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THREE DIMENSIONAL HYPERBOLIC GEOMETRY:

AN EXPOSITION

C. DAVID BISHOP

Student, University of Northern Iowa

Hyperbolic geometry is a very interesting field

of geometry. It is full of little twists which

usually are not seen in Euclidean geometry. Gauss

once tried to determine whether our universe was

hyperbolic or Euclidean. By measuring the angles of a

triangle made up of three mountain peaks, ho attempted

to answer this question. If all of the angles added

to less than 180 degrees then this would be evidence

that the universe might be hyperbolic. With the

accuracy available to him he measured the angle sum as

180. Does this mean that the universe is Euclidean?

Not quite. The present scales we are able to measure

may not be large enough to detect the difference

between the two universes. h'ither way, this

expository paper deals with some basic plane geometry

which is then developed into three dimensional

geometry.
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Before moving into three dimensions, it would be

helpful to cover 3ome definitions end properties of

plane hyperbolic geometry. The main difference

between Euclidean geometry and hyperbolic geometry is

the parallel postulate. It is well known in Euclidean

geometry that for a given line, 1, and a point, P, not

on line 1, there exists a unique line through the

point P which does not intersect line 1. In

hyperbolic geometry there are many lines through point

P, which do not intersect line 1. Two of the lines

which are parallel to line 1 have a special

relationship to line 1. This relationship is called

limiting parallel. These lines which are limiting

parallel to line 1 have the property that they

approach line 1 in one direction but never actually

intersect line 1. A limiting parallel line has the

property that any ray emanating from point P which

points in the direction of parallelism and contains a

point which lies between the two parallel lines will

intersect line 1.
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In essence the limiting parallel line represents the

limit to which one may push one line toward another

line before they intersect. Let S and T be any two

points on line 1, and then let Q be a point such that

ray PQ is limiting parallel to ray ST. The resulting

figure is called an asymptotic triangle with base PS.

The asymptotic triangle is essential when attempting

proofs in three dimensions.

There exist two quadrilaterals in hyperbolic

geometry which have interesting properties and are

useful in proving theorems in both plane and space

geometry- The first is called a Saccheri

quadrilateral. It can be constructed by taking any

two lines 1 and m which are both non-intersecting and

non-limiting parallel in either direction. From now

on I will refer to these as parallel lines, and



limiting parallel lines will be specified as such.

The next step is to find the unique common

perpendicular of these parallel lines 1 and m. Let

the intersection of the perpendicular and line m be

called P, and likewise let the intersection on line 1

be called Q. Now choose two distinct points U and R

on line m such that segment UP is congruent to PR.

From points U and R drop perpendiculars to line 1.

The resulting figure RSTU is a Saccheri quadrilateral.

X Q SI

Although it will not be proved here, the angles

associated with vertices U and R are both acute and

are congruent. The quadrilateral RSQP is known as a

Lambert quadrilateral. Note that it has three right

angles and one acute angle; this is the greatest

number of right angles which any quadrilateral may

have in hyperbolic geometry.

Projecting lines onto other lines proves to be of



interest, and the understanding of the resulting

projections is crucial when considering projections in

three dimensions. In the following cases two lines

will be considered; name thorn 1 and m. Points on line

m will be projected onto line 1, and all projecting

lines will be perpendicular to line 1. Given that 1

and m are parellei, the projection of line m onto line

1 is an open segment on m. The proof is relatively

easy, and the strategy involves the use of asymptotic

triangles. Refer to the figure below, and note the

common perpendicular segment PQ, where F lies on line

m. From point Q draw a ray which is limiting parallel

to m. Then with some previous experience with

asymptotic triangles one can construct a right

asymptotic triangle with the ray just drawn and line

1.



The proof is then finished by showing that the points

of m correspond to the points on the open segment on

1, and conversely that the points on the open segment

correspond to the points of line m. This is obviously

not a proof but it does give some idea as to the

attack that may be used. The case where 1 and m

intersect gives the same result as before, an open

segment on line 1.

The case where the lines are limiting parallel to each

other is a different story. Here line m projects to

an open ray on line 1 which points in the direction of

parallelism.
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It is interesting indeed how the projections in

hyperbolic geometry are so radically different from

the projections we are used to observing in Euclidean

geometry.

There is another figure which needs to be

discussed before going on to three space. A curve

called a horocycle will appear in three space

projections. Given a set of lines all limiting

parallel to each other in one direction, choose a

point P on one of the lines. Then the set of points

on the other lines which correspond to the point P

form a horocycle. Another way to think of a horocycle

is to take the chosen point P and construct isosceles

asymptotic triangles with the set of limiting parallel

lines. The set of all the resulting vertices lie on a

horocycle.



There is one more way, and perhaps the easiest way, to

think of a horocycle. Start with a line 1 and a point

P not on 1. Now construct a circle about point P

which is tangent to line 1. To make the horocycle,

move the center of the circle, point P, out an

infinite distance from the line 1 along a line

parallel to 1. The resulting circle in the limit is a

horocycle. Here it is interesting to note that in

Euclidean geometry, this procedure would merely turn

the circle into line 1.

Now we are ready to move on to three dimensional

geometry. Consider a plane *r and a point P not on the

plane. There exists a line 1, containing the point P,

which is perpendicular to the plane n. Now it is easy

to find a plane which contains point P, does not

intersect the plane n, and has line 1 as a

perpendicular. This plane is said to be parallel to

the plane "".
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There also exist limiting parallel planes. These

planes are easily visualized by constructing a line m

on plane *r through the perpendicular 1. Now through

point P construct a line n which is limiting parallel

to line m. Given line n, it is easy to find the plane

which contains n and does not intersect the plane •**.

The plane just found is limiting parallel to plane n.

Just as projections in plane geometry proved to

be interesting, projections in three space are also

interesting, probably more so. This time a plane f

will be projected onto a plane 7. First consider the

case when plane vT is parallel to plane i. Here <T is

projected as a disk with an open boundary.
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Now assume that plane o is limiting parallel to plane

n. The projection gives a half plane with the

boundary as an open horocycle.

This may seem strange at first, but with a little

thought it seems reasonable. I have yet to deal with

two planes which intersect, but at this time my

intuition tells me that in such a case, plane <J would

project to a strip open on both sides and with the

boundary being either a hypercycle (equidistant curve)

or a line.

There are a few figures in hyperbolic three space

which are worth mentioning. The first is a cylinder,

which is easily described. Take any pair of parallel

planes and find the common perpendicular. These two

planes will be the ends of the cylinder, and the
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common perpendicular will be the axis of symmetry.

The cylinder is then completed by finding all of the

lines which are parallel to the axis and are limiting

parallel to both planes.

T

One interesting exercise is to project the side of the

cylinder onto one of the ends of the cylinder. This

creates a large donut of sorts. That is, the entire

plane is covered except for a disk which is centered

on the axis of symmetry.

There are two more figures which are not

difficult to construct. The first figure is a cone.

Visualize the plane with a point P not on the plane.

The cone is now defined by all of the rays emanating

from P which are limiting parallel to the plane n.

This is the only figure so far which when projected

onto the plane actually covers the entire plane.
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The next figure, in some ways similar to the cone, is

the limiting cone. In this case imagine the vertex,

point P, lying an infinite distance from the plane.

Stated more precisely, the cone consists of lines all

limiting parallel to each other in one direction and

limiting parallel to the plane in the other direction.

The projection of a limiting cone is similar to the

projection of the cone, but now one point is left

open. The open point is of course the intersection of

the axis of symmetry.
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This is the end of the brief introduction to

unexpected surprises. Just think of what is in store

for space travelers if our universe is indeed

hyperbolic. There is much to be explored in three

dimensions, and 1 am looking forward to continuing my

study. (Note: Proofs for most of these results are

available.)
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COMPUTATIONAL COMPLEXITY

LISA D. BROX

Student, Benedictine College

15.

One has a general intuitive sense of the notion

of complexity; procedures, ideas, theories, proofs, or

functions can all be called complex. But what do we

really mean by complexity? "In mathematics and in the

sciences we tend to consider overly complex theories

as being unclean and temporary, not really

representative of nature...the closer we get to

ultimate truth, the less contrived will our

explanations appear." [3, p.140] Thus, complexity

could be viewed as not fully understanding all the

principles behind the problem and its nature.

However, it is important to note that a problem can be

very easy to understand and offer methods of solution,

but to solve it "efficiently" is very complex. Thus,

complexity can also be viewed as intrinsic

difficulties of mathematically posed problems.

Complexity here deals with the nature of the problem

as we perceive it in this era with what theories and

concepts we have available.
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Thus, in speaking of the complexity of a problem,

we will use a scale of measurement in terms of time or

computer space. Surprisingly enough, "perfect"

methods of solution to problems are not always enough.

We need solutions that can be implemented in a general

method called an algorithm; "it is a precisely stated

procedure or set of instructions that can be applied

in the same way to all instances of a problem." [10,

p. 96] Algorithms need to operate in a reasonable

amount of time; that is, we need solutions that

conserve time - a scarce resource.

Before continuing, we need to decide what will

qualify as a "good" algorithm. The rate of growth in

execution time of an algorithm can be described as a

function of polynomial time complexity or exponential

time complexity. To offer some explanation of these

2 3 4
terms we say polynomials are of the form n , n , n or

linear combinations of such functions. What

distinguishes them from exponential functions is that

in polynomials a variable never appears as an

exponent. Therefore, if the number of operations to

solve the problem is an exponential function then the

algorithm has exponential time complexity; if the
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number of operations is a polynomial function it is

said to have polynomial time complexity. We will

define the algorithm as "good" if it has polynomial

time complexity. If, however, the rate is a function

of exponential time, the algorithm is considered

inefficient and of little practical value.

Also, we will define all polynomial time

algorithms efficient and we will not determine which

among the class is most efficient. The problems we

will concentrate on are such that finding any solution

in polynomial time would be an incredible

breakthrough. By looking at the graph, (figure 1), we

can see that it is imperative to find polynomial time

algorithms if we want solutions that we can use in

this life time. Exponential functions grow at such an

exorbitant rate that even the most powerful computer

imaginable could not calculate rapidly enough to

arrive at a solution for problems with large n in a

"reasonable" amount of time.
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Graphs of Polynomial and Exponential Functions
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It can also be seen in figure 1 that n! seems to

increase very rapidly. Later we will use the fact

that for n > 4, n! > 2n. (The proof can be carried

out by induction.)
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Now that we have defined complexity and what will

qualify as a "good" algorithm, we can roughly classify

aJI algorithms in terms of three clauses before

looking at models to more clearly understand

complexity. The first class consists of those

problems that have solutions and polynomial time

algorithms such that the problems can be solved

mechanically. For this group of problems we can say

there exist upper and lower bounds on their solutions;

this is the property that allows us to maximize and

minimize. We know where the bounds on the solutions

exist which allows us to determine the "value", good

or bad, of our algorithm in terms of efficiency. The

second general class of problems are those that can be

proven to have no polynomial or even inefficient

exponential time solutions.

Thirdly, the class on which we will concentrate,

are those problems that have solutions, but the

algorithms are of exponential time complexity and to

arrive at these solutions takes an inordinate amount

of time for problems with large n. "Some kinds of

computational problems require for their solution a

computer as large as the universe running for at least

as long as the age of the universe. They are
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nonetheless solvable in principle." [10, p.96]

Now, we will look in more detail at our first

general class of problems - those which have solutions

and efficient algorithms. An example in the first

class should help us to better grasp the nature of

computational complexity. As we know, there are

numerous ways to solve a system of linear equations;

we are going to look at two and compare their

efficiency. One should note the luxury of many times

having multiple algorithms for solution in this first

class.

The first method we will examine is the procedure

learned in algebra called elimination. Consider the

following system of n equations with n unknowns:

System of Linear Equations

allxl + a12x2 + • • • + a±nxn ~ ci

a21xl + a22x2 + • • ' + a2nxn = c2

anlx2 + an2x2 + • • • + *Wn = cn

We are all familiar with this method, and to obtain

solutions efficiently one might multiply the first

equation by 1/a.. and then add multiples of the first
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equation to the others to "zero out" the rest of

column 1. This procedure would be repeated for

x2,x3,..,x _,, leaving xn with a solution. Then the

values can be back-substituted into the equations. A

count of the number of multiplications gives us

3
approximately l/3*n multiplications.

The second way this problem could be solved would

be to use Cramer's Rule, where Xj can be given by the

quotient of two determinants as in the following:

nyamftr's Rule

*12

*22

cn an2

all a12

a21 a22

anl an2

"In

*2n

. a
li

*2i

If one were to implement an algorithm to solve these

determinants in a very straightforward manner

expansion from the definition, evaluation of a
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determinant such as the numerator or denominator would

involve adding n! terms. The complete solution would

2
involve N *N! multiplications and divisions.

For comparison's sake let us suppose that we want

to solve a system of 100 linear equations. The

elimination method would take 1/3*1,000,000

multiplications while the determinant method would

160
take 10 multiplications. Thus, the first method

would be manageable by the. modern computer; however,

the naive approach to the solution of Cramers' Rule

would take more that 3 X 1020 years on the fastest

computer. This is 1010 times greater than the

estimated life of the universe! [2, p.381] Here we

have examined a simple model of linear equations with

which we are all familiar. The vastness of

exponential time complexity and the need for

efficiency seem to be of new importance. Note the

determinants arrived at from the algorithm, Cramer's

Rule, can be solved in polynomial time by use of

Gaussian elimination, but if one is not prudent in the

choice of algorithms, such as our naive choice to

solve the determinants of Cramer's Rule by definition,

we can induce complexity where it need not exist.

Now we will mention a problem in the second

class, problems that have been proven impossible to
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solve efficiently. This type lends us helpful

information even though we can't solve the problems.

When we identify a problem in this class we know not

to try to solve it; approximations are the best that

one can hope for, so by this knowledge and

classification we can save ourselves time and great

frustration. The Halting Problem is a classical

example of this type. The Halting Problem states that

the input is a computer program; an algorithm is

needed to determine if the input program will

eventually halt. The problem lies in the fact that

this is an unbounded search. If the program

terminates when run, you have the solution, but when

does it become logical to stop the search and say it

isn't going to halt? "Turing constructed a proof that

no algorithm will ever exist that can handle all

instances of the Halting Problem." [8, p.103]

Next, we want to gain insight into the third

general group. This group includes the interesting

and rather large class of problems with solutions, but

no polynomial time algorithms to solve these problems.

Many of these decision problems can be related to

graph theory and also optimization problems. To once

again grasp an idea of computational complexity -
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which this time we have no way to avoid - we will look

at a classical optimization problem, The Traveling

Salesman or Chinese Postman Problem, which has

frusterated many a mathematicalan for years. The

problem is simply posed: the mailman is assigned

houses to which he must deliver mail, let us say 4;

the problem is to find the shortest route, if one

exists, that the mailman can take that will pass all

the houses exactly once and enable him to deliver the

mail and return home in the shortest amount of time.

Using graph theory we will assign each house to a

corresponding node of a graph and the streets to edges

connecting the nodes. Each edge will be labeled with

a weight that corresponds to the distance between the

two houses that it connects. Thus, we want to find
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the tour such that the sum of the weights of this

tour, that being the total distance, is minimal.

I now tell you that I have a solution to this

problem in the third class that can be generalized for

any such optimization problem. Thus, I have a

solution to this seemingly simple and straightforward

problem; so what could be the complexity involved? As

I leave this question to be answered by our

development, I will offer the solution to the four

house case.

To find the possible routes that the postman

could take we can use an enumeration technique. We

will list the permutations of all the vertices with A

as the starting and ending point. This is the set of

all the possible paths. So among them exists the

shortest path. To find the shortest path, we add all

the weights of the edges corresponding to the tour and

the minimum sum will correspond to the shortest path.

Possible Tours: Length of Tours:

A B C D 4+1+8+2 = 15

A B C D 4+5+8+6 = 23

A B C D 6+1+5+2 = 14

A B C D 6+8+5+4 = 23

A B C D 2+5+1+6 = 14

A B C D 2+8+1+4 = 15



26.

Thus, ACBD and ADBC are the shortest routes for

the postman to take in this particular problem. This

was very simple and not complex in our ordinary way of

thinking, but let us expand to a larger case. We will

still have a relatively small number, for example, 30

houses to visit, and we implement this algorithm. To

arrive at the possible tours would involve generating

(30-1)! or approximately 8.8 X 1030 permutations. A

simple algorithm to generate the possible tours and

locate the minimum should be discussed. Each step

contains four parts and could be as follows:

Generate permutations Compute Sums Test Store

When the first permutation is generated, let us assume

that the sum is computed and stored. Then the next

permutation and sum are generated and the new sum is

checked against the first; if it is smaller it will be

stored as the new minimum. Let us also assume that

the complexity of each of these steps is a constant C,

but this procedure must be repeated (n-1)! times to

generate all the possible tours of (n-1) nodes. As

previously seen, C*(n-1)! is an exponential function.
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Thus, as with the algorithm for solving Cramer's Rule,

this algorithm would induce combinatorial results and

thus, require more computational time than the

universe is likely to contain. However, this type of

problem with 30 nodes would not be uncommon and

although this algorithm is an extreme case it

demonstrates the type of computational complexity that

we are discussing.

Before we continue in our discussion of

complexity and its importance in our world, we need to

break down our classes to better understand the nature

of these problems. In 1971 Cook defined a new system

of classes in his famous paper, "On the Complexity of

Theorem-Producing Procedures." This system is now

widely accepted; it includes the classes P, NP, and

NP-complete. Informally, P consists of all problems

that can be solved in polynomial time. The problems

in the class NP are solvable in principle and have

algorithms, but for now only ones of exponential time

are known. However, proposed solutions can be checked

in polynomial time. The problem in this area is that

there is no proof that "good" algorithms exist or not.

Problems such as the Chinese Postman fall into the
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class designated by the letters NP. NP-Complete

problems form a subset of NP, with the special

property that all NP Problems are reducible to each

problem in the set.

Also, it is important, in terms of understanding

this class, to realize that NP signifies

"nondeterministic polynomial". Thus, nondeterministic

refers to the fact that we are dealing with a

theoretical nondeterministic turing machine, that

being one which makes guessing computations instead of

logical decision steps with which we are accustomed.

In using this turing machine, it is assumed in theory,

that if the correct answer exists the machine will

luckily pick the minimal tour in polynomial time.

This is a conceptual idea not proven to exist, but

used in theory to explain the type of machine that

would solve this type of problem. In other words this

machine will guess and that venture will be correct.

"A mathematical procedure defined in terms of lucky

guesses may seem bizarre, but it is a quite legitimate

approach to defining the class of problems in NP."

[10, p. 104] This is because a search such as in the

Chinese Postman problem is so inefficient that a
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sequence of guesses, hopefully one of which is lucky,

can't be any worse than an exhaustive search.

Also, it is important to know that optimization

problems are reducible to decision or "yes, no"

problems; this allows one to use Cook's classification

system on them. For problems in the class NP an

efficient means of answering the "yes, no" question

need not exist. However, it is interesting that if

the answer is yes then polynomial time algorithms

exist to check if the yes solution is correct.

Now let us consider why the Chinese Postman

problem is in NP. For the present, only exponential

time algorithms are known, making it extremely

difficult to find the shortest tour; however, we can

reduce this to a "yes, no" problem by setting the

stipulation that the number of miles that the postman

can travel must be less than or equal to T. Then if a

tour is proposed, an algorithm can easily check if the

tour is less than or equal to T. Therefore, the

Chinese Postman problem is in the class NP.

Furthermore, it is quite easy to show that all

problems in F are also in NP. By definition, if a

problem is in the class P an algorithm exists to solve
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it in polynomial time. Thus, if a yes answer is given

it can certainly be <Ji«oer--eu ii the solution is

correct.

The importance of this classification is that one

of the big existing questions in mathematics is'- docs

NP-P. If P were to equal NP the consequences would be

astounding'- "it would mean that every problem for

which solutions are easy to check would also be easy

to solve." [8, p.104] Also, the huge menagerie of

optimization problems would have polynomial time

solutions! ! However, the proof that NP-P or NP*P has

yet to be produced. The guessing involved in

nondeterministic turing machines leads many experts to

think that P=NP.

The area of research is open and challenging and

may join that select group of mathematical enigmas

that remains unsolved for decades. There are many

applicable problems in the area of optimization, and

much research is being done, but the frustration

continues as researchers work in this area of unknown

bounds. They can not prove solvability in polynomial

or exponential time exculusively. Thus, they strive

for approximate solutions close to an assumed optimal
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solution - that they are uncertain of on even the most

simplistic models. "When all is said and done, the

design of practical combinatorial optimization

algorithms remain as much an art as it is a science."

[10, p. 109] One might agree that this is due to the

intrinsically complex nature of these problems.

In our brief glance of complexity we sought to

define its properties and gain an understanding of its

intrinsic nature through models such as the Chinese

Postman problem. "The aim of the study of

computational complexity is to develop techniques for

discovering better algorithms and to explain why some

computational tasks are difficult, no matter what

algorithm is applied to them." [4] We also divided

decision problems into classes to better understand

the different nature of problems and their

solvability. Complexity faces us as mathematicians,

but by having an understanding of its existence we can

- if not contribute to its resolution - not be baffled

or confused by it. In our recognition we will realize

what confronts us and thus look for approximations.

Although efficient approximations exist, from the

standpoint of mathematics, the important question is
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whether NPXP. "There is new suspicion that they are

not identical, but the proof of their distinctiveness

may be beyond present mathematical capabilities...the

solution may have to await the development of new

methods of mathematics." [10, p.109]
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NP-COMPLETENESS AND THE TRAVELING

SALESMAN PROBLEM

Melanie K. Breaker

Student, Northeast Missouri State University

Professor Stephen Cook once made the observation

that "a good part of computer science research

consists of designing and analyzing enormous numbers

of efficient algorithms" (402). It seems somehow

ironic that Professor Cook also happens to be one of

the foremost researchers into problems for which no

efficient algorithm is known. This class of problems

was formally dubbed "NP-Complete, by Professor Cook in

1971 (404). Within one year, said Cook, Professor

Richard Karp "proved 21 problems were NP-Complete,

thus forcefully demonstrating the importance of the

subject" (404). Since so many of the problems that

fall into this class occur frequently in business and

industry, Cook has observed, much research in the past

decade has been devoted to finding ways to deal with

these apparently unsolvable problems (405). According

to J.F. Traub, merely designing a "faster" computer
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will not change anything, because the difficulty in

solving a problem, or its complexity, lies within the

problem itself, independent of the algorithm or model

used (PageIs 13). Traub goes on to raise the

following questions: Does any algorithm exist to solve

these problems, or are they so difficult as to require

unreasonable amounts of computer resources (Pagels

13)? Rather than deal with the entire NP-Complete

class, let us restrict ourselves to one problem, known

commonly as the Traveling Salesman Problem, and

explore past, present, and future efforts to find an

efficient solution.

Mathematicians have been struggling with the idea

of NP-Completeness since early in this century. The

first real breakthrough was made in 1937 when Alan

Turing developed his "Turing machine," which Cook

explains to be a formal model of functions that are

computable in a reasonable amount of time by a

computer algorithm (401). This model, observed Cook,

has become the tool for Turing and many others to

prove that some problems have no efficient algorithmic

solution (401). Cook continues by describing the work

of J. Hartmanis and R.E. Stearns who, in 1965, defined

computational complexity as a function of the time
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required to process a given problem on a Turing

machine (401). About the same time, said Cook, Alan

Cobham first described a class of problems whose

complexity was a polynomial function of the length of

the input data (402). Cook points out that although

this observation had been made more than 10 years

before by Von Neumann, it was Cobham who showed that

"the class was well-defined and independent of which

computer model was chosen" (402). Edmonds was the

first to equate Cobham's idea of "polynomial time

computability" with solvability, Cook continues, and

Karp later formally termed this class of problems P

(402). It seems natural to say that those problems

not in P, those not having a polynomially-time-bounded

solution, are not solvable, or are much more difficult

to solve. M.O. Rabin addressed the very heart of

computational complexity by asking, "What does it mean

to say [a function] f is more difficult to compute

than [a function] g?" (Cook 401) This led to Cook's

classification of certain problems as NP-Complete.

Arto Salomaa points out that even though two

problems are both theoretically solvable, in practice

one might be so difficult to compute that it acts like

an intractable, or unsolvable one (139). By studying
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the complexity of the problem, we may classify it in

one of two classes. P, short for

polynomially-time-bounded, is the collection of

problems for which an algorithm exists to solve each

in a polynomially-time-bounded amount of time

(polynomial time, for simplicity) on a Turing machine.

According to Salomaa, these problems are generally

considered tractable, or solvable (165). Those

problems not in P belong to the class NP, short for

nondeterministically-polynomially-time-bounded; these

problems are computable in polynomial time only on a

nondeterministic Turing machine, that is, one that can

make an arbitrary choice between two courses of action

and follow up on both simultaneously. According to

Karp, these guesses, which are input strings of l's

and O's, are commonly called "languages" (Miller 91).

Algorithms for NP problems generally consist of a

guessing stage, according to Michael Garey and David

Johnson, and a subsequent checking stage (28).

Salomaa illustrates the difference between these two

classes in that problems in P are all tractable, but

only the checking stage of NP problems is tractable

(165). The class NP needs to be broken down further,

though; if a language L is in NP, say Harry Lewis and
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Christos Papadimitriou, it may also be NP-Complete if

there exists, for every language L' in NP, a

polynomial transformation from L' to L (341). A

polynomial transformation is simply a function mapping

every instance of L' to one of L, which is computable

in polynomial time. The theory of NP-Completeness,

asserts Garey and Johnson, is defined to include only

decision problems that could include many diverse

disciplines, which have only the answers "yes" or "no"

as possible solutions (18). The guessing stage, they

continue, consists of specifying an arbitrary problem

instance and the checking stage of a yes-or-no

question in terms of the possible solutions (Garey

18). To illustrate the implications of

NP-Completeness, let us look at one classic problem.

Suppose a traveling salesman needs to visit 10

cities on his next tour, passing through each once and

only once (see plate 1).
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In order to save money, the company would like to

minimize the mileage he is to cover. It is fairly

simple to design an algorithm that would

systematically construct and calculate the distances

of all possible routes. However, for any n cities,

the number of routes to check is (n - 1)!, or in this

example, 9! = 362,880, assuming a direct route between

each pair of cities exists. This could be

accomplished, but what if the number of cities jumped

to 30? The number of possibilities is now 29!, which

29
is even greater than 10 According to Lewis and

Papadimltrious, "even if we could examine a billion

tours per second — a pace far beyond the capabilities

of existing or projected computers — the required

time for completing this calculation would be more

than a billion human lifetimes" (312). Clearly, the

Traveling Salesman Problem (TSP, for simplicity) is

intractable, in that the number of possible guesses at

each stage in the tour grows exponentially (2n, for

example), as there are at least two choices for the

next city to visit. Garey and Johnson observe that a

nondeterministic algorithm can be constructed for TSP

using a guessing stage to supply an arbitrary sequence

of the given cities and a checking stage to verify in
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polynomial time whether the distance calculated from

that sequence is above or below the fixed limit (29).

Hence, without rigorous proof, TSP is one member of

NP.

The fact that TSP is in NP would imply that there

is a nondeterministic algorithm that solves it in

polynomial time; however, as Lewis and Papadimitriou

point out, "the fact that a problem is solvable in

theory does not immediately imply that it can be

realistically solved" (312). A problem may appear to

be solvable when, in fact, comments Salomaa, it either

operates in exponential time or uses enormous

quantitites of computer space (176). In order to

determine if TSP can be solved realistically, we need

to examine its computational complexity. We have

already observed that TSP has an exponential

complexity. Salomaa suggests asking oneself questions

such as: Is there one algorithm that is better than

another in the sense that one uses less computer time,

or does TSP have a "best," or most efficient,

algorithm (140)? Karp found that most researchers

consider a problem like TSP to be well-solved when a

polynomial time algorithm is found to solve it (Miller

85).
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This would seem to indicate, however, that no

problem in NP, including TSP, will ever be

well-solved. NP problems can be solved in polynomial

time only when using a nondeterministic model which,

Garey and Johnson are quick to point out, is

unfortunately more of a "definitional device...then a

realistic method for solving decision problems" (29).

It appears that for any problem in NP to be

well-solved, it must also be a member of P. But this

contradicts our working definition of NP; it has yet

to be proven, however, that P and NP are in fact

separate and distinct classes. According to Lewis and

Papadimitriou, "the importance of the class P resides

in a ... somewhat controversial opinion that P

coincides with the class of problems that can be

realistically solved by computers" (329). Salomaa

makes the observation that P is contained in NP;

however, he continues, there are a number of

frequently-occuring problems in NP which cannot be

proven or disproven to be in P (166). This would load

one to ask what Salomaa calls "the most celebrated

open problem in the theory of computation": Is P

properly contained in NP, or rather, does P = NP

(166)?
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Clearly, says Salomaa, a proof of P = NP would

make all NP problems tractable (166). No one has yet

been able to prove or disprove this question; this

does lead us, however, back to our definition of the

subset NP-Complete within NP. If we cannot show a

problem is easy to solve, say Alfred Alio, John

Hopcroft, and Jeffrey Ullman, we can show that it is

as "hard" as any other in NP, that is, the problems

are of equivalent complexity and thus NP-Complete

(373). According to Salomaa, NP-Complete languages

"represent the hardest problems in NP" (167). He goes

on to say that all we need is one NP-Complete language

that is in P in order to be able to solve the whole

class, since they are all equivalent in complexity

(Salomaa 167). Therefore, conclude Aho, Hopcroft, and

Ullman, "either all NP-Complete languages are in P or

none are, "echoing our earlier dilemma of, if P = NP

(374). Since much effort to find better algorithms,

or improve existing ones, has proven fruitless, most

researchers, reports Salomaa, accept the view that P

does not equal NP (168).

Working under this assumption, one could make the

claim that TSP is thus intractable; no exact solution

exists, other than calculating all possible paths and

choosing the shortest one. John Litke observes that
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for any more than 10 cities, the number of

possibilities grows too quickly to reasonably check

them all (1227). What is important to note is the

rate of growth of the time function, since NP and

NP-Complete problems have only exponential time

functions. Lewis and Papadimitriou note that "any

exponential time function grows strictly faster than

any polynomial function" (323). Consequently, they

add, we need to set an upper limit on the time

function, thus reflecting not the general behavior of

the algorithm but the worst possible case allowed

(Lewis 315). It now becomes evident that, for a small

number of cities, an exponential time algorithm for

TSP can actually be relatively efficient (see plate

2).
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"Nevertheless," Alio, Hopcroft, and Ullman point out,

"the growth rate of an exponential function is so

explosive" that the problem is considered intractable

if there is no other exact solution (364).

If we could prove TSP is NP-Complete, and

therefore in all likelihood is intractable, we could

shift our attention from solving the problem in

polynomial time to verifying an arbitray guess is a

solution. "It is this notion of polynomial time

'veriflability' that the class NP is intended to

isolate," according to Garey and Johnson (28). They

go on to point out, however, that:

polynomial time veriflability does not

imply polynomial time solvability. In

saying that one can verify a "yes" answer

for a TSP instance in polynomial time, we

are not counting the time one might have to

spend in searching among the exponentially

many possible tours for one of the desired

form. (Garey 28)

Knowing a problem is NP-Complete, therefore, does not

provide any added clues for finding an exact solution,

but rather motivation to search out an alternative

solution.
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Usually it is not immediately apparent n a

problem is NP-Complete; assuming P does not equal NP,

Uarey and Johnson point out, the problem may be in NP

and not tractable or NP-Complete (78). Some have

speculated, but it is not yet known, whether.

NP = NP-Complete, so we must provide for the case t.hey

are not equal. In order to prove TSP NP-Complete,

Garey and Johnson outline four steps that need to be

satisfied: show TSP is a member of NP, select a known

NP-Complete problem, construct a mapping from the

known problem to TSP, and prove that mapping can be

done in polynomial time (45). This method follows

directly from Cook's Theorem, named for its author

Stephen Cook, and the definition of NP-Completeness.

Cook was the first to prove a problem NP-Complete, one

which he named Satisfiability (SAT, for simplicity);

his theorem states that any language in NP is

polynomially transformable to SAT (Miller 92). (see

plate 3).
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Therefore, if TSP is polynomially transformable to

SAT, or some other known NP-Complete problem which is

transformable to SAT, then TSP must also be

NP-Complete. This can be tricky, say Garey and
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Johnson, since there may be no known NP-Complete

problem that obviously resembles the problem at hand

(46). "Even though in theory any known NP-Complete

problem can serve just as well as any other for

proving a new problem NP-Complete, in practice certain

problems do seem much better suited for this task,"

they continue (Garey 46). To prove TSP is

NP-Complete, we shall use the NP-Complete problem

Hamilton Circuit (HC, for simplicity).

Following Garey and Johnson's four-step method,

we first make the observation that TSP is a member of

NP, as shown when we first defined the problem

earlier. Second, they suggest the use of HC as the

source of the transformation (Garey 35). The HC

problem consists of a graph with a set of vertices V

and a set of edges E connecting the vertices. A HC is

a simple circuit which includes every vertex in V; a

simple circuit is merely some arbitrary sequence

{vn, v-, .... v } of vertices where vQ = v , every v.

is unique, and each edge v.. is a distinct element of

E. Next, we will need to specify a function f that

maps each instance of HC to a corresponding instance

of TSP. Finally, we will then need to show that this

function satisfies the two properties required of a
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polynomial transformation, as defined by Garey and

Johnson: f is computable by a polynomial time

algorithm, and every instance of HC is a solution if

and only if the function on that instance is a soluton

of TSP (35).

Garey and Johnson define the desired function

quite simply: suppose a graph satisfying HC consists

of a set V of vertices and a set E of edges, with m

defined as the total length traversing the circuit

(35). They continue, "the corresponding instance of

TSP has a set of cities C that is identical to V"

(Garey 35). Given any pair of cities in C, Garey and

Johnson define the distance between them to be 1 if

the pair makes up an edge in E, and 2 otherwise (35).

They set the limit on the total tour distance to be m

(Garey 35).

Without rigorous proof, f is clearly a polynomial

transformation. The first property is satisfied,

Garey and Johnson observe, since f can surely be

calculated within polynomial time; one merely needs to

compare each of the 1 + 2 + ... + m = m(m + l)/2

distances between arbitrary pairs of cities with the

graph to determine inclusion in the set of edges

E(35). "To verify that the second requirement is
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met," continue Garey and Johnson, "we must show that G

[the graph] contains a HC if and only if there is a

tour of all the cities in f(G) that has total length

no more than the upper bound" (35). First, they

propose {vft, Vj, .... vm> is a HC for G, with vQ = v ;

because it picks up every point, it must also be a

tour in f(G) having total length of m, the upper

limit, as each pair is an edge in E and therefore has

a distance of 1 (Garey 35). Conversely, they propose

*v0' vl* •"' vm* to be a tour in f(G), also having

total length no more than the limit m; because exactly

m distances are summed to get the total of m, and

those distances have been defined to be either 1 or 2,

this implies that each pair must have a distance of

exactly 1 (Garey 36). Thus, conclude Garey and

Johnson, by definition each pair has an edge in E, and

{v0, Vj, .... vm} must be a HC (36). Therefore, all

conditions having been met, TSP is NP-Complete.

Knowing TSP belongs to this class, we can direct

our efforts away from searching for an exact efficient

algorithm to solve it, which in all likelihood does

not exist. According to Garey and Johnson, the next

best approach in dealing with these problems is to

find an "approximation algorithm" that has been proven
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to always produce a solution, although not always the

best one, within a given range of the optimal solution

(Traub 41). If the algorithm consistently produces

its own best possible solution, they call it an

"optimization algorithm" (Garey 123). For TSP, in

practice a minimization problem, Garey and Johnson

observe that an approximation algorithm is required

only to "find some permutation of the given set of

cities," but an optimization algorithm must always

find one that has a tour length within the allowable

limit (123). Depending upon the circumstances, either

algorithm could produce the desired results.

B. Golden and others compared a number of these

algorithms that are in wide use and found three basic

forms. A tour construction procedure creates a tour

that is close to optimal; tour improvement procedures

start with a given tour and try to find a better one

(Golden 695). They also found many composite

procedures, which combine the previous two procedures,

building an initial tour and then trying to improve

upon it (Golden 695). All three forms seem to be

comparable to each other in efficiency, and useful

without a loss of computation time. A standard tour

construction procedure can produce a tour, according
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to Golden, to within 5 - 7* of the optimal solution

(708). The complexity of most tour improvement

procedures, they found, was comparable to the best of

the tour construction procedures (Uolden 708). The

composite procedure has the potential to be the best

of the three alternatives, however. Golden observed

consistent results within 2 - 3* of optimality, and

repeating this procedure can yield a solution within

1 - 2% of the best possible solution (708). They

point out, however, that although "a very accurate

solution for [large instances of TSP] can be obtained

in a reasonable amount of computing time by repeated

use of a three-step composite procedure..., none of

the procedures discussed can be guaranteed to find the

minimal length TSP tour" (Golden 709).

Another alternative solution that has met with

considerable success is a variation on the band sort.

Litke describes the band sort as a method that

"divides the field of points into equally spaced

bands, and the algorithm proceeds from left to right

in the first band, right to left in the second band,

etc., until all points are visited by the path"

(1227). (see plate 4)
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An example of an elementary band sort path.

Notice the proximity of the points at the band divisions

that could have been grouped together, thereby reducing

the overall path length. From litke (1229).

According to Litke, the Photocircuits Division of

Kollmorgan Corporation had little success with this

method on TSP; due mainly to differences in the band

width, total path length was sometimes reduced by 10%

but occasionally increased as much as 300%, so a

consistent reduction of even 0.5% was not possible

(1227). A new variation was tried, attempting to

simulate the way the human eye would estimate the
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shortest path. The process is broken down into two

steps, adds Litke, joining small "clumps" together and

then connecting those clumps together (1229). Litko

reports that this new resulting algorithm has been in

use at Photocircuits since October of 1982; after

being applied to over 1,000 jobs, an average reduction

of 44% has been observed (1229). The computing cost

seems to be easily adjustable for this procedure and,

adds Litke, "it outperforms previous algorithms we

tried by more than 10:1 on a statistical basis"

(1236).

Even though there is no exact solution for TSP,

some very useful and efficient approximate solutions

can be found. It remains to be seen if an exact,

polynomial time solution can ever be found for TSP and

other NP-Complete problems; due to the importance and

frequency of these problems, the search will certainly

continue. J.F. Traub once observed, "If information

is limited and inexact, you cannot solve a problem

exactly" (Pagels 15). In the case of TSP, we have the

information, but it is not feasible to use it. Until

a reasonable solution is found, as Traub put it, "we

choose to live with uncertainty to decrease

complexity" if we are to find any kind of solution at

all (Pagels 15).
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THE PROBLEM CORNER
EDITED BY KENNETH M. WILKE

The Problem Corner invites questions of interest to
undergraduate students. As a rule the solution should
not demand any tools beyond calculus. Although new
problems are preferred, old ones of particular
interest or charm are welcome, provided the source is
given. Solutions should accompany problems submitted
for publication. Solutions of the following problems
should be submitted on separate sheets before 1
January 1990. Solutions received after the
publication deadline will be considered also until the
time when copy is prepared for publication. The
solutions will be published in the Spring 1990 issue
of THE PENTAGEON, with credit being given to student
solutions. Affirmation of student status and school
should be included with solutions. Address all
communications to Kenneth M. Wilke, Department of
Mathematics, 275 Morgan Hall, Washburn University,
Topeka, Kansas 66621.

PROBLBMS 420-424, SOLUTIONS 408, 410 -413

Problem 420: Proposed by the editor.

Berwick once proposed a classic arithmetic restoration problem

in which only seven 7*s appear. For our version find the smallest

cube of a positive integer which ends in 7777777 ;i.e. seven 7's.

Problem 421: Proposed by the editor.

While working on her homework, a student noticed the

following peculiar relationship between two sets of consecutive

squares:

6002 + 6012 + 6022 + 6032 + 6042

1442 + 1452 + 1462 + 1472 + 1482
a 17.

She wants to know if this relationship is unique or does 17 have

other such representations?
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Problem 422: Proposed by the editor.

Consider the two triangles FGH and PQR shown below with

/FDH = / FDG = /gDH = 120° .
Let the 1 ine segments be denoted as marked . Prove that

T = p + q + r . (Third USA Mathematical Olympiad 1974)

p

F

Problem 423: Proposed by the editor.

Let a circle cut two adjacent sides and adiagonal of

parallelogramPQRS at points F, G, and H as shown in the

figure below. Prove that PF-PQ + PH-PS = PS-PR .
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Problem 424: Proposed by the editor.

Completely factor the number 2 +1 using only a pencil

and paper. (No computers please!) This number has four distinct

prime factors.

PLEASE HELP YOUR EDITOR BY SUBMITTING PROBLEM

PROPOSALS.

Problem 408: Proposed by the editor.

Dirty Dan had a hot tip on the dog races. He knew that

one of four longshots would win the race. If the odds on these

four dogs are 3 to 1, 5 to 1, 6 to 1 and 9 to 1 respectively,

how much should Dirty Dan bet on each of these four dogs to

guarantee making a profit of $143?

Solution by the editor. Let x , y, z and w denote the

amounts bet at the respective odds 3 to 1, 5 to 1, 6 to 1 and

9 to 1 . Then we have the following four equations in four

unknowns:

4x = 6y = 7z = lOw =x+y+z+w+ 143

where 4x, 6y, 7z and lOz denote the respective amounts won for

each bet and x + y + z + w+ 143 denotes the total amount bet

plus the expected profit. The solution of this system is

x = $105, y = $70, z = $60 and w = $42. Thus for a total

"investment" of $277, Dirty Dan wins $420 making a "clean"
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profit of $143.

This works only because

1 1 _1_ 1 _ "7 x
1" 6 7 10 420

Problem 410: Proposed by the editor.

Let A, G, and H be the arithmetic mean, the geometric mean

and the harmonic mean respectively of the divisors of an even

perfect number. Prove or disprove that G = A-H.

Solution by Bob Prielipp, University of Wisconsin-Oshkosh,

Oshkosh, Wisconsin.

We shall show that G2 = A-H.

First we need the following result.

Lemma: If n is an even perfect number, then the sum of the

reciprocals of the positive integer divisors of n is 2.

:t number, /_Proof of Lemma: Since n is an even perfect number, /_ d

2n. All sums are taken over the divisors d of n.

5~--r- --rin [_ d /_ n/d n /_
= (2n) = 2,

Then / d / n/d n / d n

Proof of main result:

Let P be an even perfect number. Then P=2m~ (2m-l) where

2m-l is a prime number. Thus P has the following 2mpositive

divisors: 1,2 2m_1, 2m-l, 2(2m-l) and 2m_1(2n,-l).
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2P 2m"1(2n,-l)

2m m

2m

By our lemma, H = - m.
2

Finally G2 = [(1•2•••-2m"1)2(2m-l)m]1/m =
(2l+2+ ... +(m-l))2/m (2m_1} _(2(m-l)m/2)2/m ^^ =^(^-i).

Thus G2 = A-H .

Problem 411: Proposed by Dmitry P. Mavlo, Moscow, USSR.

Let a, b, and c be positive real numbers and let k be a

positive integer. Prove the following inequality and determine

all cases when equality occurs:

(a +b +c)k - (ak +bk +ck) >. [3k - 3] (abc)k/3 .

Solution by Bob Prielipp, University of Wisconsin-Oshkosh,

Oshkosh, Wisconsin.

Since a, b, and c are positive real numbers and k is a

positive integer, we shall show that

(a +b+c)k _> ak +bk +ck +(3k - 3)(abc)k/3 . (1)
This solution is based upon the fol lowing case of the Arithmetic

Mean - Geometric Mean Inequality: If x, y and z are positive real

numbers, then x +y +z _>_ 3(xyz)1/3 with equality if and only

if x = y = z.

When k = 1, (1) is the equality a + b+c = a + b + c. Assume
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that (a +b+c)k_^ ak +bk +ck +(3k- 3)(abc)k/3 (2)

is true for the positive integer k. Then (a +b+c)k+1 >

(ak +bk +ck)(a +b+c) +(3k -3)(abc)k/3(a +b+c) =

(ak+1 +bk+1 +ck+1) +(bkc ♦ cka +akb) ♦ (bck +cak +abk)

+ (3k -3)(abc)k/3(a + b + c) _>_

(ak+1 +bk+1 +ck+1) ♦ 3(abc)(k+1>/3 +3(abc)<k+1>/3 +

(3k -3)k/3 •3(abc)1/3 which by the Ari thmetic Mean -

Geometric Mean Inequality = (ak+1 + bk+1 + ck+1)

+ 6(abc)(k+1)'3 + (3k+1 -9)(abc)(k+1)/3 =

ak+1 +bk+1 +ck+1 ♦ (3k+1 - 3)(abc)<k+1>'3. Now (1) follows by
mathematical induction.

Also equality holds in (1) if and only ifk = lora = b = c

which is guaranteed by the Arithmetic Mean - Geometric Mean

Inequali ty.

Also solved by the proposer.

Problem 412: Proposed by the editor.

Fred and Pete were duck hunting one day when a lone

nullard flew by within range. Pete is three times more likely

to hit his target than Fred is. Assuming that the duck has an

even chance to survive, what are Pete and Fred's respective
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probabilities of hitting the duck?

Solution by JimMercurio, Student, University of Michigan.

Let F denote the probability that Fred hits his target. Then

the probability that Pete hits his target is P = 3F. The

probabil i ty that the duck survives is(l-F)(l- 3F). Hence

we have the equation

(1 - F)(l - 3F) = .5 or 6F2 - 8F + 1 = 0.

4 - V 10
By the Quadratic Formula, we have F = .

6

Discarding the root which exceeds 1, we have

4 - VTo" 4 - VTb~
F = & .13962 and P = & . 41886

Problem 413: Proposed by the editor.

2
While studying the function F(n) = n! +n - Inhere n is a

positive integer,with his computer, a student noticed that F(n)

is prime when n = 2. Unfortunately the precision of his computer

limits the number of cases in which he can accurately produce

a value for F(n). He would like to know other values of n for

which F(n) is prime. Find other values of n for which F(n) is

prime or show that none exi.st.

Solution by Bob Prielipp, University of Wisconsin-Oshkosh,

Oshkosh, Wisconsin.

We shall show that F(n) is prime only when n = 2. For n = 1,
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F(n) = 1 which is not prime. For n = 2, F(n) = 5. Finally, for

n_> 3, F(n) =n! +n2-1 =(n - 2)!(n - l)(n) +(n - l)(n +1)
= (n - l)[(n - 2)!(n) + (n + 1)] which establishes that F(n) is

composite for n >_ 3.
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KAPPA MU EPSILON NEWS

Edited by M. Michael Awad

News of chapter activities and other noteworthy KME events should be sent
to Dr. M. Michael Awad, Historian, Kappa Mu Epsilon, Mathematics
Department, Southwest Missouri State University, Springfield, MO 65804.

CHAPTER NEWS

Alabama Gamma. University of Montevallo, Montevallo
Chapter President —Aimee K. Thornton
11 actives, 4 initiates

Other 1988-89 officers: Kevin R. Harris, vice president; Deanna M.
Miller, secretary and treasurer; Gene Garza, corresponding secretary and
faculty sponsor.

Alabama Zeta. Birmingham-Southern College, Birmingham
Chapter President - Jennifer Millican
40 actives, 17 initiates

Other 1988-89 officers: Ashita Tolwani, vice president; Anamaria
Vickery, secretary; Charles Montague, treasurer; Lola F. Riser,
corresponding secretary; Shirley M. Branan, faculty sponsor.

California Gamma. California Polytechnic State University, San Luis Obispo
Chapter President - Donald Priest
44 actives, 8 initiates

The Chapter assisted the Mathematics Department with the annual
Phon-a-thon to raise funds for the School of Science and Mathematics.
Weekly meetings featured alumni and industry speakers, including
representatives from IBM, Chevron, Pair Isaac and the Department of the
Navy. Speakers at the Pledge Induction Ceremony in November were Joanie
Carew and Jill Terry who illuminated the members concerning their
experiences teachingin the California publicschool system and attending Cal
Poly as graduate students. On November 30, 1988, KME sponsored a
Christmas Party at the Village Retirement Center in San Luis Obispo. The



66.

preparation for the festivities was extensive and included the purchase of an
eight foot Christmas tree. The pledges and social chairpersons prepared the
refreshments. Entertainment consisted ofsinging Christmas carols. A good
time was had by all. Other 1988-89 officers include: Susan Daijo and Athan
Spiros, 1st vice presidents; Terry Bly and Jerry Burch, 2nd vice presidents;
Dede Guevara and Warren Fernandes, pledgemasters; Stefan Steiner,
treasurer; Sarah Parks, publicist; Rachel Jeffries and Kathy Perino, social
coordinators; Lisa Fjeldal, alumni representative; Joni Otoshi, School
Council representative; Chris Lucke, Poly Royal representative; Lonnie
Smith, Curriculum Committee representative; Raymond D. Terry; faculty
sponsor and corresponding secretary. The office of recording secretary
remains vacant to date.

California Delta, California State Polytechnic University, Pomona
Chapter President- Kee Kragness
25 actives

Other 1988-89 officers: Pat Dunn, vice president; Julia Chu, secretary;
Michelle Stratton, treasurer; Richard Robertson, corresponding secretary;
Jim McKinney and Scott Sportsman, facultysponsors.

Colorado Gammat Fort Lewis College, Durango
Chapter President - Amy Getz
22 actives, 4 initiates

Weheld three business meetings and one induction ceremony in the fall.
Members participated in the Alumni Phon-a-Thon to raise money for the
Chapter. We published three issues of a department newsletter. Other
1988-89 officers: Earl Edwards, vice president; Carol Kjar, secretary; Kevin
Marushack, treasurer; Richard A. Gibbs, corresponding secretary and faculty
sponsor.

Georgia Alpha, West Georgia College, Carrollton
Chapter President - Lynn Harris
25 actives

At our fall planning meeting on October 26,1988, a social wasscheduled
at a local restaurant for November 9. We also sponsored a Charity Pood
Drive where canned goods were collected and given to the Community Food
Bank to feed the poor. At the social on November 9, there were fifteen
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people present. A good time was had by all. Other 1988-89 officers: Tracy
Tepp, vice president; Anne Salchow, secretary; Tammy Gresham, treasurer;
Joe Sharp, corresponding secretary and faculty sponsor.

Illinois Beta. Eastern Illinois University, Charleston
35 actives

There were a number of KME/Math Club meetings held throughout the
semester. Our fall picnic took place on September 27th at Morton Park. We
had two speakers: Dr. Keith Wolcott and Dr. Allen Davis. Our Christmas
Party took place on Friday, December 2nd. Other 1988-89 officers: Wayne
Watkins, vice president; Rita Stinde, secretary; Melissa Tracy, treasurer;
Lloyd Koontz, corresponding secretary and faculty sponsor; Allen Davis,
faculty sponsor.

Illinois Delta. College of St. Francis, Joliet
Chapter President —Jo Ann Lopykinski
24 actives

We had a Saturday A.M. tour of Areonne National Laboratory with
twenty in attendance. We also organized a fund-raiser during Homecoming
week. Proceeds of over S200 will help finance attendance at Spring
Conference in Topeka, Kansas. Other 1988-89 officers: Pamela Damore,
vice president; Rita Drab, secretary; Debra Becker, treasurer; Sister Virginia
McGee, corresponding secretary and faculty sponsor.

Illinois Ensilon, North Park College, Chicago
Chapter President - David R. Johnson
26 actives

During the first half of the 1987-88 year, our Chapter visited Argonne
National Laboratories in suburban Chicagoand viewed the "Star of Wonder"
Christmas planetarium star show in downtown Chicago. Other 1988-89
officers: Kimberlee J. Roth, vice president; Carol M. Uni, secretary; Dena L.
Pachucki, treasurer; Alice Iverson, corresponding secretary and faculty
sponsor.
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Illinois Zeta. Rosary College, River Forest
Chapter President - Mark Crosbie
20 actives

Other 1988-89officers: Chad Hustingand Natalie Perri, vice presidents;
Mariloa Janek, secretary; Kathy Schmidt, treasurer; Sister Mary T.
O'Malley, corresponding secretaryand faculty sponsor.

Indiana Alpha. Manchester College, North Manchester
Chapter President - Julie Eichenauer
30 actives

Our Chapter sponsored a fall picnic for all students interested in
mathematics or computer science on September 18. On October 17, Dr. Dan
Pritikin, Miami University, spoke on "Subtly erroneous proofs and other
pseudo mathematical confusions." Dr. Richard Ringeiser, Clemson
University, visited the college and discussed "Printed Circuits, Graphs and
Brick Factories," on November 3. Other 1988-89 officers: Jenny Newton,
vice president; Cindy Bull, secretary; Lauri Robison, treasurer; Ralph B.
McBride, corresponding secretary; Deborah L. Hustin, faculty sponsor.

Indiana Delta. University of Evansville, Evansville
Chapter President - Jenifer Seckinger

Mr. William Houser, Dr. Mohammad K. Azarian, Dr. Papadopoulos, and
Dr. Martin Jones were the speakers for the fall meetings. Other 1988-89
officers: Mary Singleton, actingvice president and secretary; Melba Patberg,
correspondingsecretary; Mohammad K. Azarian, faculty sponsor.

Iowa Alpha. University of Northern Iowa, Cedar Falls
Chapter President - Suzanne Buckwalter
38 actives, 11 initiates

The annual KME Homecoming Coffee was hosted by Professor Emeritus
and Mrs. E. W. Hamilton at their home in Cedar Falls with 33 alumni,
members, and guests in attendance. Students presenting papers at local Iowa
Alpha KME meetings include Mark Bohan on "Archimedes' Work on the
Tangent to a Spiral, Jody Barrick on "Magic Squares," and Susan Paustian
on "Eulerian and Hamiltonian Circuits." Mary Meier gave the address at
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the December initiation banquet on the topic "The Mathematics of
Surveying." Susan Strong was awarded a student membership in the
Mathematics Association of America. Other 1988-89 officers: Kerris
Renken, vice president; Julie Holdorf, secretary; William Kruse, treasurer;
John S. Cross, corresponding secretary and faculty sponsor.

Iowa Beta. Drake University, Des Moines
Chapter President —L. Kidder
5 actives, 2 initiates

Some fall activities: Three regular meetings with student presentations,
fall picnic, and December study break to watch mathematical films. Other
1988-89 officers: J. Seal, vice president; P. Wiedemeier, secretary; P.
Waschbush, treasurer; A. Kleiner, corresponding secretary; L. Naylor, faculty
sponsor.

Iowa Gamma. Morningside College, Sioux City
Chapter President - Dan Kruger
8 actives

Other 1988-89 officers: Lanette Curry, vice president; Kim Ashby,
secretary; Matt Carney, treasurer; Doug Swan, corresponding secretary and
faculty sponsor.

Iowa Delta. Wartburg College, Waverly
Chapter President - Curtis Eide
32 actives

The first 1988-89 meeting of the Iowa Delta Chapter featured members
sharing about the internship that they had during the late spring and
summer months. Dr. Sherry Nicol from the Mathematics Department of the
University of Wisconsin at Platteville spoke about "Women in Mathematics"
during the October meeting. The November program, presented by Ronald
Nelson, Director of International Marketing for Decision Data, Inc., was a
slide show on the history of computing and the evolution of the corporation
he works for. As is traditional, the December meeting was a Christmas
party, this year featuring a variation of Pictionary related to holidays. The
Chapter again prepared and sold egg-cheese sandwiches at the Renaissance
Faire event of the Wartburg CollegeHomecoming. This booth is becoming a
tradition and earned the Chapter approximately one hundred dollars. Other
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1988-89 officers: Patricia Glawe, vice president; Terry Letsche, secretary;
Kaaren Hemmingson, treasurer; August Waltmann, corresponding secretary;
Josef Breutzmann, faculty sponsor.

Kansas Alpha.Pittsburg State University, Pittsburg
Chapter President - Jon Beal
40 actives, 4 initiates

The Chapter held monthly meetings in October, November and
December. Fall initiation was held at the October meeting. Four new
members were initiated at that time. This meeting was preceded by a pizza
party. The October program was presented by Professor John Hey of the
PSU Department of Industrial Arts and Technology. He demonstrated
Thunderskan and MacVision software. Mala Renganathan gave the
November meeting program. She discussed the actuarial profession and
illustrated some of the problems from previous actuarial exams. In
December, a special Christmas meeting was held at the home of Dr. Helen
Kriegsman, Mathematics Department Chairperson. Professor Joe Siler, PSU
Mathematics Department faculty member gave the program entitled "The
Golden Numeration System." Other 1988-89 officers: Mala Renganathan,
vice president; Lora Woodward, secretary; David Beach, treasurer; Harold L.
Thomas, corresponding secretary; Helen Kriegsman and Gary L. McGrath,
faculty sponsors.

Kansas Beta. Emporia State University, Emporia
Chapter President - Cathrine Barnes
18 actives, 2 initiates

During the fall semester, our Chapter held regular monthly meetings. At
the September meeting, we met and welcomed new faculty members in the
Mathematics Department. The December program was presented by Larry
Hannah, the Director of our Career Development and Placement Office. He
spoke on the careers available to math majors and offered valuable advice.
Dr. Marion Emerson honored us by presenting a talk on problem solving at
our November Initiation Banquet. Other 1988-89 officers: Laura Kincaid,
vice president; Susan Streeter, secretary; Ed West, treasurer; George
Downing, corresponding secretary; Larry Scott, faculty sponsor.



Kansas Gamma. Benedictine College, Atchison
Chapter President —Susanne Piper
11 actives
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Kansas Gamma started the fall semester with a meeting to elect officers.
The election was preceded by a video of the spring picnic. Elaine Tatham,
who owns her own consulting firm in Kansas City, was the November
meeting guest speaker. She spoke on the many uses of mathematics in her
work. In December the traditional Wassail party was enjoyed by a large
turnout of people at the home of Jim Ewbank. Other 1988-89 officers:
Elizabeth Zahrt, vice president, secretary and treasurer; Richard Farrell,
corresponding secretary; Sister Jo Ann Fellin, faculty sponsor.

Kansas Delta. Washburn University, Topeka
Chapter President —Larry LaMee
18 actives, 4 initiates

Final plans are being made for the biennial convention to be held at
Washburn, April 6-8, 1989. Other 1988-89 officers: Bryan Elrichs, vice
president; Denise Winfrey, secretary and treasurer; Robert H. Thompson,
corresponding secretary; Allan Riveland and Ron Wasserstein, faculty
sponsors.

Kansas Epsilon. Fort Hays State University, Hays
Chapter President —Julie Schmitt
21 actives, 7 initiates

Some events held during the fall semester: Fall picnic, Halloween Party,
helped with the Math Relays sponsored by the Department. Other 1988-89
officers: Brian Kinsey, vice president; Marty Orth, secretary and treasurer;
Charles Votaw, corresponding secretary; Mary Kay Schippers, faculty
sponsor.

Kentucky Aloha. Eastern Kentucky University, Richmond
Chapter President —Wally Siddiqui
17 actives

Fall semester activities started off with a faculty/KMl picnic in
September at Dr. Metcalf's house. In October there was a KME alumni
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reunion breakfast at the Costello house. On a cold weekend at the end of
October, Dr. Costello and a brave bunch of students camped out at Natural
Bridge park. The semester ended with a Christmas party just before finals.
There were two talks presented during the semester. A representative of
Electronic Data Systems gave a talk on "Technology Trends." Dr. Costello
gave a talk on "Some of My Favorite Math Puzzles." Other 1988-89
officers: Stacy Fluegge, vice president; Russ King, secretary; Bobby Hart,
treasurer; Patrick Costello, corresponding secretary; Bill Janeway, faculty
sponsor.

Maryland Beta, Western Maryland College, Westminster
Chapter President - Mary Beth Van Pelt
13 initiates, 3 actives

Other 1988-89 officers: Deborah Camara, vice president; Beth Trust,
secretary; Lisa Brown, treasurer; James E. Lightner, corresponding secretary;
Linda R. Eshleman, faculty sponsor.

Maryland Delta. Frostburg State University, Frostburg
Chapter President - Laura Dudley
20 actives

Maryland Delta Chapter held its fall programs jointly with the
newly-formed Mathematics Club at Frostburg State. The semester
activities began with a picnic in early October and ended with a Christmas
get—together in December. At meetings between these events, student
members Mary Jones and Cynthia Stein described their mathematics-related
summer employment, Dr. Lance Revennaugh gave a talk on "Sensitive
Sampling," and the Secondary Mathematics Teaching Methods class
demonstrated their final projects. The Chapter also sponsored a mock
S-residential election in early November (George Bush won). We look
orward to inducting new members in the spring. Other 1988-89 officers:

Mary Jones, vice president; Michelle Glotfelty, secretary; Christa White,
treasurer; Edward T. White, corresponding secretary; John P. Jones, faculty
sponsor.
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Michigan Beta. Central Michigan University, Mt. Pleasant
Chapter President - Theresa Budzynski
40 actives, 13 initiates

Some activities of Michigan Beta were: KME conducted math help
sessions for Freshman-Sophomore mathematics classes. Professor Donna
Ericksen of CMU was our Fall Initiation speaker. Her topic was "Students'
Conceptions of Variables and Their Uses for Generalization of Mathematical
Patterns." At someof our meetings we enjoyed refreshments of pizza and/or
cookies. KME had a co-ed volleyball team in the fall and will have a
basketball team in the winter. We finished the fall semester with a
Christmas party at the home of our advisor, Arnold Hammel, and family.
During the first week of the winter semester, a faculty member and a student
from Oakland University spoke to KME on their Master's Degree program in
Statistics and Quality Control and its link with Ford Motor Company.
Other 1988-89 officers: Nancy Haskell, vice president; Agnes Hausbeck,
secretary; George Lasecki, treasurer; Arnold Hammel, corresponding
secretary and faculty sponsor.

Mississippi Alnha. Mississippi University for Women, Columbus
Chapter President - Michelle D. Whitley
7 actives, 11 initiates

Other 1988-89 officers: Connie Hudson, vice president; Karen Scott,
secretary and treasurer; Jean Parra, corresponding secretary; Carol Ottinger,
faculty sponsor.

Mississippi Gamma. University of Southern Mississippi, Hattiesburg
Chapter President - Stuart Hartfield
24 actives, 8 initiates

Other 1988-89 officers: Patsy Saucier, vice president; Beth Page,
secretary; Alice Essary, treasurer and corresponding secretary; Virginia
Entrekin, faculty sponsor.
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Missouri Alpha. Southwest Missouri State University, Springfield
Chapter President - Sherri Renegar
34 actives, 8 initiates

The Missouri Alpha Chapter held three regular monthly meetings during
the fall semester, eachof whichhad a faculty guest speaker. In addition, the
Chapter hosted a picnic for all mathematics faculty, staff and students.
Other 1988-89 officers: Gayla Evans, vice president; Ellen Caldwell,
secretary; Lynette Top, treasurer; John Kubicek, corresponding secretary; M.
Michael Awad, faculty sponsor.

Missouri Beta, Central Missouri State University, Warrensburg
Chapter President - Sharon Johnson
15 actives, 4 initiates

The Missouri Beta Chapter started the fall semester by challenging the
instructors to games of Win, Lose or Draw and Outburst. Then business
began for the members, whoagain volunteered time to the KME Math Clinic
fa tutoring clinic for algebra students). Our first regular meeting featured
Dr. Craven, a CMSU instructor, who talked about her summer trip to an
international teachers conference in Europe. For our October meeting, Dr.
Davenport, the head of the Department of Mathematics and Computer
Science at CMSU, spoke about the graduate school opportunities. The end of
the month we had a Halloween Party. November was busy with the book
sale (our major fund raiser). At the regular meeting, four new members were
initiated. For the program, two CMSU graduates came and spoke to KME
about their jobs as computer programmer and actuary. As the semester
came to an end KME members enjoyed a Christmas party, before taking
finals. Other 1988-89 officers: Ray Flach, vice president; Angela Duncan,
secretary; Sandy Dietz and David Beard, treasurers (fall and spring,
respectively); Homer Hampton, corresponding secretary; Larry Dilley and
Gerald Schrag, faculty sponsors.

Missouri Gamma.William Jewell College, Liberty
Chapter President - Susan Brannen
19 actives

Regular monthly meetings of the Chapter were held in the fall of 1988.
An area high school teacher gave a talk at one of the meetings, and
demonstrated how he uses a file card set of applications problems to arouse
interest among his students to the applications of mathematics. Other
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1988-89 officers: Alysia Hicks, vice president; Sarah Littlewood, secretary:
Joseph T. Mathis, treasurer, corresponding secretary and faculty sponsor.

Missouri Epsilon. Central Methodist College, Fayette
Chapter President - Laura Knight
14 actives

Other 1988-89 officers: Lesa Stoecklin, vice president; John Callaway,
secretary and treasurer; William D. Mcintosh, corresponding secretary and
faculty sponsor; Linda O. Lembke, faculty sponsor.

Missouri Eta. Northeast Missouri State University, Kirksville
Chapter President —Jim Daues
14 actives, 12 initiates

Other 1988-89 officers: Wes Clifton, vice president; Shelle Palaski,
secretary; Dave Smead, treasurer; Mary Sue Beersman, corresponding
secretary; Mark Faucette, faculty sponsor.

Missouri Iota. Missouri Southern State College, Joplin
Chapter President —Robert Stokes
12 actives

During the semester, programs presented at regular meetings included a
talk by Dr. Patrick Cassens on coding, a talk by Susan Paulson on
mathematical illusion, and a talk by Bryan Campbell on areas under curves.
Activities included raffling off the college president's parking place as a
money making project to support United Way. Both a Halloween Party and
a Christmas Party were held. Other 1988-89 officers: Susan Paulson, vice
president; Julie Stuewalt, secretary and treasurer; Mary Elich, corresponding
secretary; Joe Shields, faculty sponsor.

Missouri Kappa. Drury College, Springfield
Chapter President —Missy Arnold
6 actives

The first activity of the semester for the Chapter was a bonfire weiner
roast held at Dr. Allen's house. The winners of the Annual Campus Math
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Contest were Mark Duncan (Calculus I and below) and Connie Keith
(Calculus II and above). Prize money was awarded at a pizza party held for
all the contestants. At one of the Chapter's monthly meetings, Dr. Allen
gave a talk on the Muslim contribution to Mathematics. The end of the
semester was celebrated with a Christmas Party. The Chapter continued to
run a free Math Tutoring Service for all math students at Drury. Other
1988-89 officers: Donna Luetkenhaus, vice president; Connie Keith,
secretary; Scott Steubing, treasurer; Charles S. Allen, corresponding
secretary; Ted J. Nickle, faculty sponsor.

Nebraska Alpha. Wayne State College, Wayne
Chapter President —Jim Fisher
30 actives

Throughout the semester club members have monitored the
Math-Science Building in the evenings to earn money for the club. The club
participated in the college homecoming activities by painting and erecting a
billboard. Club members also manned a "Fish for Suckers" booth at the
Homecoming Carnival. Tom Hochstein was awarded the S25.00 book
scholarship which is given to a KME member each semester by the club.
With a grant from the Wayne State College Student Senate, KME and the
Computer Club purchased a Macintosh computer. At Christmas time,
KME. LDL, Computer Club, and Biology Club treated the Math-Science
faculty to a dinner out at the Wagon Wheel in Laurel. Inexpensive gifts
wereexchanged. Other 1988-89 officers: Darin Moon, vice president; Sherry
Linnerson, secretary and treasurer; Renee Harre, historian; Fred Webber,
correspondingsecretary; Jim Paigeand Hilbert Jons, faculty sponsors.

Nebraska Gamma, Chadron State College, Chadron
Chapter President - Kim Sedlacek
15 actives, 3 initiates

The Chapter helped to host the fall convention for the Nebraska
Association of Teacher's of Mathematics (NATM). The convention was a
huge success. We had 28 presentations during the day and 108 teachers
attended. There were also many CSC faculty members and students who
attended the sessions. We initiated three members last semester. Other
1988-89officers: Michelle Dodd, vice president; Pat Reilly, secretary; Betty
Rudnick, treasurer; James A. Kaus, corresponding secretary; and Monty G.
Fickel, faculty sponsor.
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New York Alpha. Hofstra University, Hempstead
Chapter President - Pamela Caplette
8 actives, 4 initiates

Other 1988-89 officers: Michelle Lisi, vice president; Carol Ann
Sutherlin, secretary; Howard Robinson, treasurer; Stanley Kertzner,
correspondingsecretary and faculty sponsor.

New York Eta, Niagara University, Niagara University
Chapter President —Christine Carbone
15 actives

We have been undergoing a reorganization this school yearand were able
to have only one fall meeting. Our problem at this timeis finding a meeting
time which will fit the various students' schedules. We are currently
planning our annual banquet/initiation and hope to have an alumnus as
speaker. Other 1988-89 officers: Laura Plyter, vice president; Any Potter,
secretary; Theresa Toenniessen, treasurer; Robert Bailey, corresponding
secretary; Kenneth Bernard, faculty sponsor.

New York Kappa. Pace University, New York
Chapter President —Antonia Marzella

Other 1988-89 officers: Marya R. Doery, vice president; Louis V.
Quintas, corresponding secretary; John W. Kennedy and Martin Ketle,
faculty sponsors.

Ohio Gamma. Baldwin-Wallace College, Berea
Chapter President - Michael Jakupca
16 actives

Other 1988-89 officers: Kimberly Hinkle, vice president; Eric Angyal,
secretary; Cheryl Soltis-Muth, treasurer; Robet Schlea, corresponding
secretary and faculty sponsor.
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Ohio Zeta. Muskingum College, New Concord
Chapter President - ReginaDolick
24 actives, 5 initiates

Some fall activities: September - organizational meeting; October -
initiation with an outside speaker; November - two outside speakers. Other
1988-89 officers: Sophia Asghar, vice president; Julie Clark, secretary;
Karen Allender, treasurer; Carolyn Crandell, corresponding secretary; Russell
Smucker, faculty sponsor.

Oklahoma Alpha. Northeastern State University, Tahlequah
Chapter President - Michelle Harper
51 actives, 11 initiates

This fall the Oklahoma Alpha Chapter sponsored a talk by Dr. Stanley
Eliason, Head of the Mathematics Department at the University of
Oklahoma. He used mathematical induction to discuss "how to cut a cake
fairly." Suzanne Blackwell, Chapter vice president, was a finalist for the
1988 Northeastern State University homecoming queen. She was sponsored
by our Chapter. Mathematics professors donated textbooks to KME's very
successful book sale. Our motto was "50 cents per inch" (thickness of the
book). The fall, 1988, initiation ceremonies wereheld in the banquet roomof
the Sirloin Stockade Restaurant in Tahlequah. At our December Christmas
party, we awarded $5.00 to the person telling the best math joke. Other
1988-89 officers: Suzanne Blackwell, vice president; Shell! Phillips, secretary
and treasurer; Joan E. Bell, corresponding secretary and faculty sponsor.

OklahomaGamma. Southwestern Oklahoma State University, Weatherford
Chapter President - Kellie Logan
20 actives

The Oklahoma Gamma Chapter of KME participated in the
homecoming parade this fall. We had a fund-raising project to help raise
money to send students to the national convention. Other 1988-89 officers:
Amy Bogwell, vice president; Rhonda Hollrah, secretary; Ajith
Dharmawardhana, treasurer; Wayne Hayes, corresponding secretary; Robert
Morris, faculty sponsor.



Pennsylvania Delta. Marywood College
2 actives
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Induction of new members and election of officers will take place in
spring, 1989, semester. Sister Robert Ann von Ahnen is corresponding
secretary.

Pennsylvania Iota. Shippensburg University, Shippensburg
Chapter President - Elizabeth Weller
14 actives, 9 initiates

Other 1988-89 officers: John Thompson, vice president; Tina Fiory,
secretary; Fred Nordai, treasurer; Lenny Jones, corresponding secretary; Rick
Ruth, faculty sponsor.

Pennsylvania Kaona. Holy Family College, Philadelphia
Chapter President —Scott Kromis
7 actives, 10 initiates

KME members hold their meetings every third Thursday of each month.
Problems are solved and discussed. Plans are being made for the initiation
into KME on March 13, 1989. Members continue to tutor (free of charge) in
mathematics. The demand from the Freshmen at the College to be tutored
is very great. The members have to decide how to handle this. Other
1988-89 officers: Eric Mebler, vice president; Constance Hefner, secretary
and treasurer; Sister M. Grace, corresponding secretary; Linda Czajka,
faculty sponsor.

Pennsylvania Lambda. Bloomsburg University, Bloomsburg
Chapter President —Ann Vnuk
19 actives, 7 initiates

Dr. Edward Kerlin presented his Graphics Editor at one of our meetings.
Other 1988-89 officers: Joshua Payne, vice president; Theresa Creasy,
secretary; Karen Billingham, treasurer; James Pomfret, corresponding
secretary; John Riley, faculty sponsor.
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Tennessee Alpha. Tennessee Technological University, Cookeville
Chapter President - Michael Allen
10 actives

Co-op opportunities were discussed at a fall meeting along with plans for
a January ski trip. (No snow, no trip.) Other 1988-89 officers: Chris
Roden, vice president; Sarwat Kasmiri, secretary; Curt Griggs, treasurer;
Frances E. Crawford, corresponding secretary; Ed Dixon, faculty sponsor.

Tennessee Delta, Carson-Newman College, Jefferson City
Chapter President - Trevor Roberts
17 actives

Other 1988-89 officers: Sabrina Hall, vice president; Shannon Langley,
secretary; Jackie Kearney, treasurer; Verner Hansen, corresponding
secretary; Carey Herring, faculty sponsor; Denver R. Childress, interim
sponsor.

Texas Aloha. Texas Tech University, Lubbock
Chapter President - Karen Engel
25 actives

Guest speakers spoke on several topics in applied mathematics at
meetings. Other 1988-89 officers: Gregory Henderson, vice president; Paula
Kajs, secretary; Scott Ellett, treasurer; Robert Moreland, corresponding
secretary and faculty sponsor.

Wisconsin Aloha. Mount Mary College, Milwaukee
Chapter President - Maureen Pastors
3 actives, 7 initiates

Wisconsin Alpha KME members and pledges and faculty sponsored and
coordinated a mathematics competition for high school junior and senior
young women on November 19, 1988. Top individual prize is a partial
scholarship to Mount Mary College. Other 1988-89 officers: Julie Elver,
vice president; Maureen Pastors, secretary; Julie Elver, treasurer; Sister
AdrienneEickman, corresponding secretary and faculty sponsor.
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Wisconsin Gamma. University of Wisconsin- Eau Claire, Eau Claire
Chapter President - Renee Kozlowski
49 actives, 28 initiates

The fall semester of the 1988-89 year was started off with our annual fall
initiation. As has been the case for the last several years, this initiation is
held off-campus at one of the nicer restaurants in town. Well attended by
relatives and friends of the initiates, the ceremony was concluded with a
formal dinner and a presentation by a member of the Math Department-
Monthly meetings at whichone or more students gave mathematical talks to
the club were the mainstay of the rest of the semester. In addition, we had a
successful fundraiser selling popcorn and at Thanksgiving time the club got
together for a Thanksgiving dinner and celebration. Other 1988-89 officers:
Renee Wagner, vice president; Brian Vlcek, secretary; Jennifer Linn,
treasurer; Tom Wineinger, corresponding secretary.
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1M MEMORIAM

Carl V. Fronabarger
Dr. Carl V. Fronabarger died August, 1988.

Dr. Fronabarger taught mathematics at Southwest
Missouri State University for many years after Joining
the faculty in 1941. He served as head of the
Department of Mathematics from 1965 until 1967, when he
became Director of the Division of Science and
Technology. The title was later changed to Dean. He
held that position until his retirement in June, 1974.

Among the professional duties he enjoyed and did
well were editing The Pentagon, the magazine of the
Kappa Mu Epsilon Society, from 1953 to 1959, and serving
as National President of that Society from 1959 to 1963.
Kappa Mu Epsilon is the national honor society in
undergraduate mathematics.

Louise Stokes Hunter

Dr. Louise Stokes Hunter died December, 1988

Dr. Hunter took the necessary steps to establish
the Virginia Alpha Chapter of KME in 1955 at Virginia
State University (the first chapter in the State of
Virginia). She was awarded the rank, Professor
Emeritus, by the Board of Visitors of Virginia State
University on May 5, 1974, upon her retirement as
Professor of Mathematics.

On May 31, 1978, the Virginia Alpha Chapter of KME
established an annual award titled "The Louise Stokes
Hunter Award". The first award was presented by Dr.
Hunter, to a Mathematics major on Honors Day in 1979.
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IF YOUtt SUBSCRIPTION HAS EXPIRED

We hope you have found THE PENTAGON both
interesting and helpful. Your suggestions are always
welcome and may be written on this form. They will be
forwarded to the Editor.

If you wish to renew your subscription for two
years, please send $5* to THE PENTAGON, Department of
Mathematics, Western Illinois University, Macomb,
Illinois 61455.

Please give your name below in the manner in which
you wish your mail addressed (Miss, Mrs., Prof., etc).
If your name has changed, please indicate also the name
to which THE PENTAGON was sent.

Name

Address.

City

♦Foreign subscriptions require an additional $1 per year
for postage.

Problems are needed for
The Hexagon
The Cursor

The Problem Corner

Please consider submitting an article or a problem to
the appropriate editor.


