knowledge that others have been helped and an increased awareness of oneself and the world. Many returned Volunteers tell of increased self-reliance and confidence in their own leadership, creativity and human relations. Employers view these qualities with added consideration and respect. As expressed by Mike McCormick, a former Volunteer in Ghana, "two years as a Volunteer was incredibly enriching and I'm more confident than ever about marketing my skills. Previous experience tells me that employers want to know that we handled school well and can accomplish complex technical tasks.

Beyond that, they look for maturity, adaptability, judgment, selfmotivation, communications skills, and a perspective that reaches beyond one's technical field - attributes that Peace Corps service only enhances."

The Peace Corps prepares you to capitalize on any desirable options that come about after service. Former Volunteers are available to answer your questions and talk about their experiences. Call or write: Peace Corps, Public Response, 9th Floor, 1990 K Street, N. W., Washington, D. C. 20526; (202) 606-3000 extension 755, or check listings in your area for one of the fifteen regional offices.

Kappa Mu Epsilon News

Edited by Mary S. Elick, Historian

News of chapter activities and other noteworthy KME events should be sent to Mary S. Elick, Historian, Kappa Mu Epsilon, Mathematics Department, Missouri Southern State College, Joplin, Missouri 64801.

INSTALLATION OF NEW CHAPTERS

Pennsylvania Xi Chapter
Cedar Crest College, Allentown, Pennsylvania

The Pennsylvania Xi Chapter of Kappa Mu Epsilon was established at Cedar Crest College in Allentown, Pennsylvania at 6:30 p.m. on October 30, 1990. The installing officer was James C. Pomfret, Region I director. Charter members of Pennsylvania Xi inducted in this ceremony were:

Students: Jennifer Christmer, Sandra Fry, Dee Dee Geijer, Karen Haase, Tammy Hawkins, Susan Kleckner, Carol Kobayashi, Stacey Nelson, and Laura Witucki.

Faculty: Charles Chapman.

Officers installed during the ceremony were: Susan Kleckner, president; Sandra Fry, vice-president; Karen Haase, secretary; Carol Kobayashi, treasurer. Faculty members Regina Brunner and Charles Chapman accepted the responsibilities of corresponding secretary and faculty sponsor respectively.

The induction ceremony was followed by a banquet for new members and guests. A total of 18 were in attendance. An after dinner talk on
"Tessellations of the Plane" was given by Professor Doris Schattscheider of Moravian College.

Missouri Lambda Chapter
Missouri Western State College, St. Joseph, Missouri

The installation of the Missouri Lambda Chapter of Kappa Mu Epsilon was held on February 10, 1991, in Room 110 of the Student Center on the campus of Missouri Western State College. Dr. Jo Ann Fellin, OSB, National Treasurer of Kappa Mu Epsilon, conducted the installation ceremony. Associate professors John Atkinson and Jerry Wilkerson, Kappa Mu Epsilon members initiated by the KS Beta and MO Beta Chapters, respectively, and currently on the faculty at Missouri Western, also participated in the ceremony. Dr. Atkinson served as Conductor. Thirteen students and seven faculty in addition to Atkinson and Wilkerson constituted the founding group of the new Chapter at Missouri Western. Those initiated were:

> Students: Anita K. Chancey, Audrey G. Davis, Robin Fowler, Douglas A. Gibson, Wanda S. Gibson, Julie Hansbrough, Kevin R. Heyde, Susan K. Nichols, Gena J. Puckett, Roy E. Rhinehart, Eric Toot, Tammy Steinkamp and David Vlieger.

Faculty: Jennifer S. Austin, Christopher P. Godfrey, Bill L. Huston, David John, Kenneth W. Lee, Don Mahaffy and Leo H. Schmitz.

Dr. Fellin, OSB, began the afternoon ceremony with a short history of Kappa Mu Epsilon. Following the installation of officers, William J. Nunez, III, the Dean of Liberal Arts and Sciences at Missouri Western State College, congratulated the group and spoke on the importance of honor societies in higher education. Several relatives and friends of the initiates were present at the $3 \mathrm{p} . \mathrm{m}$. installation which was followed by a reception.

Officers installed during the ceremony were: Susan K. Nichols, president; Julie Hansbrough, vice-president; Gena J. Puckett, recording secretary; and Douglas A. Gibson, treasurer. Faculty members John

Atkinson and Jerry Wilkerson accepted the responsibilities of the corresponding secretary and faculty sponsor, respectively.

Texas Kappa Chapter
University of Mary Hardin-Baylor, Belton, Texas

The installation of the Texas Kappa Chapter of Kappa Mu Epsilon was held on February 21, 1991, in Hardy Hall on the campus of the University of Mary Hardin-Baylor. Dr. Harold L. Thomas, National President of Kappa Mu Epsilon, conducted the installation ceremony. Sherry O'Neal, president of Delta Psi Theta, the petitioning club, served as Conductor during the ceremony. Twenty-four students and three faculty constituted the founding group of the new Chapter at the University of Mary Hardin-Baylor. Those initiated were:

> Students: Florence Akinyi, Abeer Al-Naji, Garry Bartek, Curtis Breaux, Claudia Drayton, Charles Fewless, Helene Gaede, Kerry Geiger, Don Henslee, Roger Hoelscher, Melinda Hollan, Neil Ling, Susannah Marshall, Regina Noles, Sherry O'Neal, Taeko Osterman, Jacqueline Pilkey, Bernice Reeves, Melissa Santana, Karen Scott, Shane Scott, Darren Seifer, Edward Tunstall and Stephanie Williams.

Faculty: Prof. Peter Chen, Dr. William Harding and Prof.
Maxwell Hart.

Following the installation ceremony, Dr. Thomas gave a brief history of honor societies in colleges and universities and, in particular, the founding of Kappa Mu Epsilon. Several University of Mary HardinBaylor administrators attended the 4:30 p.m. installation as well as many relatives and friends of the initiates. A large group enjoyed dinner together with Dr. Thomas at Frank's Lakeview Inn after the formal installation.

Officers installed during the ceremony were: Karen Scott, president; Don Henslee, vice-president; Jacqueline Pilkey, recording secretary; and Abeer Al-Naji, treasurer. Faculty members Peter Chen and Maxwell Hart accepted the responsibilities of the corresponding secretary and faculty sponsor, respectively.

CHAPTER NEWS

Alabama Beta

Chapter President - Stacy Barringer
40 actives, 14 initiates
Other 1990-91 officers: Kristin Vandiver, vice president; Kellye Thompson, secretary/treasurer; Eddy Joe Brackin, corresponding secretary; Patricia Roden, faculty sponsor.

Alabama Zeta

Birmingham-Southern College, Birmingham
Chapter President - Mark Kent
40 actives, 19 initiates
The fall initiation program was given by Mrs. Ouida Kinzey, Birmingham-Southern retired mathematics faculty member. Her slide presentation, "How Do You See Your World?" challenged members to look for mathematics in the world around them. Other 1990-91 officers: Pamela Brantley, vice president; Laura Francie, secretary/treasurer; Lola F. Kiser, corresponding secretary; Shirley Branan, faculty sponsor.

California Gamma Califormia Polytechnic State University, San Luis Obispo Chapter President - Andrew Skrylov 40 Actives, 12 initiates

California Gamma held almost-weekly meetings which featured speakers from business, industry and academia. Denise Meyers from Compaq Computers made a presentation to the club in October. Also in October, Kelly Abbott, former California Gamma Treasurer, now working with D. H. Wagner \& Associates, made himself available for several hours for informal conversation with club members. In November, Professor Jim Delaney of Cal Poly gave a semi-formal colloquium to the club in which he showed how the solution of a problem posed by a former student touched on numerous areas of mathematics and eventually reduced to a topic in chaotic dynamical systems. Ten pledges were introduced at the Ice Cream Social on October 4. Formal induction occurred on November 2 in a ceremony held at Embassy Suites Hotel in San Luis Obispo. The induction ceremony was unique in that it was the climax of a belated Halloween masquerade party. On November 25, interested members of the club gathered to sing Christmas carols to patients of several hospitals in the San Luis Obispo city limits. On

November 5, Professor Terry attended the semi-annual Chevron dinner at Pesenti Wineries in Paso Robles. The dinner, attended by numerous club advisors, climaxed with the presentation of speeches and gifts to Sandra Leister (of Chevron, San Ramon, CA) who has led the Chevron interview team for many years. Chevron's participation in the Cal Poly Cooperative Program is deeply appreciated. Numerous past members of California Gamma have participated in a Chevron co-op. Other 1990-91 officers include: Andrew Schaffner, vice president; Scott Langfeldt, secretary; Derek Bernhardt, treasurer; Julie Smeltzer and Cindy Walter, Pledgemasters; Leo Flores, representative to the SOSAM Council; and Raymond D. Terry, corresponding secretary/faculty sponsor.

Colorado Gamma
Fort Lewis College, Durango
Chapter President - David Beazley
30 actives, 7 initiates
Colorado Gamma held two meetings during the fall semester, at one of which the movie, "Stand and Deliver," was shown. The chapter raised $\$ 119$ during the College Alumni Phone-a-Thon. The Dean of the School of Arts and Science and the Vice President for Academic Affairs were present to congratulate seven new members who were initiated on November 14, 1990. Other 1990-91 officers: Jeff Johnson, vice president; Todd Sehnert, secretary; Duane Brown, treasurer; Richard A. Gibbs, corresponding secretary; Deborah Berrier, faculty sponsor.

Illinois Zeta
Rosary College, River Forest
Chapter President - Glenn Jablonski
14 actives
Other 1990-91 officers: Joseph Pignataro and Nicholas Amendola, vice presidents; Patricia Rubio, secretary; Anna Lazenby, treasurer; Sister Mary T. O'Malley, corresponding secretary/faculty sponsor.

Jowa Alpha
University of Northern Iowa, Cedar Falls
Chapter President - Bill Pothoff
38 actives, 5 initiates
The annual KME Homecoming Coffee was held October 6, 1990, at the home of Professor Emeritus and Mrs. E. W. Hamilton in Cedar Falls with 32 members, alumni, and guests in attendance. Students presenting papers at local KME meetings included Lori Scott on "Applications of

Calculus to Thermodynamics" and Bill Kruse on "Mayan Mathematics." Shari Blum addressed the December initiation banquet on "Evolutes and Involutes of Curves." Rachel Britson was awarded a student membership in the Mathematics Association of America. Other 1990-91 officers: Mark Bohan and Mike Hirsch, vice presidents; Rachel Britson, secretary; Ben Schafer, treasurer; John Cross, corresponding secretary/faculty sponsor.

Iowa Delta

Chapter President - Daniel Nettleton
37 actives
Ron Stahlberg, a Wartburg alumnus on the University of Iowa computer research staff, presented a talk entitled "Computer Graphics" at the September 10 meeting. The video "A Mathematical Mystery Tour" was the program for the October 8 meeting. On November 12, Ms. Kathy Brackemyer, a new faculty member, presented information about a Non-Euclidean Geometry unit she developed and used in her geometry course at Vinton High School. The Iowa Delta Chapter held its traditional Christmas dinner party on December 3, complete with a mathematical Christmas song and games. A new feature at each of the meetings this year has been a mathematical thought problem or puzzle. Other 1990-91 officers: Todd Letsche, vice president; Stephanie Hurley, secretary; Jerrod Staack, treasurer; August W. Waltman, corresponding secretary/faculty sponsor.

Kansas Alpha

Pittsburg State University, Pittsburg
Chapter President - Jason Williams
40 actives, 4 initiates
The chapter held monthly meetings in October, November, and December. Fall initiation was held at the October meeting. Four new members were initiated at that time. The meeting was preceded with a pizza party. The October program focused on preliminary plans for the chapter to attend the national convention in the Spring. Dr. Elwyn Davis, Mathematics Department Chairman, gave the November program. His presentation was on "The Mathematics of Christopher Columbus." The final meeting of the semester in December featured a guest lecturer, Dr. Donald Teets from the South Dakota School of Mines and Technology Mathematics Department. He spoke on "A Generalization of Runge's Example" or "Has Polynomial Interpolation Gone to the Dogs?" Other 1990-91 officers: Mark Stewart, vice president; Brenda Beat, secretary; Lori Bruns, treasurer; Harold L. Thomas,
corresponding secretary; Gary McGrath, faculty sponsor.

Kansas Gamma

Benedictine College, Atchison
Chapter President - Matthew McIntosh
8 actives, 16 initiates
The second annual "Make and Eat" pizza party was held on October 3 at the home of three senior students - Cheryl Koelsch, Karen Dreiling, and Julie Stenger. A campus edition of the chapter newsletter, The Exponent, announced the event in its September edition. Several freshmen were attracted to the chili party held at the College Roost on November 11. Senior Julie Stenger spoke that evening about her experiences as an actuary intern in Oklahoma during the summer of 1990. Contest and door prizes were handled by Cheryl Koelsch and Nancy Sheble. The second campus edition of The Exponent came out in November. It included amusing problems as well as an invite to the Christmas Wassail which took place at the home of faculty member James Ewbank on December 9. The group was entertained by its local magician and chapter president, Matt McIntosh. Senior Karen Dreiling was initiated on November 14. Other 1990-91 officers: Julie Stenger, vice president; Nancy Sheble, associate vice president; Ty Anderson, secretary; Ken VanSpeybroeck, treasurer; Jo Ann Fellin, OSB, corresponding secretary/faculty sponsor.

Kansas Delta
Washburn University, Topeka
Chapter President - Mary J. Wilson 20 actives
Fall activities included viewing the movie "Stand and Deliver" at the October meeting. Other 1990-91 officers: Jody Whitaker, vice-president; Jonette Oestreich, secretary/treasurer; A. Allen Riveland, corresponding secretary; Ronald Wasserstein, faculty sponsor.

Kansas Epsilon

Fort Hays State University, Hays
Chapter President - Sharon Richards 18 actives, 12 initiates
Fall chapter activities including a picnic, Halloween party, and Christmas party. Other 1990-91 officers: Carl Keith, vice president; Jana Maryman, secretary/treasurer; Charles Votaw, corresponding secretary; Mary Kay Schippers, faculty sponsor.

Chapter President - Celine Burque
15 actives
The members of the chapter together with members of the Mathematics Society and departmental faculty worked to bring the annual Mathematics Olympiad for junior and senior high girls to a successful completion. The contest, held in late October, consists of four rounds of progressively difficult problems, prepared by faculty and students. The participating teams were eager and did extremely well. Other 1990-91 officers: Cheryl Gates, vice president; Ann Marie Webster,secretary; Marta Blotny, treasurer; Sister Marie Augustine Dowling, corresponding secretary; Joseph DiRienzi, faculty sponsor.

Maryland Beta
 Western Maryland College, Westminster
 Chapter President - Tammy Mahan
 13 actives, 2 initiates

The chapter held several planning meetings as well as the annual fall induction of two new members. Other 1990-91 officers: Andrea Pinkham, vice president; Laura Balikir, secretary; Deanna Dailey, treasurer; James Lightner, corresponding secretary; Linda Eshleman, faculty sponsor.

Maryland Delta
Frostburg State University, Frostburg
Chapter President - Wayne Squillari
23 actives
Maryland Delta met once in the fall, enjoying pizza and the film "Mathematics of the Honeycomb." Other 1990-91 officers: Carla Saville, vice president; Brenda Moore, secretary; Andrew Kaylor, treasurer; Edward White, corresponding secretary; John Jones, faculty sponsor.

Massachusetts Alpha
Assumption College, Worcester
Chapter President - Michael Drude 5 actives

Seven new members were initiated on May 8, 1990. Following a dinner in honor of the new members, Professor Vincent Cioffari of the Assumption faculty spoke on "Calendars and the Determination of Easter." Other 1990-91 officers: Margaret Rice, vice president; Valerie Tolosko, secretary/treasurer; Charles Brusard, corresponding secretary/faculty sponsor.

Michigan Beta

Central Michigan University, Mt. Pleasant
Chapter President - Deidre McClelland
25 actives
Michigan Beta chapter conducted mathematics help sessions for freshman/sophomore mathematics classes. The October meeting featured a pizza party and help for CMU students who wanted assistance in scheduling mathematics courses for the winter semester. Laurie Raven gave a talk at the November meeting. Some members are also members of the Actuarial Club at CMU. This club was recently installed as the Nu Chapter of Gamma Iota Sigma, the collegiate insurance fraternity. Other 1990-91 officers: Tom De Clark, vice president; Laurie Raven, secretary; Mary Langeveld, treasurer; Arnold Hammel, corresponding secretary/faculty sponsor.

Mississippi Alpha

Mississippi University for Women, Columbus Chapter President - Sean Hays
12 actives, 7 initiates
Mississippi Alpha provided daily free tutoring for math students in need. Members also organized a mathematics trivia game and began preparation for spring initiation and for sending representatives to the national convention in April. Other 1990-91 officers: Stacy Peacock, vice president; Beth Tilghman, secretary/treasurer; Margaret Memory, corresponding secretary/faculty sponsor.

Mississippi Gamma
University of Southern Mississippi, Hattiesburg
Chapter President - Theresa Kelly
35 actives, 8 initiates
Other 1990-91 officers: Lisa Carroll, vice president; Jane Blackledge, secretary; Alice W. Essary, treasurer/corresponding secretary; Karen Thrash and Barry Piazza, faculty sponsors.

Missouri Alpha
Southwest Missouri State University, Springfield
Chapter President - David McWilliams
26 actives, 11 initiates
The Missouri Alpha Chapter of Kappa Mu Epsilon began the 1990 fall semester with an annual pienic for all mathematics students, faculty and staff at Phelps Grove Park. Two monthly meetings were held during the semester, each highlighted by a faculty presentation. Dr. Susan

Palmer spoke on "The Existence of Miracles" and Dr. Les Reid delivered a presentation on "Polygonal and Polyhedral Dissections." In the fall initiation ceremony, membership was extended to 9 new members and 2 faculty members. This increased the total Missouri Alpha Chapter membership to 1,356 members. A successful semester was brought to a close with 28 members, faculty and guests attending an end-of-semester pizza party at Mazzio's restaurant. Other 1990-91 officers: Mark Gerke, vice president; Marc Meyer, secretary; Rhonda Crites, treasurer; Vera B. Stanojevic, corresponding secretary; M. M. Award, faculty sponsor.

Missouri Gamma

William Jewell College, Liberty
Chapter President - Kevin Tanner 18 actives

Regularly scheduled meetings were held during the fall semester. The chapter is making plans for its annual spring initiation and banquet to be held in April. Other 1990-91 officers: James Mathis, vice president; Catherine Pagacz, secretary; Joseph T. Mathis, treasurer/corresponding secretary/faculty sponsor.

Missouri Epsilon

Central Methodist College, Fayette
11 actives
Officers for 1990-91: John Slovensky, vice president; Jeff Wilcox, secretary/treasurer; William D. McIntosh, corresponding secretary/ faculty sponsor; Linda O. Lambke, faculty sponsor.

Missouri Eta

Northeast Missouri State University, Kirksville
Chapter President - Julie Ridlen
25 actives, 10 initiates
Fall semester activities included softball and volleyball games with the faculty and competition in the NMSU College Bowl. Plans were also made for the annual high school competition, Math Expo, which the chapter will host on February 16. Other 1990-91 officers: Ann Novitske, vice president; Lisa Aukee, secretary; Rhonda Gibler, treasurer; Mary Sue Beersman, corresponding secretary; Mark Faucette, faculty sponsor.

Missouri lota
Missouri Southern State College, Joplin
Chapter President - Wayne Cripps
12 actives
Missouri Iota once again worked the concession stands at football games as a money making project. All those who worked were rewarded with a pizza party at the end of the football season. Regular monthly meetings were held. Members heard Dr. John Knapp of the Physical Science Department speak on earthquakes at the December 4 meeting and students Melissa Sherrel and Liesl Bode presented Putnam Exam problems at the November meeting. The organization supported Melissa Sherrel as the Math Club homecoming queen candidate. Other activities included a fall float trip and a Christmas party. Dr. Cindy Carter Haddock, who served as charter president of Missouri Iota in 1975-76, was recognized as the MSSC 1990 Outstanding Alumna. Dr. Haddock is currently an associate professor at the University of Alabama with the Department of Health Services Administration. Other 1990-91 officers: Melissa Sherrel, vice president; Terri Findley, secretary/treasurer; Mary Elick, corresponding secretary; Linda Hand, faculty sponsor.

Missouri Kappa
Drury College, Springfield
Chapter President - Sharon Rowe
5 actives
Semester activities began with a bonfire wiener roast at Dr. Allen's house. Prize money was awarded to the winners of the Annual Campus Math Contest, Shannon Koonce (Calculus I and below) and Matt Henderson (Calculus II and above), at a pizza party held for all contestants. In conjunction with a chapter luncheon, Robert Hayden and Mark Wampler gave reports on their undergraduate research projects. Math Club provided tutoring for the evening college as a money making project. A Christmas party marked the end of the semester. Other 199091 officers: Jim Rutan, vice president; Mark McDonald, secretary; Monty Towe, treasurer; Charles Allen, corresponding secretary; Ted Nickle, faculty sponsor.

Nebraska Alpha
Wayne State College, Wayne
Chapter President - Brenda Spieker
18 actives
Throughout the semester club members monitored the Math-Science building in the evenings to earn money for the club. The club
participated in the college homecoming activities by manning a booth at the Homecoming Carnival. With a grant from the Wayne State College Student Senate, KME and Computer Club purchased an overhead projector computer panel which will be used by computer science classes. Social activities included a fall picnic with the Math-Science faculty and other clubs in the building and a pizza-movie party at Dr. Paige's home. Other 1990-91 officers: Rory Rut, vice president; Julie Gottschalk, secretary/treasurer, Monte Gilliland, historian; Fred Webber, corresponding secretary; Jim Paige and Hilbert Johs, faculty sponsors.

Nebraska Beta
Kearney State College, Kearney
Chapter President - Ann L. Gibson
17 actives
In addition to regular meetings, Nebraska Beta enjoyed two special events: A presentation about Electronics Data Systems regarding employment opportunities and a Christmas party at which the movie "Stand and Deliver" was viewed. Other 1990-91 officers: Jim Nissen, vice president; Dawn James, secretary; Teresa Volcheck, treasurer; Charles Pickens, corresponding secretary; Lutfi Lutfiya, faculty sponsor.

Nebraska Gamma

Chadron State College, Chadron
Chapter President - Lanelle Henderson
18 actives, 3 initiates
Nebraska Gamma continued fund raising efforts. Members were encouraged to work on papers for the national KME conference. Fall initiates were Desiree Ingraham, Danette Jackson, and Courtney Schaffert. A Christmas party was held at the end of the semester. Other 1990-91 officers: Marla Soester, vice president; Laura Dooley, secretary; Maya Leicht, treasurer; James A. Kaus, corresponding secretary; Monty Fickel, faculty sponsor.

Nebraska Delta
Nebraska Wesleyan University, Lincoln
Chapter President - Mary Rose Philpot
21 actives
Other 1990-91 officers: Shelley Bolduan, vice president; Michele Spale, secretary; Halcyon Foster, treasurer; Muriel Skoug, corresponding secretary/faculty sponsor.

New York Alpha
Hofstra University, Hempstead
Chapter President - Karin Grossu
7 actives
Other 1990-91 officers: Christopher Rosenblatt, vice president; Diana Beaudette, secretary; Deanna De'Liberto, treasurer; Aileen Michaels, corresponding secretary.

New York Eta
Niagara University, Niagara University
Chapter President - James Wysocki
11 actives
Other 1990-91 officers: Joseph Scherer, vice president/secretary; James Wysocki, treasurer; Robert L. Bailey, corresponding secretary; Kenneth J. Bernard, faculty sponsor.

New York Lambda C. W. Post Campus/Long Island University, Brookville
 Chapter President - Coleen O'Boyle

The chapter is sponsoring a problem solving group which is actively working on problems from "The Problem Corner." Additionally, plans are underway for the spring initiation and banquet. Other 1990-91 officers: Jacqueline Mansuetta, vice president; Keven O'Reilly, secretary; Cynthia Ferro, treasurer; Sharon Kunoff, corresponding secretary; Andrew Rockett, faculty sponsor.

North Carolina Gamma
Elon College, Elon College
Chapter President - Kristen McMillan 25 actives

Installed in May 1990, North Carolina Gamma held its first official meeting in September. Discussion centered on fund raisers, service projects, workshops and speaker ideas. It was decided the organization would sponsor a team in the 1991 Mathematical Modeling Contest and would provide refreshments for a fractal speaker sponsored by Elon's chapters of ACM and MAA. Information concerning the KME 60th Anniversary Convention, the Math Modeling Contest, Problem Corner entries, and math winter term courses were published in a chapter newsletter. Plans were also made for initiation of new members during Math Awareness Week in April. Other 1990-91 officers: Mathew Wright, vice president; Julia Morris, secretary; Jennifer Lee, treasurer; Rosalind Reichard, corresponding secretary; Jeffrey Clark, faculty sponsor.

Chapter activities began with the annual fall picnic and volleyball game. The organization heard Dr. Neal Carothers' colloquium presentation, "Pi a la Mode," in December. They also bought tee shirts, painted the university rock, and had a group picture taken for BGSU's yearbook, The Key. Other 1990-91 officers: Tracie Wedell, vice president; Malcolm Shrimplin, secretary; Travis Doom, treasurer; Waldemar Weber, corresponding secretary; Thomas Hern, faculty sponsor.

Ohio Zeta

Muskingum College, New Concord
Chapter President - Kristi Pritchett 28 actives, 8 initiates

Fall semester activities got underway with a presentation by students Jennifer Suschil and Eric Poorman entitled "Mathematics of Betting on Horses." Presentations by former initiaties were featured at the October initiation of eight new members. Dr. Douglas Ward and Dr. Charles Holmes from Miami University, Oxford, Ohio, were special speakers in November. A Christmas party ar Dr. Smith's home closed out a successful semester. Other 1990-91 officers: Jon Ransom, vice president; Kim Forgrave, secretary; Tom Myers, treasurer; James L. Smith, corresponding secretary; Javad F. Habibi, faculty sponsor.

Oklahoma Alpha
Northeastern State University, Tahlequah
Chapter President - Monique Harrison
34 actives, 12 initiates
This fall the Oklahoma Alpha chapter sponsored a presentation by Dr. David Lawrence of Rogers State College, Claremore, Oklahoma. Dr. Lawrence showed the video "Math! A Four Letter Word" to an audience of over 150 students and faculty. A lively discussion of the fear of math followed. Math professors again donated used textbooks to the KME booksale. The Fall ' 90 initiation ceremonies for twelve students were held in the banquet room of the Western Sizzlin' restaurant in Tahlequah. The December meeting was a Christmas pizza party. Entertainment included "Scattergories," with mathematical topics. Other 1990-91 officers: Lisa Singer, vice president; Rebecca Smith, secretary; Lori Austin, treasurer; Joan E. Bell, corresponding secretary/faculty sponsor.
Oklahoma Gamma Southwestern Oklahoma State Univeraity, Weatherford
Chapter President - Jeanna Day
25 actives

Other 1990-91 officers: Melicia Kirkland, vice president; Karen Cochran, secretary; Kristen Casebeer, treasurer; Wayne Hayes, corresponding secretary; Robert Morris, faculty sponsor.

Oklahoma Delta
 Oral Roberts University, Tulsa

Chapter President - Dave Largent
15 actives
Oklahoma Delta, one of KMEs newest chapters, was busy this fall establishing the format of the organization and beginning the traditions to sustain the chapter and its growth in the years to come. An actuary was invited to speak to the group and plans were made to invite other professionals to present programs during the spring semester. Dr. Rakestraw organized a weekly problem solving session; top performers then competed on the Putnam Exam in December. Other 1990-91 officers: Bill Orth, vice president; Margaret Schultz, secretary; Melissa Fulbright, treasurer; Debra Oltman, corresponding secretary; Roy Rakestraw, faculty sponsor.

Pennsylvania Alpha

Westminster College, New Wilmington
Chapter President - Kimberly A. Hoener
20 actives
The organization continued to tutor math and related topics at the student learning center and plans were made for a spring career night. Pennsylvania Alpha is sponsoring a new math club on campus this term, a student chapter of the Mathematical Association of America. Other 1990-91 officers: Christy Heid, vice president; Lori Metsger, secretary; Jeannette Huczko, treasurer; J. Miller Peck, corresponding secretary; Warren Hickman, faculty sponsor.

Pennsylvania Gamma

Waynesburg College, Waynesburg
Chapter President - Angela Stewart 10 actives, 6 initiates
Other 1990-91 officers: Ronald Shaffer, vice president; Jennifer Thyreen, secretary; Nhan Huynh, treasurer; Monica McGervey, corresponding secretary/faculty sponsor; A. B. Billings, faculty sponsor.

Pennsylvania lota

Chapter President - John Swingle
Shippensburg University, Shippensburg
5 initiates
A fall picnic for math and cumputer science majors was held at Shippensburg Memorial Park. The December initiation was held at the home of Department Chairman, Dr. Howard T. Bell. Other 1990-91 officers: Thomas Goebler, vice president; Candy Staub, secretary; Fred Nordai, treasurer; Michael D. Seyfried, corresponding secretary; Rick Ruth, faculty sponsor.

Pennsylvania Kappa

Chapter President - Monica Magilton
10 actives, 10 initiates
Holy Family College, Philadelphia

Free tutoring continues to be provided by members of Pennsylvania Kappa. A topic for discussion this semester has been the impact of mathematics upon civilization during the early centuries, 3000 B.C. up to 1300 A.D. Plans for the spring initiation were begun. Other 1990-91 officers: David McCabe, vice president; Paul Hiller, secretary/treasurer; Sister M. Grace Kuzawa, corresponding secretary/faculty sponsor.

Pennsyivania Mu
Saint Francis College, Loretto
Chapter President - Kris Miller
14 actives
The chapter sponsored a Career Exploration Day in October for local high school students. A presentation by NASA astronaut Steven Oswald highlighted the event. Other 1990-91 officers: Antonine Gatto, vice president; John Miko, secretary; Brian Hebert, treasurer; Peter Skoner, corresponding secretary/faculty sponsor.

Texas Eta Chapter

Chapter President - Charles Reed
Hardin-Simmons University, Abilene

10 actives

At a Get-Acquainted Party for prospective members the purpose and activities of Kappa Mu Epsilon were explained. Professional opportunities in the mathematical sciences were discussed as well as degree programs and awards available in the mathematics area at HSU. Faculty members also demonstrated mathematical applications using the Casio Graphics Overhead Projector Calculator OH-7000G. Members inducted in the
spring of ' 90 received their shingles. Other 1990-91 officers: Tondi Jeter, vice president; Kristen Knebel, secretary/treasurer; Mary WagnerKrankel, corresponding secretary; Charles Robinson and Ed Hewett, faculty sponsors.

Texas lota
McMurry University, Abilene
Chapter President - Rusty Teeter
18 actives
Fall semester activities included a Get Acquainted Mixer featuring a math careers discussion and a pizza party. Other 1990-91 officers: Charles Converse, vice president; Randy McCarble, secretary; Jacqueline Bryan, treasurer; Dianne Dulin, corresponding secretary; Bill Dulin, faculty sponsor.

Tennessee Delta

Carson-Newman College, Jefferson City
Chapter President - Kim Caldwell Atchley
17 actives
Tennessee Delta sponsored a beginning-of-the-year picnic at Kesley Moore's lakeside home and a visit to Gatlinburg for a night of ice skating. Other 1990-91 officers: Lisa Bryant Smith, vice president; Shannon Lee, secretary; Kesley Tucker Moore, treasurer; Verner Hansen, corresponding secretary; Carey Herring, faculty sponsor.

Virginia Beta

Radford University, Radford
Chapter President - Patches Johnson
15 actives, 12 initiates
Other 1990-91 officers: Cheryl Dixon, vice president; Melissa Reedy, secretary/treasurer; Steve Corwin, corresponding secretary; J. D. Hansard, faculty sponsor.

Wisconsin Gamma

University of Wisconsin-Eau Claire, Eau Claire
Chapter President - James Kelley
45 actives, 26 initiates
Twenty-six new members were inducted at a formal initiation followed by a banquet and speaker. The club held monthly meetings highlighted by four student speakers. A bake sale and popcorn sale were held to raise money. Near the Thanksgiving break several members got
together for a Thanksgiving dinner with all the trimmings. In addition the club began preparing for the forthcoming national convention. Other 1990-91 officers: Julia Folsom, vice president; Kim Anderson, secretary; Theodore Herzog, treasurer; Tom Wineinger, corresponding secretary.

Copies of articles from this publication are now available from the UMI Article Clearinghouse.

For more information about the Clearinghouse, please fill out and mail back the coupon below.

The UHI Aiticte Cleartnghouse offers arrictes from nore than 11,000 copyight-deared periodients in a wide range of subjexts. You can place your orders electronicalihy as well as by phone, mall, and celefacsimile. For more information, please complete and mail this couponto UMiANt de Cleartnghouse. 300 Worth Zeeb Rood, Bax 11, Ann Asbor, MI 4BiO6 U5A. Or call roll-tree for an trmediate friponse: $800-521-0600$. From Alaske tond Michigan call collect 313-761-4700. From Canada, call toll-free 800-343-5299.

YES! I'd Ike to know more about UMI Arslete Clearghouste.

Kappa Mu Epsilon National Officers

Harold L. Thomas

President
Department of Mathematics
Pittsburg State University, Pittsburg, Kansas 66762
Arnold D. Hammel
President-Elect
Department of Mathematics
Central Michigan University, Mt. Pleasant, Michigan 48859
Robert L. Bailey
Secretary
Department of Mathematics
Niagara University, Niagara University, New York 14109
Treasurer
Mathematics and Computer Science Department Benedictine College, Atchison, Kansas 66002

Mary S. Elick
Historian
Department of Mathematics
Missouri Southern State College, Joplin, Missouri 64801

Kappa Mu Epsilon, Mathematics Honor Society, was founded in 1931. The object of the Society is fivefold: to further the interests of mathematics in those schools which place their primary emphasis on the undergraduate program; to help the undergraduate realize the important role that mathematics has played in the development of western civilization; to develop an appreciation of the power and beauty possessed by mathematics due to its demands for logical and rigorous modes of thought; to provide a Society for the recognition of outstanding achievement in the study of mathematics at the undergraduate level; and to disseminate the knowledge of mathematics and familiarize the members with the advances being made in mathematics. The official journal of the Society, The Pentagon, is designed to assist in achieving these objectives as well as to aid in establishing fraternal ties between the Chapters.

Active Chapters of Kappa Mu Epsilon

Listed by date of installation.

Chapter	Location I	Installation Date
OK Alpha	Northeastern Oklahoma State University, Tahlequah	18 April 1931
IA Alpha	University of Northern Iowa, Cedar Falls	27 May 1931
KS Alpha	Pittsburg State University, Pittsburg	30 Jan 1932
MO Alpha	Southwest Missouri State University, Springfield	20 May 1932
MS Alpha	Mississippi University for Women, Columbus	30 May 1932
MS Beta	Mississippi State University, Mississippi State College	14 Dec 1932
NE Alpha	Wayne State College, Wayne	17 Jan 1933
KS Beta	Emporia State University, Emporia	12 May 1934
NM Alpha	University of New Mexico, Albuquerque	28 March 1935
IL Beta	Eastern Illinois University, Charleston	11 April 1935
AL Beta	University of North Alabama, Florence	20 May 1935
AL Gamma	University of Montevallo, Montevallo	24 April 1937
OH Alpha	Bowling Green State University, Bowling Green	24 April 1937
MI Alpha	Albion College, Albion	29 May 1937
MO Beta	Central Missouri State University, Warrensburg	10 June 1938
TX Alpha	Texas Tech University, Lubbock	10 May 1940
TX Beta	Southern Methodist University, Dallas	15 May 1940
KS Gamma	Benedictine College, Atchison	26 May 1940
IA Beta	Drake University, Des Moines	27 May 1940
TN Alpha	Tennessee Technological University, Cookeville	5 June 1941
NY Alpha	Hofstra University, Hempstead	4 April 1942
MI Beta	Central Michigan University, Mount Pleasant	25 April 1942
NJ Beta	Montclair State College, Upper Montclair	21 April 1944
IL Delta	College of St. Francis, Joliet	21 May 1945
KS Delta	Washburn University, Topeka	29 March 1947
MO Gamma	William Jewell College, Liberty	7 May 1947
TX Gamma	Texas Woman's University, Denton	7 May 1947
WI Alpha	Mount Mary College, Milwaukee	11 May 1947
OH Gamma	Baldwin-Wallace College, Berea	6 June 1947
CO Alpha	Colorado State University, Fort Collins	16 May 1948
MO Epsilon	Central Methodist College, Fayette	18 May 1949
MS Gamma	University of Southern Mississippi, Hattiesburg	21 May 1949

IN Alpha	Manchester College, North Manchester
PA Alpha	Westminster College, New Wilmington
IN Beta	Butler University, Indianapolis
KS Epsilon	Fort Hays State University, Hays
PA Beta	LaSalle University, Philadelphia
VA Alpha	Virginia State University, Petersburg
IN Gamma	Anderson University, Anderson
CA Gamma	California Polytechnic State University, San Luis Obispo
TN Beta	East Tennessee State University, Johnson City
PA Gamma	Waynesburg College, Waynesburg
VA Beta	Radford University, Radford
NE Beta	Kearney State College, Kearney
IN Delta	University of Evansville, Evansville
OH Epsilon	Marietta College, Marietta
MO Zeta	University of Missouri - Rolla, Rolla
NE Gamma	Chadron State College, Chadron
MD Alpha	College of Notre Dame of Maryland, Baltimore
IL. Epsilon	North Park College, Chicago
OK Beta	University of Tulsa, Tulsa
CA Delta	California State Polytechnic University, Pomona
PA Delta	Marywood College, Scranton
PA Epsilon	Kutztown University of Pennsylvania, Kutztown
AL Epsilon	Huntingdon College, Montgomery
PA Zeta	Indiana University of Pennsylvania, Indiana
AR Alpha	Arkansas State University, State University
TN Gamma	Union University, Jackson
WI Beta	University of Wisconsin - River Falls, River Falls
IA Gamma	Morningside College, Sioux City
MD Beta	Western Maryland College, Westminster
IL Zeta	Rosary College, River Forest
SC Beta	South Carolina State College, Orangeburg
PA Ela	Grove City College, Grove City
NY Eta	Niagara University, Niagara University
MA Alpha	Assumption College, Worcester
MO Eta	Northeast Missouri State University, Kirksville
IL Eta	Western Ilinois University, Macomb
OH Zeta	Muskingum College, New Concord
PA Theta	Susquehanna University, Selinsgrove
PA lota	Shippensburg University of Pennsylvania, Shippensburg
MS Delta	William Carey College, Hattiesburg
MO Theta	Evangel College, Springfield

16 May 1950
17 May 1950
16 May 1952
6 Dec 1952
19 May 1953
29 Jan 1955
5 April 1957
23 May 1958

22 May 1959
23 May 1959
12 Nov 1959
11 Dec 1959
27 May 1960
29 Oct 1960
19 May 1961
19 May 1962
22 May 1963
22 May 1963
3 May 1964
5 Nov 1964
8 Nov 1964
3 April 1965
15 April 1965
6 May 1965
21 May 1965
24 May 1965
25 May 1965
25 May 1965
30 May 1965
26 Feb 1967
6 May 1967
13 May 1967
18 May 1968
19 Nov 1968
7 Dec 1968
9 May 1969
17 May 1969
26 May 1969
1 Nov 1969

17 Dec 1970
12 Jan 1971

PA Kappa	Holy Family College, Philadelphia	23 Jan 1971
CO Beta	Colorado School of Mines, Golden	4 March 1971
KY Alpha	Eastern Kentucky University, Richmond	27 March 1971
TN Delta	Carson-Newman College, Jefferson City	15 May 1971
NY Iota	Wagner College, Staten Island	19 May 1971
SC Gamma	Winthrop College, Rock Hill	3 Nov 1972
IA Delta	Wartburg College, Waverly	6 April 1973
PA Lambda	Bloomsburg University of Pennsylvania,	17 Oct 1973
OK Gamma	Bloomsburg Southwestern Oklahoma State University, Weatherford	1 May 1973
NY Kappa	Pace University, New York	24 April 1974
TX Eta	Hardin-Simmons University, Abilene	3 May 1975
MO Iota	Missouri Southern State College, Joplin	8 May 1975
GA Alpha	West Georgia College, Carrollton	21 May 1975
WV Alpha	Bethany College, Bethany	21 May 1975
FL Beta	Florida Southern College, Lakeland	31 Oct 1976
WI Gamma	University of Wisconsin - Eau Claire, Eau Claire	4 Feb 1978
MD Delta	Frostburg State University, Frostburg	17 Sept 1978
IL Theta	Ilinois Benedictine College, Lisle	18 May 1979
PA Mu	St. Francis College, Loretto	14 Sept 1979
AL Zeta	Birmingham-Southern College, Birmingham	18 Feb 1981
CT Beta	Eastern Connecticut State University, Willimantic	2 May 1981
NY Lambda	C. W. Post Center of Long Island University, Brookville	2 May 1983
MO Kappa	Drury College, Springfield	30 Nov 1984
CO Gamma	Fort Lewis College, Durango	29 March 1985
NE Delta	Nebraska Wesleyan University, Lincoln	18 April 1986
TX Iota	McMurry College, Abilene	25 April 1987
PA Nu	Ursinus College, Collegeville	28 April 1987
VA Gamma	Liberty University, Lynchburg	30 April 1987
NY Mu	St. Thomas Aquinas College, Sparkill	14 May 1987
OH Eta	Ohio Northern University, Ada	15 Dec 1987
OK Delta	Oral Roberts University, Tulsa	10 April 1990
CO Delta	Mesa State College, Grand Junction	27 April 1990
NC Gamma	Elon College, Elon College	3 May 1990
PA Xi	Cedar Crest College, Allentown	30 Oct 1990
MO Lambda	Missouri Western State College, St. Joseph	10 Feb 1991
TX Kappa	University of Mary Hardin-Baylor, Belton	21 Feb 1991

