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Kappa Mu Epsilon, mathematics honor society, was founded in
1931. The object of the fraternity is fivefold: to further the interests
of mathematics in those schools which place their primary emphasis
on the undergraduate program; to help the undergraduate realize the
important role that mathematics has played in the development of
western civilization; to develop an appreciation of the power and
beauty possessed by mathematics, due, mainly, to its demands for
logical and rigorous modes of thought; to provide a society for the
recognition of outstanding achievement in the study of mathematics
at the undergraduate level; to disseminate the knowledge of mathe
matics and to familiarize the members with the advances being made
in mathematics. The official journal, THE PENTAGON, is designed
to assist in achieving these objectives as well as to aid in establishing
fraternal ties between the chapters.



Trisection of An Angle4
Catherine Peterson

Student, Kansas State College of Pittsburg

For two thousand years mathematicians and others have been
searching for a method of trisecting an angle. However, every
construction that was proposed was either inexact or it used some
thing more than a compass and straightedge. Finally the question
changed from "How does one trisect an angle?" to "Does a trisection
of an angle exist?" A rigorous proof of the nonexistence of an exact
trisection using only compass and straightedge was finally found
after the development of algebra.

Several attempted trisections are available today and are very
interesting even though they do not fit the requirements for con
struction. It is the intention in this paper to introduce some of the
methods the author has encountered in her research. Since there
would not be time to give a complete explanation of each, only one
is selected to explain in full detail.

Of those methods of inexact trisections that use only a compass
and straightedge, the first one introduced is that which uses the
infinitely decreasing geometric progression:

1/3 = 1/4 + 1/16 + 1/64 + 1/256 •••

By using the formula for the sum of the infinite series 1/2" and
then subtracting the first two terms from it, we get 1/3. This result
suggests a way of adding on small bits of an angle one by one to
approximate 1/3 of the angle.

Another inexact method utilizes the trisection of a segment.
The angle to be trisected is intersected by an arc with the center
at the vertex of the angle. By drawing the chord of that angle and
trisecting it, the angle can be divided into three angles by drawing
lines from the vertex through the points of division of the segment.
(Fig. 1) However, these three angles can be proved to be not equal.

*A papor presented at the regional convontlon at Warrensburg, Mo., April 25, 1970.
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(FIGURE 1)

One method of trisecting an angle exactly is done by means
of an insert. Actually this method is notexact, but it probably comes
as close by trial and error as a real construction would if the human
error were taken into account. It goes as such: (Fig. 2) Extend

(FIGURE 2)
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one of the sides of the given arbitrary angle, ZABC = a, beyond the
vertex B and draw a semicircle with arbitrary radius r and center
at B. Let that semicircle intersect the second side of the angle at
the point D. Then take a straightedge and make on it two marks
E and F at a distance r apart. Place the straightedge in such a way
that its arm passes through the point D and that the point E is on

the extension of BA and that the point F is on the semicircle. The
angle b is 1/3 of angle a. The proof is left for the reader.

Another exact method of trisecting an angle uses a fixed para
bola. This method is the one which has been chosen to construct

and prove. First take a parabola with vertex at P and axis PZ or

PX. (Fig. 3b) Constructing a perpendicular to PZ at P, we get

(a)

(b)

(FIGURE 3)
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angle YPX. Bisecting YPX, we get a 45 degree angle WPX with
-+

the ray PW intersecting the parabola at N. Drop a perpendicular
*—» •—» __

from N to PX, intersecting PX at E. Mark off a segment EQ on

PXequal in length to FE. At Q construct a line perpendicular to PX

and call it QG.

Angle UOV (Fig. 3a) is the angle to be trisected. Using O
-♦

as center and PE as radius, draw a circle. (Fig. 4) OV intersects
-* _

the circle at B and OU intersects the circle at A. Draw chord AB

and bisect it, with M the midpoint. Mark off MA on QG of the

parabola construction. (Fig. 5b) Call this new segment RQ. With
R as center and RP as radius, draw circle K. The circle cuts the

(FIGURE 4)

parabola in three places, but choose the closest to P and call it S.

Drop a perpendicular from S which intersects PX at T. Then using

the length of BY, mark off a point C on the arc AB so that AC
= ST. (Fig. 5a) The angle AOC is exactly a third of angle AOB.
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(a)

(FIGURE 5)

PROOF

Let OA = PE = 1

The equation of a parabola with vertex at (0, 0) and symmetric
about die x-axis is:

y* = ex

Angle XPW = 45°: then EN = PE = 1 and the coordinates of
N = (1,1). Substitute into y2 = ex: then c = 1 so that the
equation is y2 = x. Let angle AOM = 4>: AM = OA(sin <£)
= sin 4; AB = 2AM = 2sin $.

CLemma: The length of a chord of an angle is twice
the sine of Yi the central angle it determines.)

Let <ji/i = w so that 2w is the angle we want. (Iw = 1/3 of
angle AOB~). Then ST must be 2sin <f>/i, meaning that the ordinate
of S is y = 2sin <£/3. Now let us start with a point on the parabola
whose ordinate is y = 2sin w and prove that this point is S.

Let (a, fc) be the center of circle K. a = PQ = 2 and fe = AM
= —sin ^>. Equation of circle K: (* — «)*+ (y — ib)2 = r2

*J + y2 - 2ax - 2by + a2 + b* - r2 = 0.
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Since the circle passes through (0, 0), this point must satisfy the
equation of the circle so that:

a2 + b2 - r2 = 0.

Then: x2 + f - lax - Iby = 0. Substitute a = 2 and
b = —sin 4>

(H) x2 + y2 - 4x + 2y sin </> = 0.

Now let us work with some trigonometry formulas. By using the
fact that sin(A + B) = sin A cos B + cos A sin B and cos(A + B)
= cos A cosB — sin A sin B, we can get:

sin 3A = 3sin A cos2 A — sin5 A or since cos2 A = 1 — sin2 A,

sin 3A = —4 sin3 A + 3 sin A or

4sins A - 3 sin A -f sin 3A = O.

(L) Multiplying by 2: (2sin A)J - 3(2sin A) + 2sin 3A = 0.
Let A = ^/3 = w: 2sin 3A = 2sin <f> = g.

2sin A = 2sin w = y.

Then we have y3 —3y + g —0, where g is AB and y is the chord
subtending 1/3 of the angle.

For each value of y, there is only one point on the parabola.
Let F be the point on the parabola whose ordinate is y = 2sin w.
We want to show that F is S. Then from (L), y = 2sin if satisfies
the equation y3 — 3y + g = 0.

Multiplying by y, we have:

y* - 3y2 + gy = 0: y* + y2 - 4y2 + gy = 0.

Since F is on the parabola, we cau set y2 = x or y* = x2 and get:
x2 + y2 - 4x + gy = 0 (g = 2sin </>)

x2 + y2 - 4x + 2y sin <f> = 0 so that since the point F (on
the parabola) whoseordinate y = 2 sin if is on the circle K, it must
be the point of intersection of K with the parabola so that F = S.

REFERENCES

1. V. M. Bradis, V. L. Minkovskii, and A. K. Kharcheva. Lapses
in Mathematics. New York: Pergaraon Press—MacMillan Co.,
1963, pp. 164-170.

(continued on p. 75)



Trisection Revisited
Elwyn H. Davis

Faculty, Kansas State College of Pittsburg

One of the interesting and beautiful characteristics of mathe
matics is the fact that almost all of the really important and fruitful
areas of mathematics had their origins in very concrete and easily
visualized concepts. Such a foundation for much of algebra is found
in attempts to make various geometric constructions using only a
straight-edge and compass. In fact, many high school students
become quite intrigued with geometric constructions, and many
express disbelief or at least doubt when told that it is impossible
to trisect a general angle using only straight-edge and compa"
Unfortunately, most of the students never see or hear an explana
tion of why this is so. The few students who continue in mathe
matics seldom ever receive such an explanation until their first
abstract algebra course, and this is not universal.

The purpose of this paper is to provide an explanation, on a
level which can be understood by calculus students, of the reason
that the angle cannot be trisected by use of straight-edge and com
pass alone. Examples of the pertinent theorems are given to aid
understanding of these theorems which are merely stated. These
theorems are adaptations of standard field theory results which are
stated here with as few specialized terms as possible. The general
theorems can be found in many abstract algebra texts, two of
which are cited in the references.

In this paper we will consider geometric constructions which
employ only a straight-edge and compass. Consequently, the words
"straight-edge and compass" will often be dropped.

First, we must consider the concept of a field. The definition
given below is not the standard one; however, it is equivalent to
the standard definition ofa field and is more useful for the purposes
of this paper.

A field is an ordered triple, (F, +, •)» where + and • are
two binary operations on F which satisfy:

(1) + and • are both commutative and associative;
(2) there is a 0 e F such that a + 0 = a for all a e F;

69
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(3) there is a 1 e F such that 1 • a = a for a e F;
(4) a • (i + c) = a • b + a • c for all a, b, and c e F;
(5) each equation of the form a • x + b = c, a =^= 0, has a

unique solution in F.

We will usually denote a • b by afc.

Examples of fields are the real numbers, R, with the usual
+ and •, and the rational numbers, Q, with the usual + and •.
In fact, all of the fields which we will discuss in this paper contain
Q and are contained in R.

To understand why certain geometric constructions are impos
sible, it is necessary to understand the concept of dimension of a
field. We will present three examples which illustrate the principles
involved. These principles will be enunciated as theorems.

Example 1. Let S = {a + by/2\ a, b e Q}, and let S be
endowed with the usual addition and multiplication of real numbers.
(S, +, •) forms a field, and we check some of the postulates.

(a) To see that multiplication is indeed a binary operation
on S consider (a + by/2Xc + dy/T').

(a + by/TXc + dy/2~) = (ac + 2bd~) + (ad + bc}y/2t S.

(b) Let a + by/2 ^ 0. The equation

(« + foV2 > + (c + dy/2 ) = e + fy/2

can be solved by elementary algebra, and the solution is

_ aje - c) - 2bCf - d~) , ajf - <*) - bje - c) -x
x a~2 :r2b2 fl2 -2b2 v '

There are three principal things we wish to notice about
(S, +, •)•

(i) For each x e S there are unique a, b e Q such that x =
a • 1 4- by/2 . Hence, we say that 1 and V2~form a ^asis f°r s over
Q. We say the dimension of S over Q is 2, and write [S: Q] = 2.

(ii) Consider the equation x2 - 2 = 0. It cannot be factored
over Q although the coefficients are in Q. The roots of the equation
are V2 and —V2*, andboth of these roots are in S.

(iii) Let F be a field containing Q. Let y/2 and -V2 be
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elements of F. Then for all a and b in Q, a + by/2 e F. So S C F.
That is, S is the smallest field which contains Q and all roots of
x2 - 2 = 0.

Example 2. Let T = {a + by/2 4- c(\/2 )* | a, fc, c EQ}.
Let T be endowed with the usual real number addition and multi
plication. (T, +, •) forms a field, and we give an example of a
multiplicative inverse.

( 1 4- ^2)(l/3 - l/3$2~ 4- 1/3(^2)*) = 1.
As with Example 1, we notice three principal things.
(i) For each x e T there are unique a, b, c, e Q such that

x = a• 1 + by/2 + c(y/2 )". Thus a basis for T is formed by 1,
•^2 , and (v^)2, and [T: Q] = 3.

(ii) All real roots of the equation x3 — 2 = 0 are contained
in T. This equation cannot be factored over Q, but all of the coeffi
cients are elements of Q.

(iii) If F is a field which contains Q and v'T, then it con
tains each number a 4- by/~2 4 c(-$2")2 where a, b, c, e Q.
Thus T C F. So T is the smallest field which contains Q and all
roots of the equation x* — 2 = 0.

Exaniple 3. Let C = {a + by/2 + c(^2*)2 + d(.y/2~f
+ e(.-\/2 )* + /(v^ )*}. Let C be endowed with the usual real
number addition and multiplication. (C, +, •) forms a field. We
observe four principal things about this field.

(i) For x e C there are unique a, b, c, d, e and f e Q such that

x = a + by)! + c(^2 )2 + d(V2)S + c(v,2~)4 + /(v'2 )*.
Hence, 1, y/2 , (v'T)2 , (V2*)S , (y2~)4 , and (\^2")5 forms
a basis for C. Also, [C: Q] = 6.

(ii) C contains all real roots of the equation xa — 2 = 0,
which cannotbe factored over Q, yet has all of its coefficients in Q.

(iii) As in the previous two examples, C is the smallest field
which contains Q and all real roots of xf — 2 = 0.

(iv) We see that [C: S] = 3, by the following:
a+by/2Jr c^T)2 +^(v'T)3 +e(V2)4 +f(>?2)B =
(a + dy/2 )•! + (& + «V2")>?2 4- (c + fV2")(v'2~)*,
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and all of the numbers a 4 dy/2, b 4 eV2~, c + fy/2 are ele
ments of S. It can be shown that these coefficients are uniquely
determined by the element of C.

Also, we see that [C: T] = 2, as follows:
a4 byfl 4 c^Tf 4 dtfl f 4 e(j/2 )4 +J(ty2 ? =
(a 4 c{/2 + eOvT)8) •1 4 (b 4 d</2 4 f(\/2 )2 )#2 ,

and the coefficients of 1 and $2 elements of T. It can be shown
that these coefficients are uniquely determined by the element of C.

Collecting these facts, we have:
(a) QCSCC and [C: Q] = [C: S]IS: Q];
(b) Q C T C C and [C: Q] = [C: TJT: Q] .

These three examples illustrate the following theorems:

Theorem 1. Let F be a field, F C R, and p(x) a polynomial
with coefficients in F which cannot be factored over F. Suppose
there is a real number, r, such that p(r) = 0. Let the degree of
p(x) be w. Then there is a field E which contains F and all real
roots of p(x) = 0. The elements of E have the form

a0 4 a<r 4 a2r2 4 • • ♦ 4 «„-,rn-1

and [E: F] = «.

Theorem 2. Let F, E, B be three fields with F C E C B
for which [E: F] and [B: E] exist. Then [B: F] = [B: E^E: F].

Now we consider the manner in which points may be con
structed by use of a straight-edge and compass. First, notice that
a point with coordinates (x, y) can be constructed if and only if
the points (x, 0) and (0, y) can be constructed. So we will call a
real number constructible if either of the points (a, 0) or (0, a)
are constructible. In our discussion we will often use the terms
"constructible point" and "constructible number" interchangeably.

It should be recalled that if a and b are constructible numbers,
the procedures for constructing a + b, a —b, ab, and a -s- b for
b =£ 0, are well known. Thus, if a =£ 0, b, and c are constructive
numbers, the solution to the equation ax + b = c is constructible.

Points may be constructed in a sequence of stages.
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Stage 1. The points (x, y) with rational coordinates can
be constructed. Thus, the rational number field, Q, consists of
constructible numbers.

Stage. 2. These points are constructed using Stage 1 points
as a beginning. They arise in three ways.

(i) Intersections of lines joining Stage 1 points.

Since equations of straight lines are linear equations, the
coordinates of these points are simultaneous solutions to systems
of the form

ax 4 by 4 c = 0

dx 4 ey 4 / = 0

where a, b, c, d, e, and / are rational numbers. Thus, by field prop
erty 5, x and y are rational. So no new points are obtained in this
manner.

(ii) Intersections of lines joining Stage 1 points and circles
with centers from Stage 1 and radii which are Stage 1 numbers.

These points have coordinates which are simultaneous solu
tions to systems of the form

x2 + y2 4- ax 4 by 4 c = 0

dx 4 ey 4 / = 0

where a, b, c, d, e, and f are rational numbers. This procedure may
yield new points. In solving this system, (provided d ^= 0), we
obtain

((-e/d)y - f/d)2 4 y2 4 a((-e/d)y - f/d) + by + c = 0

which is a quadratic equation in y or a linear equation in y. Also,
the coefficients are rational numbers. Hence, the new constructible
numbers are obtained from quadratic equations with rational co
efficients which do not factor over the rational numbers.

(iii) Intersections of circles with Stage 1 centers and Stage 1
radii.

These points have coordinates which are simultaneous solu
tions to systems of the form

x2 4 y2 4 ax + by + c = 0
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x2 + f 4- dx 4- ey 4 f = 0

where a, b, c, d, e, and f are rational numbers.

These solutions are the same as solutions to the system

x24-y24-ax4-6y4-c = 0

(a - a*> + 0> - c)y 4 (c - /) = 0.

Solutions to these systemsarediscussed in (ii) above.

Hence, we have the following conclusion: If x is a number
which is constructible in Stage 2 but not in Stage 1, then it is a
solution to a quadratic equation coefficients in Stage 1 which does
not factor over Stage 1. Let F be the smallest field containing Q
and x, then [F: Q] = 2. Again, this is illustrated by Example 1.

Stage 3. Points may be constructed in three ways, exactly
as in Stage 2 with the following substitutions:

Stage 3 for Stage 2

Stage 2 points or numbers for

Stage 1 points or numbers, or rational numbers.

Continuing in this way a sequence of stages can be built up,
such that if x is constructible, but x { Q, and F is the smallest field
containing Q and x, then [F: QJ = 2" for some «. This follows
from the above discussion and Theorem 2.

Finally, we turn to a consideration of the impossibility of
trisecting the general angle by using only a straight-edge and
compass.

Consider the angle e = 60°. Then 9/3 = 20°. From trig
onometry, we have

cos 6 = 4 coss(G/3) - 3 cos (0/3).

If we let a = cos 20°, then we have

1/2 = 4a3 - 3a

since cos 60° = 1/2. Thus, a is a solution of the equation

8X3 - 6x - 1 = 0.

This equation has rational coefficients and cannot be factored
over Q. To see this, apply the rational roots theorem. Consequently,
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by Theorem 1, if F is the smallest field containing Q and a, then
[F: Q] = 3. But if a were constructible, [F: Q] = 2n. This is
a contradiction. So a is not constructible.

Let /3 be any angle, then /? is constructible if cos f} is con
structible. Lay off on a line, I, through a point, P, a segment, PQ
of length cos /?. Construct a circle of radius one with center P.
Erect a line m, perpendicular to I and passing through Q. Denoting
an intersection point of / and the circle of B, the angle BPQ
equals /?.

Hence, a 60° angle cannot be trisected by use of straight-edge
and compass, because cos 20° cannot be constructed, and hence a
20° angle cannot be constructed.

REFERENCES

1. Birkhoff, Garrett and MacLane, Saunders. A Survey of Modern
Algebra. New York: The MacMillan Co., 1965.

2. Fraleigh, John B. A First Course in Abstract Algebra. Reading,
Mass.: Addison-Wesley Publ. Co., 1969.
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Linear Elements of A Vector Space
Ali R. Amir-Moez

Faculty, Texas Tech University

This note intends to explain some geometric concepts which
have motivated some of the ideas of a vector space over a field.
First we discuss vector equations of straight lines and planes in a
Euclidean three-dimensional space, then we give some generaliza
tions.

1. A geometric model of a space: Let us consider a three-
dimensional Euclidean space. We choose a fixed point 0 and call
it the origin. Every vector has the same beginning 0. Thus a vector
will be denoted by its end point such as vector A. The zero vector
O ends at 0 and has any desired direction. We accept the algebra
of vectors, i.e., addition and scalar multiples of vectors [1]. Scalars
will be real numbers and denoted by small letters.

2. Straight lines: Let A and B be two distinct vectors ending
on a line which does not contain O (Fig. 1). Then B — A is a

FIGURE 1

vector parallel to the line AB. For any vector X ending on this line
we also observe that X — A is a vector parallel to this line. Thus
X — A and B — A are linearly independent; therefore, there is a
real number t such that X — A = t(B — A). If we solve this

76
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equation for X we get X = (1 - t)A 4- iB. Sometimes this equa
tion is written as

X = aA 4- &B , a 4- & = 1 .

We observe that what is said so far is independent of the dimension
of the space. That is, a line in a plane or in the space has the same
vector equation.

3. Planes: Let {A, B, C} be a set of linearly independent
vectors ending on a plane (p (Fig. 2). We observe that B — A

FIGURE 2

and C —A are two vectors which are in a plane parallel to (P. We
easily see that B —A and C — A are linearly independent. For if
B - A = t(C - A), t J= 0, then B = tC + (1 - i)A which
contradicts the fact that {A, B, C} is linearly independent. So all
linear combinations of B —A and C —A will give a plane through
the origin. Now for any vector X ending on the plane (p we have
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X —Aparallel to (p and thus in the subspace generated by B —A
and C — A. Therefore, there are real numbers t and s such that

X - A = t(B- A~) + sCC- A) or
X = (1 - t- s)A4-tB 4- sC.

This equation is often written as

X = aA4fcB4cC, a 4 b 4 c = 1.

4. Hyperplanes: Vector equations of straight lines and
planes in 2 and 3, described sets of vectors. For example, for a
line we should have written

{X: X = aA 4 bB, a 4 b = 1} .

There is a one-to-one correspondence between this set and the
set of points on the line. The usual inaccuracy of logic comes in—
a set is identified by another set which is isomorphic to it—and we
call the above set a straight line.

To generalize the ideas of sections 2 and 3, we choose a
vector space V over a field J? [3]. Here scalars, i.e., elements
of J*"will be denoted by small letters a, b, •••, and vectors will be
denoted by Greek letters. A subspace of V may be called a hyper
plane through the origin. As we saw in section 3, a plane could be
described as a set of vectors P such that for X, Y e P, we get X — Y
in a plane through the origin. So we shall define a hyperplane in V
to be a set of vectors H such that for /?, y e H the vector /? — y is
an element of a subspace S of V. The dimension of H is defined
to be the one of S. We may say that H is parallel to S.

5. Equation of a hyperplane: Let {a„ • • •, e*} be linearly
independent. Then

H= i |: £= 2 «♦«« • X ai =11
v ,=i 1=1 /

is a hyperplane of dimension fe — 1.

Proof: We observe that {ai - a,, i = 2, • • •, k) is
linearly independent. For, if for example,

a2 —<*i = 2 ti(-ai ~ "i)» some U^ 0,
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then

(1 U- — fe)«i 4- t3«3 4- • • • 4- titan

which contradicts the fact that {au ♦ • •, as} is linearly independent.
Thus {«i — o„ i = 2, • • •, k) generates a (fe — 1)-dimensional
subspace S of V. Let i, £ e H. Then

*= X "'•«>• 2 «« = i.f= X fc'«» 2) fc< = 1-

We observe that

$ — «i = («i — 1)«i 4 a2a2 4 • • • 4- a*«fc =
( —«2 — • • • — a*)*! 4- a2«2 4 • • • 4 akok =

«2(«2 —«i) 4- • • • 4- aicCait — on)-

Similarly £ - a, = &2(«2 - a,) 4 • • • 4- i*(a* - «t). Thus

*"-:=«- «0 - ({ - a.) = («2 - &,)(«* - ax)
4- •••4- (a*- fc*)(o%-«i)

which implies that | - £ e S and the dimension of H is fc — 1.

Here H was given and S was constructed. Now let us give
a subspace S and construct H. First we study a geometrical model.
Consider a line it through the origin in a plane (Fig. 3). Let A
be a vector not on the line. Then

{X:X = A 4 B, Bison %}

FIGURE 3
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describes a line parallel to it. That is, as the point B moves on %
the end point of X moves on the line through O parallel to %.

Now we shall generalize this idea for a vector space V over
a field J?. Let S be a (fe — 1)-dimensional subspace of V. Let a
be a fixed vector, a$ S. Then

H= {«:* = « + /&,j8«S}

is a hyperplane of dimension fe — 1 parallel to S. To show this, let
{/?2> **'. j6*} be a basis in S. Then the set

{«! = a, «i =a 4 /?(, i = 2, • • •, fe}

is linearly independent and H can be written as

h={i: i= 2 «'««> 2 ai =Jr •
We leave the proof to the reader.

Indeed one should look into more general cases [4]. For
example, when for the subspace S of V dimension cannot be defined,
still

H = {£:£ = a+ p,a)S, fixed, 0 e S}

is a hyperplane. The reader may examine the fact that |, £ e H
implies | — £ e S.

6. Unitary spaces: Let V be a vector space over the field of
complex numbers. Let an inner product of {, £ e V be defined and
be denoted by (£, £) [2]. Then V is called a unitary space. Thus
one can combine the inner product with ideas of previous sections
for generalizations of many geometric theorems. For example, we
generalize the normal equation of a straight line. Let P be a fixed
vector perpendicular to a given line. Suppose A is a vector ending
on the line (Fig. 4). If W is a vector of norm one on P, then
(A, W) = p, where p = ±\ P |. If a coordinate system is given,
then we let A = (x, y) and W = (cos 0, sin 0). Thus we get the
well-known equation

xcos 0 4 ysin 0 = p.

In a unitary space the normal equation of a hyperplane is
obtained similarly. Let a be a fixed vector of norm one orthogonal
to a subspace S of V. Then (I, or) = c, where c is a complex num-
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ber, is the equation of a hyperplane parallel to S. Here we can say

H = {% : (£, «) = c, a 1 S, o fixed)

is a hyperplane orthogonal to a. The reader may examine the fact
that £, £ e H implies (| — £, o) = 0 which means | — £ e S.

7. Creating problems: Here we would like to suggest gen
eralizations of geometrical problems. For example:

In the right triangle ABC, where C is the vertex of the right
angle and CH is the altitude corresponding to AB, show that

1 1 1

CH2 CA2 CB2 -

We translate the problem into the language of vectors: let C be
at the origin. Thus the hypotheses will be

(A, B) = 0, H = aA 4 bB, a + b = 1, (H, A - B) = 0.

The conclusion will be

_L_ = _L_ + _L_

We leave the solution to the reader.
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A generalization of the problem will be: let {au • • •, a*}
be a set of non-zero orthogonal vectors in a unitary space. Let £
end on the hyperplane defined by {au • • •, o%} and orthogonal
to it. This means that

k ' k

£ = 2 fl<ai »2 fl< = ' •

and (£, «( — «/) = 0. The last equality indicates that £ is orthog
onal to every vector in the subspace parallel to the hyperplane.
Then the conclusion will be

1 * 1
1 = 2 'hi2 & l««I2 '

In this problem at has to be real; otherwise, one runs into difficul
ties of algebra. The reader may translate other geometric problems
into the language of vectors and generalize.
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Neglect of mathematics works injury to all knowledge since
he who is ignorant of it cannot know the other sciences or the
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Building a Group, a Ring, and a Field
John Behle

Student, Northeast Missouri State College

We have all heard the expression "experience is the best
teacher." However trite this expression may be, it is still relatively
true. Some times the only way we can become familiar with a con
cept is through working with it. Through experience in using this
concept we gain confidence and anchor our ideas.

In mathematics the same is often true. Concepts such as group*
ring, and field may be hazy to us, but by working with them, per
haps only constructing them, we gain understanding of their
definitions. The purpose of this paper is simply to gain familiarity
with the concepts of group, ring, and field by constructing them.
Insight may be gained by designing our own.

Let us first construct a group. The definition of a group is as
follows: A group G is a set, together with a rule (called a law of
composition) which to each pair of elements x, y in G associates
an element denoted by xy in G, having the following properties:

GR 1. for all x, y, 2 in G we have associativity, namely
(xy)z = x(yz);

GR 2. there exists an element i of G such that ix = xi = x
for all x in G;

GR 3. if x is an element of G, then there exists an element
y of G such that xy = yx = i.

To construct a group, according to the definition we must
first pick a set. For now, we will use the set of two-by-two matrices

of the form ° j where a, b, c, d are all rational numbers.

Denote this set by letter G.

Next, we have to have a rule which associates two elements
of the set with a single third element of G. Our rule will be denoted

by 4 and defined as follows: Given a °. and e t
elements of G,

83
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normal matrix addition is our operation. Here we notice that this
operation takes two elements of G and associates them with a third
element of G. This we call closure.

Now we must check properties GR 1 through GR 3.

of G.

Mt^Mi I])+ [£/,] =
{[c +l d+hj) + [m n\ =
fa + e+fe b+ f+ ll=ra bl.ffe+k f + l~\\
lc + g+ m <*4/i4-»J |_c dj^\lg + m h+ n\)

GR 2. Let \ac hd 1be an element of G. Let |~* £1 be
element i of G. What must e, /, g, and /» be to satisfy this condition?

fa fc ~| . fe fl=ra4e b + fl = [ a b 1

if GR 2 holds.

Therefore, e = f = g = fe = 0.

*-[: 2]+[s s]-[: 5]-[s 2]
[:S] GR 2 holds.

GR 3. Let TJ J1 be any element of G. If GR 3holds,

there must exist some \ e M such that \a jj"] 4 J~c f"1



The Pentagon 85

= fa4e &+ f"l _ |"0 0"|
[c4 g d + h] L° ° J '

Then a + e = 0,b + f=0, c + g = 0, d + h = 0. Therefore,

e = —a, f = —b,g= —c, h= —d. Any element a \ has

an inverse of the form ~a _, . GR 3 holds. By our defini

tion G is a group.

Next we define an abelian group. If x, y are elements of G,

and xy =yx, then Gis abelian. Is our Gabelian? Let x= \ a jJM

andy=[j [] .Then x4y=[« }]+ [• J] -
Ta4e Hfl= [e + « / 4- b\ = Ve f~\+[a b~\
[c 4- g d+ h] |_g 4 c h+ dj |_S *U Lc dJ
= y 4- x, since the rational numbers are commutative under addi
tion. Therefore, our G is abelian. As an abelian group it has the
properties of all other abelian groups.

Now some sets are not just groups, but may also be rings.
Perhaps our set is one of these rings.

A ring is defined as follows: A ring G is a set, whose objects
can be added and multiplied (i.e. we are given associations (x, y)
with x 4 y and (x, y) with xy from pairs of elements of G into G)
satisfying the following conditions:

RI 1. under addition, G is an additive abelian group;

RI 2. for all x, y, z elements of G we have (xy)z = x(yz);

RI 3. for all x, y, z elements of G we have x(y 4- z) =
xy 4 xz and (y 4- z)x = yx 4- zx.

A ring is called a ring with unity if there exists an element,
u, in G, such that ux = xu = x for all x an element of G. A
commutative ring with a unit element is a ring with unity with
the following condition holding—given x, y elements of G, then
xy = yx for all x, y elements of G.

If the above set G is to be one of these rings, we need another
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operation besides addition. We will call it multiplication and define

it in the following way. Let a % and * JT be elements

of G. Denote multiplication by X. Then [* jl X \e jM
= I C Ah \ ' ^ere we a8ain notice that this operation gives us
a third element of the set G. Therefore, the set is closed under the
operation. Now we must again check the conditions and determine
if G is indeed a ring.

RI 1. Under the above addition we have already seen that
G is an abelian group. RI 1 holds.

RI2- Let[c J]» [l t]«*[l ij^etaneal.
ofG. Then[« J]x ([ J {] X[* []) =
r« »i x r-* ni = r«efe jf = r«e &nx
[_ c a J |_gm k J L.cgi» a««J |_cg ah J

[i *]-([: J]x[; !])><[£ i] RI2
holds.

bi3- >*[: J].[; f]-*[i -'] beek-
me„«so(G.[« J]x ([J {] + [* j])-
[a b"]xre4fe / + J~| = [ae 4 afe bf 4- M~| =
J_c a* J |_g 4- m fe + nj |_ eg 4 era dh 4- dn J

*-([;*] +[i i])x[: j]-
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l~e 4 fe f+llxrabl=[ea+ka fb + lb~\ =
[g 4 m h+ nj \_c d\ \_gc + mc hd + ndJ

[££]♦[£ S] =([|l]x[c°5]) +
([» »]x [" 5])RI3M*-
Therefore, G is a ring.

Now we wish to ask if G is a ring with unity, and if it is a
commutative ring with unity. We seek the answers below.

By the above definition ofaring with unity, if \ a \ Iis any

element of Gthere must be an element, u, (\ e / Jsuch that

[." J] x [t t] - [:!] TUstapUes
that ae = a, bf = b, eg = c, and dh = d which in turn implies

that e=1, f= 1, g=1, and h= 1. The wof Gthen is[" j J1
and G is a ring with unity.

If G is also commutative, then the following must hold. Let

[c d]*nd [l ^]be elements of G.[« J] X
[_g h\ = [Tg dh\=[egc hd] = [l h\X

a b, . Gis therefore, acommutative ring with unity.

Now we seem to have accomplished one thing at least, we
have built a ring. We might be tempted to step here and be satisfied
with the results of our work. But, as mathematicians, we must go
forward with our work until we can advance no farther; therefore,
let us see if G is a field.

The definition of a field is as follows. A commutative ring G
with a unit element is called a field (where the unit element is
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the multiplicative identity) if for every a, an element of G (where
a is not the additive identity) there exists an element a-1, an. ele
ment of G such that aa-1 = ar^a = 1 (where 1 is the multiplicative
identity). The element, a-1, is called the multiplicative inverse.

Let \ a k be an element ofG. Then its inverse in general

must be such that the following holds for all a, b, c, and d.

[c d]X[l l]=[l J]• ^is implies that ae =1,
bf = 1, eg = 1, and dh = 1 which implies e = 1/a, f = 1/b,
g = 1/c, and h = l/d. At first glance then, G may appear to be
a field. Upon reflection though, we realize that should any element
of the two-by-two matrices be 0 there would be no inverse since
1/0 is undefined. Therefore, G is not a field.

Again as mathematicians, we cannot be satisfied. What can be
done to make G a field? We might try a different operation on G
and thus hope to build a field, but in this case let's weaken the
hypothesis. Let us use the subset of G called G' which consists of

all the two-by-two matrices of the form \ a " . Then the

only element of G' which will have a 0 in it will be of the form

n ft »which does no* have to have an inverse. Since this is

a subset of G then all other properties of the field have been shown
except for closure. If the set be closed, then it is a field.

Let I" ^ a1 and I" e e1be elements of G'. then
[a a "I + |~ e e"|=|"a4e «4 e ~] and |~ a e "I x
|_aaj LeeJ |_a4ea4ej LflaJ

Ye e"]= Yae ae 1 Meiements of G'. G' is closed and is
|_ e el |_ ae ae J

a field, since G' has all the properties of a field.

Still the mathematician is not satisfied. He might go ahead

(continued on p. 124)



A New Look At the Pythagorean Theorem
Cecil Cliburn*

Eglin Air Force Base, Florida

The Pythagoreans began the serious study of the right triangle
in the sixth century B.C. with the discovery that the sum of the
squares of the legs equals the square of the hypotenuse, or

c2 = a2 4- b2 . (1)

Diophantus of Alexandria advanced the study in the third century
A.D. with a general solution of the right triangle, as represented by
equation (1). The Pythagoreans had had no general solution
although they and their successors had known the solutions of cer
tain special cases. Diophantus, in his book Arithmetica, set forth
the classical solution: Let the hypotenuse equal m2 + n2; base equal
m2 — n2; altitude equal 2mn. The parameters m and n are positive
integers chosen such that m is greater than n. To exclude multiples,
i.e., similar triangles, let m and n be relatively prime and of differ
ent parity. (Throughout this paper, "triangle" will mean "right
triangle" unless otherwise specified.)

Each triad of positive integers which satisfies equation (1)
is called a pythagorean triplet. If multiples are excluded, they are
called "primitive" triangles. (Any such solution set is called a tri
angle, even though it strictly represents only the dimensions of a
triangle.) The largest list ever published, at least until 1941, was
864 triads arranged according to m and n, with « < m ^ 65.
It included the area of every triangle. Another list gave the acute
angles to the nearest tenth of a second, but the list was much shorter
than 864. Still another publication gave all 477 primitive triangles
in which the hypotenuse does not exceed 3000. Yet another list
gave the triangles according to area, up to 934,000 square units.
Various arrangements have been made, but the most common one
is according to increasing values of the hypotenuse. The author of
one list included auxiliary tables of all his triangles in which c =
b 4 1 and c = b + 2 [_1~]. His paper was not available to this stu
dent, but the supposition must be that he pursued this clue no
further, contenting himself with the observation that they could

'All alumnuo of Mississippi Gamma.
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be so arranged. C. A. W. Berkhan gave nineteen methods for solving
the right triangle in a publication"Die Merkwundigen Eigenschaften
der Pythagorean Zahlen," Eisleben, 1853. In 1911 a French
mathematician, Fitting, published tables in which c = b 4- n and
a2 = 2bn 4 «, where n is an odd number squared, in a French
mathematics journal, "L'Intermediaire des Math.," 28, 1911, 87-90.
Another German, E. Meyer, compared many known ways of solving
c2 = a2 4- b2 in a mathematics journal, "Zeitschrift Math. Natur.
Unterricht," 43, 1912, 281-287 [2]. It is unlikely that scholars
such as these would have overlooked any solution to this intriguing
theorem. Yet because of the relative inaccessibility of the papers
referred to and the dearth of such literature in recent times, it
seems worthwhile to continue this study.

The purpose of this investigation is to discover the formula or
formulas by which one can quickly and easily compute the values
of the other two sides of a right trianglewhen the first side is given;
multiples of these "pythagorean triplets" being excluded. A single
formula will be sought to logically relate all formulas discovered
or developed.

The simplest group of triangles is that in which c = b 4 1,
such as the familiar 3, 4, 5 or 5, 12, 13. By substituting c = b 4- 1
in equation (1), it follows that

(b 4 l)8 = a2 + b2, whence

b = (a* - l)/2. (2)

Clearly, if b is to be an integer, a must be an odd number; but there
is no other limitation on a.

A second group is comprised of those triangles in which c =
b + 2, such as 8, 15, 17 or 12, 35, 37. Substituting this value
in (1) above,

b = (a* - 4)/4 (3)

or b = (a/2)2 - 1. (4)

An inspection of (4) shows that a must be an even number if b
is to be an integer. However, if a/2 is an odd number, then b is
an even number (along with a), and c is also an even number
(since an even number squared is even, and the sum of even
numbers is also even). Thus all three variables are even if a/2 is an
odd number: They are multiples of some other set of numbers;
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namely, those in the first group, when c = b + 1. It is, therefore,
required that a/2 be an even number in this group; hence a is four
times any number.

Ifc = fc4 3,

b = (a2 - 9)/6. (5)

It can be seen by careful inspection that b is an integer only when
a is three times some odd number, say x. Thus a = 3x, and

b = ((3*)' - 9)/6 (6)

b = (9X2 - 9)/6

fc = 3(x2- l)/2= 3((x2- l)/2). (7)

But the coefficient (x2 — l)/2 is equivalent to (a2 — l)/2 in
(2) above, since both x and a must be odd numbers. Therefore,
when c = b + 3, values for the three variables are exactly three
times the corresponding values when c = b 4- 1.

Suppose c = b 4 5. Substituting in (1) and simplifying:

b = (a2 - 25)/10. (8)

If b is an integer, a = 5x, where x is an odd number. Therefore,

b = (25x2 - 25)/10 (9)

or b = 5((x2 - l)/2). (10)

Here x may be given the same values as a in (2) above, odd num
bers. Values are exactly five times the corresponding sets when
c = b + 1.

A similar argument would certainly hold true for c = b + fe,
where fe is an odd prime number:

c = b + k (11)

b2 4 2bk + k2 = a2 + b2 (12)

b = (a! - fe2)/2fe. (13)

If b is to be an integer in (13), then of necessity a = kx where x
is an odd prime number; and

b = (fe2x2 - fe2)/2fe (14)

and b = fe((x2- l)/2). (15)
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The conclusion is that when the increment n, in the expression
c = b 4 k, is an odd prime number, only multiples of the triads
from (2) will be found.

Let c take on other increments, which are even numbers.
If c = b + 4,

fe = (a2 - 16)/8. (16)

By inspection, it is clear that fe will be an integer only when a is a
multiple of four (four times one being excluded because it would
result in a triangle having one side zero, a trivial case).

If c = b + 6,

fc = (a2 - 36)/12. (17)

The pattern here is similar to that obtained from (16) in which
the sets are multiples, alternating between the results of (2) and
(4). Thus there are no primitive triangles here.

If c = b 4 10,

b= Co2 ~ 100)/20. (18)

The resulting pythagorean triplets are alternately three times those
obtained from (4) or ten times those of (2).

If c = fe 4 12,

fe = (a2 - 144)/24. (19)

The results of (19) are alternately multiples of (2) and (4). No
primitive triangles are indicated.

If c = fe 4 8, fe is an integer only when a is a multiple of 4.
Moreover, when a/4 is an even number, as when a = 20, 28,
36, • • •, primitive triangles are indicated.

It is now necessary to examine a few other composite incre
ments. If c = fe 4- 9, fe is an integer when a is three times any odd
number, but odd numbers which are themselves divisible by three
produce multiples.

If c = fe 4- 18, fe is an integer when a is any multiple of six.
When a/18 is odd (a = 54, 90, • • • ), triads are multiples of (2),
and when a/18 is even (a = 36, 72, ••♦ ), triads are multiples
of (4). When a is not divisible by eighteen (but is still divisible by
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six), triads are either primitive triangles or multiples of fe =
(a2 - 81)/18.

A summary might be in order at this point. Primitive triangles
have been discovered when c = b 4- n, where n = 1, 2, 8, 9, or 18.
It is obvious that the odd numbers here belong to the sequence of
the odd squares, and the even numbers belong to the sequence
which is twice the square of any number. This, then, is the com
plete solution of the Pythagorean Theorem, as represented by

c2 = a2 + b2 (1)

c2 >fe2

c > fe

c = b 4- n

(fe + m)2 = a2 4- b2
b2 4 2fe« 4- n2 = a2 4- fe2

2fo« 4 m2 = a2

2fe»i = a2 - m2

fe = (a2 - m2)/2b. (20)

n = the square of any odd number,
n = twice the squareof any odd number, or
n = twice the square of any even number. To insure integral

solutions and to avoid multiples, it is necessary to place restrictions
on a according to the following charts:

CHART I, c = b 4 x2, where x = an odd number

c = fc 4- 1 a = any odd number.
c = b + 9 a=3 times any odd number, except those

divisible by 3
c = b425 a=5 times any odd number, except those

divisible by 5
c = fe449 a = 1 times any odd number, except those

divisible by 7
c = fe 4- 81 a = 9 times any odd number, except those

divisible by 3
c = fe 4 121 a — 11 times any odd number, except those

divisible by 11
c = fe 4- 169 a = 13 times any odd number, except those

divisible by 13
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c = fe + 225

c = b 4- 289

c = fe + 361

c = b + 441

a = 15 times any odd number, except those
divisibleby 5
a = 17 times any odd number, except those
divisible by 17
a = 19 times any odd number, except those
divisible by 19
a = 21 times any odd number, except those
divisible by 3

CHART II, c = fe 4 2x2, where x = an odd number

c = fe 4- 2 a = any even multiple of 2
c = fo4-18 a=6 times any even number, except those

divisible by 6
c = fe 4- 50 a=10 times any number, except those

divisibleby 10
c = fe4- 98

c = fe+ 162

c = fe + 242

c = fe4- 338

a = 14 times any even number, except those
divisibleby 14
a = 18 times any even number, except those
divisibleby 18
a = 22 times any even number, except those
divisible by 22
a = 26 times any even number, except those
divisible by 26

c = fe 4- 450 a=30 times any even number, except those
divisible by 6 or 5

c = fe 4 578 a=34 times any even number, except those
divisible by 34

c = fc 4- 722 a = 38 times any even number, except those
divisible by 38

c = fe 4- 882 a = 42 times any even number, except those
divisible by 7

CHART III, c = fe 4 2x2, where x = an even number

c = b 4- 8 a = any odd multiple of 4
c = b 4- 32 a = any odd multiple of 8
c = fe 4 72 a = any odd multiple of 12, except numbers

divisible by 3
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c = fe4128 a = any odd multiple of 16
c = fe 4 200 a = any odd multiple of 20, except numbers

divisible by 5
c = b 4 288 a = any odd multiple of 24, except numbers

divisible by 3
c = fe 4 392 a = any odd multiple of 28, except numbers

divisible by 7
c = fe4512 a = any odd multiple of 32
c = fe 4 648 a = any oddmultipleof 36, exceptnumbers

divisible by 9
c = fe 4 800 a = any odd multipleof 40, exceptnumbers

divisible by 5
c = b 4 968 a = any odd multipleof 44, exceptnumbers

divisible by 11

Space forbids a more detailed analysis of the charts, but the
developing patterns can be clearly seen although they must be care
fully explored. For example, in Chart I, the restriction expected
in the case of c = fc 4 81 was ". . . except those divisible by 9"
rather than by 3, as was found experimentally.

To relate this approach to that of Diophantus, it is necessary
to solve for hypotenuse less altitude (c — fe) and hypotenuse less
base (c —a). Since m and n are of different parity, it follows that
the quantity (w — «) is an odd number. Let N = m — n, and
compute (_c — a"):

c — a = (m2 4 m2) - 2mn

c — a = w2 — 2m« 4 n2

c — a = (»i — «)2

or c = a 4 N2, N being an odd number, Cm —»).

If N2 = fe, then c = a 4 fe. Eliminating c from (1) above by sub
stituting (a 4- fe) for c, c2 = a2 4- fe2 becomes

(a 4 fe)2 = a2 4- fe2

a2 4 2afe 4- fe2 = a2 4- fe2.
Hence

a = (fe2 - fe2)/2fe, (21)

which should be compared to (13) and (20) above.
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Now compute (c — fe):

c - fe = (m2 4 m2) - (mi2 - jis).

Simplifying, c — b = 2n2

and c = fe 4- 2«2, n beingany positive integer.

Again, eliminating c from (1):

(fe2 4 2m2)2 = a2 4 fe2

fe2 4 4fen2 4- (2«2)2 = a2 4 fe2

4fe»2 = a2 - (2«2)2

fe = (a2 - (2n2)2)/2(2«2). (22)

Or, if 2m2 = fe, then

fe = (a2 - fe2)/2fe2, (23)

which should be compared to (13) and (20) above.

Referring again to the historical notes above, it is seen that
several mathematicians have been close to this solution, but none
enunciated it clearly. One author, after tabulating his primitive
triangles, separated and tabulated those in which c = fe 4 1 and
c = fe 4- 2, but he did not generahze. Another, Fitting, generalized
to c = fe 4- «, where n is an odd number squared, but he did not
define n to include twice the square of any number, although such
is the case.
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There was more imagination in the head of Archimedes than

in that of Homer. —Voltaire



Installation of New Chapters
Edited by Loretta K. Smith

MARYLAND GAMMA CHAPTER

Sahtt Joseph College, Emmitsburg, Maryland

Maryland Gamma Chapter was installed on December 6, 1970,
in the DuBois Lounge following a business meeting. Professor
William R. Smith, Kappa Mu Epsilon's Vice-President, was to be
the installing officer but a severe snowstorm in northwestern Penn
sylvania prevented his attending the installation. Dr. James E.
Lightner, Corresponding Secretary of the Maryland Beta Chapter,
was kind enough to take Dr. Smith's place as the installing officer.
Dr. Lightner was assisted by Sr. Marie Augustine Dowling, Cor
responding Secretary of the Maryland Alpha Chapter. Following
the installation of the chapter and initiation of charter members
and officers, Dr. Lightner spoke on "The History of Honor Societies."
A tea and reception were held after his lecture. Three faculty mem
bers and twelve students are charter members:

Faculty Members:

Sister John Frances Gilman
Donald F. Shriner

Frank Wu

Students:

Frances Boscia Susan Jonas
Sister Ann Mary Dougherty Catherine Lisson
Lynn Gloeckler Kathleen McNaney
Karen Haggerty Linda Raudenbush
Patricia Hemler Sister Joan Rowe
Sister Mary Frances Hildenberger Jane Sweeney

Maryland Gamma Chapter's officers are:

President: Lynn Gloeckler
Vice-President: Sister Mary Frances Hildenberger
Recording Secretary: Karen Haggerty
Treasurer: Linda Raudenbush
Corresponding Secretary: Sister John Frances Gilman
Faculty Sponsor: Donald F. Shriner
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MISSISSIPPI DELTA CHAPTER

William Carey College, Hattiesburg, Mississippi

The Mississippi Delta Chapter of Kappa Mu Epsilon was
installed at William Carey College on December 17, 1970. Pro
fessor Jack D. Munn, Corresponding Secretary of the Mississippi
Gamma Chapter of KME at the University of Southern Mississippi,
was the installing officer. A reception in honor of the initiates was
given immediately following the ceremony.

The following people comprise the charter membership of
Mississippi Delta Chapter:

Phil Barnette Dennis Knight
Bill Breland Tim Rayborn
Craig Christopher Mike Richards
Betty Crocker Dr. Gaston Smith
Charles Ernest Mary Lynn Stampley
Warner Fellabaum Nancy Wilson
Charles Gambrell Nancy Wise

The chapter officers for Mississippi Delta are:

President: Phil Barnette
Vice-President: Charles Gambrell
Secretary: Nancy Wise
Treasurer: Bill Breland
Corresponding Secretary: Professor Warner Fellabaum
Faculty Sponsor: Dr. Gaston Smith.

At the installation Dr. Smith welcomed back two recent grad
uates in mathematics—Miss Nancy Wilson and Miss Mary Lynn
Stampley. Miss Wilson is currently enrolled in graduate studies in
mathematics at the University of Southern Mississippi and Miss
Stampley is currently enrolled in graduate studies in mathematics
at Virginia Polytechnic Institute. The two graduates returned to
become charter members of Mississippi Delta.

MISSOURI THETA CHAPTER

Evangel College, Springfield, Missouri

The Mathematics Club at Evangel College was installed as
the Missouri Theta Chapter of Kappa Mu Epsilon on January 12,
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1971. Professor Eddie W. Robinson, the National Historian, was
the installing officer. Former National President, Carl V. Frona-
barger, assisted in the ceremony. The following are the charter
members of Missouri Theta:

Roger B. Baker Barbara J. Lawrence
Theron J. Blount Donald P. Matthews
Melinda K. Boyles David W. Mayfield
Evelyn C. Bryant Victor Ng
Linda L. Cilke Anthony W. Siders
Donald E. Draper Kenneth A. Smith (faculty)
Richard H. Gloff Albert Wong
Faythe J. Herman

The Chapter officers of Missouri Theta are:

President: David Mayfield
Vice-President: Donald Draper
Recording Secretary and Treasurer: Faythe Herman
Corresponding Secretary and

Faculty Sponsor: Glenn Bernet

The ceremony was followed by a brief history of Kappa Mu
Epsilon given by Professor Robinson. After refreshments, Professor
Robinson presented the first paper, "A Curious Field Extension,"
to be addressed to Missouri Theta.

©

In most sciences one generation tears down what another has
built, and what one has established another undoes. In mathematics
alone each generation builds a new story to the old structure.

—Hermann Hankel



The Problem Corner
Edited by Robert L. Poe

The Problem Corner invites questions of interest to undergradu
ate students. As a rule the solution should not demand any tools beyond
calculus. Although new problems are preferred, old ones of particular
interest or charm are welcome provided the source is given. Solutions
should accompany problems submitted for publication. Solutions of
the following problems should be submitted on separate sheets before
September 1, 1971. The best solutions submitted by students will be
published in the Fall 1971 issue of The Pentacon, with credit being
given for other solutions received. To obtain credit, a solver should
affirm that he is a student and give the name of his school. Address
all communications to Professor Robert L. Poe, Department of Mathe
matics, Berry College, Mount Berry, Georgia 30149.

241. Proposed by the Editor.
Prove or disprove that /(x) = sin x2, for x any nonnegative
real number, is uniformly continuous.

242. Proposed by the Editor.
1,804,229,351 is the fifth power of a positive integer. Find
the integer without extracting roots or using logarithms.

243. Proposed by the Editor.
Find all three-digit numbers each of which is the sum of all
possible permutations of its three digits taken two at a time.

244. Proposed by the Editor.
A man's advice concerning women's fashions had better add
up. Check the advice below by addition by replacing each
letter with a digit. (The same letter for the same digit through
out.)

WEAR

A

MINI

HONEY

Further, if there is not a unique solution avoid the maxi com
pletely and the midi if possible; that is, look for the mini.

245. Proposed by the Editor.
Find the smallest positive integer which ends with the digit 9
such that if this 9 is moved from the last place to the first
place the number formed is three times as large as the original.
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236. Proposed by John Caffrey, American Council on Education,
Washington, D.C.

Beginning in the upper left corner of the table below consider
the inverse of any square matrix whose elements are listed.
Prove that the inverse matrix has elements all of which are
integers and define a function which generates the elements
of the inverse.

0 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1 1

2 1 2 3 4 5 6 7 8 9

3 1 3 6 10 15 21 28 36 45

4 1 4 10 20 35 56 84 120 165

5 1 5 15 35 70 126 210 330 495

6 1 6 21 56 126 252 462 792 1287

7 1 7 28 84 210 462 924 1716 3003

If the array were tilted 45° clockwise, it would appear as Pascal's
triangle.

Solution. (No solution was received. The hints listed below
are provided by the Editor.)

1. Use the "sweep-out" process as outlined in Elementary
Matrix Algebra, second edition, by Franz E. Hohn. It may be
shown by mathematical induction that for each n the n X n upper
triangular matrix obtained by the "sweep-out" process achieves a
principle diagonal of which each element is one in n — 1 steps.
This gives the value of the determinant to be n — 1 times one, or
one.

2. Since the inverse of a nonsingular square matrix A may
be written as A-' = (CoA)Vdet A we have A l = (CoA)r. Hence,
A-1 will always have integral elements.

3. But A (as a square of the table under discussion) is sym
metric. This implies that for any cofactor Ai} of det A .ve have An
= Ati = AitT and therefore CoA = (CoA)r.
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4. Hence, the anth element of A-1 is just its cofactor Ait
which defines a real-valued function for determining the elements
of A-1.

Problems 237, 238, 239, and 240 are considered to be problems
of antiquity whose proposers are unknown to the Editors.

237. Consider three noncollinear points taken at random on an
infinite plane. Determine the probability of these points being
the vertices of an obtuse-angled triangle.

238. Consider the angle determined by two rays with a common
initial point as the vertex and a given interior point of the
angle. Construct the line through the given point which with
the two rays forms a triangle with the least area.

239. Solve the system x/y = x — z; x/z = x — y; and determine
the limiting values of all real solutions.

240. A bag contains two marbles of which nothing is known except
that each is either black or white. Determine their colors with
out taking them out of the bag or looking into the bag.

Solutions to 237, 238, 239, and 240.
No solutions were received. With a considerable amount of
investigation the Editor finally located problems very similar
to 237, 238, 239, and 240 in a book written by Lewis
Carroll (Charles L. Dodgson), the 19th century English math
ematician who wrote "Alice in Wonderland." The book, PIL
LOW PROBLEMS AND A TANGLED TALE, is in its fourth
edition and may be obtained in paperback from Dover Publi
cations, Inc., New York. Problems 237, 238, 239, and 240
are solved in this book. Therefore, the solutions will not be
reprinted here. Instead the reader is urged to purchase this
book for his own mathematics library ($1.50). See what
"Pillow Problems" you can create and solve.

©
There is no branch of mathematics, however abstract, which

may not some day be applied to phenomena of the real world.
—Lobachevsky



The Book Shelf
Edited by James Bidwell

This department of The Pentagon brings to the attention of its
readers recently published books (textbooks and tradebooks) which
are of interest to students and teachers of mathematics. Books to be
reviewed should be sent to Dr. Elizabeth T. Wooldridge, Department of
Mathematics, Florence State University, Florence, Alabama 35630.

Algebra, Jacob K. Goldhaber and Gertrude Ehrlich, The Macmillan
Company, Collier-Macmillan Limited, London, 1970, 432 pp.,
$11.95.

Professors Goldhaber and Ehrlich have succeeded in producing
an algebra textbook that is carefully organized and masterfully
written. Although the book is intended primarily as a text for a
year course at the first-year graduate level, it could be read profit
ably by an upper division honor student. Because the pace of the
book is lively, and elementary examples are scarce, a course based
upon this book should, in general, be preceded by an introductory
undergraduate course in algebra.

The material is self-contained, and the reader is led skillfully
from the classical to the modern, and from simple definitions to
sophisticated theorems. The authors expressed their guiding phi
losophy when they said, "A problem which appears as a recurrent
theme in algebra is the following: Given an algebraic structure,
to what extent does knowledge about the homomorphisms of this
structure yield information about the structure itself?" To help the
student perceive more clearly these homomorphisms, they have
included many commutative diagrams in the text.

The book consists of nine chapters, each chapter being divided
into anywhere from three to fourteen sections. There are exercises
to accompany each section, except those of Chapter 0; the exercises
are listed, by sections, at the end of the chapter to which they
pertain. The book contains a total of 410 well chosen exercises,
most of which would serve to intrigue and challenge the student,
but would not discourage him. A four-page Glossary of Symbols
is a helpful feature of the textbook.

Chapter 0 takes care of the background preliminaries, such
as, for instance, the uniqueness of a two-sided identity in a monoid,
the concept of embedding one structure in another (by means of
an injective mapping), principle of induction, fundamental theorem
of arithmetic, the algebraic structure of residue classes modulo m,
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Zorn's lemma, cardinal and ordinal numbers, etc. Chapter 1,
"Groups," moves rapidly to the concept of groups with operators,
and then takes up the homomorphism and isomorphism theorems,
solvable groups, Sylow theorems, direct sums, indecomposable
groups, free groups, and finitely generated abelian groups. The
chapter concludes with an informal treatment of categories. The
first semester of a year course would probably end with Chapter 2,
"Rings and Integral Domains," which contains the usual homomor
phism and isomorphism theorems, and work on ideals, cmbcddings,
principal ideal domains, and quotient fields.

The second semester of work should include all or most of
Chapter 3, "Modules," and of Chapter 4, "Finite-dimensional Vector
Spaces." At the heart of the course is Chapter 5, "Field Theory,"
which develops elegantly the topics of field extensions, algebraically
closed fields, splitting fields, Galois theory of both finite extensions
and infinite extensions, roots of unity, cyclic and radical extensions
of a field, and solvability by radicals. The preference of the professor
would dictate which sections of the last three chapters he might
wish to include. Chapter 6, "Fields with Real Valuations," requires
the use of some topological concepts, and treats the subject of valua
tions in greater detail than do most algebra courses. This chapter,
as well as Chapter 7, "Noetherian and Dedekind Domains," were
included mainly because of their importance in algebraic number
theory and algebraic geometry. The book concludes with Chapter 8,
"The Structure of Rings," in which are introduced the basic building
blocks of ring theory; included are the main structure theorems for
simple and semisimple rings.

In the Preface, the authors state: "There will be those who
feel that our book does not provide precisely the right number of
arrows; may they refrain from using their bows." This reviewer, for
one, will use her bowonlyfor the purpose of sendinga swift message
of congratulation to Goldhaber and Ehrlich for a job well done!

Violet Hachmeister Larney
State University of New York

at Albany

Calculus with Analytic Geometry, Burton Rodin, Prentice Hall, Inc.,
Engelwood Cliffs, N.J., 1970, 751 pp. $13.75.

Most of us will remember that our attention was called to this
text before publication by a clever advertising brochure which
illustrated the teaching of calculus from Newton to the present
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day and proclaimed that this text would be "an entirely different
book that will make everybody happy, especially students." In most
respects, the author has succeeded. In each section of the first eight
chapters care has been taken to give the student many examples.
In fact, about fifty percent of these examples employ a Socratic
dialogue so that, as he reads through a section, the student can
monitor his understanding (answers are given in the back). Also,
at the end of each section, many routine and challenging exercises
are provided, with answers to odd-numbered problems.

Also, the text is designed to interest the student in calculus
the very first day of class: Chapter One treats integration. Thus
the student with average preparation in high school will not be
bored with inequalities, analytic geometry, etc., yet the student
is led carefully through this chapter. Limit of a sequence is the
only limit concept used in Chapter One and limits are introduced
gradually throughout the early chapters. In spite of this quick
plunge into calculus, there is much precalculus review throughout
the book; it is done when it is needed. Topics from analytic geom
etry and trigonometry are introduced when appropriate. Chapter
Two treats the derivative. Thus the student will find that he has
acquired the tools necessary for his science course more quickly
than when using most calculus texts.

The text is carefully written; early concepts are well motivated.
For example, a nice job is done with the geometric motivation for
the definition of first derivative. There is a careful, rigorous, yet
clear treatment of the theory; however, the author has written with
the realization that the instructor has the option to do certain
theorems heuristically.

One criticism might be the early treatment of the calculus of
several variables. After a chapter on vectors, partial differentiation
is done. Definitions and the treatment of limits and continuity are
done immediately in M-dimensions, instead of gradually through
two and three dimensions. Geometric interpretations are postponed
until later. It is questionable that the average student has gained
the maturity to handle this treatment.

The applications in the text are mostly physical. The log
function is defined as an integral and exp function as its inverse.
The chapter on infinite series can be done before or after the cal
culus of several variables. Vector treatment is used extensively.

There is a chapter of differential equations: first order and
linear with constant coefficients. The last chapter treats line inte-
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grals, Green's theorem, surface integrals with the wedge product
notation, Stokes' theorem and differential forms.

This text should be considered seriously for a single variable
calculus course and for a multivariable course made up of good
students.

Milton D. Cox
Miami University

Arithmetic, A Semi-Programmed Text, Keith W. Wilkins, Prentice
Hall, Inc., Englewood Cliffs, N.J., 269 pp., $4.95 (paper).
It is necessary to understand the individual for whom the

book is designed to evaluate the book. The author indicates the
book was written for the individuals "who have been exposed to
arithmetic and perhaps general mathematics but for some reason
still has not attained a proficiency in computational mathematics."

The form of the book is somewhat unique. Each unit consists
of three parts: (1) a discussion or explanation section, (2) a pro
grammed section with multiple choice answers, and (3) an exer
cise section. Answers to the odd-numbered exercises are provided
at the end of the book. The programmed section is different from
the usual programmed text in that each possible answer to a ques
tion has a reference number to a portion of the explanatory material
or to another question in the programmed section. The reader is
instructed to turn to the reference number to determine if the
correct answer has been selected. This reviewer noticed that if a
student were at all astute he would soon be able to pick the correct
answer by selecting the reference number which refers the student
to another question in the programmed section. This is invariably
the correct answer.

The book covers the usual mathematical skills for which
proficiency might be expected of an eighth grade student. The units
covered are whole numbers, integers, rational numbers, irrational
numbers, and real numbers. Although the author usually attempts
to rationalize the rules of arithmetic, the book is somewhat rule
oriented. For example: A rule can be stated for finding the G.C.D.

(1) Factor each number into prime factors.
(2) Find the factors that are common.
(3) Then take the lowest exponent of the common factor

or factors.
(4) Multiply these factors to the least powers.

Another example: When multiplying whole numbers "the units
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place in the second partial product is placed under the tens place
of the partial product above."

An unusual feature is the presentation of a procedure to find
the cube root by algorithm. A rather cursory discussion of e is
included.

The book would be of value for the student who has not
obtained a proficiency in computational mathematics. It is perhaps
of more value than a strictly programmed text since the discussion
is not broken down into such small segments. On the other hand,
the book is more cumbersome to use than a programmed text since
much referring to previous pages of reading material is required.
If one were teaching a general mathematics course in which com
putational skill is required, the book could be used in an accompany
ing "skills" laboratory or as necessary drill work. If a general
mathematics class were being presented in which the student was
his own tutor, this book could be used.

Wilbur Waggoner
Central Michigan University

Elementary Algeb\a, Lee A. Stevens, Wadsworth Publishing Com
pany, Inc., Belmont, California, 1970, 319 pp., $7.95.
This book is designed for college students who either have

had no previous work in algebra or who need a review of the mate
rial. The material covered is essentially a major portion of ninth
grade algebra.

Recently there have been several such texts placed on the
market all very alike. We have the following contents: 1. Logic
and Sets 2. Real Numbers 3. First-Degree Equations and Inequal
ities 4. Polynomials 5. Rational Expressions 6. Radicals 7. Second-
Degree Equations and Inequalities 8. Relations, Functions and
Graphs 9. Systems of Linear Equations and Inequalities.

The author claims the admirable goal of motivating the course
"on the finding of solutions to various equations, inequalities, and
word problems." He has made a successful attempt to accomplish
this objective. The spirit of the text is that the students should be
able to apply the algebraic ideas to problem-solving. It appears that
the problems the author has in mind are mostly computational
algebra problems and there are over 2000 of them in the book.

There are very few formal proofs in the main part of the book,
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and most of the usual theorems are stated without proof. Even
though the authorbriefly and clearly explains the ideaof a deductive
system in Chapter 1, the textmay be criticized for its lack of proofs.
Some of the stated theorems are proved in an appendix and each
instructor may choose to prove more theorems, if the class is
receptive.

Overall, the book should be considered one of the better ones
at this level. The writing is well done and the explanations are in
general very good. Most of the theorems and definitions are followed
by numerical examples which illustrate the ideas involved. The
notation is not excessive and the vocabulary is minimal.

The publishers have done an excellent job in packaging the
text. Each page is headed by the chapter or section. Red ink is used
so that definitions and theorems stand out as well as crucial steps
in some solutions. Inside the front and back covers there appear
the Key Theorems for easy reference. The text should be well
received by the students.

It is not appropriate to end this review without pointing out
some faults. Symbols like "{the days of the week}" (page 7) are
ambiguous. The symbol "=" is defined on page 13 as the identity
relation and used differently in Chapter 3 when dealing with equa
tions. There is the (often quoted) vague and imprecise formulation
of "The axiom of substitution for equality." The "Real-Number
Axioms" (Section 2.2) are simply field axioms—algebraic ordering
and completeness are omitted. Factoring occurs in Chapter 4 with
out explicit reference to integral coefficients. There are no "prime
factors" (page 109) over the real number field.

Alan R. Hoffer
University of Montana

MINIREVIEWS

Modern Mathematics for Business Students, Ruric E. Wheeler and
W. D. Peeples, Jr., Brooks/Cole Publishing Co., Belmont,
California, 1969, 601 pp.

This text is adaptable to various course requirements and
student backgrounds. It prepares the student for advanced study
of statistics, decision theory, and operations research. It can be
adapted for emphasis on accounting, insurance, and marketing.
After introductory chapters, the book contains chapters on systems
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of equations, vectors, mathematics of finance, probability, linear
programming, game theory, calculus, and statistics. It contains
tables and the answers to problems.

Introduction to Numerical Methods, Peter A. Stark, The Macmillan
Co., New York, 1970, 348 pp., $9.95.

This text is designed for undergraduates and follows the
recommendation of the ACM for course B4, Numerical Calculus.
Knowledge of calculus and FORTRAN is required. It contains
chapters on power series calculation, roots operations, simultaneous
equations (Newton-Raphson and matrix methods), numerical inte
gration, ordinary differential equations, and curve fitting. No solu
tions to problems are included.

Analytic Geometry, Third Edition, Paul K. Rees, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1970, 297 pp., $8.95.

First published in 1956, this text contains standard material
on analytics. The approach is traditional. Included are chapters on
algebraic and transcendental curves, parametric equations. A chapter
on vectors (20 pages) and twoon solid geometry complete the book.
Answers to most problems are included. Text is designed for a three-
semester hour course.

College Algebra, Steven Bryant, Jack Karush, Leon Nower, Daniel
Saltz, Goodyear Publishing Co., Pacific Palisades, California,
1970, 390 pp., $9.95.

This book is a modern one with a traditional title. It contains
the usual precalculus material, emphasizing functions and their
graphs. A chapter on sequences precedes topics using continuity
and irrational exponents. In addition to the chapter on functions,
work is included on vectors, analytic geometry, linear systems,
matrices, and probability. Odd answers are included (with many
graphs shown).

Intermediate Algebra for College Students, H.S. Bear, Cummings
Publishing Company, Menlo Park, California, 1970, 399 pp.

This book contains no surprises. It covers the normal topics
in the normal ways. No work with matrices is included, although
systems of equations are solved by Cramer's Rule. There is a chapter
on complex numbers. Selected answers are included. Answer book
let is available for the other problems.



The Mathematical Scrapbook
Edited by Richard Lee Barlow

Readers are encouraged to submit Scrapbook material to the
Scrapbook editor. Material will be used where possible and acknowl
edgment will be made in The Pentagon. If your chapter of Kappa Mu
Epsilon would like to contribute the entire Scrapbook section as a
chapter project, please contact the Scrapbook editor.

In set theory, one many times wishes to prove the equivalence
of various sets. The diagram of these sets often becomes tedious
when several sets are involved. A useful diagram is the Veitch
diagram.

First we will consider a statement involving only two sets
A and B, both subsets of a universe U. A square representing the
universe U is divided into four equal parts (see figure 1). The left
half will represent set A and the upper half is set B.

B

B'

A A'

1 2

3 4

Figure 1

One will note that the subsquare numbered 1 represents those
elements which are in both A and B and hence in A l~l B, which
shall also be denoted as the product AB. The subsquare numbered
2 represents those elements in B but not in A, and hence is B l~l A'
or using the product notation BA'. Similarly subsquare 3 represents
A n B' or AB' and subsquare 4 is A' n B' or A'B'. One will note
that every element in universe U is in one of these four subsquares.
For notational purposes, by placing an x in the proper subsquare
we will denote a particular case. The empty set <f> will not have an
x anywhere and universe U will have x's in all four subsquares.
Also, the sum A 4- B will be used to represent A U B. Hence,
one obtains

1*1 I I « I * I 1 1*1 I I I
_*J I • I 1 I . I 1*1 , L
ABA'
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1*1 1 1*1*1 I 1*1
1 I I , 1*1 ! , 1*1*1 , etc.

AnB AUB A'UB'
or AB or A 4- B or A' 4 B'

Consider the De Morgan Theorems:

(1) The complement of a sum of two elements is the product
of their complements. That is, (A 4- B)' = A'B'

(2) The complement of a product of two elements is the
sum of their complements. That is, (.ABY = A' + B'.

To prove (1), one will note

1*1*1
so

so

1 1 1
which

which

is

is

identical

identical

1
to |

to

1
1*1 1

A 4 B

For (2),

1 1*1

(A 4 By

i

1 * 1

A'B'

1*1 1 1 1*1 ! * 1
1 1 1 1*1*1 * 1 * 1

AB (ABy A' + B'

Similarly, other statements involving two sets can be proved using
the Veitch diagrams.

For three sets, say A, B, and C, we shall use the following
Veitch diagram (see figure 2). Let A be the left half, B the upper
half, and C the middle half.

B{I I 1
I I I
I I I

FIGURE 2

I I I }
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Hence, for example

J LI 1*1*1
1*1 I 1*1*1
1*1 I I * I

I I > I I

AC B + C

etc.

To verity A(.B + C) = AB + AC, we have the following

1 1 1
1*1*1
1*1*1
1 1 1

C

To verity /

1*1 1
1*1 1
1*1 1
1*1 1

A

Also,

1*1 1
1*1 1
1 1 1
1 1 1

| X | X

1 1
1 1 ,

1 1

BC

e the foliowin

1*1 1
1*1 1
1*1 1
1 1 1

AQB 4- C)

1*1 1
1*1 1
1*1 1
1 ! 1

AB

and

1*1*
1*1*
1*1*

I I
B + C

I I I
1*1 I

and | x j

I

AC

so

so

AB 4-AC

One will note that the above end results are identical and hence
the statement is verified.

For four sets, say A, B, C, and D, the following represents
the Veitch diagram (See figure 3).

A

B I I 1 I
I I I I I
I I I I I

I I

D

FIGURE 3

Can you verify that AD' 4 BC + A'D' + DC = (DC)'?

— A —
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Another variation of the usual logic and truth set concepts
is the following procedure. Let 1 represent "true" and 0 represent
"false." Define the two operations which we shall call "addition"
and "multiplication" by two tables below:

4 0 1

0 0 1

1 1 1

X 0 1

0 0 0

1 0 1

One will note that these two operations are closed and that they
satisfy the commutative, associative, and distributive properties
and have identities.

They satisfy the following additional property:

Idemopotent Law: For every element of the set the operation
of element a by a yields a.

Also, one notes 0' = 1 and 1' = 0. In this system, we have only
two elements to consider and so almost all theorems can be proved
by enumeration.

Let us prove the first De Morgan Theorem for this system,
that is, prove (a 4 fe)' = db'. By enumeration, we get the follow
ing four possibilities:

fe' a'fe'(a 4 fe) (a 4 fe)'
0 0 0 1 1 1 1

0 1 1 0 1 0 0

1 0 1 0 0 1 0

1 1 1 0 0 0 0

The theorem is therefore proved since the columns for (a 4 fe)'
and a'fe' are identical.

Using this method, can you prove the second De Morgan
Theorem?

- A —

One often learns all the truth tables for the basic connectives
but fails to apply them in many situations where they are important
to the outcome of a problem. For example, consider the following
problem from probability: A fair coin is tossed twice and the
results recorded. Find the probability that if the first toss resulted
in heads then the second was a tail.
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Examining the problem and its conditions, one might say
that the required probabiUty is Vz since the probabiUty of a tail
on the second toss is Yi. But by considering the truth table for the
situation above, one finds there is much more to this problem.
Consider,

Case No.

1
2

3
4

Statement
p(lst toss head)

T
T
F
F

Statement
a(2nd toss tail)

T
F
T
F

T
F
T
T

Upon examination, one sees these are really three cases to consider
(namely 1, 3 and 4) where p -* a is true. Since the probabiUty
for each case is Vt (equally Ukely), the probabiUty required for
the problem is 3A.

Can you find the probabiUty for the first toss is a head if
and only if the second toss is a tail?

©

Taking mathematics from the beginning of the world to the
time of Newton, what he has done is much the better half.

—Leibniz



Kappa Mu Epsilon News
Edited by Eddie W. Robinson, Historian

CHAPTER NEWS

Alabama Gamma. University oi Montevallo

Chapter President—James M. Tuck, Jr.
20 members—10 pledges
Initiation of new members accrued in December and chapter

activities included a party for freshmen mathematics students.

Colorado Alpha, Colorado State University

Chapter President—Nila Hobbs
21 members—16 pledges

Meetings were held in the homes of mathematics professors
and included a demonstration of the Hewlett-Packard table top
computer, a discussion of student-teaching experiences, a program
of placement opportunities in mathematics, and a talk on groups
and fields. A display at Activities Night told students about KME.
Initiation and a potluck dinner were other activities.

Florida Alpha. Stetson University

Chapter President—Bruce Rose
21 actives—5 pledges
Activities included a Christmas party, a beach party and an

initiation banquet.

Illinois Beta, Eastern Illinois University

Chapter President—Roy McKittrick
Seventeen new members were initiated in November, 1970,

making a total of 658 for the thirty-seven years of the existence
of the chapter. The chapter is composed of sixty undergraduates,
twenty-seven faculty members and four graduate students.

The formal initiation ceremony and reception had Dr. Sukrit
Dey as speaker. He told of his experiences as a student and teacher
in Calcutta.
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Illinois Eta, Western Illinois University

Chapter President—Roger Eickman
25 actives—5 pledges

Monthly meetings consist of business meetings and guest
speakers from the university and businesses. The chapter plans to
take several field trips to area businesses to tour their computer
systems and to participate in "Science Day for High School Stu
dents."

Indiana Alpha. Manchester College

Chapter President—David Warrick
14 actives—0 pledges

Programs at meetings have been on the following topics:
actuarial science, mode] schools programs in mathematics, different
bases for numeration systems and mathematical recreations.

Indiana Gamma. Anderson College

Chapter President—Ronald E. Whittom
18 actives—5 pledges

Among the activities were the installation of new members
and the revision of the chapter constitution.

Indiana Delta, University oi Evansville

Chapter President—Wayne Ruell
90 actives—20 pledges

Films, panel discussions, election of officers and informative
talks have comprised the programs for chapter meetings. One such
meeting was a talk on Emmy Noether. Activities have included an
informal get-together with mathematics majors and minors, an
initiation banquet and a picnic honoring graduating seniors.

Iowa Alpha. University oi Northern Iowa

Chapter President—Ken Cox
27 active members—0 pledges

Student papers were presented at the first three meetings of
this school year. A Christmas party was held in December and the
January initiation was cancelled because of the "Blizzard of 71."
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Iowa Gamma, Morningside College

Chapter President—Donald Schoutcn
34 actives—0 pledges

"Mathematics, Retrospect and Prospect," and "Two Methods
of Simplification of Functions in Boolean Algebra," were two
papers presented at meetings. Two guest lecturers were Dr. James
Cornette of Iowa State and Dr. Grace VVahba of the University of
Wisconsin. A Mathematics Colloquium was held in March in con
junction with two neighboring liberal arts colleges.

Kansas Alpha. Kansas State College of Pittsburg

Chapter President—Catherine Peterson
46 active members—0 pledges

Dr. Elwyn Davis of the mathematics staff presented the
September program on "Moulton's Non-desarguesian Plane." Pat
Kuhel, the chapter treasurer, presented a program about Non-
Euclidean Geometry and Mark Davis discussed "The ProbabiUty
Distribution Associated with Shooting at a Bullseye." Activities
included the fall picnic, an event sponsored by KME which tra
ditionally brings together all students and faculty of the mathe
matics and physics departments.

Recipients of the annual Robert Miller Mendenhall Award
for scholastic achievement were Kathy Peterson and James CiarduUo.
Each received a KME pin in recognition of this achievement.

Kansas Gamma, Mount St. Scholastica College

Chapter President—Margaret Hoehl
6 actives—13 pledges

Regular meetings were held with student members presenting
papers to the group. One guest lecturer was Dr. Hcatherington of
the Computer Science Department at the University of Kansas,
who spoke on "Computer Science: Its Past, Present, and Possible
Future."

Six new members were initiated and four new pledges were
inducted in January. Four members submitted papers to the selection
committeefor the national convention in April. Sister Helen SuIUvan
is on a sabbatical leave this academic year teaching at the University
of Galway, Ireland.
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Maryland Alpha. College of Noire Dame of Maryland

Chapter President—Julia Haffler
8 actives—5 pledges

The fall program included a tour of the computer facilities
of the Social Security Building and attendance at the installation of
the Maryland Gamma Chapter at St. Joseph College in Emmitsburg.

Maryland Beta, Western Maryland College

Chapter President—Raymond D. Brown
25 active members—0 pledges

Dr. Benjamin Tepping of the Bureau of the Census met with
the chapter and discussed statistics and its applications. The chapter
attended the installation of Maryland Gamma Chapter in December.

Michigan Alpha. Albion College

Chapter President—Bob Flaherty
10 actives—6 pledges
Program topics have been "Fun with the Geoboard," "Mathe

matics in Industry," and "Games on the Cantor Set." Activities
included pledge paper presentation, a guest speaker from Oakland
University, the annual picnic and election of officers.

Michigan Beta. Central Michigan University

Chapter President—Theodora Perreault
33 active members—0 pledges
Meetings are held on the second Wednesday of each month

with programs given by faculty and students. The chapter activities
include: tutoring program, senior papers, visitations to local high
schools concerning KME and general college life and student rep
resentation on faculty and departmental committees. Michigan Beta
hosted the 1970 Regional Convention for the North Central area.

Mississippi Alpha, Mississippi State College for Women

Chapter President—Martha C. Pope
14 actives—0 pledges
1971 pledging and initiations were held during the second

semester. Programs included a talk by Mr. Gil Harris, Chief Engi
neer of Mitchell Engineering Company who talked about mathe
matical and computer applications.
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Missouri Alpha. Southwest Missouri State College

Chapter President—Peggy Turnbough
32 actives—0 pledges

Dr. James O'Brien spoke to the chapter on applications of
mathematics to chemistry. At the initiation banquet for eight new
members, Dr. John Hatcher spoke about the integral as applied to
finding maximum values of a continuous function.

Missouri Gamma, William Jewell College

Chapter President—Don Page
12 active members

Programs at meetings were the following: "The Number w,"
"Color Problems," "Methods of Solving Third and Fourth Degree
Equations," and "A Study of Ptolemy."

Missouri Epsilon. Central Methodist College

Chapter President—Chris Binggeli
5 actives—2 pledges

The senior members of the chapter present papers at the
meetings which are held on the first Tuesday of each month. New
members are welcomed at a picnic in the spring.

Missouri Zeta, University of Missouri at Rolla

Chapter President—Joe McBride
10 actives—11 pledges

Speakers and topics have been: Dr. Charles Hatfield—"Math
ematical Puzzles," Mr. John Garrett—"The Four-Color Problem,"
Dr. Charles Johnson—"The Teaching Equation."

The chapter conducts help sessions for courses through
calculus and has distributed 3000 copies of "conversion factor
tables."

Missouri Eta, Northeast Missouri State College

Chapter President—Nancy Wood
25 actives—8 pledges

Meetings include student paper presentations and guest
speakers. Activities included a tutoring session and the preparation
of a chapter flag.
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Nebraska Beta. Kearney State College

Chapter President—Robert Rutar
37 actives—8 pledges
Programs included talks by Dean Joe McFadden on academic

excellence, Paul Wilmont on the KSC Placement Bureau, student
paper presentations and the annual Christmas party arranged by
the first semester pledge class.

Activities include the tutoring program—the Mathematics
Booster Hour, the sponsorship of a MAA visiting lecturer and the
awarding of a $50 scholarship to a member.

Nebraska Gamma. Chadron State College

Chapter President—Ron Green
28 actives—12 pledges

Events of the chapter were a dinner meeting with faculty
members, a bowling night with the physics-chemistry honor societies,
and a formal initiation at Camp Norwesca with skating, tobaggon-
ing and other winter sports.

New Jersey Beta. Montclcdr State College

Chapter President—Carol Suscreba
39 actives—0 pledges
Students Janice Garner and Jacques Caillult presented papers;

Dr. Al Chai spoke on "What Applied Mathematicians Do;" and
Dr. K. G. Janardan spoke on "A New Derivation of the Binomial
Distribution." Used mathematics books were sold as a chapter
project.

New York Eta, Niagara University

Chapter President—Ken Kerr
20 actives—10 pledges
Two programs were discussions of career opportunities by

invited speakers from industrial firms. Activities were student paper
presentations, faculty lectures, a joint faculty-student Christmas
party and attendance at the national convention.

New York Theta. St Francis College

Chapter President—Kevin Westley
24 active members—0 pledges
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Organizational meetings, participation in freshman orienta
tion, determination of the fall and spring schedule and induction
of new members have been chapter programs. Students spoke on
"Polyhedra," "A Note on Teaching" and "Konigsberg Bridge." Films
shown were "Mathematics of the Honeycomb" and "ElUptical
Orbits." The chapter had a field trip to Brookhaven Atomic Energy
Laboratories and conducted a Mathematics Bowl between St. Francis
College and Malloy College.

Ohio Alpha, Bowling Green State University

Chapter President—Martha Barnes

Chapter business and computers have been programs this year.
The chapter has set up a display and acted as guides at the dedica
tion of the new mathematics-science building.

Ohio Gamma. Baldwin-Wallace College

Chapter President—Lawrence Mcklemburg
17 active members—0 pledges

The fall program included a guest speaker who lectured on the
applications of mathematics in the business and management fields.

Ohio Zeta. Muskingum College

Chapter President—Harold J. Rouster
21 active members—0 pledges

The programs consist of selected outside speakers, research
from various faculty members from the college or research conducted
by various students.

Oklahoma Alpha, Northeastern State College

Chapter President—Joe Morris
30 active members—0 pledges

Presentations by students have been: vector analysis, computer
language, squaring the circle and the Dappler Effect. The fall initia
tion was combined with a Christmas party and the spring initiation
will be combined with the annual Founders Day Banquet.

Pennsylvania Gamma. Waynesburg College

Chapter President—Gail Hindman
9 active members— 12 pledges
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Meetings are held monthly. One program was a talk on en
vironment problems by a research chemist. The main activity is a
tutoring program.

Pennsylvania Delta, Marywood College

Chapter President—NoeUe Acculto

Most members of the chapter are student teachers. The fall
schedule consisted of three business meetings. Film loops on wave
motion with emphasis on "Tacoma Bridge" and a demonstration on
the "Illusions of Color" were second semester programs.

Pennsylvania Epsilon, Kutztown College

Chapter President—Charles Gerhart
18 activemembers—5 pledges

Visiting speakers and student speakers have been programs.
The chapter hosted a freshman tea and helped with the mathematics
conference.

Pennsylvania Zeta. Indiana University of Pennsylvania

Chapter President—Donald Laughery
50 active members—0 pledges

Twenty-eight new members were initiated in October. "The
Integers, Modulo 3," was the topic of a talk by Raymond Gibson.
Miss Ida Arms, the corresponding secretary, spoke on "HighUghts
in the History of Mathematics." Mr. Arlo Davis presented a talk
on "Some Unsolved Problems in Mathematics."

Student members conducted HELP sessions for mathematics
studentswho are having difficulties in theircourses.

Pennsylvania Theta, Susquehanna University
Chapter President—Elizabeth Varner
18 active members

Professor Fladmark spoke to the chapter on "Inventory Sys
tems" and Mr. James Handlan spoke onecology from a mathematical
standpoint. Doreen Bolton was awarded the Stine Mathematics
Award, which is given annually to the mathematics major having
the highest mathematics grades for the freshman and sophomore
years.
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Pennsylvania Iota, Shippensburg State College

Chapter President—Jane Becker
39 actives—11 pledges
Graduate school was the topic of a talk by Dr. James Sieber,

Chairman of the Mathematics Department. Another program was
presented by Dr. Carl Kerr, entitled "Algebra is Geometry and
Geometry is Algebra." The chapter has added a winter term initia
tion to its previous faU and spring term initiation schedule. New
requirements were begun for pledges to be initiated.

Tennessee Beta. East Tennessee State University

Chapter President—John Drake
30 active members—0 pledges
Five new members were initiated at the fall meeting in the

faculty lounge of the Student Center. The guest speaker, Dr. G. K.
Ginnings, showed several sUdes on UFO's. Michael Brooks, an
active member of the chapter, was invited to attend the launch
of Apollo 14.

Texas Beta, Southern Methodist University

Chapter President—Katherine Green
50 active members—21 pledges
Besides presentations by faculty members of the mathematics

department, one presentation was given by a professor of organic
chemistry, using mathematics in solving chemical equations. The
vice president of the chapter, Brint Morris, demonstrated the use
of mathematical permutations in parlor card tricks.

Texas Zeta. Tarleton State College

Chapter President—Larry Snider
13 active members—1 pledge
Programs were: Professor Timothy Flinn—"Properties of

Infinity," Professor Conley Jenkins—"Distance and Imagination,"
Professor Tom Bohannon—"Whatzit."

Virginia Alpha, Virginia State College

Chapter President—Sylvia Dixon
27 active members—0 pledges
Students and faculty regularly present papers at meetings.
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The chapter hosts visiting scholars who visit the campus under the
sponsorship of the Department of Mathematics. The chapter voted
to invest funds so that accrued interest can be used as an award to
a KME member.

Wisconsin Alpha Mount Mary College

Chapter President—Sister Catherine Yekenevicz
9 activemembers—5 pledges

The programs were talks given by the following pledges:
"Graphing Line and Cosine Functions Using the Unit Circle"—
Patricia Ross, "Polygonal Numbers"—Linda Hilgendorf, "The Nine-
Point Circle"—Catherine Starck, "A Glimpse of Topology"—Geri-
Lynn O'Boyle, "Permutations and Combinations"—Margaret Wys-
zynski. The chapter sponsors a mathematics contest for high school
students.

©
(continued from p. 88)

first to extend this to n-by-n matrices, showing that they form a
ring, a group, and a field. He might develop theorems and appUca-
tions. In working through the preceding we should gain more
knowledge of the concepts, but perhaps just as important, we should
also realize the methods by which the mathematician works. As
beginning mathematicians we must realize that we cannot be satis
fied with mathematics as it now stands, but we must build and
improve upon the work of those whom we have studied and are
now studying.
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