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western civilization; to develop an appreciation of the power and
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A Note On Extrema
Cm Ming Chow

Highland, Michigan

There are many mathematics problems in which we are concerned
with extrema values. The usual procedures for finding the extrema
of a continuous and diffcrentiable function in certain intervals are:

1. Find all zeros of its first derivative. 2. Use second derivative test to

find extrema. 3. If the second derivative test fails, use first derivative
test. 4. Find and eliminate all possible inflectional points which also
have zero first derivatives. All these procedures are somewhat tedi
ous because of the lengthy calculations involved.

This note will present a procedure which omits some of these
calculations. Using the three theorems proved in this article, the
possible inflectional points with zero first derivatives can be deter
mined. After that all extrema can be found directly without using
first and second derivative tests. Six examples are given at the end
of this note. For convenience, a real polynomial function will serve
as the model of the discussion that follows.

Lemma 1. Let f(x) = a„xn + a^"-1 + ... + a„_, + a„, n>2, be a
real polynomial function:

1. // a,, > 0 and n is odd, then the graph of f(x) is concave down
ward on the extreme left and concave upward on the extreme
right.

2. // a„ > 0 and n is even, then the graph of f(x) is concave
upward on both the extreme left and right.

3. // a„ < 0 and n is odd, then the graph of f(x) is concave up
ward on the extreme left and concave downward on the ex
treme right.

4. // «„ < 0 and n is even, then the graph of f(x) is concave
downward on both the extreme left and right.

Proof: (Case 1) We know that a real polynomial function is con
tinuous and differentiable for all x, Thus

f'(x) = aBnx"-1 + a, (n - 1) x—s + ... + «„_,,
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f"{x) = a0n{n - I)x»-* + ax(n - 1) (n - 2)x»-3 + ... + a„_r
Since n is odd and ao>0, we have

lim f"(x) =x-- [a„n(n - 1) +at(" ~]) (" ~2) +... + a^1
x-»±oo

This result shows that the graph of f(x) on the extreme left is
always concave downward and the graph of f(x) on the extreme
right is always concave upward.

The other cases can be similarly proved.

The four cases can be easily remembered by the following graphs:

Case 1:
/• "N

a„>0 and n odd

/ ^Case 2:
\ «„>0 and n even

Case 3:
/'\/

a„<0 and n odd

Case 4: a„<0 and n even
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Theorem 1. Let f(x) = a„xa + a^"-1 +...+ <iM_,x + a„, n>2,
be a real polynomial function and E be the number of extrema:

1. // a0 > 0 and n is odd, then E is even. If E =£ 0, the first left
extrema is a maximum, then the minima and the maxima
alternate. There are equal number of maxima and minima.

2. // a0 > 0 and n is even, then E is odd. The first left extrema
is a minimum, then the maxima and minima alternate. The
number of minima is one more than the number of maxima.

3. // a„ < 0 and n is odd, then E is even. If E z£ 0, the first
left extrema is a minimum, then the maxima and minima
alternate in order. There are equal number of maxima and
minima.

4. // a„ < 0 and n is even, then E is odd. The first left extrema is
a maximum, then the minima and the maxima alternate. The
number of maxima is one more than the number of minima.

Proof: From Lemma 1, we know that the extreme left side of f(x)
is always concave downward and increasing, and the extreme right
side of f(x) is always concave upward and increasing. If it is con
tinuously increasing from left to right, then there will be no
turning point (E = 0). Otherwise it must reach a maximum from
the left first. Then it becomes concave downward and decreasing,
thus it must pass through another turning point (minimum) before
it becomes concave upward and increasing. This change can be re
peated. Therefore the total number of extrema must be even, and
the maxima and minima must be equal in number and alternate in
order. Thus the proof is completed.

The other cases are similarly proven.

Theorem 2. // f(x) is a real polynomialof degree n, then the num
ber of different zeros of f'(x), F'a, is the sum of the number of ex
trema of f(x), E, and the number of inflectionalpoints with zero first
derivatives of f(x), /„. That is, F'0 = E + /„.

Proof: Let P be a point of f(x) with zero first derivative. If the first
derivatives of both the closest left and right neighborhoods have
different signs, then we know that P is an extremum. If they have the
samesign, then P is known as an inflectional point. These facts show
that if f(x) has F'a points with zero first derivatives, then they must
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be either extrema (£) or inflectional points (/„). Therefore F'„ = E
+ /„. Thus the proof is completed.

Lemma 2. // /(x) is a real polynomial function of degree n!>2,
then it can have n —2 or less inflectional points.

Proof: If (x,,/(x,)) is an inflectional point of f(x), then x, is a zero
of /"(x). The degree of /"(x) is n —2, therefore there are n —2 or
less possible inflectional points.

Lemma 3. Let f(x) be a real polynomial function of degree n]>2.
// n is even, then the total number of possible inflectional points
must be even but no more than n —2. If n is odd, then the total num
ber of possible inflectional points must be odd and no more than
n-2.

Proof: If n is even, by Theorem 1 we know that both ends of /(x)
must be either concave upward or concave downward. But each
time an inflectional point occurs, it changes the concavity direction
once. Therefore it must occur an even number of times to make
both ends have the same directed concavities. Also by Lemma 2,
inflectional points can only occur n —2 or less times. Thus the total
number of possible inflectional points must be even and no more
than n —2. Similarly, we can prove the second part of the lemma.

Lemma 4. There is only an odd number of inflectional points
between two consecutive extrema.

Proof: A maximum point is contained in a concave downward
curve and a minimum point is contained in a concave upward curve.
Thus by the definition of a inflectional point, we know that there is
at least one inflectional point between two consecutive extrema.
If there is more than one inflectional point between two consecutive
extrema, then an even number of inflectional points must be added
in between so that the directed concavity of the second extremum
will not be changed.

Lemma 5. A necessary condition for the first derivative of f(x) at
an inflectional point to be zero is that the curve on its left is either
concavedownward and increasing or concave upwardand decreasing.
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Proof: The following two figures represent the two cases of this
Lemma. The first derivative at inflectional point P can be zero only
if the first derivatives of both sides of point P approach zero. From
the two figures we can see that in order to have the first derivative
of the left side of point P approach zero, it is necessary to have the
left side of point P be either concave downward and increasing or
concave upward and decreasing.

Lemma 6. A real polynomial function can not have two consecu
tive inflectional points with zero first derivatives.

Proof: In both cases of Lemma 5, the curves on the right side of
the inflectional points do not have the necessary condition of
Lemma 5. Therefore the following inflectional point of each men
tioned inflectional point can not have a zero first derivative.

Lemma 7. // there are I possible inflectional points between two

consecutive extrema, then at most there can be /„=—^—inflectional
points with zero first derivatives.

Proof: By Lemma 6 and also from the following graph, we can
see clearly that only the even numbered inflectional points can
possible have zero first derivatives because they alone satisfy the

requirements of Lemma 5. But by Lemma 4, we know that / is al

ways an odd number. Thus wecan conclude that at most /„ = —^—-
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Lemma 8. Let f(x) be a realpolynomial of degree n^2, then there
n — E — 1

are at most I0 = = inflectional points with zero first

derivatives.

Proof: Case 1. If n is odd, then by Theorem I we know that £
must be an even number. If £ = 0 and n = 3, then at most f(x) may
have one inflectional point with zero first derivative. Thus /„ =
3 — 1
—n— = 1. If £ = 0 and n = 5, then at most /(x) may have two

5 — Iinflectional points with zero first derivatives. Thus /„ = ——— = 2.

(Refer to figures below.) In general, if £ = 0 and n is odd, then at

most /(x) can have I0 =—T—inflectional points with zero first

derivatives.

-r^- J
n = 3,
£ = 0, £ = 0,

If £ is a non-zero even natural number, then £ = (« —I) —2Ar
where N is some whole number. The curve of f(x) will need £ —1
inflectional points with non-zero first derivatives to maintain the
concavity directions. If n = 5 and N = 0, then £ = (5—1) - 2(0) =

5—1 4
4 and /„ = — = 0. If n = 5 and N = 1, then £ = (5 - 1) -

5—1 22(1) = 2 and /„ =—- —= 1. (Refer to figures above.) Thus

each time two extrema are added to the curve, two more inflectional
points with non-zero first derivatives are needed. Consequently one
possible inflectional point with zero first derivative will be elimi
nated. Therefore we conclude that when n is odd and £ is even, at
mnct ,_"-' E n-E-l.most Ia = -2_— = .
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Case 2. If n is even, then £ must be odd. We can prove, as in Case
, . , (n-2) £-1 n-£-l-1, that at most /„ = -—^—- T— = s •

Theorem 3. If f(x) is a real polynomial function of degree n>2,
F'a is the number of different zeros of f'(x), and l0 is the possible
number of inflectional points with zero first derivatives of f(x), then
at most

/.= "-(/•'..+ 1)

or is less than this number by a multiple of even natural number.

Proof: From Theorem 2 and Lemma 8, we know that at most

/,. = '^P"1- (1)
and

K -•• K + A, (2)

From (2) we substitute £ = £',, —/„ into (1), we have at most

_ „-(£'„-/„)-I

2/0 = n-F'B + /„-!,

/. = «- (/'.+ !)•

From this result and Lemma 6, we know that at most I„ = n —(F'„+ 1)
or is less than this number by a multiple of even natural number.

The following examples illustrate the use of the three Theorems
proved above.

Example 1: Find the extrema of f(x) = x3.

Solution: Here n = 3 and F'B = 1. By Theorem I, we know that £
must be even. Also from Theorem 2, £'„ = £ + /„. It is clear that £
must be 0. Therefore we conclude that there is no extremum.

Example 2: Find the extrema of /(x) = x'.

Solution: Here n = 4 and £'„ = 1. By Theorem 3, at most
/o = 4 —1 —I = 2, or 2 - 2 =0. But /„ = 2 is impossible since by
Theorem 2, F'0 > /„. Thus by Theorem 1, we know that (0, /(0)) is
the minimum point.
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Example 3. Find the extrema of f(x) = x3 - 6x2 + 9x + 1.

Solution: /'(x) = 3x2 - 12x + 9. The zeroes are x = 1 or 3.
Here n = 3, £'„ = 2. By Theorem 3, we know that at most I0 =

3-2-1 =0. Thus by Theorem 1, we know that (1, /(I)) is a
maximum point and (3, /(3)) is a minimum point.

7

2^
— X

Example 4. Find all extrema of f(x) = x4 +-^- - -lx-.
3

Solution: /'(x) = 4x3 + 4x2 - 8x. The zeroes are x = -2, 0, or 1.
Here n = 4, F'0 = 3. By Theorem 3, at most /„ = 4 - 3 - 1 = 0.
Thus by Theorem 1, we know that (-2, /(-2)) is a minimum point,
(0,/(0)) is a.maximum point, and (1, /(l)) is a minimum point.

Example 5. Find all extrema of f(x) =—- 1^L+ 3x- + 1.
Solution: f'(x) = x* - 7x2 + 6x. The zeroes are x = -3, 0, or 2.
Here n = 5, F'a = 4. By Theorem 3, at most /„ = 5 - 1 - 4 = 0.

By Theorem I, we know that (-3, /(-3)) is a maximum point, (0, /(0))
is a minimum point. (1, /(l)) is a maximum point, and (2, /(2)) is a
minimum point.

Example 6. Find the extrema of fix) = -£ - — + -^! + 1.
n ' 5 4 3

Solution: f'(x) = x4 - 3x3 + 2x2. The zeroes are x = 0, I or 2.
Here n = 5, F'0 = 3. By Theorem 1, we know that £ must be

even. Also by Theorem 3, at most /„ = 5 - 3 - 1 = 1. Thus there
must be one inflectional point with zero first derivative. Now we
have to find it:
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/"(x) = 4x3 - 9x2 + 4x = x(4x2 - 9x + 4) = 0.
/"(0) = 0, /"(0-) < 0 and /"(0») > 0.

Thus (0, /(O)) is the only inflectional point with zero first deriva
tive. Hence by Theorem I, we know that (1, /(l)) is a maximum
point and (2, /(2)) is a minimum point.

y y
y

u
J->^^L — X

From the above examples, we can see that we have indeetl elimi
nated many unnecessary calculations and tests for extrema.



Antifactorials

Mark Atkins

Student, Monte Vista High School, Spring Valley, California

The factorial function is a familiar and frequently used function
when definedover the positive integers. It is usually not defined over
a larger domain. In particular, the factorial function is not usually
defined so as to be continuous and to have an inverse. The purpose
of this article is to discuss such an extension of definition.

Over the positive integers, the factorial function of x,
written x!, is defined as follows

I! = 1

2! = 2 . 1

3! = 3 • 2 . 1

1! = 4 • 3 • 2 I

x! = x • (x-l)-(x-2)...3-2« 1
or

2'

Although x! is easily computed for any positive integer value of x,
it is clear that the computation is dependant on the size of x. There
exists no fixed equation in which the value of x can be "plugged in."

As longas one works with the positive integers, it is relatively easy
to solve for x in equations such as x = 6! or 6 = x!. But is there a
solution for something like x! = 10? Within the positive integers
there is no solution since 3! < 10 and 10 < 4!

When the values of x are positive integers, the graph of >• = x!
is a set of isolated points. Suppose that the points are connected
to form a continuous curve instead, such as shown in Figure 1.
From such a curve, a value of x such that x! = 10 could be estimated
by finding where the line y = 10 intersects the curve and dropping

12
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a vertical line from that point. Where that line intersected the x-axis
would be the value of x, about 3.6 in this case.

But the resulting estimation is
useless unless a suitable definition

or meaning of a non-integer fac
torial can be found. The definition

will have to be extended so as to

still yield the same values for posi
tive integers as before.

8

One way 3.5! might be inter
preted is to form factors by sub
tracting one from each previous 7
factor, stopping short of zero and
then finding the product. Thus we
would have for any positive g
number x.

x! = (x)(x-l)(x-2)...(x-n),
0 < x-n < 1

Then, for example,

3.5! = (3.5) (2.5) (1.5) (0.5) = 6.5625.

Unfortunately, this function is dis
continuous at each integer, since
the limit from the left is clearly
the usual factorial value while the
limit from the right is zero. The
desired continuous curve is clearly
absent and consequently this for- ].
mula for finding factorials over the
positive reals must be abandoned.

There is only one minor point wrong in the preceding procedure.
Note that the partial products of 3.51 are constantly increasing until
the very last factor is used, when the answer is suddenly decreased:
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(3.5) = 3.5
(3.5) (2.5) = 8.75
(3.5) (2.5) (1.5) =13.125
(3.5) (2.5) (1.5) (0.5) = 6.5625.

The assumption was that the last factor should be greater or equal
to zero. Clearly it would be better if it is greater than or equal to
one. Thus we can define x! for the positive reals greater than 1 as
follows:

x! = (x) (x-1) (x-2)... (x-n) where 1 < x-n < 2

Using this new definition we have

(3.5) ! = (3.5) (2.5) (1.5) = 13.125.

Using this new definition a continuous factorial curve as in Figure 1
is produced, beginning with x = I.

We can now begin to study the inverse of .v! as defined above. The
name "antifactorial" is appropriate to name this inverse, just as
antilogarithm names the inverse function of logarithms. We need a
useful symbol to mean "antifactorial". The factorial symbol "!" re
versed looks like "!", but this new symbol looks much like the com
plex unit ». There is another symbol used for factorial x, |_x_; its
reverse, [x~, is simple to write, and has the advantage of covering a
large expression. Thus, we will adopt fx to read "antifactorial x"
and thus |~x! = x and fx ! = x for x> 1.

Now if 1<x<2, then x! = x = fT. If 2<x<3, then x! = x(x-l)
from our definition above. Furthermore, 2! < x! < 3! or 2 < .v! <
6 for this interval. Let y = x!, so we have

y = x! = x(x—1)
y = x2 — x

0 = x2 — x — y

Applying the quadratic formula and taking the positive square root
(the negative of the square root is useless here) yields x =
1 + V 1 + 4y 1 + V 1 +4y .=^2 - But py = [x! = x, so |y = i-^ i- whenever
2 < y < 6.
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If 3 < x < 4, then 3! < x! < 4! and if y = x!, 6 < y < 24.
In this interval, we have the equation

y = x! = x(x-l) (x-2)
= x:' - 3x2 + 2x

If, for example, y = 10, then we have the equation x:i — 3x2 4- 2x
-10 = 0 to solve. This cubic equation can be solved using the
classical solution

The calculations in this solution are very tedious and difficult, so
iteration techniques are recommended for finding |~y for 6 < y < 24.
If a computer is available, the above formula is the easier method
of solution.

Finding antifactorials for the interval 24 < y < 120, involves
solving the fourth degree equation:

y = x! = x(x-l)(x-2)(x-3)
= x' - 6x:' + Ilx2-6x

This would appear to be even more difficult than the previous
cubic. However, solving the resolvent cubic equation always yields
the answer of 2. This fact about the biquadratic solution simplifies
the general formula lor 24 < y < 120 to

P 2

There is no general solution for fy* if y > 120, since the resulting
equations are of fifth degree or higher and, as is well known, no
general solution exists.

Although presently there appears to be no need lor the general
factorial definition and its inverse as presented here, they are an
excellentexample of how a strictly integer function can be extended
to a continuous function with an inverse, much as square roots and
logarithms were extended. Factorials are becoming increasingly more
useful and antifactorials could suddenly become a vital part of
physics or some other field.
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Here is a brief table of some factorials and antifactorials as calcu

lated using a computer:

x! r^~
1 1 1.00000

2 2 2.00000

3 6 2.30278

IT 7.68069 2.34163

4 24 2.56155

5 120 2.79129

6 720 3.00000

7 5040 3.08674

8 40320 3.16631

9 362880 3.24004

10 3628800 3.30891

II 39916800 3.37364

12 479001600 3.43484

13 6227020800 3.49294

14 87178291200 3.54831

15 1307674368000 3.60125

16 20922789888000 3.65202

17 355687428096000 3.70080

18 6402373705728000 3.74784

19 121645100408832000 3.79323

20 2432902008176640000 3.83714



One Possible Algebraic Structure

For Ordered Pairs of Real Numbers
Earl W. King and F. Max Stein

Student and Faculty, Colorado State University*

1. Introduction. When one studies ordered pairs of real numbers,
he is often concerned with functions. In other cases ordered pairs
may be thought of as vectors, and certain binary operations are
defined between these ordered pairs. In this paper we will consider
ordered pairs with an alternate definition of addition as one binary
operation and will examine the resulting algebraic structure.

We will also examine the multiplication of ordered pairs as
a second binary operation and see some of the geometrical
consequences.

2. Addition of ordered pairs. Let S = {x,,x,,... ) be a set of
ordered pairsof real numbers, and let the ordered pair x be denoted
by

x = (x,y)-

We shall refer to x as the first coordinate and y as the second coordi
nate. The ordered pairs x, = (x^y,) and x2 = (x2,y.,) are defined to
be equal if and only x, = x2 and y, = y.., and we write

The addition of two ordered pairs x, and x2 is defined by

x, + x, = x., where x3 = (x,y2 + xj, , y,y2).

Theorem 1. // i", is the set of elementsof S with second coordinate
zero, then the set S, = {x,,x2,... } forms an abelian group under
addition.

Proof: We need to check the requirements for S, to form a group
under addition.

'Prepared in an Undergraduate Research Participation Program at Colorado
Stale University by Mr. King under the direction of Professor Stein.

17
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(a) The set S, is closed under addition since for x,, x2 € $,, then

x, + x2 = x3

is an ordered pair of real numbers with the second coordinate not
zero; i.e., x3 e Sr

(b) Addition of the elements of S, is associative since

(x, + x2) + x3 = (x,y2 + x#t, y,y2) + (x3,y3)
= (x,yj3 + x&J» + xjy.,, y,y,.y:l)

and

x, + (x... + x„) = (*,,y,) + (x,ya + x::y,,, y,,y..)
= (x,yjx + ^-.y,y:! + *.ty,y.., y,y2y„),

the same result.

(c) The left and right additive identity is 0 = (0,1), since for any x
inS„

x40 = 0 + x = x.

a result which follows from the definition of addition.

(d) The left and right additive inverse of x = (x,y) is -x =
(-x/y2, 1/y) such that

x + (-x) = (-x) + x = 0

a result easy to check from the definition of addition. (Note that
elements of S with second coordinate zero do not have additive
inverses.)

(e) The elements of S, commute under addition since

x, + x., = (x.y, + x^,, yty2)

= (y-.*. + y,*s,yj,) = *- + *,-

This completes the proof of the theorem.

3. Multiplication of Ordered Pairs. The multiplication of two
ordered pairs of S, say x, and x2 is defined by

x,«x2 = (x,x2, y,>'..).
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Let the set Ss consist of the elements of the set S except for those
elements of S that have at least one zero as a coordinate.

Theorem 2. The set S., forms an abelian group under mulipli
cation.

Proof: We need to check the requirements for S2 to form a group
under multiplication.

(a) If x, and x._. are elements of S.., then S., is closed under multipli
cation since

x.'x. = (x,x.,, y,y2)

is again an ordered pair of real numbers in S„.

(b) If x, and x2 are elements of S.„ then

(x, • x,.) • x., = (x,x.., y.y.) • (x,, y;!)
= (.v,x2x.. ,y,y2y;1)
= (xx.y,)'(x.,x.t,y.y,)
= x, • (x._, • X..).

Thus the associative law holds.

(c) The left and right multiplicative identity lor any element x in
Sj is I = (1,1) and is such that

x • I - I • x — x.

(d) The left and right multiplicative inverse for x = (x,y) is x_1 —
(l/x,l/y), an element of S„. For any x in S.,,

x • x-1 = x-' • x = I.

(e) The elements ol S„ commute under multiplication since

x, • x._. = (x.x.., y,y2) = (x2x,, y2y.) = x2 • x,.

This completes the proof of the theorem.
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4. Preliminary Conclusions. We have shown that the set S, forms
an abelian group under addition and the set S2 forms an abelian
group under multiplication. However, the set S„ together with the
additive identity for S, does not form a field with respect to the two
operations defined. First, the distributive law for elements of S„ does
not hold for addition since

x,*(x2 + x:l) = (x, ,y,)'(xjx+ x^y...,y2y3)
= (Xi*J* + x,x3y3, y,y.jy3)

x, • x2 + x, • xs = (x,x2, y,y2) + (x,xa, y,y3)
= (*i*JW. + x.x-j.y,, y,^,),

which is not the same result. Secondly, the set S2 is not closed under
addition since there exist elements x, and x2 in 52 such that x, + x..
is not in S... For example, let x, = (-2,3) and x2 = (4,6), then

x, + x2 = (-2,3) + (4,6) =•• (-12 + 12, 18) = (0,18)

which is not an element of S...

y

. -x, = (-2,2) i

-x, = (-2,1)
__ i

0 = (0,1)

*. = (

. x3 = (1/2,1/2)

— i

x4 = (0,-1) =-x4

/__ _
-x2 = (-1/2,-1) x2 = (1/2,-1)

FIGURE 1
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5. The Geometry Associated With Elements of S. From Figure 1
we are able to see the relationship between an ordered pair x and
its additive inverse (if it has one). Under addition, points in the first
and fourth quadrant have additive inverses in the second and third
quadrants respectively. It is interesting to observe that for points
which have 1 or -1 as a second coordinate, the additive inverses are
found by reflecting these points in the y-axis. Also note that the only
points which are their own additive inverses are (0,1) and (0,-1).
Recall that all points on the y-axis have additive inverses while no
points on the x-axis do.

y

x, = (2,2)

x„ = (-1,1) = X,

x3 = (-1,-1) = xs

I = (1,1) = I-

1
x, '=(1/2.1/2)

-•- x

\ x., =(1,-1/2)

x, = (1,-1) = x4 '

x5 =(1-2)

FIGURE 2

The multiplicative inverse of a point (having an inverse)
which lies within the square of side 2 is outside this square, see
Figure 2. In particular, a point (x,y) lying in the first quadrant has
an inverse (u,v) such that if0<x<l,0<y<l, then 1 < w,
1 < v. If 0 < x < 1, 1 < y, then 1 < u, 0 < v < 1. If 1 < x,
0 < y < I, then 0 < u < I, 1 < v. Finally, if I < x, 1 < y, then
0<m<1,0<w<L Inverses of points in the other quadrants
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can be determined similarly. Points having inverses and which lie
on a side of the square have inverses on the same side of the square
extended and in the samequadrant, and vice versa. The points (1,1),
(1,-1), (-1,1), and (-1,-1) are their own inverses.

y =-l/x/

\y=-X /

y \\ y = 1/x

\ ^/y ~x

X

\ x„ ,^
\/ - ^~

Z3fN-^T
1 Al

Zi I ,_ _4 x2

FIGURE 3

Figure 3 illustrates geometrically how x-1 can be obtained for a
point x in the first quadrant. For any point x, = (x,,y,) in the first
quadrant, draw a horizontal line from x, until it intersects the curve
y = 1/x in the point z, = (l/y^y,). Now draw a vertical line from
z,. From x, draw a vertical line until it intersects the curve y = 1/x
in the point z„ = (x,,l/x,). Draw a horizontal line from z2 until it
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intersects the vertical line drawn from z,. Call the point of this
intersection z3, where z3 = (1/y,, 1/x,). Finally, reflect z3 in the line
y = x to obtain the point x,~l = (l/x,,l/y,). For a point in another
quadrant the inverse can be obtained using the other branch of the
hyperbola y = 1/x or the hyperbola y = -1/x and the line y = -x.

6. Conclusion. The reader may have already noticed that the
operations of addition and multiplication that we have used for
ordered pairs are similar to those used for adding and multiplying
fractions. For example, adding the two fractions a/b = (a,b) and
cjd = (c,d), we get (a,b) + (c,d) = a/b + c/d = (ad + bc)/bd =
(ad + be, bd). For fractions we customarily reduce to lowest terms,
and thus, for example, 2/4 = 1/2; in our case (2,4) ^ (1,2).

For fractions if x, = x2, then x, = a x2 and y, = a y.., a ^ 0. Here
we have a set of equivalence classes which geometrically are straight
lines through the origin. The additive identity (0,1) is then equiva
lent to any point on the y-axis, and the additive inverse of x = (x,y)
is -x = (-x/y2, 1/y) = (-x,y), after the fraction is reduced to lowest
terms. The additive inverse of x is thus the reflection of x in the
y-axis.

The multiplicative identity is (1,1) = 1/1; and the equivalence
class for the identity is thus any point on the line y = x, except the
origin, of course.

For fractions the multiplicative inverse of x = (x,y) would ap
parently be x-1 = (1/x, 1/y) = (y,x), the reciprocal. A look at the
following simple example shows that something more is needed for
a geometrical interpretation in this case. If x = (2,3), the inverse
would apparently be (3,2). But both points (2,3) and (3,2) lie outside
the unit circle with center at the origin —and both points lie at the
same distance from the origin. The discussion is terminated with
this problem unresolved. A simple explanation can be made, how
ever, if the ordered pairs are considered as fractions.
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Logarithms
Janet Mauck

Student, Anderson College
College Algebra was a breeze
Until logarithms.
Math was easy as the ABC's
Until logarithms.
Until logarithms
I had no problems in my life
Until logarithms
My mind was never torn by strife
Until logarithms
I liked mathematics (well, sort of).

Logarithms are
Base systems in reverse
But really they are
The exponential inverse.
Got that all O.K.?

You didn't

Too bad, I'll have to go on anyway.

We were puzzled enough
Learning logs in base ten
(Where everything is backwards, you see)
Then our minds became confused again
When we're told a better base is e.

Then I discovered antilogs
Which filled my heart with gladness
At last! A term that described

How I felt about all this madness.

But my newfound joy turned to sadness
When I learned antilogs aren't against logs
Instead they reverse the inverse
Or inverse the reverse

Or something like that.

Until logarithms
I thought polynomial functions were tough
Now they seem as easy as two plus two
Oh, logarithms, of you I've had enough!
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A Lattice Point Problem

Dana S. Nau

Student, University of Missouri at Rolla

One of the problems on the 32nd annual William Putnam Mathe
matical Competition was the following: "Let there be given nine
lattice points (points with integral coordinates) in three dimensional
Euclidian space. Show that there is a lattice point on the interior
of one of the line segments joining two of these points." After finish
ing the test, the author became interested in generalizing the prob
lem to n dimensions for arbitrary n; i.e., how many lattice points
can be given in n dimensional Euclidian space without there being
a lattice point on the interior of at least one of the lines joining
any two of the points? As it turns out, the answer is 2", and the
proof of this theorem is the subject of this paper.

The author is not familiar with any conventional symbols (if
there are any) used to characterize lattice points and related con
cepts. Therefore, it is necessary to define notation for a number of
the concepts used below. The use of so much notation may be con
fusing to the reader; however, without the use of notation, the
proofs presented would be even more confusing, as well as much
longer. The following listing presents the various notations, with
explanatory notes where necessary.

1. I * | — \^ii»^i'j» • • • » X^h)

i 2 — v^'-i'^?:?' * • • »X^n)

denotes a set of m lattice points in n dimensional Euclidian space.
Since a lattice point is defined to be a point with integral coordi
nates, it follows that each one of the xu is an integer.

2. L(PitPj) denotes the set of all points on the interior of the line
segment between P, and Pf, where Pj and Pj are lattice points. In
other words, this is the set of all points on the line segment between
Pj and Pj except for the endpoints P-, and P; themselves.

25
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3. Si,-* = xik — xjk, where xik and xjk are the It'th coordinates of
the lattice points P{ and P,-. This is equivalent to taking the xfc'th
component of the vector starting at Pf and ending at P(. For an
illustration in two dimensions, see Figure 1, where 5j/, is the length
of the line segment PfA and Sih is the length of the line segment
/IP-

FIGURE 1

Pi = (5Ci,.X|2)
S9
IS

>*/ II

X

iT
1

< Oijl = *U ~Xhr
_Vt
14

Pi = (xh,xh) A - (xtl,xh)

O

Since P-, and Ps both have integral coordinates, it follows that the
8ijk are all integers.

4. A(, is defined to be the vector (8(^,8^.,.... ,Si/n), i.e., the vec
tor having initial point Py and terminal point P(. (See Figure 1)

-+~x.

5. M(Pt) =((-l)5"'1', (—l>a»i*.... , (-l)8,in). This expres
sion can be thought of as a point, a vector, or a row matrix; it
really doesn't matter which one, since the only property needed
here is that any two of the Af's are equal if and only if their cor
responding components are equal. Given a lattice point Pf, M(Pt)
takes the vector A^, looks at the value of each component of the
vector, and assigns to it a 1 or a -1, depending on whether the
component is even or odd. Thus M(P}) is a collection of n l's and
-l's, separated by commas.

Now that the reader has been introduced to the notation, we will
proceed with the derivation of the answer to the problem, by means
of two lemmas and the theorem.

Lemma 1. Let Pt and Pf be lattice points in n dimensional Eu
clidian space. Then L(Pi,Pf)contains no lattice points if and only if
the greatest common divisor g = GCD (8ift,Sij2 8(j„) is 1.
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Proof: (-») Suppose g ^ 1. Then g > 2, since the GCD is a
positive integer. Furthermore, by the definition of the GCD, 8ifk/g
el,k = 1,2 n, where/ is the setof integers. The vectorequation
of the line through P( and Pf is

P = Pj + iAii, (1)

where P is any point on the line, Aj/ is the vector between Pf and Pf
as defined above, and t is a parameter. For 0 < I < 1, P will be in
L(Pl,Pi). Certainly, 0 < 1/g < 1. Therefore, P„ = P, + (l/g)Au is
in L(PiJ'i). But then,

*".. = (*>i. *>,• */-.) + (8i>./g •Si>,/g. - • •. 8i;»/g)
= (*>• + 8ih/g,xh + 8ih/g x/n + 8iln/g).

Therefore, since xjk and 8iik/g are both integers, k = 1,2,...,«, it
follows that P„ is a lattice point.

(«-) Suppose L(P„Pj) contains a lattice point P„. Then from (I),

P„ = P, + t La for some fe (0,1), (2)
and

(0 («i»> « /. * = 1.2 «. (3)

But since 8ijk is an integer, (3) can be true if and only if / is rational.
Therefore, there exist integers a and b such that b > 0, / = a/b,
and GCD (a,b) = 1. Since (a) (8,jk)/b is an integer, b divides
(a) (8iik). Since GCD (a,b) = I, b divides 8,ik, k = 1,2 n. There
fore, g> b. Suppose 6=1. Then I = a/b = a e I, so t ^(0,1), contra
dicting (2). Therefore, 6 =£ 1, sog > 6 > 2.

Lemma 2. Le< Ps a«d Py 6<r lattice points in n dimensional Eu
clidian space such that M(Pt) = M(P,). Then £(Pj,P/) contains a
lattice point.

Proof: If Af(Pj) = M(Pt), then from the definition of M we have

8 fi
(-1) ' 1 = (-1) '" , so 8U1 and 8,j, are of like parity,
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a • &

(-1) "" = (-1) "2 , so 8,y2 and 8,i2 are of like parity,

(-1) t,n = (-1) lin , so 8,,„ and 8lin are of like parity,
Therefore,

8,;, - Silt = (*ii - xh) ~ On ~ *h) = *h ~ */i = 8l/i is even-
8|>s _ sii2 = (xv> - xh) - (x,, - xi2) = xi3 - x/2 = 8ij.. is even.

8,j„ - 8lin = (x,„ - x;„) - (x,„ - xin) = xin - x,„ = 8ijn is even.

Therefore, GCD (8iiu8ih,... ,8ijn) > 2 > 1, so by Lemma 1,
L(PiJ>j) contains a lattice point.

Theorem. If S = {PVP* P,„} is a set of m lattice points in n
dimensional Euclidian space, then the maximum value of m such
that L (Pi,Pj) contains no lattice points, i = 1,2,... ,m and j = 1,2,
... ,m, is m = 2".

Proof: We must show (I) that there can be values assigned to
P^.,,... J*2n such that L (Pi,Pj) contains no lattice points, i = 1,2,
... ,2" and j = 1,2,... ,2", and (2) that for any values ofPt,P.,, ...iPm
where m > 2", there exist i and ;' such that L(P„Pj) contains at
least one lattice point.

(1) There exist exactly 2" points in n dimensional Euclidian space
whose coordinates consist solely of ones and zeros. Let PX,P.., •.. ,P2»
be these points. Then 8i}k = x^. — xjk = 1 or 0 or -I, i = 1,2 2n,
j = 1,2 ,2",A = 1,2,...,n. Therefore, GCD (8,h,8ih 8iin)
= 1, so by Lemma I, L(P„Pj) contains no lattice points, i = 1,2
2", ; = 1,2,...,2".

(2) Suppose m > 2". There exist only 2" different ways of ar
ranging l's and -l's. Since each M(Pt) is an arrangement of n l's and
-l's, there are only 2" distinct M(Pt). Therefore, since m > 2", there
must exist Pt and Py in S such that M(P,) = M(Pt). Therefore, by
Lemma 2, there is at least one lattice point in L(Pt,Pj).

The author would like to thank those who compiled the prob
lems for the 32nd annual William Lowell Putnam Mathematical

Competition for including on the examination the problem that
gave him the idea for this paper.



Our Intuition Can Sometimes Fail Us
Francis A. Fussenecger

Student, Washburn University

Most students of calculus are familiar with the limiting process
used in defining arc length. Since an arc in the plane bears a slight
resemblance to a surface in space, it would seem that surface area
could be defined by using a method similar to that used for arc
length. It so happens that the concept of surface area is more compli
cated than it might first appear. Even though it intuitively seems
possible, an attempt to define surface area using a similar limiting
method will fail.

The definition of arc length is very straight forward. Suppose we
wish to define the length of an arc C from point A to point B in the
plane. First we choose a number of points on the arc and label them
PfPvPa> • • • •Pn-i as in Figure 1. Setting A=P„ and B=PH we draw
a straight line segment from point P4 to the next point PiM as in
Figure 2.

A=P,

FIGURE 1 FIGURE 2

We then compute the length of these line segments

P P P P PJ> P P

29

Pn = B
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and add them to get

2 T^

If we let these points Pj get closer together, the sum of the lengths
will approach what is called the arc length. Therefore, we denote
the length of the longest line segment as ||A||, called the norm of the
subdivision, and allow it to approach zero. Using this method we
can define arc length.

Definition. An arc from A to B has length L if for each € > 0
there is a 8 > 0 such that

P,-,Pi - L <c

for every subdivision A = P,„Pi P„ = B with ||A|| < 8.

In other words the length of the subdivisions approach L as ||A||
approaches zero.

Let us apply this method to surface area. Given a surface S, we
select a number of points on this surface and draw lines between
them so that we define triangles in space as in Figure 3. We thereby

FIGURE 3

approximate the surface with a polyhedron. If we let the points "get
closer together so that the area of the largest triangle approaches
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zero, just like we let ||A|| approach zero, it would seem intuitive
that the sum of the areas of the triangles would approach the area
of the surface. We will show in an example due to H. A. Schwarz
that, using this method to define surface area, the lateral surface of
a right circular cylinder can be assigned an arbitrarily large finite
area as well as an infinite area.

Let S be the right circular cylinder

s = {(x.y.*) | x2 + y* = I . 0 < z < 1}

and let m and n be positive integers. Let 2m+1 circles Ck be defined
for 4=0,1,2,. ..,2m :

C, = SC){(x,y,z)\z = k/2m}

On each of these 2«i+ l circles let n equally spaced points Pki be
defined for ;'=0,1,2 n-1 :

. 2;V . 2/tt k
( cos _:— , sin _1_ , _—), if « is even

m n 2m

P» = '
. (2/+l)7T . (2/+])7T k . .. . . ..
( cos — '.—, sin v ' ' , ), if k is odd

" n 2»i

For each circle Ck the points P«.v,/=0,l,... ,n-\ are the vertices of a
regular polygon of n sides. If 0 < k < 2m each side of the polygon
with vertices lying on the circle Ck lies above a vertex of the polygon
in Cjt_, and thus determines a triangle in space. Similarly, if 0 < k
< 2m, each side of the polygon in C,; lies below a vertex of the poly
gon in Qv, and thus determines a triangle.

Figure 4 shows a top view of Ck and Q-_, with inscribed polygons.
Figure 5 shows a side view of a small section of the cylinder.

To compute the area of the triangles we must find the length of
the base L and the height H. Since the cylinder has a radius of one,
from Figure 4 we have

L = V I + • - 2cos(2tt/h)
= V 2 - 2cos(27r/w)
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FIGURE 4

k-i

FIGURE 5

= V 4sin2(7r/M)
= 2sin(ir/«)

From Figure 6 we can see that the height H can be expressed as the
hypotenuse of a right triangle with the distance between the circles
D as one side and the distance from the center of the base to the side
of the cylinder A as the other side.

From Figures 4 and 6 we have
1 - A = V l*-(L/2)«

= VI- sin2(ir/n)
= V COSa(7T/«)
= cos(ir/n)
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FIGURE 6

Since the height of the cylinder is one, the distance D = I/2m, and
we have

H = y/ D- + As
= V 1/4OT* + (I -cos7r/n)2

It is not difficult to see that there are 4mn triangles, therefore the
total area of the inscribed polyhedron is

A(Sm„) = 4mn—(2sin 7r/«)V^2 + (1 -cosw/n)2

= 2v Sl" w/n V 1+4m»(l -cosir/n)2Tt/n v v ' '

Now if we let m and n approach infinity the area of each triangle
approaches zero, and we would expect the total area to approach
2ir. Let m,n —» oo, then

A(S) = lim A(Smn)

= lim 2ir S'" "/" V 1+4m2(l -cosir/n)1
-.«->„ n/n v '

= m.n-*^ 2tt V ' + 4m2(l - cos7r/n)2
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We can now concentrate on the quantity within the radical, or
more specifically on the function

// \ o /i / \ 'n'm 2«r4m 2iramf(m,n) = 2m(\-cosv/n) = _ -_+ _ ...

We shall consider two cases:

(i) Let m = [an2], where 0 < a < oo, and where [an2] is the
integer such that a n2 — 1 < [a n2] < a «2, then

„r ,, . 7T2[a n2] 2ir4[a n2] .f([an*],n) = t , J .L. . J + ...

thus lim /([a n2],n) = aw2 and lim A(Sca n2in) =
w—»oo n-*oo

2irV'+aV.

(ii) Let »i = n3, then

f(n\n) =ir*n-^-r...,
v ' 4!n

thus lim f(n3,n) = oo , and lim A(S 3 ) = oo .
n^oo «-*oo •""

We have thus assigned an arbitrarily large finite area and an
infinite area to the lateral surface of a right circular cylinder with
height one and radius one. The fact that the method fails for one
example shows that surface area cannot be defined in the way we
usually define arc length. We can see now that our intuition will
sometimes fail us.



Some Famous Mathematicians
Robert W. Prielipp

Faculty, Wisconsin State University, Oshkosh

How many of the famous mathematicians described by the clues
given below can you recognize? Why not take some time right now
to check on your knowledge of the history of mathematics. Just enter
each individual's name, one letter per cell, in the space provided.

1. A

2. L

3. G

4. E

5. B

6. | R

7. A

1. This French mathematician discovered that an irreducible

algebraic equation of degree m is solvable by radicals if and only if
the symmetric group on its roots is solvable; he died as the result of
a duel at the age of 20.

2. This British mathematician was one of the first men to study
matrices; his name is generally associated with the theorem which
states that every finite group of order n is isomorphic to a subgroup
of S„, the symmetric group on n elements.

3. This French mathematician introduced the commonly used
notation for derivatives of various orders, f'(x), f"(x),... ,/<"> (x),
... ; his name is generally attached to the theorem which states that
if G is a finite group of order n and if H is a subgroup of G of order
k then k divides n.

4. This German mathematician seems to have been the first to

give an explicit definition of a number field; he also formulated q

35
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method for constructing the real numbers using "cuts."

5. This Norwegian mathematician proved that the general quin-
tic equation is not solvable by radicals; another name for a com
mutative group commemorates his work.

6. This German mathematician discovered the theory of ideals
while attempting to prove Fermat's Last Theorem.

7. This German mathematician is generally regarded as one of
the greatest mathematicians of all time; no other mathematician of
the nineteenth century exerted so profound an influence on the de
velopment of science as he did; he proved the fundamental theorem
of algebra, which may be stated: every algebraic equation of degree
n has exactly n roots; the concept of congruence modulo m was
introduced by him.

1.

2.

3.

4.

5.

6.

7.

8.

N

1. This Czechoslovakian mathematician probably constructed the
first continuous but nowhere differentiable function; he disclosed
some important properties of infinite sets in a posthumous work
Paradoxen des Unendlichen (Paradoxes of the Infinite).

2. This Polish mathematician introduced a normed linear space
(a more general form of a vector space) which is complete in the
metric determined by the norm; together with Frechet and Riesz he
is considered to be one of the founders of modern functional
analysis.
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3. This German mathematician along with Abel laid the founda
tion of the theory of elliptic functions; his name is attached to a
particular type of functional determinant but he was not among the
first to use this kind of determinant.

4. This French mathematician's book, Theorie analytique, con
tains a very useful transform; the theory of probability perhaps owes
more to him than to any other person.

5. The name of this British mathematician is attached to a series
which is a generalization of the so-called Maclaurin series, actually
this series had been known long before to James Gregory and, in
essence, to Jean Bernoulli.

6. This French mathematician introduced an integral more gen
eral than the Riemann integral and a type of measure for a set; he
is sometimes called the father of the modern theory of integration.

7. This German mathematician discovered the calculus inde
pendently of Newton; although his discovery was after that of New
ton, he is entitled to priority of publication.

8. This German mathematician, along with Cauchy and Rie
mann, is generally thought of as being one of the founders of the
theory of analytic functions; his name, along with that of Bolzano,
is attached to the theorem which states that every bounded infinite
set has at least one limit point.

1.

2.

3.

4.

5.

6.

7.

8.

O

M~
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1. This French mathematician's book, Elements de GSometrie,
played a very significant role in the teaching of geometry in the
United States during much of the nineteenth century; he made
significant advances in many fields including nongeometrical-
differential equations, calculus, theory of functions, theory of num
bers, and applied mathematics.

2. This Russian mathematician was the first person to take the
revolutionary step of publishing a geometry specifically built on an
assumption in direct conflict with Euclid's parallel postulate.

3. This Greek mathematician was born at Perga, his chief work
is the Conies; his name is alsoassociated with the following problem:
given three things, each of which may be a point, a line, or a circle,
draw a circle that is tangent to each of the three given things (where
tangency to a point is understood to mean that the circle passes
through the point).

4. This German mathematician suggested that geometry be
viewed as a study of manifolds of any number of dimensions in any
kind of space; this view ultimately made the theory of general
relativity possible; he is considered the father of elliptic geometry.

5. This German mathematician attempted to give geometry a
strict axiomatic basis in his Grundlagen der Geometrie (Founda
tions of Geometry); his proposal of twenty-three problems in 1900,
which he believed would be or should be among those occupying
the attention of mathematicians in the twentieth century, has played
an important role in research during the last seventy years.

6. This Greek mathematician made one of the most extensive

early studies of the five regular solids; the theorem that there are
precisely five regular polyhedra is probably due to him.

7. This French mathematician's Discours de la methode con

tained an appendix entitled La geometrie, which contained some of
the antecedents of present-day analytic geometry; his name is fre
quently attached to a "rule of signs".

8. This Hungarian mathematician discovered a non-Euclidean
geometry; his "Absolute Science of Space" was an appendix to a
treatise written by his father; upset when Gauss failed to praise
his work and deeply hurt when Gauss indicated that he had had
similar ideas years ago, he published nothing more.
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1. N

2.

3.

U

M

4. B

5. E

6. R

7. T

8. H

9. E

10. O

11. R

12. Y

1. This Italian's book, Liber abaci, strongly advocated the use
of the Hindu-Arabic numerals; his name is generally associated with
a famous sequence which comesfrom a celebrated problem involving
rabbits.

2. The mathematical research of this Swiss mathematician aver

aged about 800 pages a year during his lifetime; he is generally
recognized as the most successful notation-builder of all time; for
example, the definitive use of the Greek letter tt for the ratio of
circumference to diameter in a circle is largely due to him and the
symbol i for V^T was first used by him.

3. This French mathematician is sometimes called the founder
of the modern theory of numbers; he was among the first to use a
process that he called "infinite descent", a sort of inverted mathemat
ical induction, to prove some of his theorems; since his time many
mathematicians have wished that the margin of his copy of Bachet's
Diophantus had not been quite so narrow.

4. In 1742 this Russian mathematician suggested that every even
integer greater than 2 can be expressed as a sum of two (not neces-
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sarily distinct) prime numbers; his name is generally associated with
this conjecture which is still unsolved.

5. This French mathematician served as a clearing house for
mathematical information; prime numbers of the form 2P-1 are
named in his honor.

6. This Polish mathematician helped to found Fundamenta
Mathematicae, one of the world's most distinguished mathematical
journals, in 1920; he made contributions to the theory of sets, to
topology, and to the theory of numbers.

7. This Greek mathematician is often called the father of algebra,
although such a designation should not be taken too literally; his
Arithmetica is almost entirely devoted to the exact solution of
equations, both determinate and indeterminate.

8. This German mathematician proved that if a and 6 are natu
ral numbers such that a and b are relatively prime, then there exist
infinitely many primes of the form ak+b, where A is a natural num
ber; his name is also associated with a test for uniform convergence

of a series, a series of the form 2 -^ and a principle which
n= i

states that if you put n+\ objects in n boxes at least one box will
contain two or more objects.

9. This Russian mathematician established that if a and B are
algebraic numbers, B is not a rational number, and a is neither 0
nor 1, then any value of aP is transcendental; this theorem estab
lishes the transcendence of such numbers as

«*,5', and 2yT

10. This Greek mathematician from Cyrene determined a very
accurate estimate for the circumference of the earth even before the

birth of Christ; he is well known in number theory for his sieve,
which is a systematic procedure for determining which positive
integers are prime numbers.

11. This French mathematician proved the prime number theo
rem in 1896; his Essai sur Vitude des functions donnees par leur
development de Taylor gave impetus to much of the later research
on power series and their singularities; he also contributed im
portant papers on the theory of entire functions with applications
to the Riemann zeta function.



The Pentagon 41

12. This Greek mathematician remains a very obscure figure due
in part to the loss of documents which covered the period of his life;
although a theorem involving a right triangle which bears his name
does not appear in any form in surviving documents from Egypt,
tablets from the Old Babylonian period show that in Mesopotamia
the theorem was widely used; it is quite likely that this theorem
was derived from the Babylonians.
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Installation of New Chapters
Edited by Loretta K. Smith

KENTUCKY ALPHA CHAPTER

Eastern Kentucky University, Richmond, Kentucky

The installation of the Kentucky Alpha Chapter of Kappa Mu
Epsilon was held on 27 March 1971, at the Student Union Building
of the Eastern Kentucky University. Professor William R. Smith,
the National Vice-President of Kappa Mu Epsilon, was the installing
officer.

The officers of the newly-formed Chapter are:

President Brenda J. Speagle
Vice-President Robert W. Slone
Secretary Paula S. Kinker
Treasurer Ann Mackin
Reporter Michael Allan Kettler
Corresponding Secretary Bennie R. Lane
Sponsors Glynn Creamer

Sydney Stephens, Jr.

The Chapter members are:

Joyce A. Allsmiller Alvin McGlasson
Jean Katherine Bertrand Bobby L. Nayle
Patricia Ann Coins David K. W. Ng
George W. Halsey Charles D. Robinson
Linda K. Himes Francesco Scorsone
Aughtum Howard Betty L. Stephens
Larry Byron Hurt Carol Teague
Pamela Marks Jerry Michael Wesley
Richard Marks Gary Dale Whitaker

After the banquet meal, Professor Smith presented a very interesting
and informative talk entitled "How to Choose a Wife."
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The Problem Corner
Edited by Robert L. Poe

Due to the unavoidable late release of the Spring 1972 issue of
THE PENTAGON it has been decided that The Problem Corner
should not appear in the Fall 1972 issue of THE PENTAGON.
The editor regrets the necessity of this decision but feels it will
best suit the interests of participating contributors. Your indul
gence is respectfully requested.

Solutions to problems posed in the Spring 1972 issue will appear
in the Spring 1973 issue. At that time a new list of problems for
solution will be posed. Solutions to the problems appearing in the
Spring 1972 issue should be submitted on separate sheets before I
February 1973. The best solutions submitted by students will be
published in the Spring 1973 issue of THE PENTAGON, with
credit being given for other solutions received. To obtain credit, a
solver should affirm that he is a student and give the name of his
school. Also The Problem Corner invites questions of interest to
undergraduate students. As a rule the solution should not demand
any tools beyond calculus. Although new problems are preferred, old
ones of particular interest or charm are welcome provided the source
is given. Solutions should accompany problems submitted for publi
cation. Address all communications to Professor Robert L. Poe,
Department of Mathematics, Berry College, Mount Berry, Georgia
30149.
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The Book Shelf
Edited by Elizabeth T. Wooldridge

This department of The Pentagon brings to the attention of its readers re
cently published books (textbooks and tradebooks) which are of interest to stu
dents and teachers of mathematics. Books to be reviewed should be sent to Dr.
Elizabeth T. Wooldridge, Department of Mathematics, Florence State University,
Florence, Alabama 35630.

Introduction to Linear Algebra, Franz E. Hohn, Macmillan Com
pany, New York, 1972, 335 pp., $9.95.

This text is intended for students at the freshman-sophomore
level. No calculus background is required. This reviewer found the
text to be very sound but not very exciting. Most of the material is
presented along traditional lines with a strong emphasis on geo
metric interpretation whenever possible.

The author begins his study by developing the sweep out process
to solve linear systems. Matrices are then introduced as the coeffi
cient array of such systems and matrix algebra is derived.

Chapters Three and Four give a detailed presentation of two and
three dimensional Euclidean space and the extension to n-dimen-
sional space. It is in Chapter Five that one first finds the general
definition of a vector space. The standard material such as invari-
ance of number of vectors in a basis, dimensions of subspaces, and
isomorphic spaces is presented.

Chapter Six covers the ideas of rank of a matrix, invertible ma
trices, and solutions of linear systems by matrix techniques. The
theory of determinants is the subject of Chapter Seven. The product
rule is derived by first establishing its validity for elementary ma
trices. Linear transformations and their matrix representatives are
given in Chapter Eight. The final chapter of the book defines the
characteristic value problem and presents much of the relevant
theory. Also quadratic, bilinear, and definite forms are examined.

The exercises are numerous and varied. No answers are given in
the text. I would recommend Professor Holm's book to anyone seek
ing a complete, sound linear algebra text at the elementary level.

Eddy Joe Brackin
Florence State University
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Essentialsof Mathematics, Max A. Sobel, Evan M. Maletsky, Thomas
J. Hill, Ginn and Company, Boston, 1970; Book 1, 436 pp., $5.88;
Book 2, 406 pp., $5.88; Book 3, 472 pp., $6.28.

These books are designed for low-achieving students of grades 7,
8, and 9. Many exercises could be used for students in lower grades.

In each book, each chapter has a chapter test with chapters five
and ten as review chapters.

Matt E. Matix is a little character who takes the student through
many adventures in mathematics. Many of the problems are shown
as they would be done with a computer.

The topics in Book I include whole numbers, prime numbers,
fractions, decimal fractions, and geometric activities. The topics
presented in Book 2 are integers, positive and negative numbers,
fractions, per cent, formulas, and geometric activities. Book 3 pre
sents integers, decimals, per cent, equations and inequalities, graphs,
and geometric experiments.

In all the books there is a variety of activities. The illustrations
are timely and the material presented shows the need for mathemat
ics and that mathematics is fun.

Vaulda Welke

Superior, Nebraska

The Power of Calculus, K. L. Whipkey and M. N. Whipkey, John
Wiley & Sons, Inc., New York, 1972, 297 pp., $9.95.

The Whipkeys have written a textbook which presents some con
cepts of elementary calculus for undergraduates in management,
social, and behavioral sciences. CUPM recommendations for teach
ing a one-term calculus course to students in nontechnical fields are
generally practiced throughout the content of the book. The text
represents an acceptable addition to the present list of titles in this
area.

Assuming students have previously obtained adequate training in
high school algebra, the authors develop mechanical techniques for
differentiation and integration of real single-variable rational func-
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tions after mentioning sets and intuitively (but briefly) investigating
the notions of relations, functions, and limits. This essentially de
scribes the material of the first six chapters except for a smattering of
low level applications concerning the derivatives and integrals of
functions of one real variable. In fact, the applications of the calculus
for business, sociology, and biology students found in this book are
rather disappointing. Mostly they are the usual applications found
in standard calculus texts published during this century.

Chapter Seven and Chapter Eight lightly cover exponential and
logarithmic functions, differentiation and integration of logs and
exponentials, touch on variables separable differential equations,
hastily examine functions of two variables, barely introduce partial
derivatives of functions of two variables, and conclude the body of
the textbook with two sections on extrema of functions in Euclidean

three space. An appendix, which has sets of exercises, follows Chap
ter Eight. It contains differentiation and integration of the basic
trigonometric functions, some discussion of infinite sequences, and
an extremely scanty look at Taylor's and Maclaurin series.

The entire book is well written, presents topics simply, and ap
pears free of errors. It cannot be said that the book is especially
attractive either artistically or academically. There are ample exer
cises and a large number of lucid examples. Answers to some exer
cises in each set of exercises are printed at the back of the textbook.
It has many fine illustrations. What proofs are attempted are de
tailed and easy to follow. Considering its intended audience the
book does well in that theory is absent, trigonometry is practically
ignored, and any complicated calculus is avoided.

Anyone who is ancient enough to have studied or taught from one
of the Granville, Smith, and Longley calculus books will become
nostalgic when examining the format of the Whipkeys' textbook.
However, infinitesimals do not appear.

Robert L. Poe

Berry College
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Computer Hardware Theory, W. J. Poppelbaum, Macmillan, New
York, 1972, 749 pp., $16.95.

From the preface of this book we discover that "it is assumed that
the reader has taken an introductory computer science course, that
he is reasonably familiar with the elements of calculus, and that he
has had, at one time or another, a high school physics sequence." The
reviewer strongly recommends that a student with only the above
background avoid this book. In the same preface we find that "the
audience we aim at is, of course, principally the junior or senior
electrical engineer, computer scientist, and mathematician." That
should give you some idea of the level of sophistication of this book.
The reviewer believes that this text is indeetl most suitable for the

junior or senior electrical engineer.

A mathematician or computer science student whose background
did not include severe doses of topics in applied mathematics and
physics would find this text very difficult, but not impossible, and
quite worth the effort demanded by its study. Under the guidance
of a skilled lecturer students of the two latter-mentioned categories
would benefit greatly from this text, though only with a consider
able expenditure of time and effort. These statements are made not
to frighten you away from any encounters with this text but to in
form, you of its demands so that you may make an intelligent de
cision regarding its suitability for your individual needs.

For those who are well prepared in the above-mentioned areas, as
would be, presumably, the junior or senior electrical engineer, you
will find this text complete, comprehensive, and well written. The
reviewer can recommend it highly, either as a textbook or for self-
study by those at the junior/senior level in electrical engineering.

As a final note I will comment on the statement from the preface
which reads "Some elementary notions of vector calculus, complex
numbers, tensors, and Fourier and Laplace transforms are developed
in the text, so as to permit its use for liberal arts students of relatively
restricted mathematical background." My comment is that the stu
dent described in this sentence will need a skilled, patient and
understanding instructor in order to gain any more than the most
cursory benefits from this book.

James E. McKenna
Slate University College at
Fredonia, New York
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MINIREVIEWS

Finite Mathematics, 2nd Edition, John G. Kemeny, Arthur Schleifer,
Jr., J. Laurie Snell, Gerald L. Thompson, Prentice-Hall, Engle-
wood Cliffs, N.J., 1972, 542 pp., $12.95.

This book was written to meet the needs of behavioral and social
science students in a course which would provide a sophisticated in
troduction for the non-mathematician to topics in modern mathe
matical analysis. The nine chapters develop the foundation of logic,
set theory, probability, and linear algebra. They also illustrate the
most important applications of these mathematical methods to mod
ern business problems. The second edition provides new chapters on
decision theory and analysis, Markov decision processes, and greatly
expanded coverage of liner programming and its interpretations.

Exploration in Elementary Mathematics, 2nd Edition, Seaton E.
Smith, Jr., Prentice-Hall, Inc., 1971, 443 pp., $10.50.

The purpose of this book is to present the basic concepts of ele
mentary mathematics in such a manner that "the reader will be able
to understand these ideas and see their revelance to teaching." In
addition to chapters on mathematical ideas, sets, systems of numer
ation, and operations with whole numbers and with rational num
bers, the author has included chapters on elementary number theory
and informal geometry. At the end of each chapter, there is a test
for self-evaluation. Most of the recently developed devices for intro
ducing various topics have been included. The book is designed as
a text for either an in-service program or a college course for pros
pective teachers or others interested in extending their knowledge
of some basic mathematical corcepts.

Introductory Mathematics for Technicians, Alvin B. Averbach and
Vivian S. Groza, Macmillan Company, New York, 1972, 813 pp.,
$12.50.

This book is designed for a foundation technical mathematics
course; it attempts to develop the basic skills that are needed by tech
nicians in all classifications. Mastery of the topics presented in this
text will give proficiency in performing directed calculations of some
complexity by use of the slide rule and tables of functions of num
bers. In addition to calculations, the student should have developed
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the ability to use formulas and perform algebraic manipulations per
taining to problems met in industrial practice and to solve prob
lems by applications of algebra, geometry, and trigonometry of the
right triangle.

ComputerAppreciation, T. F. Fry, Philosophical Library, New York,
1971, 245 pp., $15.00.

The fourteen chapters of this book cover a wide range of
topics from a short account of the historical development of
calculating devices, through computer programming, to the
organization of a modern data-processing department. It concludes
with a brief consideration of the applications of computers and a
discussion on the effects of computers upon management matters.
The book is designed primarily for students, but should be useful
to all who feel the need to become familiar with this field.

Answers to SOME FAMOUS MATHEMATICIANS

Algebra III. Geometry
1. Galois 1. Legendre
2. Cayley 2. Lobachevsky
3. Lagrange 3. Apollonius
4. Dedekind 4. Riemann

5. Abel 5. Hilbert

6. Kummer 6. Theaetetus

7. Gauss 7. Descartes

8. Bolyai
I. Analysis

I. Bolzano IV. Number Theory
2. Banach 1. Fibonacci
3. Jacobi 2. Euler
4. Laplace 3. Fermat

5. Taylor 4. Goldbach
6. Lebesgue 5. Mersenne

7. Leibniz 6. Sierpinski
8. Weierstrass 7. Diophantus

8. Dirichlet

9. Gelfond

10. Eratosthenes

11. Hadamard

12. Pythagoras



The Mathematical Scrapbook
Edited by Richard Lee Barlow

Readers are encouraged to submit Scrapbook material to the Scrapbook editor.
Material will be used where possible and acknowledgment will be made in The
Pentagon. If your chapter of Kappa Mu Epsilon would like to contribute the
entire Scrapbook section as a chapter project, please contact the Scrapbook
editor: Richard L. Barlow, Kearney State College, Kearney, Nebraska C8847.

Geometric constructions of irrational numbers have interested

many a student of mathematics from ancient times to the present.
One of the more fascinating irrational numbers to contract is -jr.
It is impossible to construct ir with only a straight edge and com
pass. In fact, not even a curve of higher order defined by an integral
algebraic equation, for which v is the ordinate corresponding to a
rational value of the abscissa, has been found to exist. The geometric
construction of tt requires the use of a transcendental curve which
can be constructed using a transcendental apparatus such as the inte
graph which traces the curve by continuous motion.

The integraph was invented by the Russian engineer Abdank —
Abakanowicz and constructed by Coradi of Zurich. It enables one to
trace the curve of the integral Y = F(x) = J f(x)dx given the
differential curve y = f(x). The integraph is so constructed that,
when the guiding point of the linkwork of the integraph follows the
differential curve, the tracing point will trace the integral curve.

Consider any point (x, y) of the differential curve y = f(x) and
construct the auxiliary triangle having for its vertices the points
(x, y), (x, 0) and (x-1, 0) as shown in Figure 1.

Note that the resulting triangle is a right triangle whose hypote
nuse forms angle G with respect to the x-axis and that tan e =y.
Therefore, the hypotenuse of the triangle is parallel to the tangent
to the integral curve Y = F(x) at the point (X, Y) corresponding to
the point (x,y) on y = f(x). The integraph is thus constructed so that
the tracing point shall move parallel to the variable direction of the
hypotenuse of the triangle, while theguiding point*follows the differ
ential curve y = f(x). This is accomplished by connecting the tracing
point of the integral curve with a sharp-edged roller whose plane is
vertical and which moves so as to be always parallel to the hypote-
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nuse of the auxiliary triangle. A weight is used to press the roller
firmly upon the paperso that its point of contact can advanceonly in
the plane of the roller. The integraph can be used to approximate
definite integrals which will allow us to construct ir as follows.

y=f(x)

FIGURE 1.

Let the differential curve y = f(x) be the circle x2 4- y2 = r1.
Hence y = V*"2 — x- = f(x). The integral curve Y = F(x) =
j y/r- —x2 dx, by the use of the trigonometric substitution x =

j*2 xx
r sin d>, becomes Y = —- sin -1 \-~ y/ r2 — xJ.

The integral curve thus consists of a series of congruent branches,

the /"-intercepts of which have ordinates 0, ± -^—, ± r2ir,

± —^- The lines x = ± r intersect the curve Y = F(x) at

ordinates ± r2 -^-, ± r2-^-, ± r2^-,..., as shown in Figure 2.
4 4 4

,3ir ,OTt
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Integral Curve

The Pentagon

FIGURE 2

Differential Curve

x2 + y2 = r-

By letting r = I, the ordinates of these intersections will construct
the irrational number n and its multiples. The integraph thus al
lows us to trace the curve efficiently and with unusual sharpness.
Using an integraph, can you construct 3tt?
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The current interest in chess has also renewed interest in other
games of strategy. One such game is the mathematical game of Hex,
which mathematicians have been playing the past 25 years or so. Its
origin has been attributed to Piet Hein, a Danish mathematician,
and to John Nash, an American mathematician. Hein is given the
credit for the invention of the game and Nash devised a proof that
the normal outcome of the game is a white win.

The game of Hex is played on a board comprised of n by n
adjacent hexagons arranged in a rhombus, where n is some integer,
as shown in Figure 3.

FIGURE 3.

If n is odd, it appears advantageous for the starting player to start
in the center. If n is even (preferred by most players), the game be
comes more interesting and has varied strategies. For our example,
we shall take n = 14 as shown in Figure 3. This is the form of the
game of Hex played in the Yale Mathematics Common Room in
1952.

The game is played with 196 round markers, usually Black and
White. Each color has 98 markers which can be placed in any of the
196 hexagons. Each hexagon is large enough to accommodate only
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one marker. White plays first and places one of his white markers in
any one of the 196 hexagons. Once placed on the board, it remains
for the duration of the game. Next, Black places a black marker in
any one of the 195 remaining hexagons. The game continues, alter
nating plays between White and Black. White attempts to join the
top edge of the board to the bottom edge with an unbroken string
of white markers adjacent to one another. Black wishes to join the
two sides in a similar fashion. The following conclusions can be
proven:

1. The game of Hex never ends in a draw.

2. If the Hex board is completely covered with white and black
markers, then either there is a white chain joining the top to
the bottom or a black chain joining the two sides.

3. Either White can force a win or Black can force a win.

4. If Black can force a win, then White can force a win.

The unusual aspect concerning the game of Hex is that no one
knows a winning strategy. The person starting the game (white) has
an advantage, and so any player should want the first move. But
having the first move does not assure victory.

During the past few years, a number of mathematicians have at
tempted to devise an explicit strategy for Hex. So far, however, no
one has been successful. Can you prove the four conclusions stated
above?



Kappa Mu Epsilon News
Edited by Elsie Muller, Historian

News of Chapter activities and other noteworthy KME events should be sent
to Elsie Muller, Historian, Kappa Mu Epsilon, Department of Mathematics, Mora-
ingside College, Sioux City, Iowa 51106.

CHAPTER NEWS

Alabama Beta, Florence State University, Florence

Chapter President —Robert O'Conner
52 actives

At the initiation banquet 25 new members were added which
makes a total of 522 members for Alabama Beta. The chapter
sponsors a tutoring program. At one of the chapter meetings Dr.
Bill Bryant, Vanderbilt University, was the featured speaker about
job opportunities. Larry Smith received a graduate assistantship to
the Universty of Alabama and Euel Cutshall received one to the
University of Florida. Other officers: Jane Bickel, vice-president;
Teresa Guthrie, secretary and treasurer; Jean Foster, historian; Dr.
Elizabeth T. Wooldridge, corresponding secretary; Lionel Isbell, re
porter; and Dr. E. J. Brackin, faculty sponsor.

California Gamma, California Polytechnic State University,
San Luis Obispo

Chapter President —Jim Pearce
61 Actives

With the assistance of the chapter the department of mathematics
plans and executes an annual mathematics contest which involves
over 500 high school students. KME members conduct a regularly
scheduled mathematics laboratory (tutorial service) for the use of
all students on campus. Other officers: Nancy Miller, vice-president;
Gayle Simon, secretary; Susan Genung, treasurer; Dr. George R.
Mach, corresponding secretary; and Dr. Ralph M. Warten, faculty
sponsor.
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ColoradoAlpha, Colorado State University, Fort Collins

Chapter President —Kate Legge
34 Actives, 21 pledges

As an activity Colorado Alpha sponsored an alumni seminar on
employment opportunities in the mathematical sciences. Bi-weekly
meetings are held on such topics as The Role of Corporation in
Society, Combinatorial Mathematics, and Japanese Education.
Other officers: Marilyn Hull, vice-president; Margita Stauers, secre
tary; Michael Colby, treasurer; Dr. Howard Frisinger, correspond
ing secretary; Dr. Kenneth Klopfenstein, faculty sponsor.

Illinois Alpha, Illinois State University, Normal

Chapter President —Frank Hirsch
28 actives, 6 pledges

In addition to providing tutoring service, the chapter ordered
and distributed mathematical tables to all mathematics and science

students. Eight meetings, featuring both students and faculty, were
held during the year. Other officers: Thomas Horsley, vice-president;
Linda Phillips, secretary; Gary Abramson, treasurer; Dr. Robert K.
Ritt, corresponding secretary; Dr. Orlyn Edge, faculty sponsor.

Illinois Delta, College of St. Francis, Joliet

Chapter President —Linda Smith
11 actives, 5 pledges

Following the collapse of an attempted merger between the Col
lege of St. Francis and Lewis College, Illinois Delta has returned to
its affiliation with the College of St. Francis. Other officers: Julie
Hardy, secretary: Arnold Good, faculty sponsor.

Illinois Eta, Western Illinois University, Macomb

Chapter President —Michael Griswold
10 actives, 7 pledges

Other officers: Charles Smith, vice-president; Victoria Lange,
secretary; Charles Smith, treasurer; Dr. Larry Morley, corresponding
secretary; Dr. James Calhoun and Mr. Lucian Wernick, faculty
sponsors.
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Indiana Alpha, Manchester College, North Manchester

Chapter President —Helen Taylor

Other officers: Jeanette Klotz, vice-president; Doug Warrick,
secretary; Hank Nietert, treasurer; Dr. Ralph McBride, correspond
ing secretary.

Indiana Delta, University of Evansville, Evansville

Chapter President —Mark Newlin
90 actives

In an attempt to generate wider participation in KME, two meet
ings for the coming year will be devoted to reports on mathematics
where each member has from 5 to 20 minutes to present one of a
variety of things —a favorite calculus problem, an application of
mathematics, an interesting theorem, a book review, a project re
port, etc. 77ie Straight Line is the official newsletter of Indiana
Delta KME which is free to members. Others may subscribe at the
rate of $1 per volume. Interesting programs during the year were
Higher Plane Curves from an Elementary View and Konigsburg
Bridge Problem in Three Dimensions. The first KME opinion
questionnaire showed little dissatisfaction of the members with the
organization, but there was only a 50% response. Other officers:
Sandra Spillman, vice-president; Debra Austin, secretary; Dr. Gene
Bennett, treasurer and corresponding secretary; Mr. Kenneth Stoff-
let, faculty sponsor.

Iowa Alpha, University of Northern Iowa, Cedar Falls

Chapter President —Brian Hogue
35 actives

Monthly meetings are held in the homes of faculty members with
students presenting papers. The annual homecoming breakfast was
held Saturday, 7 October at the home of the past national president,
Dr. Fred W. Lott. Other officers: Don Trebil, vice-president; Mary
Kay, secretary; John S. Cross, corresponding secretary and faculty
sponsor.
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Iowa Beta, Drake University, Des Moines

Chapter President —Denise Cindrich
10 actives, 3 pledges

Three new members were initiated on 23 April: Mark Jones,
John Diehl, and Luann Goodrich. Other officers: John Diehl, vice-
president; Luann Goodrich, secretary; Rod Luther, treasurer; Dr.
Wayne Woodworth, corresponding secretary; and Alex Kleiner,
faculty sponsor.

Iowa Gamma, Morningside College, Sioux City

Chapter President —Stephen Bolks
25 actives

The chapter sponsored a mathematics seminar for the consortium,
Colleges of Mid-America. Six colleges were represented. The guest
lecturer, Professor Hans Weinberger of University of Minnesota,
gave two talks, How Can Mathematics be Applied and Does Sym
metry Beget Symmetry. The luncheon featured mathematics in the
liberal arts. Harlan Hullinger has a graduate assistantship in mathe
matics at the University of Iowa. Other officers: Dave Frevert, vice-
president; Cheryl Comwell, secretary; Paul Franken, treasurer; Elsie
Muller, corresponding secretary and faculty sponsor.

Kansas Beta, Kansas State Teachers College, Emporia

Chapter President —Ron Stair
75 actives

Other officers: Debbie Atkins, vice-president; Mary Bender,
secretary; Randy Robertson, treasurer; Charles Tucker, correspond
ing secretary; Dr. Thomas Bonner, faculty sponsor.

Kansas Gamma, Benedictine College, Atchison

Chapter President —Robert Croll
11 actives, I pledge

Student programs have included the following topics: Factoring
Functions, Cantor's Work with Transfinite Numbers, and Simplex
Algorithm. The chapter hosted its 5th biennial invitational mathe
matics tournament for high school students of the surrounding area
on 29 April 1972. Several Kansas Gamma students attended the
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regional convention where one of the members presented a paper
on Anti-isomorphisms. Other officers: Julia Croghan, secretary;
Anita Botzen, treasurer; Sister Jo Ann Fellin, corresponding secre
tary and faculty sponsor.

Maryland Beta, Western Maryland College, Westminster

Chapter President —Ronald R. Jemmerson
12 actives

Guest speakers have been Dr. Mario Borelli of Notre Dame Uni
versity and SisterJohn Frances Gilman of St. Joseph College. Senior
members attending graduate school are Bonnie Green at University
of Kansas and Robert Chapman at University of Indiana. Other
officers: Michael Foster, vice-president; Linda Swift, secretary; Don
ald Dulaney, treasurer; Dr. James Lightner, corresponding secre
tary; and Dr. Robert Boner, faculty sponsor.

Maryland Gamma, Saint Joseph College, Emmhsburg

Chapter President —Maureen Hinke
8 actives

Sr. Marie Augustine Dowling of the Maryland Alpha chapter pre
sented a lecture. The Super Egg and the Works of Piet Hein. An
other program was How to Turn a School Bus Around in a Closet
by Dr. Robert Boner of the Maryland Beta chapter. In April there
was an evening of mathematics films which was a part of the col
lege campus cultural series. A joint meeting of the Maryland Beta
and Gamma chapters was held where Sr. John Frances Gilman lec
tured on One of the Last Set of Wednesdays. Other officers: Joyce
Reichert, vice-president; Mary McFadden, secretary; Patricia Thorn
ton, treasurer; Sr. John Frances Gilman, corresponding secretary
and faculty sponsor.

Massachusetts Alpha, Assumption College, Worcester

Chapter President —Thomas Curran
14 actives

Fivenewmembers were initiated in February. Following a dinner
honoring the new members, Dr. Sumner Cotzin spoke on the topic,
Puzzles and Paradoxes in Mathematics. Other officers: Donald
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Parker, vice-president; Kerrith Chapman, secretary; Charles Bru-
sard, corresponding secretary; Rev. Richard P. Brunelle, faculty
sponsor.

Missouri Alpha, Southwest Missouri State University, Springfield

Chapter President —Alan Washburn
40 actives

Meetings are held monthly with a picnic in May. The chapter
KME merit awards were given to Nelda Burton and Peggy Struck-
meyer. Other officers: Carol Letterman, vice-president; Barbara
Learner, secretary; Denise Wray, treasurer; Eddie W. Robinson, cor
responding secretary; L. T. Shiflett, faculty sponsor.

Missouri Beta, Central Missouri State College, Warrensburg

Chapter President —Shana McCann
31 actives, 25 pledges

There were seven meetings during the year which included two
initiations, a Christmas party, and a springbanquet. Other officers:
Dwain Schreimann, vice-president; June Hlavacek, secretary; Deb
orah Distler, treasurer; Velma Birkhead, corresponding secretary;
and Homer Hampton, faculty sponsor.

Missouri Gamma, William Jewell College, Liberty

The convention for Region 4 was held at William Jewell College
on 15 April 1972 with the Missouri Gamma chapter acting as hosts
and Harold L. Thomas as director. Papers were presented by eight
students representing Washburn University, Kansas State Teachers
College, Morningside College, Benedictine College, University of
Missouri at Rolla, Kansas State College, and University of Northern
Iowa. The guest lecturer at the luncheon was Dr. Glen Haddock of
the University of Missouri at Rolla.

Missouri Zeta, University of Missouri at Rolla

Chapter President —Dana Nau
25 actives

During the spring semester the chapter put up a new bulletin
board with a pictorial directory of UMR's mathematics faculty.
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Weekly help sessions were held for the three calculus courses and
integral tables were given to all the differential equations students.
At the pledge smoker Dr. Charles Hatfield spoke on How to Write
a Mathematics Paper. At the regional convention in Liberty, Mis
souri on 15 April, with nine members in attendance, Dana Nau
received first place for his paper, A Lattice Point Problem. Other
officers: Robert Holliday, vice-president; Curt Killinger, treasurer;
Debbie Fugitt, recording secretary; Peggy Shackles, Historian; Dr.
Roy Rahestraw, corresponding secretary; and Dr. Jim Joiner,
advisor.

Missouri Theta, Evangel College, Springfield

Chapter President —Keith Sorbo
9 activies, 3 pledges

Program topics have included Non-Euclidean Geometry, Mathe
matics in Hydrology, Mathematical Puzzles, and Mathematics and
Theology. Five members attended the Region 4 convention. Other
officers: Dave Earle, vice-president; Sandy Butler, secretary and
treasurer; Glenn H. Bernt, corresponding secretary and faculty
sponsor.

Nebraska Alpha, Wayne State College, Wayne

Chapter President —Dale Ruehling
22 actives, 16 pledges

Other officers: Wayne Breyfogle, vice-president; Ellen Hummel,
secretary; Charles Wendt, treasurer; Fred Webber, corresponding
secretary; Frank Prather and Jim Paige, faculty sponsors.

Nebraska Gamma, Chadron State College, Chadron

Chapter President —Terry Welke
25 actives

Meetings are held the first and third Thursdays of every month.
Each senior gives a program on some aspect of mathematics at one
of these meetings. A book market will be held on the first two days
of the Spring semester. Other officers: Larry Ruzicka, vice-president;
Cheri Landrey, secretary; Cheryl Sheldon, treasurer; James Kaus,
faculty sponsor.
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New Mexico Alpha, University of New Mexico, Albuquerque

Chapter President —Pat Russell
50 actives

Other officers: Declan Rieb, vice-president; John Gilbert, secre
tary; Tim Burns, treasurer; Merle Mitchell, corresponding secretary
and faculty sponsor.

New York Gamma, State University of New York, College at Oswego

Chapter President —Michael Murray
25 actives, 11 pledges

Other officers: Deborah Perry, vice-president; Jacquelyn Schaefer,
secretary; Dawn Rickard, treasurer; Steven Reyner, corresponding
secretary; J. Burling and J. Walcott, faculty sponsors.

New York Zeta, Colgate University, Hamilton

24 actives

A talk, Why are there only Five Regular Solids, by Professor John
Baum of Oberlin College was given in March. L. D. Shatoff is the
corresponding secretary and the faculty sponsor.

New York Theta, St. Francis College, Brooklyn

Chapter President —Timothy Marco

Students have been the speakers at the chapter meetings. Mem
bers have also sponsored intercollegiate mathematics contests as
well as field trips. Other officers: James Tuthill, vice-president; Dee
Lucarelli, secretary; Edward Krygowski, treasurer; Donald Coscia,
corresponding secretary and faculty sponsor.

New York Iota, Wagner College, Staten Island

Chapter President —Brian Manske
14 actives

During the Spring semester the chapter held two faculty-student
mathematics bowls. The first annual award from the chapter (a $25
savings bond) was presented to Karen Dybing (class of 1972) for her
excellence in and dedication to mathematics. Four new initiates were
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taken in on 1 February. Other officers: Linda Chacon, vice-presi
dent; Beverly Fraser, secretary; Lois Bredholt, treasurer; Mrs. Mary
Petras, corresponding secretary; Raymond Traub, faculty sponsor.

Pennsylvania Gamma, Waynesburg College, Waynesburg

Chapter President —Larry Fordyce
9 actives, 6 pledges

A variety of meetings made up the eight held during the year:
two of them had outside speakers, two had student speakers, an
initiation, a banquet, a panel discussion on the curriculum, and a
planning and development meeting. As for activities the group
sponsors a freshman mathematics turoring program and publishes
a local mathematics newsletter each semester. Other officers: David

Wildman, vice-president; Stephanie Milinovich, secretary and
treasurer; Gabriel J. Basil, corresponding secretary; and Lee Hagg-
lund, faculty sponsor.

Pennsylvania Delta, Marywood College, Scran ton

Chapter President —Maureen O'Malley

Seven meetings are held during the year. The first of these is a
tea for the incoming freshmen to acquaint them with the Honor
Society and the mathematics club, Semi-Group. One of the fall
gatherings features a guest speaker. The final dinner is an installa
tion of the new officers antl a welcome to the new members. Other

officers: Ann Marie Cascio, vice-president; Mary Ann Dorofee, secre
tary and treasurer; Miss Marie Loftus, faculty sponsor.

Pennsylvania Epsilon, Kutztown State College, Kutztown

Chapter President —Perry Lesher
13 actives

The highlight for the year was a trip to Franklin Institute. Meet
ings were held biweekly of which two of them were initiation ban
quets. Other officers: Curtis Shappell, vice-president; Lila Taylor,
secretary; Irving Hollingshead, corresponding secretary; Edward
Evans, faculty sponsor.
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Pennsylvania Zeta, Indiana University of Pennsylvania, Indiana

Chapter President —John Nelson
50 actives, 7 pledges

In February Dr. Charles Bertness spoke on Graph Theory; in
March Mr. Wallace Morrell gave a lecture on The Snow Plow Prob
lem; in April John Smith, a student, presented a paper, A Proof of
the Limit of e. In May the annual banquet was held at which time
Dr. Edwin Smith talked on Fun With Polyhedra. Other officers:
John Schutte, vice-president; Peggy Barkman, secretary; Germaine
Fotto, treasurer; Professor Ida Z. Arms, corresponding secretary; Pro
fessor William R. Smith, faculty sponsor.

Pennsylvania Eta, Grove City College, Grove City

Chapter President —David Darkee

Other officers: Mary Lou McCracken, vice-president; Paige Mos-
ser, secretary; Marty Houser, treasurer; Marvin Henry, correspond
ing secretary; Cameron Barr, faculty sponsor.

Pennsylvania Iota, Shippensburg State College, Shippensburg

Chapter President —Brenda Csencsits
31 actives, 12 pledges

Region 1 held its first regional convention on 3-4 November with
Pennsylvania Iota serving as hosts. Preliminary plans called for a
session opening the conference on Friday evening, some social events,
and several sessions devoted to presentation of papers by students.
Professor William Smith, national Vice-President of KME, will be
the keynote speaker.

At the annual banquet of the chapter a talk, How to Catch Lions
in the Sahara Desert, was given by Dr. Howard Bell and Dr. William
McArthur. A constitution revision committee presented a new con
stitution which was approved. Kathy Fischer headed the Newsletter
Committee. Other officers: Mary Ibbersqn, vice-president; Gloria
Brady, secretary; Dr. Howard Bell, treasurer; Dr. John Mowbray,
corresponding secretary; Dr. James Sieber, faculty sponsor.
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Pennsylvania Kappa, Holy Family College, Philadelphia

Chapter President — Mario Herczeg
2 actives

Five meetings were held this past year at which the members
solved problems from THE PENTAGON and from old Putnam ex
aminations. Dr. Robert Beck from Villanova University was a guest
speaker on How to Stuff a Large Group into a Small Computer.
Other officers: Brenda Nadijka, vice-president and treasurer; Mario
Herczeg, secretary; Allan Becker, corresponding secretary; Sr. Mary
Grace Kuzawa, faculty sponsor.

Tennessee Beta, East Tennessee State University, Johnson City

Chapter President —Barney Taylor
16 actives

Ten new members were initiated at a lovely spring banquet on
12 May. Dr. Eduardo Zayas-Bazan, associate professor of languages
and one of those for whom our government paid $100,000, spoke
on the Bay of Pigs. The versatility of the members was shown by the
awards in the spring: James Cloyd —KME senior mathematics
award, chemistry award, dean's award; Nellie Woolsey —art award;
Kenneth Oster —political science award and dean's award; Beverly
Taylor, Nancy Forrester, Shannon Whitehead —dean's award. Other
officers: Nellie Woolsey, vice-president; Hilda Street, secretary;
Gregory Heuberger, treasurer; Lora McCormick, corresponding
secretary; Sallie Carson and T. H. Jablonski, faculty sponsors.

Texas Alpha, Texas Tech University, Lubbock

Chapter President —Katie Updike
18 actives

The chapter meets monthly and also holds special meetings and
pledge meetings. Other officers: Marcus Rasco, vice-president; Mari
lyn Baker, secretary; James Bain, treasurer; Marilyn Baker, corre
sponding secretary; Dr. Bob Moreland, faculty sponsor.
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Wisconsin Alpha, Mount Mary College, Milwaukee

Chapter President —Geri-lynn O'Boyle
9 actives

Wisconsin Alpha celebrated its twenty-fifth anniversary by hosting
the regional convention for Region 2 on 24-25 March. David R.
Johnson of Nicolet High School in Milwaukee used as his topic, The
Magical Aftermath, at the banquet. In addition to student papers,
there were some short movies and a reading from Dialogues on
Mathematics by A. Renyi.

The chapter sponsored its usual annual mathematics contest for
high school students on 12April. Four new members were initiated
on 25 April, Christine Amrhein, Denise Diorio, Mary Doyle, and
Cindy Sporleder. The speaker, Jim Morgeneau, talked on Piaget and
His Theory. Other officers: Betty Witt, vice-president; Catherine
Starck, secretary; Mary Kathleen Doyle, treasurer; Sister Mary
Petronia, corresponding secretary and faculty sponsor.

Wisconsin Beta, Wisconsin State University, River Falls

Chapter President —Steven Hesperich
18 actives, 22 pledges

The chapter meets once a month and holds some special meetings.
The 1972 winner of the plaque for the outstanding mathematics stu
dent was Stephen Hesperich. Other officers: Terry Desjarlais; vice-
president; Chris Goldsmith, secretary; Dick Ruhsam, treasurer; Lyle
Oleson, corresponding secretary; Dr. Ed Mealy, faculty sponsor.






