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Kappa Mu Epsilon, mathematics honor society, was founded in
1931. The object of the fraternity is fivefold: to further the interests
of mathematics in those schools which place their primary emphasis
on the undergraduate program; to help the undergraduate realize the
important role that mathematics has played in the development of
western civilization; to develop an appreciation of the power and
beauty possessed by mathematics, due, mainly, to its demands for
logical and rigorous modes of thought; to provide a society for the
recognition of outstanding achievement in the study of mathematics
at the undergraduate level; to disseminate the knowledge of mathe
matics and to familiarize the members with the advances being made
in mathematics. The official journal, THE PENTAGON, is designed
to assist in achieving these objectives as well as to aid in establishing
fraternal ties between the chapters.



Egyptian Fractions*
Barbara Shappard

Student, Washburn University

For some reason, the early Egyptians thought it best to replace

a fraction, such as — , by a finite sum of distinct fractions of the

form — where x is a positive integer. The purpose of this paper

is to show that this replacement is always possible. For example, —

11 4might be written as — + -jr • Since — may also be written as

-T- + -g- + -yy ' we readily see that the representation is not

necessarily unique. This notation may be easily accounted for by
the identity

1 _ 1 1
x x+ 1 + x(x+ 1) - ^

Hence any fraction of the form — may always be expressed as the

sum of two fractions of the same form.

This identity suggests a method of replacing any fraction by

a sum of distinct fractions — . Express the fraction as -r- = -r-
X DO

+ -r- + • • • + -j— and treat the last a — \ terms with the

identity (1). Remove any duplications by further applications of

the identity. For example, we could write —= -^+ —+ —= -=• +

I+_L 4-J +J_ =1+14. 1,1, 1 , 1 , 1
6 ^ 30 "*" 6 "*" 30 5 ^ 6 "*" 30 "*" 7 "*" 42 31 + 930 ;

*A paper presented at the regional convention al Warrensburg, Mo., April 25, 1970,
and awarded iirsl place by the Awards Committee.
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4 The Pentagon

however, the problem here is to guarantee that we can always
remove all duplications in a finite number of steps. We can do

much better because we can prove that any fraction -=— with 1 ^ a

< b can always be written as the sum of s distinct fractions of the

form — where s =1 a.
x

Theorem 1: If 1 ^ a <b, then-r- has a representation of

the form
a 1 • 1 i i 1 /-i\__= — + — -f- • • • H (2)

with s^-a.

Proof: The proof is by mathematical induction on a. First
prove that the theorem is true for the case a = 1. If a = 1, the

theorem obviously holds since -r- = -r- and s = 1 so that s = a.

Next, assume that the theorem is true for all -ry- with $' ^ a',

where 1 ^ a' < a. The Euclidean Algorithm tells us that there

exist a and r, 0 ^ r < a such that b = qa + r. If r = 0 then -r-

= — and we are through. If 0 < r < a, then b = qa + r + a

— a = (q + l)a — (a — r) = xa — x1 where x = q + 1 and
xf = a — r. Since a > r and r > 0, then xf > 0 and x' < a.

Hence 1 ^=x' < a. Dividing through by fcx, we have — = -r- —

x* a 1 x' x'-j— or -j- = 1—r— . But by the induction hypothesis,bx w b ~ x ' bx • "m "y u,v "*"""*•" "^ «• fcx

can be written in the form (2) with s' =? x' < a. Hence -=- may be

written in form (2) with s = s'+l<a+l. Thus s ^ a. The
theorem follows by mathematical induction.

In order to consider the more general case where we do not
make the restriction a < b we must consider the harmonic series
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It is easily shown in calculus and elsewhere that this series is diver
gent; that is, given any integer m, there exists some n such that S„

= 1+ -z—h -r- +•••+ — ^ m. We can now prove the

following theorem.

Theorem 2: Every positive rational fraction may be ex
pressed in the form (2) where the xt's are all distinct ands is finite.

Proof:

(i) If 0 < -5— < 1 we may use Theorem 1.

(ii) If 1 — -j- , then since the harmonic series is diver

gent, wecan find an » such that S„^ -j- < S„tl. Let — = -?-
b y b

- S„. Then 0 =? 4- - Sn < S,M - S„ = —i— . Thus 0 ^
b w + 1

— < ;p+-f •If — = 0, then -p = S„ and -|- is expres-
x 1sible in the given form. If0 < < ——y , we have a proper

fraction and can use Theorem 1 to expand it. Also, since

each fraction —j- in the expansion of is less than , it
x r y n + 1

follows that for each x', x" > n + 1. Thus, the combined represen

tation —j— —Sn + will contain no duplications.

Asan example, consider the representation of -=- . Since Ss <

T <s"and Ss = H&o~ 'then T~ =~W~ +"7" from
X 1 1which —- = ~^q- . Since —^r- is afraction of the desired form
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7
our work is through. Thus, -=- may be represented as

I-14.I4.I4.I4.I+J-
32^34520 '

It is interesting to ask under what conditions a fraction can
be expressed as the sum of exactly two distinct fractions of the form

— . The following theorem states the conditions:

Theorem 3: The equation -r- = — H with a and

b given positive relatively prime integers (that is, there is no integer
d, greater than one, which divides both a and b) is solvable for dis
tinct positive integers x and y if and only if there exist distinct posi
tive, relatively prime integers P and Q such that P and Q divide b,
and a divides P + Q.

Proof: First assume that distinct, positive, relatively prime
integers P and Q exist such that P and Q divide b and a divides

P+ Q. Then P+ Q = fea and we have that -r- = -jg- = - fefe

and thus kP' and feQ/ are the solutions for x and y in -r- = — +

— . The converse may be proved by using a combination of

theorems on divisibility. Thus the theorem is established.
19To illustrate this theorem, consider the representation of -jgrr-

with s = 2. If we choose P = 56 and Q = 1, then P and Q both
19

divide 280, and P + Q = 57 which is 3 • 19. Hence

3* 19 __ 56 + 1 _ 1 1
3'280 840 15 840

280
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Conjectures have been made about the representations of two
special kinds of fractions. Erdos speculated that every fraction of

4
the form — with « =; 3 may be written as the sum of exactly

three fractions of the form — . Sierpinski has made the same con

jecture about fractions of the form — . To date neither of these
n

conjectures has been proved although there is considerable evidence
to support them. For example, Sierpinski's conjecture has been
proved correct for all n in the range 3 ^ w =1 1,057,438,801. The
proof is beyond the scope of this paper.

This problem may be extended by limiting the set from which
the denominators may be chosen. In Volume 67 of the Bulletin of
the American Mathematical Society, Herbert S. Wilf defines an
R-basis as a sequence S = {»lt »2, n3, • • •} of distinct integers such
that every positive integer is representable as the sum of reciprocals
of finitely many integers of S. Hence an immediate consequence of
Theorem 2 may be stated as Theorem 2':

Theorem 2': The set of all positive integers is an R-basis.

In Volume 61 of the American Mathematical Monthly, Robert
Breusch proved the fact that the odd positive integers form an
R-basis. The generalization of this theorem, that every arithmetic
progression is an R-basis is proved by Van Albada and Van Lint
in Volume 70 of the same periodical.

Since relatively little work has been done on the problem of
Egyptian fractions, this is one of the many fields of number theory
which may be extended.

BIBLIOGRAPHY
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(Continued on p. 36)



Square Circles1

Michael Brandley

Student, Kansas State Teachers College

In Euclidean geometry the distance between two points,
P(*i> >'i) andQ(xs, y2~) is defined to be V(*i "~ x^2 + Oi ~ yOs;
and the area of a square is defined to be h1 where b is the length of
a side.

This distance definition is really a "distance" function map
ping the set of all ordered pairs of points into the set of non-negative
real numbers and satisfying certain other properties; the definition
for the area of a square is simply a function mapping the set of all
squares into the set of non-negative real numbers and again satisfying
other properties.

The purpose of this paper is to define a different distance
function and to ascertain if this new definition will necessitate a
different function for the assignment of area to a square.

We begin by listing the basic properties of the familiar Euclid
ean distance function d"(P, Q).

For points P, Q and R on the plane

1) a-(P,P) = 0;
2) <*(P, Q) > 0 if P # Q;
3) d(P, Q) = «*(Q, P);
4) <*(P,Q) + <*(Q,R)^d(P,R);
5) if P, Q, R form a right triangle with the right angle at Q,

then dXP, Q) + <*2(Q. R) = <KP. R);
6) d*(P, Q) is invariant under a translation of the plane;
7) d(P, Q) is invariant under a rotation of the plane.

Any function which satisfies the first four properties is called
a metric. The familiar distance function then is simply a metric
which happens to satisfy additional properties essential to Euclidean
geometry.

•A paper presented at the regional convention at Warronsburg, Mo., April 25, 1970.

8
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The basic properties of the familiar Euclidean area function
A(R) are the following:

For polygons S and R on the plane,

1) A(.R~) = 0 if and only if R is a single point or a line
segment (a degenerate polygon);

2) A(R) > 0 if R is not a single point or a line segment;
3) ACR U S) = ACR^ + A (S) - ACR n S);
4) if R is a proper subset of S, then ACR~) < A(Sy,
5) iffisS, then A(,R^ = A(Sy,
6) the area of R is invariant under translations of the plane;
7) the area of R is invariant under rotations of the plane;
8> if R is a square and s is the length of a side, then A(R)

= s*.

In place of the original Euclidean metric we define a new
function as follows:

Definition 1: If P = (x„ yt) and Q = (*2, yO» then
w(P, Q) = |*» - x,\ + \yt - y2| .

Then we prove that this function is a metric by showing that
it satisfies all four necessary properties.

1) m(P, P) = 1^ - xk| + |y, - y,| = 0 + 0 = 0
2) If P =£Q, then x, # x2 oryt ^ y2. Thus,

m(P»Q) = *i —*»l + |yi — y2l > 0 since at least one
of the terms xt —y2| or \yt —y2\ is not zero and neither
is negative.

3) m(P, Q) = |*x - x»| + |yi - y,| = |x, - x,\ +
I* ~ 7i| = »»(Q, P) •

4) For the fourth property we will need to examine several
cases. For real numbers a and b,

if a ^ 0 and b ^ 0, then
\a\ + \b\=a + b=\a + b\;

ifi^ -a SiO, then
\a\ + \b\ = -a + b ^ a + b = |a + *|;

if -a ^ fc S-s 0, then
|a| + \b\ = -a + I> ^ -a - fc = \a + b\;
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if a < b and b < 0, then
\a\ + \b\ = -a-b=\a + b\;

So in all cases \a\ + \b\ ^ \a + b\. Now we apply this
result to our definition. If R = (x3, y3) then

«(P, Q) + tnCQ, R) = |jd - x,| + |y, - y2|
+ |*2 - x3| + |y2 - y3|

— |xi —x* + x2 — x3|
+ I* - y* + y* - y*\

= |*i - x3| + |y, - y3|
= »»(P, R) .

To see one of the effects of this definition of distance, let us
look at the graph of the unit circle with center at the origin. Let
0 = (0,0) and P = (*, y).

m(P, 0) = |x - 0| + \y —0| = |x| + \y\ = 1

Figure 1
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Experimenting further we find that all circles have graphs
of this shape. Here is the graph of the circle of radius c with center
at the point(a, &).

Figure 2

If we define the area of a square of side s to be s', we encoun
ter some curious results. Any circle in our new geometry is obviously
a square. Let us circumscribe about the unit circle a square with
sides parallel to the x- and y-axes.

(0,1)

Figure 3

1

(1,0)
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Each side of the circle has length 2, so its area would be 4.
But the same thing is true of the "larger" square. This result violates
the fourth property of area.

The most obvious definition of area to use in order to obtain
as manyof the properties of Euclidean area as possible is one which
gives Euchdean area. First we find the relationship between the
Euclidean metric a"(P. Q) and our new metric »»(P, Q).

Given a line segment of Euclidean length r and m-length s
with non-negative slope and one endpoint at the origin, let 9 be the
angle between the positive x-axis and the line segment.

x + y = s

r cos 9 + r sin 9 = s

P(x,y) r =
cos e + sin e

Figure 4

Definition 2: The area of a square with side s is:
t2 «2

Ccos 9 + sin 6)* eos29 + sin*9 4- 2 cos 9 sin 9

where 9 is the angle (0° ^ 9 ^ 90°) between a side of the square
with non-negative slope and a line parallel to the x-axis.

1 + sin 29
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Since this definition gives Euclidean area, it is clear that area
properties 1 through 4 hold. However, we have lost the validity of
property 5 if we use the definition that two squares are congruent
if corresponding sides have the same length.

Regarding property 6, lengths are invariant under translations
just as in Euchdean geometry. For m ((*i -I- h, yt + ft), (x2 + fe),
C* + *0) = |C*i + *) - (** + fc)| + |(y, + ft) - (y2 + ft)|
= |*i - x2\ + |y, - y2| = m ((x„ y,), (x2, y2)).

Also, a line is parallel to its image under a translation, as in
Figure 5.

Figure 5

Since lengths are invariant, the slope of line L is the same as
the slope of line U. So angles are also invariant under translation.

Therefore, the area of squares as defined by Definition 2 is
invariant under translations.
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But with rotation it is a different story. In many cases the
image is much different from the original figure. For example,
figure 6 shows theresult of rotating thepoints of the liney —x + \
through an angle of 45°.

Figure 6

Remember that the m-distance of each point on the line from
the origin must remain constant. Notice that the segment between
( —1, 0) and (0, 1) remains on the unit circle but rotates through
an angle of 45°. Segment ab rotates onto segment a'V. But segment
be rotates onto the arc &V. Thus it is seen that a line may not be
transformed into a line under rotation.

Finally it is clear that area property 8 no longer applies since
we have used a different definition for the area of a square.
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Concluding remarks: We know that there exist non-Euclidean
geometries; in particular, there exist geometries in which distance
is defined and yet in which the Pythagorean Theorem need not
hold. In this paper we have introduced one such geometry. The
function used to assign distances to pairs of points has been shown
to be a metric.

Of the several ways possible to define an area function for
this geometry we have selected one and have studied some of its
properties. An important property of this new geometry is that
length and area are invariant under translation but not under
rotation.

€>

The Least Squares Method for the
Approximate Solution of Linear Ordinary

Differential Equations

Derald Walling
Faculty,Texas Tech University

The linear ordinary differential equation of order q

(1) LOO =-g- +At(x) g5 +••. +A^OO %
+ A,(»y = fOO

often arises in problems in mathematics. Many times it is desirable
to have the solution to (1) pass through certain points in that plane.
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For the purpose of this article we will assume that (1) has a solution
and that this solution is unique when required to pass through q
distinct points in the plane.

The case often arises where we must approximate a solution
to (1). Then we must find either a numerical approximation to
the solution or some analytical expression that approximates the
solution.

In this article we want to discuss the method of least squares
for finding an approximate solution (in the form of an analytical
expression) to (1) along with certain boundary conditions.

To further define the problem, suppose that it is desired to
find the solution of (1), defined for the interval a ^ x ^ b of the
independent variable, and the associated boundary conditions

(2) yOti) = Vh } = 1. 2, ••♦, q,

which we assume are sufficient to render the solution unique.

Let «i(x), i = 0, 1, • • •, n, be a set of « + 1 independent
integrable functions of x, where m0(x) satisfies the q boundary con
ditions, and Mi(x), m2(x), ••♦, »„(%), each satisfy homogeneous
boundary conditions at the corresponding q points xu x2, • • •, xQ.
In general, the functions «i(*), Ut(x), ' *•, «»(*), are not com
pletely arbitrary independent functions.

Let
n

(3) ~y = «oO) + % CiWiO) .

The function y, where the coefficients Cj, t = 1, 2, •••,«, are
independent of x, also satisfies all the boundary conditions. If the
boundary conditions are of the homogeneous type, we omit the
function Uo(%).

Thus, the problem is to determine the coefficients in (3) so
that y is a good approximation to the solution of (1), along with
(2), overa^x^fc.

Let

(4) RC*) = L(y) - /(*) .
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If B(x) = 0, then y = y, where y is the exact solution of CO,
along with (2). For R(x) ^ 0, define

(5) ICcl,c„...,0= [ PRO)?***.
If we require I to be a minimum, then the coefficients can

be found for which R(x) will be the best approximation in the
sense of the least squares to zero.

If I is to be a minimum, then it is necessary that Sl/dci = 0
for each i, i = 1, 2, • • •, «. Now

-I

-!

ic- =k\ y^jdx
2R(x) —— R(x)dx

a dCi

h A ^
2R(x) -|— rxii,GO + X ci£«i00 - K&y*

a 0Ci i=1

b
2R(x)L«iCa;)dx.

a

Thus, for I to be a minimum, it is necessary that the coeffi
cients be found such that

r *(6) I R(x)Lui(x)dx = 0,i= 1,2, •••,»».

We wish to add a note here. There exists a well known
method, the method of Galerkin, for the handling of the above
outlined problem. In using the method of Galerkin, we pick the
coefficients such that

f b(7) I Rix^mOOdx = 0, i = 1, 2, • • •, n .
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Thus, in the least squares method, the c/s are chosen so
that R(xO is orthogonal to the Lh{00> i = 1, 2, • • •, « on [a, b~\.
In the Galerkin method, the c/s are chosen so that R(x) is orthog
onal to the Mi(x), i = 1, 2, • • •, n on [a, b~\.

As mentioned earlier, the functions «i(x), «2(*)» ***» «•»(*)>
are not completely arbitrary independent functions. In general, we
also require that the w/s be also chosen in such a way that the set
L«i(jc), i = 1, 2, • • • t n is also a set of independent functions.
We also want to note that with this added fact, the coefficient matrix
of (6) is positive-definite.

For an example, consider the boundary value problem.

/' + y = o,

y(o) = i,
KO = e-1 .

The exact solution is y = er*. We pick a problem where the solution
is known and simple so that we can set forth a comparison.

The range of representation is [0, 1]. Let m0(x) = (e-1—l)x
+ 1 which satisfies both boundary conditions. Let MiOO = x2 — x
and let w2(x) = x3 —xs. Both «,(x) and m2(*) satisfy the homo
geneous boundary conditions at x = 0 and x = 1.

Now

y = MoCx) + CjWiCx) + c2«2(x)
= Cj*3 + (ct - c2)*2 + (c1 - 1 - c,)x + 1 ,

thus

R(*) = LOO - f(*)
= 3C2*2 + (4c2 + 2c,)x + (e-1 — 1 — c, — 2c2) .

Now to find the coefficients c, and c2 by the least squares
method, we have

I RWLu^dx = 1 RCx)L«i(x)dx = 0
JO Jo

which when integrated and cleared of fractions become
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19ca + 26ct = 12(1 - e-1)
154c2 + 95d = 30(1 -e1)

19

from which we have

426

Cl~ 733

Thus, y is given by

(1 — c1) and c2 =
120

733
(1 -«-0

y=—^j^- [120x3 - 546%2 +1159x] +1.
If we compute I for the above ct and c2, we find that I = 0.000545.

We now present a table to illustrate the above example.

Table 1. Comparison of y and y.

Value of x y = er* y

0.00 1.000000 1.000000

0.05 0.951229 0.951190

0.10 0.904837 0.904656
0.15 0.860708 0.860321

0.20 0.818731 0.818108
0.25 0.778801 0.777938

0.30 0.740818 0.739736

0.35 0.704688 0.703421

0.40 0.670320 0.668917

0.45 0.637628 0.636147

0.50 0.606531 0.605032
0.55 0.576950 0.575496
0.60 0.548812 0.547461
0.65 0.522046 0.520848

0.70 0.496585 0.495580
0.75 0.472367 0.471580
0.80 0.449329 0.448770

0.85 0.427415 0.427073
0.90 0.406570 0.406410
0.95 0.386741 0.386705
1.00 0.367879 0.367879



Different Proofs of Cauchy-Schwarz Inequality

R. S. LtlTHAR

Faculty, University of Wisconsin, Waukesha

Statement: If au a2, • • •, an and bu b2, • • •, bn are any
real numbers, then the following inequality holds true:

Proof No. 1 Observe that

n »

X Caibi - aM2 + X (fl*fe» ~~ "fay + ***+
i=2 1=3

(an.,b„ - a„b„.iy .

Clearly, therefore,! £ «'; 1IJ b: J =s= | ]£ tt,b,
fli bi

Proof No. 2 Let x-, = , , yt =r-» » 7f ~ p;

Since Xs + y] > 2x,7i ,

we have

«• &j ^ 2flifc<
(A) ~ +» ^ n r-n— i .I —

for i = 1, 2, • • •, « .

The relations at (A) on addition yield

20
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«? + «? + ••• + a2 b2 + b2 + "* + b*
1 2 " , 18 n

n T n

5 '. 2 ^
«=1 1=1

2 «ifri + gafc2 + • •• + anb

»;

=> 1 + 15==2 __i=*

K*'Ii*
=>

1 i=i | 1=1 1=1

Proof No. 3 We shall use the following elementary result,
the proof of which is left for the reader:

(B) If a > 0, then ax2 + 2bx + c ^ 0 for all values of x if
ac ==s b2. Observe now that

(a,x + bxy + (a,* + b2y + • • • + (a„x + bny ^ 0

=> (afx2 + 2«1fe1x + fep + (a^x2 + 2a2&2x + &») + ••• +

(a2x2 + 2a b x 4- fc2) =^ 0
v n no n'

[2 ««) *2 +2(2 «<&•) *+(S b*)- °•
Applying the result stated at (B) to the above inequality we

get

?.")(?. * * 5. **
z
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Proof No. 4 The proof is by induction.

When n = 1, the inequality is trivially true. Assume that
the inequality is true for » = ft, that is,

* r?.*•)(?. *H i-b
For n = ft + 1, the inequality would read as

1*+1 \ I *+l l | *+l \ 2

2 *« )I S feM —12 «i^ and we want to
ascertainif this is true. Observethat the left hand side of (C) equals

(I *•)(?. "H?.; )*••••+

+2(2 «*») «*♦.**♦. +«:♦»*;♦.
*♦!

aA
= 2 -*. + 2 ••'- - v*.

<=i / \ 1=1

*+i(*+l \2

2 <*i&i I = right hand side of (C).

Thus we seethat the inequality in question does hold for « = ft + 1.
Therefore, by mathematical induction we see that the Cauchy-
Schwarz inequality holds in general.

Proof No. 5 Let vector A = («i, a2, • • •, o„) and

vector B = (fci, bt, • • •, b„) .
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n

Then 2 "&* = A• B = |A|| B| sin e, 9 being the angle
1=1

between vectors A and B,

• (/!"«] (/IT) *e •
Therefore, ( 2 a\ \(2 *f ) ™2e =/ 2 ««*« )'.

4 = 1

Hence 2 «M 2 fei ^ | 2 «*« ) , since 0
^ sin2e i=1l . ' i=i

On Various Many-Valued Logics

"It is raining."

Evelyn Bryant

Student, Evangel College

"You mean it is raining in Ithaca, New York, at 2 p.m.,
July 14, 1950, for you do not know whether or not it is now
raining in El Paso, Texas."

"Would you agree then that my statement is neither true nor
false?" [5; p.3]

This short dialogue illustrates the ambiguity which might
arise if one were to accept a two-valued logic as the absolute truth.
From the time there was first a clear enunciation of the principle
'Every proposition is either true or false,' there have been those who
questioned it. Modern developments in physics indicate that the
two-valued logic is not always adequate to explain physical behavior.
C. G. Darwin said, ". . . the old logic was devised for a world that



24 The Pentagon

was thought to have hard outlines, and now that the new mechanics
has shown that the outlines are not hard, the method of reasoning
must be changed." [4; p. 207].

In a two-valued logic we have a group of propositions, p, q,
etc., each of which has a truth value of 0 or 1. When interpreted
in the usual way, p = 1 means "p is true," and p = 0 means "p is
false." A unique feature of this two-valued system is that when the
property, 0 or 1, of the propositions p, a, etc., is given, then any
other proposition derived from p, a, etc., is automatically deter
mined to have either the property 0 or 1.

Although the two-valued system is currently the most widely
used, there are other truth-value systems which are being developed.
These alternative systems do not necessarily contradict the principle
that 'Every proposition is either true or false, and none is both,'
which might seem to determine thecharacter of the two-valued logic.

The simplest many-valued logic is a three-valued logic. Lukasie
wicz and Tarski were among the first to develop a logic with three
possible truth values: p = 1, which will mean "p is certainly true;"
p = 0, which will mean "p is certainly false;" and p = i, which
will mean "p is doubtful." It must be remembered that p and p = 1
may not be equivalent in this system.

In order to distinguish from the two-valued calculus, we will
introduce the symbols Lukasiewicz and Tarski used for their logical
connectives:

pOq for p V q read "p or a;"
pAq for p A q read "p and a;"
Np for '-' p read "not p;"

pCq for p -» q read "p implies a;"
pEa for p «-» a read "p is equivalent to q" [l;p. 214].

Negation and implication are taken as the fundamental oper
ations, and the other operations are defined in terms of these in
the following way:

pOq = D:pCa.Ca;
pAq = „N:Np.O.Na;
pEq = D:pCq.A.qCp.

Two propositions with the same truth values are considered logically
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equivalent. That is, if t(«) = t(&), then a = b. All logical oper
ations are defined in terms of truth values alone. Thus a proposition
is true if it is a tautology, i.e., if it has all l's down its major
connective.

The following truth-table analyzes a set of truth values which
can be assigned to the various propositions formed using the
connectives defined above:

p o Np pOq pAq pEq pCq

1 1 0 1 1 1 1

1 4 0 1 4 4 4

1 0 0 1 0 0 0

4 1 4 1 4 4 1

4 4 4 4 4 1 1

i 0 4 4 0 4 4

0 1 1 1 0 0 1

0 4 1 4 0 4 1

0 0 1 0 0 l 1

We should examine carefully the truth-values of these differ
ent relationships for the corresponding values of p and q. Most of
them follow if we remember the assumed meaning of the connec
tives, except perhaps pCq. Here our logical intuition does not seem
to be sufficient.

Lukasiewicz in "Philosophische Bemerkungen zu mehwertigen
Systemen des Aussagen-kalkuls," explains a general method which
helps clarify this connective. If p and q designate certain numbers
of the interval 0—1, then

Cpa (p impliesa) = 1 for p ^ a;
Cpq = 1 - p + a for p > a;
Np (p is false) = 1 - p. [1; p. 213.]



26 The Pentagon

At this point we should make it clear that the values assigned
in the above table are completely arbitrary. Other three-valued logics,
different from Lukasiewicz and Tarski, can be easily developed
using other truth values.

In terms of Np and Cp a further function of one element, Mp,
is defined as follows: Mp = D:Np.Cp, read 'p is possible.' The
truth-table for Mp is

p Mp

1 1

4 1

0 0

It is important that we clarify the distinction between the truth-
values of 1, 4, and 0, and the truth-functions of p, Mp, and Np.
The first are labels for truth values, the latter are propositions.

In comparing the various many-valued logics it is interesting
to note that for every principle which holds in the three-valued
calculus, its analogue also holds in two-valued calculus, but the
converse is not true. In fact, in general, the more truth values there
are, the fewer provable laws there are. We can easily see that every
law in three-valued calculus will be valid in two-valued calculus
if we look at the defining truth-table on page 25. If we strike out
each line which contains a 4, we obtain the following truth table:

V « Np pOq pAq pEa pCq

1 1 0 1 1 1 1

1 0 0 1 0 0 0

0 1 1 1 0 0 1

0 0 1 0 0 1 1

If we compare this table to our two-valued truth table, we see that
pCa ssp -* q\ pOq = p V q; pAq = p A a; pEq = p <-• a;
and Np = ~p.
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It is important for us not to conclude that since every law of
the three-valued calculus holds in the two-valued system, and since
there are some propositions of the two-valued system which do not
hold in oursystem, that the three-valued calculus is a weaker system.
There are many distinctions which can be made in three-valued
calculus which cannot be made in the two-valued calculus due to
the elimination of the value 4, namely—the distinction of Mp from
p, NMNp from p, NMp from Np, and MNp from Np. [1; p. 218]

An important issue arises about the falsity of the law of the
excluded middle in our system. Shall we say that our system is false
because it denies this law? Or must we conclude that the law is
false because in our system it is false? The latter case can be con
tradicted since in the two-valued system it is necessarily true. Lewis
and Langford discuss this issue:

The way out of this dilemma lies in the reflection that the
tautological laws of any truth-value system are necessarily
true; but that the symbolic system itself does not tell us what
it is true of. It is true for whatever interpretation of its truth-
values will make them exhaustive of the relations and other
truth-functions which will then be consonnant with their
matrix-properties. But such an interpretation—for tins or any
other symbolic system—is something which has to be found;
and something concerning which it is easily possible to make
a mistake. To suppose that because of the rigorous character
of its method, it must therefore represent 'the truth of logic'
would be excessively naive. [1; p. 222]

There are many applications for a three-valued logic, especially
in modern physics. One possible use is in Dirac's interpretation of
his 'principle of superposition;' Here he affirms that between the
states of an atomic system, there exists a peculiar relationship such
that "whenever the system is definitely in one state we can equally
well consider it as being in each of two or more states. The original
state must be regarded as the result of a kind of superposition of
the two or more new states in a way that cannot be conceived on
classical ideas." [4; p. 208] In a two-valued logic, a system is
either in a state or not in it. In three-valued logic a system can fail
to be either in a state or not in it, which situation can be described
by saying that the system is partly in the state. In this application 4
would probably be interpreted differendy from the interpretation
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in our development, but this illustration serves as an example of
the applicability of a three-valued logic to physical reality.

We have looked extensively at a three-valued logic, but this
is only the simplest of the many-valued logics. The many-valued
logic proposed by Lukasiewicz and Tarski is not functionally com
plete, so we will look at the system of E. L. Post. In the development
of our three-valued logic we said that a statement was valid if and
only if it was a tautology when tested by a truth-table. A truth-table
development has the merit of being simple and easily applicable.
It also clearly shows us that we are dealing with a many-valued
logic. However, there is an alternative procedure for accepting state
ments, that of the axiomatic method, which is used so extensively
in modern mathematics.

Post generalized a system of logic with m distinct truth-values,
*n t2, • • •, tm, where m is any positive integer. A function of order
n will have m" configurations in its truth-table, and there will be

mm" truth-tables of order n. Post says that a system is complete if
it has all possible tables. The two following tables generate a com
plete system:

V Nmp

u t2

t2 h

• • • • • •

tm ti

V tf pOmq

t. t. t.

• • • • • m • • •

*«1 *n \
• * • • • • • • •

K %
• • • • • • • • •

tm *» tm

If we take a close look at these tables we see that Nmp permutes the
truth-values cyclically, while pOmq has the higher of the truth-values.
(The higher truth-value has the smaller subscript.) C2; p« 180]

From this we can generalize a set of postulates by first assum
ing arbitrary primitive functions, then selecting a set of postulates
that will.give us the desired system. From these postulates theorems
can be derived.
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At the beginning it was mentioned that if our logic could be
applied it would be a more successful development. We have already
looked at a possible application to physics. Now, let us look at an
application to other fields of mathematics.

Alan Rose suggests an application of an eight-valued logic to
geometry. It has been found that Euclid's fifth postulate "That, if
a straight line falling on two straight lines make the interior angles
on the same side less than two right angles, the two straight lines,
if produced indefinitely, meet on that side on which are the angles
less than the two right angles," is independent of his other four.
Two other consistent forms of geometry have been developed in
which this postulate has been rejected. These geometries are known
as hyperbolic and elliptic geometry. Euclidean geometry is known
as parabolic geometry. If Us a line, and P is a point not on the line,
in parabolic geometry there is one line through P parallel to the
given line; in hyperbolic, there are two lines through P parallel to /;
and in elliptic there are no lines through P parallel to I. We can
thus regard geometry as being a system whose truth-values form
the eight-element latticeas shown in the figure. When a proposition
is true in all three geometries, it has the value I. When a proposition

Figure 1
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is true in elliptic and parabolic, it has the truth-value aep. The truth-
values of aet> and ap* can be interpreted similarly. When a proposition
is true in elliptic, but not in parabolic or hyperbolic, it has the
truth-value at. The truth values of ap and ah can be interpreted
similarly. When a proposition is false in all three, it has the truth
value 0. This idea could be developed much more extensively, but
that is not the purpose of this paper. [3; p. 42]

We see that various many-valued logics can be developed, and
many of these have important applications. Perhaps some day in
mathematics many-valued logics may be used as extensively as the
two-valued logic is today.
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People used to think that when a thing changes-, it must be in
a state of change, and that when a thing moves, it is in a state of
motion. This is now known to be a mistake. —Bertrand Russell



Some Sums of Fibonacci Numbers
and P* Numbers

Robert Prielipp

Faculty, Wisconsin State University, Oshkosh

An interesting sequence of positive integers arises from
an exercise suggested by the thirteenth century mathematician
Leonardo of Pisa (about 1170-1250), who is called Fibonacci
since he was the son (figlio) of Bonaccio. In his famous book
Liber Abaci the following problem appears: How many pairs of
rabbits can be produced from a single pair, if it is supposed that
every month each pair begets a new pair, which from the second
month on becomes productive?

We are led to the following sequence of positive integers:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,

where each new term (beginning with the third term) is found
by adding the last term to its predecessor. Thus 2 = 1 + 1, 3 =
2 + 1, 5 = 3 + 2, 8 = 5 + 3, 13 = 8 + 5, • • •. In general,
ft (the first term in the Fibonacci sequence) = 1, f2 = 1, and
U+2 = U + fn+u where n is any positive integer. Examples of the
Fibonacci sequence occur in plant growth and in art, as well as
in geometry. The positive integers 1, 2, 3, 5, 8, 13, 21, ••• are
called the Fibonacci numbers. Over the years numerous properties
of these numbers have been discovered by mathematicians; however,
there are still some open questions concerning them. For example,
to this date we do not know if there exist infinitely many prime
numbers among the Fibonacci numbers.

Clearly the set of Fibonacci numbers is a proper subset of
the set of positive integers. It is also evident that some Fibonacci
numbers are even numbers and some are odd numbers. We observe
that 1, 2, and 3 are all Fibonacci numbers, 4 = 3+ 1, 5 is a
Fibonacci number, 6 = 5 + 1, 7 = 5 + 2, 8 is a Fibonacci
number, 9 = 8+1, 10 = 8 + 2, 11 = 8 + 3, 12 = 8 + 3 + 1,
13 is a Fibonacci number, 14 = 13 + 1, 15 = 13 + 2, 16 =
13 + 3, 17 = 13 + 3 + 1, 18 = 13 + 3 + 2, 19 = 13 +
3 + 2 + 1, and 20 =13 + 5 + 2. After considering several
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additional examples, we are led to conjecture that every positive
integer is either a Fibonacci number or a sum of distinct Fibonacci
numbers.

In establishing this result (and later in proving our second
major result), we shall use strong (sometimes also called course-
of-values) induction. Let p(x) bea statement form over the positive
integers. (That is, for any given positive integer «, p(«) is a state
ment and is therefore either true or false.) Then the strong form
of the principle of mathematical induction allows us to derive the
conclusion p(«) for all positive integers « from the hypotheses
(O P(l) is true and (2) for each positive integer m, if p(m) is
true for all m < « then p(») is true. Readers who are interested
in investigating strong induction and ordinary induction in greater
depth should consult Shepherdson, "Weak and Strong Induction,"
The American Mathematical Monthly, Volume 76, Number 9
(November, 1969), pp. 989-1004. We now prove the following
theorem.

Theorem. Every positive integer is either a Fibonacci
number or a sum of distinct Fibonacci numbers.

Proof. Let« bea positive integer. If « is a Fibonacci number,
the desired result is immediate. Hence assume n is not a Fibonacci
number (thus » # 1, 2, 3 in particular). Assume that for every
positive integer m < » that m is either a Fibonacci number or a
sum of distinct Fibonacci numbers. Now there is a Fibonacci num
ber /* (the fcth term in the Fibonacci sequence) such that fk <
n < fk+i where ft =s 3. Let m = n — fk. By the assumption,
m = tm, + nt2 + • • • + m„, a =* 1, where wi„ m2, • • •, m, are
distinct Fibonacci numbers. Since n < fk+u m = w — /* < fktl
- fk = fk-i < fk whence /* =?*= >»i for i = 1, 2, • • •, q. Therefore
n = fa + nti + ••• + »», as required. The result follows by strong
induction.

Let P* be the set of non-composite positive integers; that is,
x is an element of P* if and only if x is a positive prime number or
x = 1. The elements of P* will be called P* numbers. We observe
that 1, 2, and 3 are all P* numbers, 4 = 3 + l,5isaP* number,
6 = 5 + 1, 7 is a P* number, 8 = 5 + 3, 9 = 7 + 2, 10 =
7 + 3, 11 is a P* number, 12 = 7 + 5, 13 is a P* number, 14
= 11 + 3, 15 = 13 + 2, 16 = 13 + 3, 17 is a P* number,
18 = 13 + 5, 19 is a P* number, and 20 = 17 + 3. Perhaps
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every positive integer is either a P* number or a sum of distinct P*
numbers. To assist us in establishing this result, we will need some
additional information. We begin by citing a theorem that was
conjectured by Bertrand in 1845 and first proved by Tchebycheff
in 1850, and then obtain two corollaries of this theorem.

Theorem (Tchebycheff). If n is a positive integer > 3, then
between n and 2n — 2 there is at least one prime number. [For a
proof of this result see Sierpinski, Elementary Theory of Numbers,
New York: Hafner Publishing Company, 1964, p. 137.]

Corollary 1. If n is a positive integer =s 2, then between
n and 2« there is at least one prime number.

Proof. By virtue of Tchebycheffs Theorem the corollary is
true for positive integers > 3. To verify it for n = 2 and w = 3
we note that the prime number 3 is between the positive integers
2 and 4 and the prime number 5 is between the positive integers
3 and 6.

Corollary 2. If n is a positive integer =i 4, then between
n/2 and n there is at least one prime number.

Proof. Case 1. n is an even positive integer. Then n/2 is
a positive integer — 2 and by Corollary 1 there is at least one
prime number p between n/2 and n.

Case 2. n is an odd positive integer. Then « — 1 is an even
positive integer =* 4 because « =^ 5 and (« — l)/2 is a positive
integer =* 2. Thus there is a prime number p such that (« — 1)/2
< p <n - 1. Since (« - l)/2 < p and both p and (n - l)/2
are positive integers, (» + l)/2 = (« — l)/2 + 1 === p. Hence
n/2 < (n + l)/2 *= p < n - 1 < ». Therefore there is at least
one prime number p between n/2 and «.

Theorem. Every positive integer is either a P* number or
a sum of distinct P* numbers.

Proof. Let n be a positive integer. If n is a P* number, the
desired result is immediate. Hence assume m is not a P* number
(thus n ^ 1, 2, 3 in particular). Assume that for every positive
integer m < « that m is either a P* number or a sum of distinct P*
numbers. By Corollary 2 of Tchebycheffs Theorem there is a
prime number p such that n/2 < p < n for n ==i 4. Let m =
n — p. By the assumption, m — m, + m2 + • • • + mQ, q =* 1,
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where mu m2, • *•, mq are distinct P* numbers. Since n/2 < p,
n < 2p and m = n — p < p whence p ^ »ii for i = 1, 2, • • •, q.
Therefore n = p + nix + • • • + mq as required. The result follows
by strong induction.

It is also of interest to observe that it can be shown that if n
is a positive integer > 6 then n is a prime number or a sum of
distinct prime numbers [See Sierpinski, Elementary Theory of
Numbers, p. 144].
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To the eyes of the man of imagination, nature is imagination

itself. —William Blake



Directions for Papers to Be Presented
At the Eighteenth Biennial

Kappa Mu Epsilon Convention
Indiana, Pennsylvania

April 2-3, 1971

A significant feature of this convention will be the presenta
tion of papers by student members of KME. The mathematics topic
which the student selects should be in his area of interest and of
such a scope that he can give it adequate treatment within the
time allotted.

WHO MAY SUBMIT PAPERS: Any student KME member may
submit a paper for use on the convention program. Papers
may be submitted by graduates and undergraduates; however,
graduates will not compete with undergraduates.

SUBJECT: The material should be within the scope of the under
standing of undergraduates, preferably those who have
completed differential and integral calculus. The Selection
Committee will naturally favor papers within this limitation
and which can be presented with reasonable completeness
within the time limit prescribed.

TIME LIMIT: The usual time limit is twenty minutes, but this
may be changed on the recommendation of the Selection
Committee if requested by the student.

PAPER: The paper to be presented, together with a description
of the charts, models, or other visual aids that are to be used
in the presentation, should be presented to the Selection
Committee. A bibliography of source materials, together with
a statement that the author of the paper is a member of KME,
and his official classification in school, undergraduate or
graduate, should accompany his paper.

DATE AND PLACE DUE: The papers must be submitted no
later than January 9, 1971, to the office of the National
Vice-President.
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SELECTION: The Selection Committee will choose ten to twelve
papers for presentation at the convention. All other papers
will be listed by title and student's name on the convention
program and will be available as alternates.

William R. Smith
National Vice-President, Kappa Mu Epsilon
Department of Mathematics
Indiana University of Pennsylvania
Indiana, Pennsylvania 15701

©

(Continued from p. 7)

Van Albada, P. J., and J. H. van Lint, "Reciprocal Bases for the
Integers", American Mathematical Monthly, 70(1963) pp.
170-173.

Wilf, H. S., "Reciprocal Bases for the Integers", Bulletin of the
American Mathematical Society, 67(1961) p. 456.



The Problem Corner
Edited by Robert L. Poe

The Problem Corner invites questions of interest to undergraduate
students. As a rule the solution should not demand any tools beyond
calculus. Although new problems are preferred, old ones of particular
interest or charm are welcome provided the source is given. Solutions
should accompany problems submitted for publication. Solutions of
the following problems should be submitted on separate sheets before
February 15, 1971. The best solutions submitted by students will be
published in the Spring 1971 issue of The Pentagon, with credit being
given for other solutions received. To obtain credit, a solver should
affirm that he is a student and give the name of his school. Address
all communications to Professor Robert L. Poe, Department of Mathe
matics, Berry College, Mount Berry, Georgia 30149.

PROPOSED PROBLEMS

236. Proposed by John Caffrey, American Council on Education,
Washington, D.C.

Beginning in the upper left corner of the table below consider
the inverse of any square matrix whose elements are listed.
Prove that the inverse matrix has elements all of which are
integers and define a function which generates the elements
of the inverse.

0 1 2 3 4 5 6 7 8

1 1 1 1 i ' 1 1 1 1

2 2 3 4 5 6 7 8 9

3 3 6 10 15 21 28 36 45

4 4 10 20 35 56 84 120 165

5 5 15 35 70 126 210 330 495

6 6 21 56 126 252 462 792 1287

7 7 28 84 210 462 924 1716 3003

If the array were tilted 45° clockwise, it would appear as Pascal's
triangle.

Problems 237, 238, 239, and 240 are considered to be problems
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of antiquity whose proposers are unknown to the Editor. However,
sincere appreciation is expressed to those individuals who suggested
the problems to the Editor.

237. Consider three noncollinear points taken at random on an
infinite plane. Determine the probability of these points being
the vertices of an obtuse-angled triangle.

238. Consider the angle determined by two rays with a common
initial point as the vertex and a given interior point of the
angle. Construct the line through the given point which with
the two rays forms a triangle with the least area.

239. Solve the system x/y = x - z; x/z = x - y; and determine
the limiting values of all real solutions.

240. A bag contains two marbles of which nothing is known except
that each is either black or white. Determine their colors with
out taking them out of the bag or looking into the bag.

SOLUTIONS

231. Proposed by Pat LaFratta, Waukesha, Wisconsin.
Find all the integral values of a, b, and c, if any exist, such
that x/a + y/b = 1 is tangent to the graph of x3'4 + y*/«
= c3'1.

Solution by Pat LaFratta (proposer of the problem), University
of Wisconsin, Waukesha, Wisconsin.

A general point satisfying (1) can be taken as x = c sin8/a 6,
y = c cos8/3 9. By elementary calculus, the equation of the
tangent to the graph of (1) at the aforesaid point is given by

COS2/3 Q
y - c cos8'8 G = - (x - c sin8/3 9) which can be

sin ti

written in the form r^-— + 2L = i
c sin2/s e c cos2/3 9

implying that a —c sin2'8 Q, b = c cos2/' 9 implies that
a3 + b* = c3 which is known to be impossible in integers.
Hence, there is no solution to our problem.

232. Proposed by R. S. Luthar, Waukesha, Wisconsin.
Construct a function that is continuous at one point but dis
continuous at every other point of its domain.
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Solution by Kenneth Rosen, University of Michigan, Ann
Arbor, Michigan.

0 for x rational
Consider n, * ^ — -^ , . .. ,

- for x irrational

Since the rationals and the irrationals are both dense in the
reals, for every point a there exist sequences {x{} (all rationals)
and (yt) (all irrational) such that lim xn = a = lim y„. A

necessary condition if f is continuous at a is that lim /(#„)
n-»oo

= lim /(yn). But, lim /On) = 0 while lim /(yn) = <*-

Hence, the only possible point of continuity is a = 0. But
given any e > 0 take S = e, |xj < S ^ |/(*)| < « regard
less of whether x is rational or irrational. Hence lim /(x)

X-tO

= f(°) = 0. Hence / is continuous at 0, but nowhere else.

Also solved by Leslie Paul Jones, Marietta College, Marietta,
Ohio.

233. Proposed by Leigh Janes, Pleasantville, New Jersey.
If x + y = k, k a constant, and z = xpy maximi z e z.

Solution by Leslie Paul Jones, Marietta College, Marietta,
Ohio.

Case 1: Either p or a, or both, equal 1. Without loss
of generality it may be assumed that p = 1. Then z = xy.
Since x + y = k, then y = k — x and z = x(fe — x)«. It
follows that dz/dx = (fe - x)« - ax(fe - x)(«-'>. If dz/dx
= 0, then (fe - x)'' = ax(& - x)"*-1'. Obviously x = k
is a solution. By dividing both sides of the equation by
(fe —x)"-" one obtains ax = (fc - x) and x = fe/(a +~*1)
follows as a solution. Then x = k or x = k/(q + 1) will
maximize z.

Similarly, if q = 1, then y = fc or y = fe/(p +1)
will maximize z.

Case 2; Neither p nor a equals 1.

Obviously z = x''(/t —x)*. Again applying elementary calculus
dz/dx = px'"-11 (fe - x)" - ax"(/j - x)(*-,>. If dz/dx = 0,
then px'"-1' (fe — x)" = ax''(fe — x)<«-". Immediately x

«*> " { ":
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= 0 and x = k are solutions (having assumed p # 1 and a ^
1). Dividing both sides of the equation by x,"-1>(fe —at)'*-"
yields p(fe —x) = ax. Then pfe —px = qx sox = pk/(p + a),
the generalized form of the second solution in Case 1. Then
z will be maximized by one of these values.

Either by repeating the process with x = k — y or by
substituting the solutions for x above directly into x + y = k,
the solutions for y, y = 0, y = k, and y = qk/Cp + ?) are
easily obtained.

Also solved by Charles Traine, St. Francis College, Brook
lyn, New York; Kenneth M. Wilke, Topeka, Kansas.

234. Proposed by Pat LaFratta, Waukesha, Wisconsin.
Prove that [(« + l)(2n + 1)]"=* 6"(n !)! for any positive
integer n.

Solution by Kenneth M. Wilke, Topeka, Kansas.
The desired result can be rewritten equivalently as

follows:
[«(« + l)(2n + 1)]"

(6n)» = ^n-J

or upon taking nth roots since n is a positive integer,

n(n + l)(2n + 1)

or

6n
&^(«!)«

1 " / "

fs '* n
But this last inequality states that the arithmetic mean of the
first n squares is greater than or equal to the geometric mean
of the first n squares. The truth of this statement is a direct
result of the well known inequality: The arithmetic mean of
n numbers is greater than or equal to the geometric mean
of the same n numbers. Hence the original inequality is true
for all positive integers n with equality only if « = 1.

Also solved by Kenneth Rosen, University of Michigan,
Ann Arbor, Michigan.
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235. Proposed by R. S. Lnthar, Waukesha, Wisconsin.
For any positive reals x and y prove that the following inequal
ity holds:
xy(_l/x + \/y + 1)5=^ 108(l/x + 1/y).

Solution by Kenneth Rosen, University of Michigan, Ann
Arbor,Michigan.

Since the geometric mean of a set of positive reals is greater
than or equal to their harmonic mean

VI •*•?=* l/x+ l/y+ 1

This implies that xyO/x + \/y + l)s =^ 27. Equality holds
if and only if 1/x = \/y = 1 or equivalently when x = y
= 1.

Define z = 1/x + \/y.

Now(l -z)*^0,
1 - 2z + z2 =^ 0,
1 + 2z + z2 =^ 4z,
(1 + z)s =; 4z, and (1 + 1/x + 1/y)2

=* 4( 1/x + l/)0> with equality if and only if z = 1 or when
1/x + \/y = 1. Hence, xy(l/x + \/y + l)8 =* 27 •
4(l/x + l/y) = 108(l/x + 1/y).

Note: In the 1970 Spring issue of THE PENTAGON the
Editor failed to indicate that the solution to Problem 230 was by
Kenneth M. Wilke, Topeka, Kansas. The problem was also solved
by Karen Dowdy, Southern Methodist University, Dallas, Texas;
Russell C. Mills, State University College, Oswego, New York;
Alana Rohr, Kansas State Teachers College, Emporia, Kansas.

€>
Augustinus (354-430 A.A.) made the first recorded statement

that creation took six days because both God's creation and 6 are
perfect numbers. —Excursions into Mathematics



The Mathematical Scrapbook
Edited by Richard Lee Barlow

Readers are encouraged to submit Scrapbook material to the
Scrapbook editor. Material will be used where possible and acknowl
edgment will be made in THE PENTAGON. If your chapter of Kappa
Mu Epsilon would like to contribute the entire Scrapbook section as
a chapter project, please contact the Scrapbook editor, Professor
Richard L. Barlow, Kearney State College, Kearney, Nebraska.

Practically every mathematics student at one time or another
has studied numbers written in a numeration system other than
the usual Hindu-Arabic system of base ten. At that time it is noted
that the position of the digit is important; that is, the system has
place-value. For example,

362910 = 3 • 10s + 6 • 102 + 2 • 101 + 9 • 10°.

It is noted that in base ten notation, one uses the ten symbols
0, 1,2, 3, 4, 5, 6, 7, 8, 9 and only these ten symbols in writing
any number. The ideas of zero and place-value are the main differ
ences between the Hindu-Arabic system and the various numeration
systems which preceded it. In addition, the Hindu-Arabic numera
tion system allows somewhat easier computation than do its prede
cessors. (Have you ever tried multiplying in Roman numerals?)

In working with bases other than ten, one notes that many of
the properties of the base ten system also hold. For example, in
base six one uses only the six symbols 0, 1, 2, 3, 4, 5 to write any
number. The position of digits is also important. Consider

4203G = 4 • 63 + 2 • 62 + 0 • 61 + 3 • 6° = 93910 .

One will observe that the positions here all represent powers of the
base six. A similar result is true in any base. The base may be larger
than ten, say thirteen, where one will use thirteen symbols, possibly
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, t, e, w where t^ = 10,0, e,2 = llio,
and wJ2 = 12,o. Hence, 2wtl3 = 2 • 132 + 12 • 131 + 10
= 50410.

Nothing is usually said about bases which are fractional or
negative. We shall consider these cases here with their properties.
The place-value for a base b system, b ^ 0 are:

42
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b-3

For any non-zero number b, b° = 1 and hence each numeration
system will have a units or ones position. We shall use the usual
decimal point ". " to indicate the position of the units digit of a
numeral.

The following examples illustrate this notation:

621.25I0 = 6 • 102 + 2 • 10l + 1 • 10° + 2 • 101 + 5 • 10"2,

and

53.0267 = 5 • 7» + 3 • 7° + 0 • 7"1 + 2 • 7-2 + 6 • 7"3

=5-7 +3-l +0-^- +2- -±- +6--i-
2 c-

= 35 + 3 + —=7T +

= 38

49 343

20

343 "

An unusual situation occurs when the base itself is fractional. Con
sider a base of one-fourth whose place values are indicated below:

(1/4)2 (l/4)» (1/4)" (1/4)-1 (1/4)-* (1/4)-3

or

1/16 1/4 1 4 16 64

It first appears strange that the place values of the digits to the
right of the decimal point could be larger than those to the left,
but this must be the case to keep this system consistent with the
cases previously considered. We will also note that this numeration
system in base 1/4 requires only the four symbols 0, 1, 2, 3 to
write any number.

Now consider the base 4/3 numeration system. The place
values are indicated below:

(4/3)2 (4/3)1 (4/3)" (4/3)-1 (4/3)-2 (4/3)-3
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or

16/9 4/3 1 3/4 9/16 27/64

This system appears to meet more of our expectations of a numera
tion system since the digits to the left of the decimal point have a
greater place value than those to the right. But this numeration
system will require four symbols (not three as one might first
suspect), namely 0, 1,2, 3. As a general rule, the number of sym
bols required to represent any number in the fractional base a/b,
(a, &) = 1, b ^ 0 is the maximum of a and b. For our base 4/3,
the maximum of 4 and 3 is 4, so we must use four symbols. This
is consistent with the previous work since 1/4 required four symbols
(the maximum of 1 and 4), base 13/1 requires 13 symbols (the
maximum of 13 and 1), etc. In base 4/3, if we did not use all four
symbols 0, 1, 2, 3 then we could not write the number 410 in base
4/3 notation since 4 =30 , . Can you verify this?

10 4/3 ' '

If one wishes a negative base, somewhat unusual results occur.
The number of symbols necessary to write any number in a negative
base system is the same as it would be if the base were a positive
number, and so we shall ignore the sign of the base. For example,
—4/3 requires four symbols as did the base 4/3.

Consider the place-value for a base —5 numeration system:

(-5)2 (-5)1 (-5)° (-5)-1 (-5)-2 (-5)-3

or

25 -5 1 -1/5 1/25 -1/25

One will note that the positions alternate in sign.

Hence,

321.413., = 3*25 + 2-(-5) + 1*1+ 4«(-l/5)
+ l-(l/25) + 3(-l/125)

= 66 - 98/125
= 65 27/125

The basic operations may be easily performed in bases other
than ten. For example, in addition one finds
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621.23,
+ 50.65,

1002.21,

by recalling that each digit represents 7
of the groups preceding it on the right.

Similarly, 321.22.,
+ 240.34-s

411.41-5

Can you prove this?

Editor's note: The following was submitted by Professor Moez
of Texas Technological College.

V

Ai'f.fai'/tt^

(jf ~d*u "/ %* «/'*/,
.># / b > o .



The Book Shelf

Edited by James Bidwell

This department of The Pentagon brings to the attention of its
readers published books (both old and new) which are of a common
nature to all students of mathematics. Preference will be given to
those books written in English or to English translations. Books to be
reviewed should be sent to Dr. James Bidwell, Central Michigan
University, Mount Pleasant, Michigan 48858.

Introduction to Mathematical Statistics, 3rd edition, Robert V. Hogg
and Allen T. Craig, MacMillan, New York, 1970. X + 415
pp., $20.

If you liked the first two editions, you will love the third.
It is the best available (undergraduate-level) textbook for preparing
students for graduate study in mathematical statistics and for mathe
matics majors who wish to study theoretical statistics. This edition
differs from its predecessors mainly in that it contains an expanded
(and excellent) section on random variables and a chapter on
nonparametric methods.

On the other hand, this book might not be suitable for stu
dents interested primarily in the applications of statistics. As a
student, I studied "statistics" from the first edition, but I did not
gain an appreciation for how statistics is used. Perhaps a separate
laboratory course in which "real-life" problems are discussed would
serve to give students a feeling for the applications of statistics.

Edward M. Bolger
Miami University

Modern Elementary Mathematics, Anne E. Kenyon, Prentice-Hall,
Englewood Cliffs, N.J., 1969, 365 pp., $8.95.

The author states that "this textbook is intended for the ele
mentary credential candidate, to give him some of the background
necessary to understand and teach from the new elementary school
mathematics textbooks. It is also considered appropriate for the
liberal arts student . . ." The reviewer approached the text from
the viewpoint of the former rather than the latter. The scope is
not restricted to arithmetic, geometry, or algebra a la CUPM, but
rather includes both algebra and geometry.
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The first three chapters deal with elementary set theory and
logic. Set theory is considered first and the algebra of propositions
follows. Many texts consider these topics in reverse order. The logic
material is well written, the exercises are interesting; however, it
is this reviewer's opinion that this section has little relevance to the
work of the elementary teacher unless truth tables are tied to infer
ence patterns. The remainder of the text is independent of this
section.

Chapters 5, 6, and 7, which treat respectively whole numbers,
integers, and rational numbers, are very complete. The approach
is to define the operations for the system and show that the usual
properties follow. In some texts the properties are assumed and the
"how-to" of performing the operations is proved. Either approach
is mathematically sound, nevertheless, it is the reviewer's opinion
that the author's approach is better for the intended audience.

Particular attention is given to the repeated additions inter
pretation of multiplication. This interpretation is most useful in
elementary school mathematics but is often ignored by writers of
texts for these teachers. Multiplication is also defined in terms of
the Cartesian product. An excellent job is done in relating the
operations to the number line.

Chapter 8 briefly considers the real numbers. Chapters 9, 10,
11, 12, and 13 cover most of the content of a contemporary high
school geometry course. The material in Chapter 9 is informal; the
remaining material is formal. The geometry terminology, symbolism
and content are similar to that of SMSG Geometry. Congruence for
segments and angles is defined in terms of the ruler and protractor
postulates, respectively. Transformational geometry (reflections,
translations and rotations) which is beginning to appear informally
in elementary school materials is not mentioned.

The selection of exercises is good. Provision is made in the
exercises for adequate practice of concepts and skills. In addition,
most exercises contain problems which are interesting and thought-
provoking. Answers are provided for the odd numbered exercises.

All things considered, this is a "readable" and "teachable" text
for use in Level I courses. The development of the rational numbers
is especially good. The book is worthy of consideration for a course
for future elementary teachers.

William A. Miller
Central Michigan University
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Elementary Linear Algebra, Bernard Kolman, The Macmillan
Company, New York, 1970. 255 pages. $8.95.

In this text the author has included more than the usual
introduction to linear algebra. His purpose is to provide sophomores
who have had a year of calculus with an opportunity to develop
a facility with abstract ideas. The computational aspects of the
subject are accompanied by a gradual introduction into the postu-
lational character of mathematics.

After a preliminary chapter, which contains a clear and pre
cise treatment of the basic language of sets and the mathematics
of functions as used throughout the text, matrices and matrix oper
ations are associated with the solution of linear equations. In the
chapter treating real vector spaces effective use is made of the
matrix material. The theory of linear transformations flows natur
ally from the elementary geometric one of rotations, projections and
reflections. Determinants and their properties receive attention
mainly for the role they play in the "study of the properties of a
linear transformation mapping of vector space V into itself."
Included in the chapter on eigenvalues and eigenvectors are Euclid
ean spaces, the Gram-Schmidt process, real quadratic forms and
the diagonalization problem for symmetric matrices.

An unusual feature is the inclusion of a chapter dealing with
the usefulness of linear algebra in the solution of differential
equations. There are, also, frequent references to computer imple
mentation of the techniques developed.

Sufficient illustrative examples are given. Throughout the
text the proofs are understandable and are constructed in such a way
as to help the student formulate his own. The exercises are ample,
providing opportunity for application of concepts and for the
development of ease with independent thinking. Answers to selected
exercises are included; a separate solutions manual accompanies the
text.

This text is recommended for its sound and complete intro
duction to the concepts of linear algebra.

Sister Marie Augustine
College of Notre Dame of Maryland

Modern Elementary Algebra for College Students, Vivian Shaw
Groza and Susanne Shelley, Holt, Rinehart and Winston,
New York, 1969, xi + 418 pp.
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The goal of the authors was to provide a text for a "modern"
course covering the standard topics of elementary algebra and
thereby providing the background necessary for studying intermedi
ate algebra and the subsequent courses of trigonometry and calculus.
They have assumed as prerequisite a background in set concepts
and elementary mathematical logic, although introductions to sets
and logic are placed in the Appendix so that any instructor who
feels a need for the above concepts may introduce them at his
discretion.

The text covers the standard topics of elementary algebra
including a treatment of the real number system; linear equations
and their solutions; relations, functions and graphing; solving a
system of two linear equations by various methods; polynomials
(including multiplying and factoring); fractions; radicals, expo
nents, and complex numbers; and quadratic equations.

The book is well designed and very readable. Good use is made
of a second color (blue), especially to set off items of importance.
In general, the numerous exercises appear reasonable, allowing for
a selection of problems appropriate to a range of abilities and
applicable to the material which preceded the exercises. Answers
are provided to almost all of the problems and a check of a small
sample revealed no incorrect answers. Theorems and definitions are
set off in bold type and the tables and graphs are easy to read. Each
chapter ends with a summary of concepts and a list of properties
and/or theorems plus a chapter review. Beginning with Chapter 2
there is also a set of exercises for a comprehensive review of all
previous material studied.

The most impressive features of the book were the use of
interesting historical notes throughout the text to supply additional
information and interest to the material under consideration, the
many verbal problems in almost every chapter with diagrams and
tables as aids in setting up equations, and the introduction of partial
fractions in the unit on fractions as preparation for the subsequent
calculus courses.

One criticism might be offered. On pages 62 and 239 a state
ment of the Axiom of Completeness is made as follows, "Each point
on the number line corresponds to exactly one real number and
each real number corresponds to exactly one point on the number
line". In the opinion of the reviewer, this is not the Axiom of
Completeness and cannot be shown equivalent to it.
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The overall impression was that the text should be considered
seriously for a course in basic algebra from the modern viewpoint
for colleges, juniorcolleges and for the more mathematically talented
high school students.

Ronald D. Dettmers
Wisconsin State University
Whitewater, Wisconsin

College Algebra and Trigonometry by Steven J. Bryant, Jack Karush,
Leon Mower, and Daniel Saltz, Goodyear Publishing Com
pany, Inc., Pacific Palisades, California, 1970, 477 pp.,
$10.95.

The book does a fine job of covering topics traditional to
college algebra and/or trigonometry courses. The problem lists are
adequate and offer ample opportunity to gain algebraic and trigo
nometric skills needed in the calculus. Also included are challenging
problems for the good student. Answers to the odd problems are
included in the back of the book.

The material is introduced in the postulate, definition, and
theorem manner, with proofs supplied for most theorems. Although
set terminology is sprinkled throughout the basic material, the sub
ject of sets is not formally examined until Part Five of the book.

Part Four, which covers vectors, analytic geometry, and mat
rices, offers only a brief treatment of these topics and seems to
present only a brief overview to material better left to separate
courses.

Ramon L. Avila
Ball State University

Elements of Number Theory, Anthony J. Pettofrezzo and Donald R.
Byrkit, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1970,
256 pp., $7.95.

This book has been criticized by one instructor of a number
theory course as incomplete, wordy, and given to assuming results
without proof. All of which is true, but unjust. The authors obvi
ously intended to write an introduction to the basic facts and
methods of number theory which could be read by an interested and
capable high school student. Putting it positively, this reviewer feels
that this book is as complete, as direct, and as full of proofs as is
consistent with its emphasis on the elements of number theory. The
subjects treated include: 1. the divisibility properties of the integers,



The Pentagon 51

2. the theory of congruences, and 3. continued fractions. Several
topics such as quadratic reciprocity and algebraic integers are not
discussed. In addition the authors have devoted a few pages to
well chosen examples which suggest the method of proof for the
theorem which follows. This feature alone increases the usefulness
of the book many fold, because it should permit many students to
read the book on their own without the assistance of an instructor.
It is also true that certain results are assumed without proof. On
the whole, though, this is the sort of thing that will be obvious to
the student of mathematics in a few years anyway. For example,
the authors accept without proof the fact that a polynomial con
gruence of degree n in one variable with a prime modulus has at
most n incongruent solutions. Another feature that deserves favor
able comment is the introductory first chapter which presents the
basic properties of the integers and gives the reader some practice
with induction and summation and product notation.

Here, then, is a readable book that says some interesting things
about numbers and shows the student how to prove some of these
things. As such, it should be a good textbook for a freshman or
sophomore course in number theory or perhaps for a special course
for teachers. Failing this, it would simply be a good book for a
student to read on his own.

Charles Holmes
Miami University

Intermediate Analysis, M. S. Ramanujan and Edward S. Thomas,
The Macmillan Co., New York, 1970, 165 pp., $7.95.

This book is designed to serve as an introduction to post-
calculus analysis, where the emphasis is to be on proofs and rigor,
rather than on formulas. The first half of the book treats sets,
functions, relations, and cardinality carefully and slowly. The
reader is introduced to the basic ideas and is made to use them in
the many exercises.

Next there is a chapter on the real numbers, including least
upper bounds, convergence, Cauchy sequences, etc. (The construc
tion of the reals by Dedekind cuts is in an appendix.) The last
two chapters, on infinite series and power series, are the type found
in a standard calculus text. These are the only chapters where any
real use is made of a calculus prerequisite.

The first five chapters would make an excellent one quarter
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course for students going on to Advanced Calculus. The chapters
on series seem to have been borrowed from a calculus course in
order to fill out a semester's work.

E. R. Deal
Colorado State University

MINIREVIEWS

Calculus and Analytic Geometry, Douglas F. Riddle, Wadsworth
Publishing Co., Belmont, California, 1970, 748 pp., $13.

An attempt to avoid the usual rigorous epsilon-delta approach
to limits. The book uses geometric definition for limit and con
tinuity. More analytic geometry and curve sketching than usual.
Rigor comes late in book. Last chapters are on partial derivatives
and multiple integrals.

Fields and Functions. A Course in Precalculus Mathematics, C. W.
Bedford, E. E. Hammond, Jr., G. W. Best, J. R. Lux, The
Macmillan Co., Collier-Macmillan Ltd., London, 1970, 639
pp., $9.

This text was developed at Phillips Academy. It covers the
usual material, including a chapter on complex numbers. The book
relies on the rigor of logic, definition, and structure. Some intuitive
examples are included. Could be used by superior secondary stu
dents. Selected answers and tables are included.

Applications of College Mathematics, A. William Gray and Otis M.
Ulm, Glencoe Press, Beverly Hills, California, 1970, 360 pp.

This is a nontechnical text for students planning careers in
business, education, or the social sciences. Material on probability,
statistics, computers, matrices, and linear programming are fea
tured. Interest tables and selected answers to exercises are included.
A standard high school program is a required prerequisite.

Basic Mathematics Review, James A. Cooley and Ralph Mansfield,
The Macmillan Co., New York, 1970, 414 pp., $6.95.

This is a consumable workbook for reviewing arithmetic and
algebra in college. Each lesson has exposition, examples, and prob
lems. Space for student work included. The material is also available
in separate volumes for arithmetic and algebra. The level is suitable
for high school evening classes.
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Fundamentals of Modern Mathematics, A. J. Jackowski and J. B.
Sbrega, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1970,
420 pp., $9.50.

This book is designed for prospective elementary and junior
high school teachers. The authors suggest two years of high school
mathematics as a prerequisite. The usual material is covered, includ
ing four chapters on geometry and measuration. The chapter on
real numbers is brief. The chapter on rational numbers is quite
structure oriented. This is a content book with no methodology
included. Some abstract algebra is interspersed in the book.

Fundamentals of Algebra, Dale W. Lick, Prentice-Hall, Inc., Engle
wood Cliffs, N.J., 1970, 533 pp., $9.95.

This is a precalculus text without analytic geometry. The stress
is on the usual topics. Two chapters review elementary algebra.
There is a chapter on linear algebra and probability. There is a
college algebra flavor to the book. Half of the exercises have answers
in the appendix.

€

Mathematics, rightly viewed, possesses not only truth but
supreme beauty—a beauty cold and austere ... yet sublimely
pure. . . . Remote from human passions, remote even from the
pitiful facts of nature, the generations have gradually created an
ordered cosmos, where pure thought can dwell as in its natural
home. . . . —Bertrand Russell



Kappa Mu Epsilon News
Edited by Eddie W. Robinson, Historian

REGIONAL CONVENTION

April 25, 1970

Missouri Beta, Central Missouri State College

Arkansas - Colorado - Iowa - Kansas - Missouri -
Nebraska - Oklahoma

Program: First General Session, Mary Lou Russell, Presiding
Welcome, Burnell Haldiman
"Egyptian Fractions," by Barbara Shappard, Washburn Uni

versity.
"On Generating Functions in Pascal's Triangle," by Susan

Jarchow, Mount St. Scholastica College.
"Trisection of an Angle," by Kathy Peterson, Kansas State

College of Pittsburg.
"For All Rational Numbers," by Melvin Watson, Kansas

State College of Pittsburg.
"Square Circles," by Michael Brandley, Kansas State Teachers

College.
Luncheon Address by Dr. L. T. Sheflett, Southwest Missouri

State College.
Second General Session, Mary Lou Russell, Presiding.
"A Statistical Study of the Draft Lottery," by Don Page,

William Jewell College.
"Use of the LaPlace Transformation in Characterization of a

Continuous Random Variable," Ozdagan Yilmoz, University of
Missouri at Rolla.

"Is There A Difference between Algebraic and Geometric
Groups," by Mary Graney, Mount St. Scholastica College.

Presentation of Awards—Dr. H. Keith Stumpff, Central
Missouri State College.
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Other Papers Submitted:
"Some Properties of Door Spaces," by Craig Bainbridge, Mor-

ningside College.
"Your Answer is 1099," by James Harlin, Kansas State College

of Pittsburg.
"Modular Pseudo-Valuations," by Ron Oliver, Morningside

College.
"That's Life," by Tony Soukup, Kearney State College.
"N-Dimensional Coordinate Systems," by Jerel Williams, Kan

sas State Teachers College.

CHAPTER NEWS

Illinois Beta, Eastern Illinois University

Eight new members were initiated on November 6, 1969,
and twenty-six members were initiated on May 17, 1970. This
makes a total of 641 members initiated during the thirty-six years
of the chapter's existence. The formal initiation ceremony and the
business meeting were followed by a banquet in the University
Union honoring all those initiated during the past year. The speaker
was Larry Johansen, who is presently doing graduate work and
teaching in the Mathematics Department at Eastern. He plans to
start teaching in Kishwaukee Junior College at Malta, Illinois, in
the fall of 1970.

In honor of scholarship and potential in mathematics the fol
lowing awards were presented at the banquet: Mr. Claire Krukenberg
presented the Freshman Award to Marcia Meers and Keith Lyons;
Mrs. Helen Van Deventer presented the K.M.E. Calculus Award to
Leonard Storm; Mr. Charles Pettypool presented the O'Brian Schol
arship to Sandy Roediger and Peggy Ping; and Dean Lawrence
Ringenberg presented the Taylor Award to John Mcjunkin. The
recipients and their parents were guests of the chapter and the
Mathematics Department.

New officers of the chapter for 1970-71 are:
Roy McKittrick—President
Tim Burke—Vice President
Bev Dilliner—Secretary-Treasurer
Mr. Larry Williams—Adviser
Mrs. Ruth Queary—Corresponding Secretary.
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Indiana Delta, University of Evansville
New officers for Indiana Delta Chapter are:

Wayne Roell—President
Paula Perlitz—Vice President
Lana Turner—Secretary.

Missouri Alpha, Southwest Missouri State College
The annual picnic was held in May where David Tartar was

presented the Kappa Mu Epsilon Merit Award. New officers for
1970-71 are:

Peggy Turnbough—President
Michael Ridlen—Vice President
Peggy Stuckmeycr—Secretary
Linda Allgeier—Treasurer
John Kubicck—Corresponding Secretary.

Ten members of the chapter attended the Regional Convention
in Warrensburg.

Pennsylvania Epsilon. Kutztown State College
One hundred members and friends of the Pennsylvania Epsi

lon Chapter of Kappa Mu Epsilon were present at the Spring
initiation and dinner held on Friday, April 24, 1970, in the College
Red Dining Hall. After the initiation of eleven members, the
program was suddenly changed into a surprise program honoring
the sponsor and corresponding secretary, Dr. J. Dwight Daugherty.

Among the distinguished people present who paid tribute to
Dr. Daugherty was the President of the College, Dr. Lawrence M.
Stratton. He spoke glowingly about the honoree's outstanding work
and contributions during the past ten and one-half years. Also pres
ent and honoring the guest of honor was Mr. Walter Hollenbach,
a former president of the New York Schoolmasters Club, of which
Dr. Daugherty is a member of Board of Governors. The department
chairman and each student officer of the chapter expressed his
appreciation to Dr. and Mrs. Daugherty for their many contributions
to the success of Pennsylvania Epsilon. Several letters and tele
grams from nationally known professional friends of Dr. Daugherty
were read.

Dr. Daugherty accepted the gifts, which consisted of a large
plaque appropriately engraved and a fine poem suitably framed and
written by the vice president, Miss Rosemarie DiSante. He expressed
his thanks for the surprises and most of all for the many courtesies,
kindnesses, and enthusiastic support of the Pennsylvania Epsilon
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Chapter. He pleaded for greater student effort in attempting to
get their names in print by carefully writing and submitting to the
editors of magazines, including The Pentagon, the fine talks that
they will give during the coming year. President David Zerbe pre
sided at the meeting.

The Kutztown State College Mathematics Society was estab
lished by Dr. Daugherty in December, 1960, to meet the need of
greater student participation in talking and writing mathematics.
The Society prospered and became the Pennsylvania Epsilon Chap
ter of Kappa Mu Epsilon on April 3, 1965. Meetings are held
monthly and the programs consist of the presentation of student
prepared talks on mathematical topics. In addition two initiation
dinners are held annually, one in the fall and the other in the
spring. At these meetings outstanding mathematicians are invited
to speak. Pennsylvania Epsilon membership is 136, including one
honorary member.

The Pennsylvania Epsilon Chapter presents an annual Award
in Mathematics at the Spring Commencement. This award consists
of an engraved certificate with the name of the winner embossed
and twenty dollars in cash. The winner's name and the Award
Announcement appear on the commencement program. It is pre
sented to the senior graduating in the current academic year who
has attained the highest honors during the study of four years of
mathematics at Kutztown State College. It is properly signed by
the Adviser and Corresponding Secretary and is one of the chapter's
outstanding contributions to the college. It has been presented
annually during the last four academic years.

Texas Epsilon, North Texas State University
Fifteen active members, two pledges.

Stuart Anderson—President
Joyce McFarland—Vice President
Laura Fisher—Secretary
Carol Congleton—Treasurer
Dr. Melvin Hagan—Corresponding Secretary
Dr. John Allen—Faculty Sponsor.

The February meeting featured Dr. Parrish who spoke on
"Infinite Mathematics." "Number Theory" was the topic of the
program in March and Robert Manning and Jerry Walden pre
sented the April program on computers. Other meetings were a
Christmas Party and the annual picnic.
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LIST OF CORRESPONDING SECRETARIES

During the past year a number of chapters have selected
new corresponding secretaries. Since some members may wish to
contact these individuals for approval for official jewelry or other
society matters, a current list is presented.

Active Chapter
Alabama Beta

Alabama Gamma

Alabama Epsilon
Arkansas Alpha
California Gamma

California Delta

Colorado Alpha

Connecticut Alpha

Florida Alpha

Illinois Alpha
Illinois Beta

Illinois Gamma

Illinois Delta

Illinois Epsilon
Illinois Zeta

Illinois Eta

Indiana Alpha

Indiana Beta

Indiana Gamma

Indiana Delta

Iowa Alpha

Iowa Beta

Iowa Gamma

Kansas Alpha

Kansas Beta

Kansas Gamma

Kansas Delta

Kansas Epsilon

Maryland Alpha

Maryland Beta

Institution

Florence State University
Univ. of Montevallo

Huntingdon College
Arkansas State University
Calif. State Polytechnic
College

Calif. State Polytechnic
College, Kellogg Voorhis
Campus

Colorado State Univ.

Southern Connecticut
State College
Stetson University
Illinois State University

Eastern Illinois Univ.

Chicago State College
College of St. Francis
North Park College
Rosary College

Western Illinois Univ.

Manchester College
BuUer University
Anderson College

University of Evansville
University of Northern
Iowa

Drake University

Morningside College
Kansas State College
of Pittsburg

Kansas State Teachers
College
Mount St. Scholastica
College
Washburn University of
Topeka
Fort Hays Kansas State
College
College of Notre Dame
of Maryland
Western Maryland College

Corresponding Socrotory
Elizabeth Woolridge
Dr. Angela Hernandez
Rex C. Jones

J. L. Linnsteadter

Dr. George R. Mach

Albert Konigsberg

Dr. H. Howard Frisinger
Ray Erwin Sparks

Emmett S. Ashcraft

Clyde T. McCormick
Ruth Queary

Thomas P. Roelle

Sister Loretta Tures

Alice Iverson

Sister Nona Mary Allard
Professor Kent Harris

David L. Neuhouser

Dr. Barry Lobb

Paul Saltzman

Gene Bennett

John S. Cross

Joseph Hoffert
Elsie Muller

Dr. Harold L. Thomas

Charles B. Tucker

Sister Jo Ann Fellin

Margaret Martinson

Eugene Etter

Sister Marie Augustine

James E. Lightner



Massachusetts Alpha
Michigan Alpha

Michigan Beta
Mississippi Alpha

Mississippi Beta
Mississippi Gamma

Missouri Alpha

Missouri Beta

Missouri Gamma

Missouri Epsilon
Missouri Zeta

Missouri Eta

Nebraska Alpha
Nebraska Beta

Nebraska Gamma

New Jersey Alpha
New Jersey Beta
New Mexico Alpha
New York Alpha
New York Gamma

New York Delta

New York Epsilon
New York Zeta

New York Eta

New York Theta

North Carolina Alpha
Ohio Alpha

Ohio Gamma

Ohio Epsilon
Ohio Zeta

Oklahoma Alpha
Oklahoma Beta

Pennsylvania Alpha
Pennsylvania Beta

Pennsylvania Gamma
Pennsylvania Delta
Pennsylvania Epsilon
Pennsylvania Zeta

Pennsylvania Eta

Pennsylvania Theta

Pennsylvania Iota

The Pentagon
Assumption College
Albion College
Central Michigan Univ.
Mississippi State College
for Women

Mississippi State University
University of Southern
Mississippi
Southwest Missouri
State College
Central Missouri State
College
William Jewell College
Central Methodist College
The University of Missouri
at Rolla

Northeast Missouri State
College
Wayne State College
Kearney State College
Chadron State College
Upsala College

Montclair State College
University of New Mexico

Hofstra University
State University College
Utica College of Syracuse
University
Ladycliff College
Colgate University
Niagara University
St. Francis College
Wake Forest University
Bowling Greene State
University
Baldwin-Wallace College
Marietta College
Muskingum College
Northeastern State College
University of Tulsa

Westminster College
LaSalle College
Waynesburg College
Marywood College

Kutztown State College
Indiana University
of Pennsylvania

Grove City College
Susquehanna University
Shippensburg State College
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Richard Houde

W. Keith Moore

Dean Hinshaw

Donald King

Claris Marie Armstrong
Jack V. Munn

John Kubicek

Dr. Homer Hampton

Sherman Sherrick

R. C. Carnett

Dr. Roy Rakestraw

Joe Flowers

Fred A. Webber

Richard Barlow

Lenora D. Briggs
Don Lintvedt

Dr. Evan Maletsky
Merle Mitchell

Alexander Weiner

John W. Walcott

Thomas J. Burke

Sister Clare Bernadette

Theodore Frutiger
Robert L. Bailey
Donald R. Coscia

Dr. John V. Baxley
Harry Mathias

Robert E. Schlea

George W. Trickey
James L. Smith

Raymond Carpenter

Dr. T. W. Cairns

J. Miller Peck

Brother Damian Connelly
Lester T. Moston

Marie Loftus

Irving Hollingshead
Ida Z. Arms

Marvin C. Henry
Carol N. Jensen

John S. Mowbray, Jr.
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South Carolina Alpha

South Carolina Beta

Tennessee Alpha

Tennessee Beta

Tennessee Gamma

Texas Alpha

Texas Beta

Texas Gamma

Texas Epsilon

Texas Zeta

Virginia Alpha
Virginia Beta
Wisconsin Alpha

Wisconsin Beta

The Pentagon

Coker College
South Carolina State Col.

Tennessee Technological
University

East Tennessee State
University
Union University

Texas Tech University
Southern Methodist Univ.

Texas Women's University
North Texas State Univ.

Tarleton State College

Virginia State College
Radford College

Mount Mary College
Wisconsin State University

e

G. C. Metz

Frank Staley, Jr.

Evelyn Brown

Lora D. McCormick

Richard Dehn

Robert Moreland

C. J. Pipes
Ronald V. McPherson

Melvin R. Hagan

Timothy Lee Flinn
Emma B. Smith

Ruth Ann Poe

Sister Mary Petronia
Lyle Oleson

Eighteenth Biennial Convention
April 2-3, 1971

The eighteenth biennial convention of Kappa Mu Epsilon
will be hosted by the Pennsylvania Zeta chapter and will be
held on the campus of Indiana University of Pennsylvania on
April 2-3, 1971. Students are encouraged to prepare and
submit papers for presentation at the convention. Complete
directions for the submission of papers are found on page 35
of this issue of The Pentagon.

All chapters are encouraged to plan early for as large
a delegation of students and faculty as possible.

George R. Mach
National President
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