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Kappa Mu Epsilon, mathematics honor society, was founded in
1931. The object of the fraternity is fivefold: to further the interests
of mathematics in those schools which place their primary emphasis
on the undergraduate program; to help the undergraduate realize the
important role that mathematics has played in the development of
western civilization; to develop an appreciation of the power and
beauty possessed by mathematics, due, mainly, to its demands for
logical and rigorous modes of thought; to provide a society for the
recognition of outstanding achievement in the study of mathematics
at the undergraduate level; to disseminate the knowledge of mathe-
matics and to familiarize the members with the advances being made
in mathematics. The official journal, THE PENTAGON, is designed
to assist in achieving these objectives as well as to aid in establishing
fraternal ties between the chapters.



Finite Metric Spaces™

CHARLES L. BREINDEL
Student, Indiana University of Pennsylvania, Indiana

The undergraduate student, as he begins his studies of
mathematics, will become very involved with highly abstract
geometry and topology in #n-dimensional space. The student, as a
result, has to rely upon his “geometric intuition” to aid his under-
standing of many concepts.

This paper seeks to demonstrate how misleading such an
adherence to intuition can be. Through an exposition of metric
spaces, the author wishes, not only to explain this basic concept,
but also to arrive at a seemingly contradictory property which defies
the undergraduate’s intuitive reasoning process.

Classical analysis became so complex and varied during the
course of its development that it eventually became impossible for
the best mathematicians to work in all of its facets. So in the last
century mathematicians attempted to discover the fundamental
principles on which all analysis rests. Associated with the movement
were many outstanding names: Cantor, Hilbert, Lebesque, Riemann,
and Weierstrass. The movement had much to do with the rise to
prominence of topology, modern algebra, and the theory of measure
and integration. Out of the reevaluation and generalizations of
classical analysis came modern analysis.

As modern analysis developed many major theorems were
given simpler proofs in more general settings. Mathematicians
hoped that, with the simplification and clarification of analysis,
emphasis would be moved to the underlying theory, rather than
the less important, often superfluous, detail of classical analysis.

Since analysis is principally concerned with limit processes
and continuity, mathematicians involved in these ideas scon found
themselves studying and generalizing two elementary concepts:

(1) convergent sequences of real or complex numbers; and
(2) continuous functions of a real or complex variable. The

*A fcpar prosented at the 1869 National Convontion of KME at Cedar Falls, Jowa,
May 1.2,
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important thing to realize is that each of these concepts is dependent
for its meaning on the idea of absolute value of the difference
between two real or complex numbers. Note also that the absolute
value is the distance between the numbers when they are considered
points on the real line, or in the complex plane. Consequently, it
has been found very suitable to have available a notion of distance
which can be applied to the elements of abstract sets. The metric
space is simply that: a non-empty set together with a concept of
distance which is applicable to the treatment of convergent se-
quences in the set and continuous functions on the set.

With this motivation, the metric space is defined.

DeriniTION 1. A set X, whose elements will be called
points, is said to be a metric space, if, with any two distinct points
p and q, there is associated a real number d(p, q) called the distance
from p to q such that:

i. d(p,9) >0 ifps#4q d(p,p)=0
ii. d(p, ¢ =d(q,p)
iii. d(p,9)=d(p,r) +d(r,q) forallrinX.

A metric space consists of two objects: a non-empty set X and
a metric d on X, often symbolically represented (X, d) for con-
venience. Some of the important examples of metric spaces are the
Euclidean spaces EF, especially E* (the real line) and E? (the
complex plane), where distance is defined by:

dp,9) =|p—4q|pqinE*.
The conditions of the above definition are met by this statement.

Every subset X; of a metric space X is also a metric space,
since if conditions i, #, and iii of the definition are met for p, ¢, r
in X, they also hold if we restrict p, ¢, and r to lie in some X; of X.
Therefore, every subset of a Euclidean space is a metric space.

There are many kinds of metric spaces, some of which play
important roles in geometry and analysis. In this paper, the dis-
cussion will be devoted to finite metric spaces, with two examples
developed, and ultimately a very novel property illustrated.

The first example, though somewhat trivial, will illustrate
very simply the concept of metric spaces.
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Example 1. Let X be an arbitrary non-empty set. Define the
metric d as follows:

d(x,y) =1 ifx=£y
dix,y) =0 ifx=y.
Is this a metric space; that is, are all three parts of the definition

satisfied? Clearly i is satisfied since d(x,y) > 0 when x £ y,
and d(x,y) = O whenx =y,

Since d(x,y) =1 = d(y, x) if x 5~ y and
d(x, y) = 0 = d(y, x) if x = y, part ii, is true also.

Finally, for x, y, and zin X,
d(x, y) = d(x, z) + d(z, y), as stated in iii of the definition.

For if d(x, y) equals O, the condition holds no matter what the

value on the right-hand side of iii. The right side will either be

0, 1, or 2, and, in any event, will be greater than or equal to O.

If d(x, y) equals 1, then x 5% y and either x = z or z 5= y. For if

(1) x =z, theny s~ zsince x %= y and d(x,z) = 0, d(y,2) = 1,
and iii is satisfied.

(2) y=zthenxs£zsince x #= y and d(x,z) = 1, d(y,2z) = 0,
and iii is satisfied.

(3) x5~y 52, thend(x,z) = 1, d(z,y) = 1, and again iii is
satisfied.

(X, d) is thus a metric space.

Example 2. Consider a non-empty finite set X = {(0, 0)
(0, 4)(3,0)(3,4)), in E? space, where, letting the points be
a,, a,, as, a, respectively,

d(ay, a;) = 4
d(a, a,) =3
d(a,, a,) =5
d(a:, a,) =5
d(az a,) =3

d(as,a) = 4.

Distance in this metric space is defined in the usual geometric
sense, which is, d = v(x; — %,)* + (31 — ¥2)%
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Now for any two points of X, the distance is equal to 3, 4, or 5.
Thus, the distance is always greater than 0. Also,

d(ay, a;) = V0O + 42 = /42 + 02 = d(a,, a,)

d(ay, a,) = V32 + 08 = /0% + 3% = d(a,, a,)

d(ay, a,) = V3 + 42 = \/4* + 3% = d(a,, a,)

d(as a;) = /32 + 32 = /32 + 3% = d(a,, a2)

d(as a,) = V32 + 02 = /0* + 3% = d(a,, a;)

d(as, a) = VO + & = V& T 0 = dla,, a5) .
And finally, it can be verified easily that for all i, j, k,

d(a, a;) < d(ai, &) + d(ay, a;) .

Therefore, again this is a metric space, satisfying the definition.

Now before continuing the discussion of metric spaces, there
are four terms which need to be defined so that the later statements
may be clear and explicit. Though the first two terms, a neighbor-
hood of a point, and the complement of a set, are obviously clear,
and are not primary for the development of this paper, it is necessary
to understand their meanings so that the precise definitions can be
given for open and closed sets.

DerintTION 2. With X a metric space, and x a point in X,
a neighborhood of x is a set of the form

{t|tisin X and d(x, t) < 1)

for some radius r greater than zero. In other words, a neighborhood
around a point x is the set of all points contained in a disc or sphere
around x, with center at x, and a radius not equal to zero.

DermvitioN 3. The complement of a set X, where X is a
subset of the universal set, is the set x° = {x | x is in the universal
set, and x not in X): that is, the set of all points not contained in X.

Now, thus motivated, definitions can be given for open sets
and closed sets.

DerINITION 4. Let X be a metric space and X; a subset of
X. Then X, is called open in X (or simply open, if no confusion is
likely) if, for each p in X, X is a neighborhood of p.
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DerFinITION 5. Let X be a metric space and X, a subset of X.
X is called closed in X (or simply closed) if X,° is open.

Although there are those mathematicians who do not accept
definitions such as the one just given for closed sets, on the grounds
that it is a “negative definition”—it states merely what a closed
;et is not—this definition is sufficient and adequate for the purposes

erein,

These concepts of open and closed sets are considered mutually
exclusive by some students of mathematics. A set which is closed
cannot be open, nor an open set be simultaneously closed. However,
the finite metric space defies this intuitive notion, and such metric
spaces are both open and closed. The two examples already given
will demonstrate this property of our finite metric spaces. We
assume the theorem that the union of a finite number of open scts
are open, and the union of a finite number of closed sets are closed.

The first example defines distance as

d(x,y) =1 ifxs#y,
d(x,y) =0 ifx=y.

Every subset of (X, d) is both open and closed. For consider any
neighborhood around a point with radius %2 . For every point p in
such a sphere, that sphere is a neighborhoed of the point p. Thus
the set {x} is open since every point in the neighborhood around x
with radius ¥4 is contained in the neighborhood also; and, by the
definition, each subset is thus open. In general, any subset A of the
finite metric space is open, since A equals the union of a finite
number of {x}, for x in A.

Also each of these subsets A of X is closed, since the comple-
ment of A, A° is an open set of the form given above. The definition
of closed sets, therefore, makes each subset A closed, since A¢
is open.

Next consider the second example of finite metric spaces,
where X is four points in E? space and the metric d is defined in
the standard geometric manner, d = V(x; — x:)? + (3, — y2)%
Each point a; of the space is an open set, for if we take a neighbor-
hood around 4; with radius equal to 1, then every such subset {a;}
of X is open, by the definition. For each such neighborhood will
contain only the center point 4; and no other, because the radius




72 The Pentagon

is less than 3, the distance to the nearest point in the space. And
since any finite number of open sets is open, then any subset of the
finite metric space is an open set.

However, for any singleton subset {a;} of the spaces, the com-
plement of the set is composed of the union of three other singleton
subsets

{al'} U {ak} U {am} = {ai: ay, am}

and it was just shown this set is open. So the complement of any
singleton set is open, thus defining cach subset {a;} of X to be
closed. And again, a finite number of closed sets are closed; there-
fore, every subset of the finite metric space is closed. Hence, the
conclusion is that the metric space is both open and closed.

The conclusion of this discussion points out that finite metric
spaces illustrate a very novel property, and one that makes young
students of mathematics uncasy with the classical proofs which
depend upon definition proofs, and geometric intuition. The terms
open and closed sets may be mutually inclusive in finite metric
spaces (and other metric spaces), and although this is not the most
comfortable idea since so many of the spaces studied by college
students are metric spaces, it is fortunate that the primary concern
is not with these open and closed finite spaces.
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Algebra goes to the root of the matter and ignores the casual
nature of particular cases.—E. C. Titchmarsh



Equilateral Triangles and the Parallelogram*

Susan M. O’CoNNoOR
Student, Mount Mary College, Milwaukee

In an article which appeared in the January 1965 issue of
The American Mathematical Monthly, ]J. Garfunkel and S. Stahl
showed some of the interesting results obtained by constructing
equilateral triangles on the sides of a scalene triangle. One of their
discoveries was that “if in the middle third of each side of any
scalene triangle, equilateral triangles are constructed inwards, then
the join of their vertices forms an equilateral triangle.” [1, p. 13]

Figure 1

This paper is concerned with the effects of applying the
hypothesis of constructing equilateral triangles on various sides of
a figure to the parallelogram. The results are interesting and not
totally unexpected. Many of the proofs of the theorems in this
paper are based on the law of cosines which states that

a2 = b2 + ¢ — 2bc (cos a)

where a, b and c are the lengths of the sides of any triangle and «
is the measure of the angle opposite the side whose length is a.

One of the basic theorems of plane geometry states that the
perpendicular bisectors of the sides of a triangle meet at a point
called the circumcenter. Quite obviously this same conclusion does
not hold true for a parallelogram. Rather the intersection of the
perpendicular bisectors of the sides of a parallelogram forms another
parallelogram.

M'A nger prosented at the 1969 National Convention of KME at Cedar Falls, Iowa,
ay 1.2,
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TaeoreM 1: ABCD is a parallelogram with W, X, Y and Z
the midpoints of AB, BC, CD and DA, respectively. If perpendicu-
lars are constructed at each of the midpoints and extended until they
intersect at points A', B’, C' and D', then A'B'C’D’ is a parallelogram.
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Figure 2

Proof. AB || CD and BC || AD because they are opposite
sides of a parallelogram. Since lines in a plane perpendicular to
parallel lines are themselves parallel, CW || AY and A'Z || CX.
C'D’ || AB” and A'D’ || CB’ because they are segments of parallel
lines in the same plane. Therefore, A’B'C’'D’ is a parallelogram as it
has been shown that both pairs of its opposite sides are parallel.

Suppose now that one retains the midpoints of the sides of
the parallelogram and constructs equilateral triangles on alternate
segments of the perimeter so that the triangles fall on the outside
of the parallelogram. The join of the vertices of these equilateral
triangles forms another parallelogram.

THEOREM 2: ABCD is a parallelogram with W, X, Y and Z
the midpoints of AB, BC, CD and DA, respectively. If equilateral
triangles are constructed on AW, BX, CY and DZ so that they fall
on the outside of / / ABCD, then A'B'C'D’ is a parallelogram.
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Proof. Let the lengths of AD and BC be equal to a and those

of AB and CD to b. By the law of cosines, (AD’)? = % and

3a® + b? — 2v/3absina

(AD): = 3 . By the same process
(BC)* = 3@ + b — 42\/3ab sin a . Thus it can be shown that
A'D" = BC’. Again using the law of cosines, (DC')* = 3'? ,
(CDY: = a® + 3b® + ‘.:.\/Bab sin 8 and (A'B')? =

at + 3b* + 2v/3absin 8

. As before C'D’ can be proven congruent

4

to A'B’. Therefore, A'B'C'D’ is a parallelogram since both pairs
of its opposite sides are congruent.

If the triangles are constructed inwardly, the join of their
vertices again forms a parallelogram. The theorem and its proof
are similar to that of the preceding theorem and for that reason
have been omitted.
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Figure 4

By joining the midpoints of the sides of a parallelogram, a
new parallelogram is formed and the join of the vertices of the
equilateral triangles constructed on these segments forms a parallel-
ogram.

TaeoreM 3. ABCD is a parallelogram with W, X, Y and Z
the midpoints of AB, BC, CD and AD, respectively. If line seg-
ments are drawn connecting the midpoints, then WXYZ is a
parallelogram.

Figure 5

Proof. This proof necessitates the construction of the diag-
onal AC. WX is a line segment connecting the midpoints of two

sides of a triangle. Therefore WX || AC and WX = ézg . Sim-
ilarly, YZ || ACand YZ = AC. . “Thus WX || YZ and WX o VZ.

Since one pair of opposite sides of the quadrilateral are both parallel
and congruent to each other, WXYZ is a parallelogram.

THEOREM 4, ABCD is a parallelogram with W, X, Y and Z
the midpoints of AB, BC, CD and AD, respectively. If AWX, B'XY,
CYZ and D'WZ are equilateral triangles, then A'B'C’'D’ is a paral-
lelogram.
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Figure 6
Proof. Let the lengths of AD and BC be equal to a and
those of AB and CD to b. By the law of cosines, (WZ)* = %ﬂ ,

where x* = a* + b* — 2ab cos « and « = mLWAZ. Again by the

law of cosines, (WX)? = ::‘—2 , where y* = a®* + b® — 2ab cos 8

and 8 = m{WBX. Because AD'WZ and AA'WX are equilateral

triangles, WZ = WD’ and WX = WA’ Therefore, (A'D'): =

x® + y* — 2xycos y
4

concerned with angle addition and the transitive property of real
numbers one can show that ZA'WD' =~ /B'YC'. Thus it follows that

(BC): =

, where y = m/A'WD'. Using the theorems

x2 + y? — 2xycosy
4

A'B’ = C'D'. Since both pairs of opposite sides of the quadrilateral
are congruent, A'B'C'D’ is a parallelogram.

and that AD’ = B'C’. Similarly

Now consider a parallelogram whose sides have been divided
into three congruent parts—trisected. (The endpoints of these
three congruent segments are called “points of trisection.”) If per-
pendiculars are constructed at the points of trisection of any two
adjacent sides of a parallelogram, the intersection of these lines
forms a parallelogram.

TueoreM 5. ABCD is a parallelogram with S, T, U, V,
W, X, Y and Z the points of trisection of its sides. If perpendiculars
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are constructed at points W, X, Y and Z and extended until they
intersect at points A’, B’, C’ and IV, then A'B'C'DY is a parallelogram.

Figure 7

Proof. Since AZ and BY are both perpendicular to AD,
AZ||BY. AD || BC as they are segments in parallel lines. Sim-
ilarly it can be shown that A'B’ || CD". Therefore, because both
pairs of its opposite sides are parallel, A'B'C'D’ is a parallelogram.

In all of the theorems of the following portion of this paper
(Theorems 6 through 9), the sides of the parallelogram have been
trisected. The theorems state the conclusions reached when equi-
lateral triangles are constructed on various segments of the parallel-
ogram. Each of these proofs hinges on the law of cosines.

First consider the case where equilateral triangles are con-
structed in the middle third of each side of a parallelogram. If the
triangles fall either on the outside of or towards the interior of the
parallelogram, then the join of their vertices forms a new parallelo-

gram.

THEOREM 6. ABCD is a parallelogram with S, T, U, V,
W, X, Y and Z the points of trisection of its sides. If A'ST, D'UV,
C'WX and B'ZY are equilateral triangles constructed inwardly, then
A'B'C'D’ is a parallelogram.
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Agure 8

Proof. Let the lengths of AD and BC be equal to a and
those of AB and CD to b. Using the law of cosines, _(AB’)’ =
%2, CAAY? ____1132_’ and (A'B') = a2+b=—-ab(co;a+ V3 sin a)’
where « = m/{BAD. /BAD = /BCD which implies that « =
m/BCD. Again, by the lav_v_ of cosines, (C'D")*? =
@+ b - ab(c%s at V3sina) . Thus AB =~ CD. Similarly
(B'CY = AD'Yy = a + b — ab(co;,B + V3sing8) and BC

A'D’. Therefore, since both pairs of opposite sides of the quadrilateral
are congruent, A’'B'C'D’ is a parallelogram.

THeEOREM 7. ABCD is a parallelogram with S, T, U, V,
W, X, Y and Z the points of trisection of its sides. If AUV, BWX,
C'YZ and D'ST are equilateral triangles constructed in the exterior

of / / ABCD, then A'B'C'D’ is a parallelogram.




80 The Pentagon

The proof of Theorem 7 is analagous to that of Theorem 6 and
for this reason has not been included in this paper.

If instead of on the middle third, equilateral triangles are
constructed on any corresponding third of the sides of a parallelo-
gram, then the join of their vertices forms a parallelogram.

THEOREM 8. ABCD is a parallelogram with S, T, U, V,
W, X, Y and Z the points of trisection of its sides. If A'TB, B'VC,
C’XD and D'ZA are equilateral triangles, then A'B'C'DY is a paral-
lelogram.

Agure 10

Proof. Let the lengths of AD and BC be equal to a and
those of AB and CD to b. By the law of cosines (A'D')* =
@ + 7b* — 2v/7ab cos a
9
show that ZA’AD’' = /B'CC’ and thus that (B'C')* =
a® + 7b* — 2v/7ab cos a
9

(AB')* = (D'C)* =

where m/A’AD’ = a. It is possible to

. Therefore A’D’ =« B'C'. Similarly

7a® + b* — 2/ 7ab cos B
9

Since both pairs of opposite sides of the quadrilateral are congruent,
A'B’C'D'’ is a parallelogram.

This same conclusion holds true if the triangles are con-
structed interiorly. Because this theorem and its proof follow so
closely to that of Theorem 8, they have been omitted.

and A'B' =~ D'C.
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L
A—=—=X7 Y D
Figure 11

Lastly, suppose that equilateral triangles are constructed on
corresponding segments of the sides of the parallelogram with the
length of the sides of the triangles equal to %5 the length of the
side of the original figure. Again, the join of the vertices of the
triangles forms a parallelogram.

THEOREM 9. ABCD is a parallelogram with S, T, U, V,
W, X, Y and Z the points of trisection of the sides. If SBA’, UCD’,
WDC'’ and YAB' are equilateral triangles constructed so that they
fall on the outside of / / ABCD, then A'B'C'D’ is a parallelo-
gram.

Figure 12

Proof. Let the lengths of AD and BC be equal to a and
those of AB and CD to b. Using the law of cosines, (BD')? =
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7§and (AD): = &+ 4b ‘94‘/7"" COsa here « = m/ABD,

It can be shown that /B'DC’ =« /A’'BD’ and thus mZB'DC’ = «.

By the law of cosines, (B'C’)? = 7a’ + 4b° —94\/7ab $% ¢ . There-

fore BC' = A'D'. Similarly, (A'B’)* = (D'C’)* =

4 + 75 —-94\/7ab cos B , where 8 = m/A'AB’ = m/D'CC'.

Thus A'B" =< D'C’. Since both pairs of opposite sides of the quadri-
lateral are congruent, A'B'C'D' is a parallelogram.

And as before, this same conclusion would hold if the triangles
fell towards the interior of / / ABCD. No theorem or proof
accompanies this figure.

Ending the paper at this point is by no means an indication
that the subject has been exhausted. Rather the closing has been
necessitated due to a time factor. Many parallelograms appear in
the figures of which no mention has been made. Many questions
still remain unanswered. For example, suppose the parallelogram
were restricted to a rhombus or rectangle. Would the figure formed
by the join of the vertices of the equilateral triangles continue to
have the same properties as the original figure? Or, suppose that
instead of a parallelogram, a trapezoid or merely a quadrilateral
had been the original figure. Would the figures produced by joining
the vertices of the equilateral triangles have had any special char-
acteristics of their own or in relation to the original figure? These
and many other questions have been investigated in a much more
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extensive honors paper which the author wrote as part of the re-
quirements for graduation from Mount Mary College.

Some might wonder whether or not these conclusions are of
any useful value. To a pure mathematician such a question would
be of little importance. But to placate any of a more practical bent,
there is one such use for them. If the parallelogram is restricted to
a rectangle or even more so to a square, then several interesting
designs result from constructing equilateral triangles on the sides
of the figures. No proofs accompany this figure.
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The Theory of Positional Numeration

Joun Fraic
Student, California State Polytechnic College, Pomona

INTRODUCTION

In a positional system, after the base (say x) is adopted,
symbols for 0, 1, 2, *++, (x — 1) must be selected. In these
systems, therefore, there are only x basic symbols of which all
numbers are formed. Now any integer number, N, in this system
(base x) may be written uniquely in the following form:

N, =UyUpy UL,
= U“IO: + U“_ll():‘l + oo 4+ U,loz + Uo
or

N.= 3 Ui10.)f
(read 10,, one - zero, base x). This expression is called the numeric
polynomial of degree »n, where U; ¢ 1, 0 < U, < | 10}, 0 = U;
<|10;|fori=0,1,**,n — 1 and |x| > 1 where x ¢ R,
(I = integers, Q = rationals, R* = irrationals, R = reals).

Note: Normally when we talk about different bases, say x = 12,
the duodecimal scale, we are thinking in base ten. Thus x = 12,,
but 12,, = 10 ., therefore x = 10;, and this relation is the reason
10; is employed in the definition. Consider the Division Algorithm;
we may replace the condition 0 = U < x with 0 = U < 10,,
since they mean the same thing. One should keep this in mind
when reading Theorem (1,1).

SECTION 1

DeriNiTION 1:
Basex = 103 = x;o .
It should be noted that the first equality is the precise notation,

84
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however, the last statement means the same thing and is intuitively
clearer since most of our numerical thinking is done in base ten.

DeErmNITION 2 (The Fundamental Set):

The set of numerals in the base set is called the Fundamental
Set, i.e., Fundamental Set = {0, 1,+++, x — 1}, in base x.

Tueorem 1 (Division Algorithm for Positive Integers):

If N, x e I with x > 0> 3 unique q, U ¢ I such that

N=g¢g+ U, 0=U<x.

Proof:

(1) Existence. Consider the set S = {gx | g ¢ I}; this set
is unbounded and N is bounded so there is a g, ¢ I such that

gx =N < (g + 1x
adding a negative gox to each part

goX — gox =N — gox < goX + X — gox,
then
0=N-—-—gx<x.

LetU =N — gxand go = ¢, then N = gx + U where 0 = U < x.
(2) Uniqueness will be proved in Theorem 2.
TueoreM (1, 1): Let x be a positive integer x > 1. If N

is any positive integer, then there exists a non-negative integer n,
such that N can be expressed uniquely in the form:

N = Upix® + Upga®?t 4 soe + Upx* + U,, ¢))
where 0 < Uy < xand 0=U; < xfori=0,1,**+,n — 1.

Proof. By repeated use of the Division Algorithm (Theorem 1).
If N < x, we have the desired form at once with U, = N and
n = 0. If N = x, we may write
N=gx+U,, 0=U, < x, e))
by the Division Algorithm, and clearly 4, > 0.
If 9, < x, we set U, = ¢, and have equation (I) withn = 1.

On the other hand, if 4, = x, we apply the Division Algorithm to
¢: and x, to obtain

f1=¢9x+U, ¢>0 0=U<x 2)
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Now if g: < x, we set U, = ¢, and have the desired expression (I)
with n = 2. If ¢, = x, we write

2=4gx+ U, >0, 0=U,<nx 3

If g5 < x, we set Uy = ¢, and are finished. If not, we continue
as before.

We continue this process as long as possible, getting an ordered
set of gy's,
N>¢>qa>qp> ..

This set of g;'s is strictly decreasing with ¢; ¢ 1. The sequence
must stop after at most » steps. Failure to terminate would contra-
dict the Archimedean property of real numbers.

So suppose ¢ > x and 0 < gy < x, then there is a last gy,
say gn (4n = qra). We set U, = g, and observe the following
set of equations:

N =4 + Uo (l)
@ = gx + U, (2)
g2 = qx + U, 3
Gn-1 = gux + Un-a (" - l)
gn = U, (n)

Now substitute the second equation in the first one, the third in
the first, the fourth in the first, etc., finally the n't in the first,
The result is that N is expressed in the form of (I), i.e.,

N=Unx,‘+Un-1xu-l+"'+U1x+Uo,

O<Un<xand0=U; <xfori=0,1,¢*+,n — 1 (recall
Note in Intreduction), or

N = U,‘Un-l s0 UIUO .

With N expressed in this form we say N equals U,U,, *** U,U,
in the base x,
Symbolically: Ng = (U”Un-g Soe U;Uo)g .

The uniqueness of (I) follows immediately from the uniqueness
of the various remainders when the Division Algorithm is applied
(this fact is proved in Theorem 2).
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Remark: We must make a restriction on our notation to guarantee
unique representation. Consider the problem in base ten, .9999 « ¢«
= 1.000 ¢+ ¢, usually all numbers which are from some point on
always 9 are ruled out. We make the same restriction in each base
x, i.e., rule out all numbers that are (x — 1). from some point on.

SECTION 2

DerFINITION 3 (Basis for a Positional System):

A basis for a system of numeration is a set of unique elements
of the fundamental set, constants called U{s, and powers of the
base x, (10.)}, such that the U;(10,)* are linearly independent, and

No=c 3 Ui10)*.

fz-00

Every N ¢ R is uniquely expressible in the above form, where
c=+1,N>0andec=-1,N<O.

THEOREM (1, 2): The infinite limits on % are only the
most general conditions. However, any finitely expressible number
in base x is represented:

n,
N.=¢ 3 Ui10)*.
i=n,
We should note though that a number which is finitely expressible
in base x may not be in base y. This will be shown in Section 3.

TueoreM (2,2): If N e R, then
N.=c¢c “2 Ui(lom)‘ ’

for some base x. The next portion of Section 2 deals with the
possible values of x. Also we say N spans R and mean that the set
of all N, elements is just R expressed in base x.

Proof. Since R = Q U R* and N; ¢ Q or N; ¢ R* are in
any case expressed in the above form, we have the required result.

n n
In this section we shall use X and 21 both to mean that

0 n
the number N is finitely expressible and with:: change of variable,
i, these can be made equal.
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THEOREM (3, 2): The “positive integers” form a basis for
positional number systems.

Proof. By Theorem (1, 1) we have that if N, x e I, x > 1
D 3Juniquenel,n=02N (N > 0) can be expressed uniquely
in the form:

Ng = U,;ng; e U;Uo = U“IO: + Un-110:-1

+ 00+ U0 + U,
or

N.= S U, 10.)
‘Zo :(10:)

where U; e land 0 < U, < 10, 0 =U; < 10, for i = 0, 1,
s*+,n — L. If N ¢ R, this result plus Theorem (2, 2) yields

Ng =c z U{(].Og)‘ «
$=-00

THEOREM (4,2): The “integers” form a basis for positional
number systems,

Proof. In order to prove this theorem we must strengthen
the Division Algorithm and from this proceed, as before, to generate
a theorem similar to Theorem (1, 1). However, this theorem will
be much stronger than (1, 1). With these factors in mind we
present the following.

Tueorem 2 (Division Algorithm for Integers):

If N x e Il and x 5= 0 = 3 unique q, U ¢ I such that
N=gx+Uand0=U < |x]|.

Proof:

(1) Existence. The existence proof is exactly the same as
Theorem 1 except that we consider both x > 0 and x < 0 (for
x < 0, let x = —x in Theorem 1) the result is:

N=gx+U where0=U<|x]|.
(2) Uniqueness. Assume

N=g+U
{N=q1x+ uU,. S
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We must show that ¢ = ¢, and U = U,. Then from (1),

gx + U=gqx+ U,
but this implies
gx —qx=U, — U,
which implies
(g~ qdx= (U, - U),

la—al|x[=|U-U]|. (25

Now assume U, = U, then the right side of (2)is |U, — U | =1
and

and

o< |U,-U|<|x], (a)
but on the left side of (2) then | g4 — ¢, | = 1 implies

lg—a|lx|=]x]. (b>
Butsince |, — g | | x| = | U, — U, inequalities (a) and (b)

contradict each other, ie.,, |U, — U| < |x]| and |U; — U|
= | x |, therefore U = U, and then ¢ = g¢,.

Now, with this stronger form of Theorem 1 we repeat the
process of Theorem (1, 1) using the new conditions and restraints.
From this we arrive at the result:

IfN,xeland [x| > 1) Juniquenel, n=03:N
can be expressed uniquely in the form:

n i
No=e 3 U100
=0

where Uy e I and 0 < U, < |10:|, 0 = U; < |10, for
i=01,n—10@

If N ¢ R, this result plus Theorem (2, 2) yields

=

N.=c 3 Ug(l0,)".
1=~
However, this is the result we sought and Theorem (4, 2) is proved.
We arrive now at a critical point, the theoretical structure of
most common methods of numeration has been rigorously developed
in Theorem (3, 2), and Theorem (4, 2), where x is an “integer”.
Now suppose x is rational or irrational. Can x now function as a
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basis for a system of numeration? We assert that such a construction
is possible.

Weknowif x e I (x =0, = 1) and N ¢ R, then
N.=c 3 U0,

-2
(thus the “integer bases” span R). If we could show that the same
thing was true for x ¢ Q or x ¢ R, we would be finished. However,
we can do this if we can show that any real number in any integer
base can be converted into a number in a rational or irrational base
(with uniqueness preserved).

An example of our problem is 7,0 = (?)=. Does this equation
have meaning? Recall that to convert numbers in integer bases one
merely used a division process.

Example: 2510 = ()2
2 ] 25
12 11
6|0
310
111
Therefore,

25,0=(C11001),.

Conversion properties between various bases will be discussed
more fully in Section 3. Let us now construct a method for con-
verting to rational and irrational bases.

TueoreMm (5,2) (the method of reduced remainders):

A real number in an integer base can be converted to a rational
(or irrational) base number.

Proof. Let a be a real number in base x (x e I, | x| > 1);
without loss of generality, we consider only those numbers such that
aa — !U1U2Ua...Un...
_U . U
10, (10,)?

Let y be a rational or irrational number. We are going to convert
a to @, (denoted a, «— a ). Now there is only one more stipu-

~+ E L
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lation before we proceed; the Uy's must always be non-negative
integers.®

Then to establish the theorem we proceed as follows:

Convert a. to a (base ten), hence ¢ = .a@a:***an***, or
approximately, 4 = .4,.85°***a,. Now let us approximate 4
in base y,

@ e E Ui(lov)i = UHIU”I'l co e U U yoee Un0'°°’ (D

=0

where the 0 = U; < |y |. Then we can further approximate 4
in finite form as

"y
de= Y U10,).
i=n,

This last expression, however, is just defined as 4 in base ten.
Therefore, @ = & and this implies a, = a;

Now the only question remaining is: Can we find the U,
which satisfy (1)? To do this, consider
4=+ yn‘Qd = q,yn‘ + U,.

Therefore a, = ¢, ***, where ¢, is in the (lO“)n1 place. Then

n —1 n —1
U~y "DU, = ggy™ + U,.

Therefore, @, < g.q,**+. Then,
-2 -2
U—U)+y1 " “DW-U)=gy™ " °+ U,

Therefore, @, = .9.9;*++. We continue in this manner until
n

n —
(Ux_Uz_Ua_""‘Uno)'*‘}'l °
n —n
:>(U1 —Uy— e — U"o) = Gngery * °+ Unou .
Therefore, @, =q:4:95 * * * §n,;--1 * * * Gn,, -

This process can be carried out to any degree of accuracy
desired depending on 4 and the number of divisions.

Example: 7,0 = (Ma.
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2
Assume 7,0 == @17 + dow + a7 + a, (%) + as (l) :

w

2

= [ 7.00000
6.28318

71681

ie.,
2 + remainder (.7168) .

Therefore a, = 0, a; = 2 and then since .7168 < 1 D a; = 0.
We continue,

7168 + (%) Da=2.

Then subtract the remainders and continue,
.080 + (—11;—)2‘_'> a=0,
and
1 3
080 + (T) > =2,

Therefore 74 o= (20.202)z. Notice that 7, = 21; and 7,0 = 13,
thereby giving us an idea that our approximation is in the proper
range.

TueorEM (6,2): The “rational numbers” form a basis
for positional number systems.

Proof. By Theorem 2, Theorem (5,2) and repeating the
process of Theorem (1, 1), we have thatif N, x= Q (Q = rationals)
and [x| > 1=> 3 unique n ¢ I, such that N can be expressed
uniquely to any desired degree of accuracy in the form

N, = i‘, Ui(10,)}

where Us e 1 @, and 0 < U, < | 10:], 0 = U; < | 104 | for
i=0,1,°++,n — 1. If N ¢ R, this result plus Theorem (2, 2)
yields

N = 2 U:(10.)¢.

iz
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THEOREM (7,2): The “irrational numbers” form a basis
for positional number systems.

Proof. The proof remains the same as that of rational num-
bers, only the condition x ¢ Q is replaced with x « R* (R* =
irrationals).

We may sum up the previous theorems in one general theorem.

TueoRem (8,2): The “real numbers” form a basis for
positional number systems.

Proof. From Theorems (1,2) through (7,2) we have
the desired result. If | x| > 1, then N can be expressed to any
desired degree of accuracy as

Ne=e 3 Ui10,)f
iz0

where Ui ¢ 1, 0 < U, < |10;| and 0 = U; < |10, | for
i=0,1,>**,2— land x ¢ R. If N ¢ R, this result plus Theoremn
(2, 2) yields
Nx = 2 U.-(lO;)‘ .
iz
The next logical question and an interesting result is the following
theorem.

THEOREM (9,2): The “complex numbers” do not form
a basis for positional number notation,

Proof. In order that x form a basis for a system of numera-
tion there must exist an order relation on the ¢; when the Division
Algorithm is applied (see the proof of Theorem (1, 1)). But divi-
sion of complex numbers with imaginary parts in general gives rise
to complex numbers with imaginary parts. Now since the complex
numbers are not an ordered field the g; are not orderable and
therefore the theorem is proved.

THEOREM (10, 2): Any real number N can be expressed
uniquely in any real base x, | x| > 1, to any desired degree of
accuracy in the following manner:

Ne=c 3 UC10.)°

f=-c0
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where Ui e , 0 < Uy < |10, | and 0 = U, < | 10| fori =
- w,.oo’o’ 1’0o0’+ 0 .

Proof. Follows from Theorems (1, 2) through (8, 2).

SECTION 3

An excellent discussion of elementary convertability theory is
presented in Fehr and Hill Contemporary Mathematics. These ideas
plus Theorem (5, 2) form the underlying structure of the mate-
rial presented below.

THeoREM 3: We have shown in Theorem (10, 2) that
any real number N may be expressed uniquely in the base x.
However, the number N itself must be expressed in some base,
say y. Therefore, we have the immediate result that if

-]

N: = 2 U4(10,)‘

and if N can be expressed in scale y notation also, i.e., say
2 U, (10 )
fs-

then N, = N' and N_ can be converted into N’ and vice versa.

Wesay N, = 2 U,(10,)! = 2 Uj(10))! = N and employ the
primes to denote the fact that in general the U, will be different in

different bases, and therefore, so w1ll the representation of the
numeric polynomial.

Example: Convert a number in base seven to base ten.

N, = = U;(10,)*. Now to change N, to N;, we must change
10, to t,,. The object being to find t. Here the solution is simple,
t=17.

Example: Convert 24, to base ten.

24; = 2(10:) + 4(10;)° = 2(710)* + 4(70)° = 144
+ 410 = 1810

Now just as we could extend the Division Algorithm and Theorem
(1, 1) to integers, rational and irrational number bases, we can
also extend the notion of convertability.
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Examples:
(1) 1225,=121,, (2) s, =10001 _
(3) 3+ \/2)m= lllv? (4) 7mg20.202,
(S5) 15 =195, (6) —20,, =20,
(7) =1750=85, (8) 10.,= -2y
(9) 10, =12, (10) 1, =14 =1¢
C(11) 0z = 05000 = 050 (12) 10, ==2.718,,.

Application:

The reader might find the following example both interesting
and enlightening.

Consider the negative binary system. The fundamental set is
{0, 1} with operations defined by the following table:

+l01 |01
0|0 1 ojloo
1 1110 101

‘Then:

(1) 110, = 1(=2)2 + 1(—=2)' + 0 = 2,0 = 10,;
(2) Compute: 111+ 1., = (?)

L
L]

11
11
11
11
111
+1

«s¢ 000100, Answer = 100_;

(3) In negative base systems we can express negative numbers
without using a minus sign (any number with an even num-
ber of digits is negative). Now when coding numbers for
computers in the positive binary scale, we must use sign
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bits; using negative binary coding eliminates this and in-
creases the storage capacity of the machine.

The reader is urged to consider this method of coding
and its consequences.
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FOOTNOTES

@® The condition | x| > 1 is necessary, since the U; are non-
negative integers and 0 = U; < |x|. Hence, if |x| = 1,
then the U; must all be zero, which is quite trivial.

® The U; must remain non-negative integers, since letting them
be rational or irrational at once destroys the uniqueness of
representation and hence destroys the entire value of systemized
numeration. For a proof, see “Systems of Numecrations” by
John Flaig, available through California State Polytechnic
Library, Pomona, California (page 44).



Directions for Papers to Be Presented
At the Eighteenth Biennial
Kappa Mu Epsilon Convention

INDIANA, PENNSYLVANIA
April 2-3, 1971

A significant feature of this convention will be the presenta-
tion of papers by student members of KME. The mathematics topic
which the student selects should be in his area of interest and of
such a scope that he can give it adequate treatment within the
time allotted.

WHO MAY SUBMIT PAPERS: Any student KME member may
submit a paper for use on the convention program. Papers
may be submitted by graduates and undergraduates; however,
graduates will not compete with undergraduates.

SUBJECT: The material should be within the scope of the under-
standing of undergraduates, preferably those who have
completed differential and integral calculus. The Selection
Committee will naturally favor papers within this limitation
and which can be presented with reasonable completeness
within the time limit prescribed.

TIME LIMIT: The usual time limit is twenty minutes, but this
may be changed on the recommendation of the Selection
Committee if requested by the student.

PAPER: The paper to be presented, together with a description
of the charts, models, or other visual aids that are to be used
in the presentation, should be presented to the Selection
Committee. A bibliography of source materials, together with
a statement that the author of the paper is a member of KME,
and his official classification in school, undergraduate or
graduate, should accompany his paper.

DATE AND PLACE DUE: The papers must be submitted no
later than January 9, 1971, to the office of the National
Vice-President.

(Continued on p. 99)
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Installation of New Chapters

EprTED BY S1sTER HELEN SULLIVAN

NEW YORK THETA CHAPTER
St. Francis College, Brooklyn, New York

On Friday, October 24, 1969, the installation of New York
Theta Chapter of Kappa Mu Epsilon was held at St. Francis
College. Robert Vincent, chapter president, welcomed the initiates
and guests and introduced the installing officer, Professor James
Lightner, Chairman of the Mathematics Department at Western
Maryland College, Westminster, Maryland.

Those persons initiated included A. Amodeo, L. Backes, V.
Carriero, A. Chupa, R. Higgins, W. Imbriale, A. Rotolo, P. St. John,
G. ]J. Towusma, R. Vincent, A. Voltz, R. Wendt, K. Westly, Sister
Mary Lois, J. Andres, J. Burke, D. Coscia, J. Lazzara, T. O'Hara,
J. Tremmel, and Bro. L. Quinn, O.S.F.

Following the installation, Professor Lightner installed the
officers of New York Theta. These include:

President—Robert Vincent
Vice-President—Robert Higgins
Secretary—William Imbriale
Treasurer—Vincent Carriero
Corresponding Secretary—Donald Coscia

After the installation ceremony, the members and guests
attended a dinner-reception at the Hamilton Restaurant. Professor
Lightner presented the topic, “The Role of Honor Societies—
In Particular: Mathematics Honor Societies.”

PENNSYLVANIA I0TA CHAPTER
Shippensburg State College, Shippensburg, Pennsylvania

On November 1, 1969, at 7:00 p.m. the members of the
Shippensburg State College Honorary Mathematics Fraternity were
initiated as charter members of the Pennsylvania Iota Chapter of
Kappa Mu Epsilon.

Thomas R. Cook, a charter member and past president of
the fraternity, gave a brief history of the group from its origin to

98
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its installation into KME. Professor John S. Mowbray then intro-
duced the installing officer, Dr. J. Dwight Daugherty from Kutz-
town State College. Forty-two members including twelve faculty
members and thirty students of Shippensburg State College were
presented for membership by the president. After being initiated,
each member signed the constitution and received his membership
card. The purpose of KME, the description and meaning of the
badge, crest, and seal and the translation of the motto were pre-
sented. Dr. Daugherty then presented the charter of the Chapter
to its president, Miss Fortna.

Following the initiation of the members was the installation
of the new officers. They include:

President—Sharon L. Fortna
Vice-President—Nancy J. White

Recording Secretary—M. June Gutshall
Corresponding Secretary—John S. Mowbray
Treasurer—William A. Gould
Historian—Carol R. Kreider

Faculty Sponsor—James L. Sieber.

Dr. Daugherty gave a brief talk on the origin of KME and
the benefits of belonging to this mathematics honor society. To
close the program William A. Gould read some of the letters of
welcome from other chapters of KME. Among those read were the
letters from George R. Mach, the National President, and Fred W.
Lott, the Past-President.

— A —

(Continued from p. 97)

SELECTION: The Selection Committee will choose ten to twelve
papers for presentation at the convention. All other papers
will be listed by title and student’s name on the convention
program and will be available as alternates.

William R. Smith

National Vice-President, Kappa Mu Epsilon
Department of Mathematics

Indiana University of Pennsylvania

Indiana, Pennsylvania 15701



The Problem Corner

EpiteDp BY RoBERT L. PoR

The Problem Corner invites questions of interest to undergraduate
students, As a rule the solution should not demand any tools beyond
calculus. Although new problems are preferred, old ones of particular
interest or charm are welcome provided the source is given. Solutions
should accompany problems submitted for publication, Solutions of
the following problems should be submitted on separate sheets before
October 1, 1970. The best solutions submitted by students will be pub-
lished in the Fall 1970 issue of The Pentagon, with credit being given
for other solutions received. To obtain credit, a solver should affirm
that he is a student and give the name of his school. Address all com-
munications to Professor Robert L.. Poe, Department of Mathematics,
Berry College, Mount Berry, Georgia 30149,

PROPOSED PROBLEMS

231. Proposed by Pat LaFratta, Waukesha, Wisconsin.
Find all the integral values of a, b, and ¢, if any exist, such
that x/a + y/b = 1 is tangent to the graph of x%¢ + /¢

= ¢34,

232, Proposed by R. S. Luthar, Waukesha, Wisconsin.
Construct a function that is continuous at one point but dis-
continuous at every other point of its domain.

233, Proposed by Leigh Janes, Pleasantville, New Jersey.
If x + y = k, k a constant, and z = x*y? maximi z e z.

234. Proposed by Pat LaFratta, Waukesha, Wisconsin.
Prove that [(n + 1)(2n + 1)]7 = 6"(n !)* for any positive
integer 7.

235. Proposed by R. S. Luthar, Waukesha, Wisconsin.

For any positive reals x and y prove that the following inequal-
ity holds:
xy(1/x + 1/y + 1)*=>108(1/x + 1/y).

SOLUTIONS

226. Proposed by John Caffrey, Washington, D.C.

A, B, C, and D are arranged in a Greek square. The sum of
the four columns is given using letters of the same digit value.

100
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Obviously, the simple sum would be the same if the square
were rotated. What are the four digits?

BCDA

CABD

DBAC

ADCB

ABBBA

Solution by Michael J. Handley, Eastern Hlinois University,
Charleston, Illinois.

Assume 0 < A<CI1O If A, B, C, and D have values of 1, 2, 3,

0<B<10 and 4 (not necessarily in that order)
o0<C<«10 their sum = 10 which indicates that for
0 <D< 10 any values of the four parmeters their

andA=£B£Cs#D sum = 10. Thus a digit will be carried
and are integers. after column addition.

From the ones column (1) A+ D+ C+B=10X + A
(where X is carried
to the tens column).

From the tens column (2) X+ D+ B+ A+ C=10Y + B
(Y carried to the
hundreds column).

From the hundreds column (3) Y+ C+ A+ B+ D=10Y + B
(Y carried to the
thousands column).

From the thousands column ()Y + B+ C+ D + A= 10A + B.
By # (2) and # (3) Y = X, and from # (3) and # (4)Y =A.
therefore Y = X = A.

By substitution into # (1) A+ D + C + B = 11A.

By substitution into # (2)A+ D+ B+ A+ C = 10A + B.

Combining terms and solving #'s (1) and (2) for B in terms of A
—2A+ B =0 implies2A =B
and for C and D in terms of A or B we get
#() C+D=8A=4B.

Substituting the maximum values for C and D into the above equa-

tion we have
9+ 8=8A=4B.
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It is seen that A must be less than 3. In fact the sum of C and D
must be an even integer. Therefore, C and D are either both odd
or both even. Letting A = 1, then B = 2, and from # (5) C = 3
or 5 and D = 5 or 3 respectively. Letting A = 2, then B = 4, and
from # (5) C = 7or 9 and D = 9 or 7. Hence there are four
different solutions:

(a) A=1,B=2,C=3,D=5, (b) A=1,B=2,C=5,D=3,

2351 2531
3125 5123
5213 3215
1532 1352
12221 ; 12221 ;
(c) A=2,B=4,C=7,D=9, (d) A=2,B=4,C=9,D=7,
4792 4972
72409 9247
9427 7429
2974 2794
i a42 Ta442

Also solved by Karen Dowdy, Southern Methodist University,
Dallas, Texas; Don Ehman, Bowling Green State University, Bowl-
ing Green, Ohio; Vance L. Johnson, Western Illinois University,
Macomb, Illinois; Don N. Page, William Jewell College, Liberty,
Missouri; Alana Rohr, Kansas State Teachers College, Emporia,
Kansas; Kenneth M. Wilke, Topeka, Kansas.

227. Proposed by Leigh Janes, Pleasantville, New Jersey.

The exact value of N!, N a positive integer greater than or
equal to 5, is an even positive integer which terminates in one
or more zeros; that is, the exact value of N!, N = 5, has one or
more trailing zeros. Are there any factorials with exactly 5
trailing zeros? If we say that N! has k trailing zeros is it possible
t(; cllst?ermine which values of k have no corresponding values
o

Solution by Don N. Page, William Jewell College, Liberty,
Missouri.

Each trailing zero indicates 10 as a factor of N!, so k trailing
zeros indicates 10* = 2*5* a5 a factor. Each even number 21 = N
contributes one or more factors of 2 for N, but the factors of 5
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are contributed only by every fifth number = N and thus determine
the number of trailing zeros. For N < 25, every fifth number
5n = N gives one factor of 5, so NI = 24! has [N/5] = 4
trailing zeros, where [x] denotes the largest integer I = x. But
the next factorial, N! = 25!, has the additional factor 25 = 52
which gives two factors of 5, so 25! has [N/5] = [N/5] =
[25/5] + [25/25] = 5 + 1 = 6 trailing zeros. Thus there
are no factorials with exactly 5 trailing zeros.

In general, the number of trailing zeros of N! is
k = [N/5] + [N/5] + [N/5] + ++» = 2 [N/57], with

§=1

each term after [N/5/] < 5 or with j > logs N being zero. k in-
creases by one, since [N/5] also increases by one at that time. This
occurs when N = 5%n, where n is some integer. Thus the values
of k which have no corresponding values for N are those between
] 245 — ) 2

’_:z‘.l [5 ”S ; l] and !E‘.X [%1-] , where n is any integer greater
than zero. The first few such values are k = 5, 11, 17, 23, 29,
30, 36,42,

Also solved by Kenneth M. Wilke, Topeka, Kansas.

228. Proposed by Leigh Janes, Pleasantville, New Jersey.

If a polynomial over the field of complex numbers containing
k distinct terms is raised to the nth power what is the least
possible number of distinct terms in the result and what is the
greatest possible number of terms in the result?

Solution by Leigh Janes (proposer of the problem), Pleasant-
ville, New Jersey.

A term of the result is determined only by the powers of its
factors. Distributing N powers among k distinct terms is equivalent
to distributing N identical marbles among k distinct boxes. Let
n(k, N) be the number of ways of distributing N identical marbles
among k distinct boxes. Arrange the boxes in some sort of order;
each box may have from zero to N marbles inclusive. If all N
marbles go into the first box, there are n(k — 1, 0) ways of dis-
tributing the remaining marbles in the remaining boxes. If N — 1
marbles go into the first box, there are n(k — 1, 1) ways of distrib-
uting the remaining marbles into the remaining boxes. If x marbles
go into the first box, there are n(k — 1, N — x) ways of distribut-



104 The Pentagon

ing the remaining marbles to the remaining boxes. Therefore it

N
canbeseenthatn(k, N) = = n(k—1,j)

=3 ulk—1,j) +ak—1,N)
j=0

= #(k,N—1)+nlk—1,N).
To make a table of #(k, N), note that #n(k, 0) = 1, n(k, 1) = &,
n(},N) =1,2(2,N) =N +1, ;md the remainder of the table
may be filled in by using #(N, k) = a(k, N — 1) + u(k — 1, N).

" o
- o

N

k 0 1 2 3 4 5 6 7 8
111 1 1
211 2 3 4 5 6 7 8 9
311 3 6 10 | 15 | 21 | 28 | 36 | 45
411 4 10 | 20 | 35 | 56 { 84 | 120 165
511 5 15 | 35 { 70 | 126 | 210 | 330 | 495
6|1 6 | 21 | 56 | 126 | 252 | 462 | 792 | 1287
771 7 28 | 84 | 210 | 462 | 924 | 1716|3003

Observe the indicated diagonals. If the array were tilted 45°
clockwise, it would appear as Pascal’s triangle whose elements are
of the form

e Rl

* = EICR — E)I

where R is the row number and E is the number of the element
from either end of the row (starting from zero at one end). The
relation between Rand Eand k + Nist R= N + K — 1 and
E = N. Therefore, s(k, N) = N + k— 1Cy = N tk— Dl

) PN ¥ NIk — 1)

The least possible number of terms (degree of polynomial)* + 1,
where the polynomial contains all powers = ». The greatest number
of terms is n(k, N) .

229. Proposed by the Editor,
Today students who either take drugs, or belong to student
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activist organizations which opposc the Establishment, or are
in opposition to the Vietnam War give college and university
administrators many uneasy moments. It is not unreasonable
to believe that many of these administrators would like to
enroll in their schools as few students as possible who may be
classified as belonging to one or more of the above categories.
Certainly then, such schools must attempt to enroll the mini-
mum number of students which may be identified with all
three of these groups. However, the government and other
organizations that provide institutions with lucrative research
and student aid grants insist that such colleges and universities
maintain fair and unbiased admission policies. Recently a
study conducted by Trivia Researchers, Inc. and sponsored by
the Senate revealed that 5% or less of the student body in
the average university was composed of students who could
be characterized as drug takers who oppose the Establishment
and the Vietnam War. Now Dr. Grant Ghettar, the president
of BIG University (Bountiful Institutional Grants University),
through subjective questions asked on admission applications
has been able to determine that a fraction, p, of the total
applicants for admission to BIGU next fall are potential drug
users, a fraction, ¢, of them will belong to activist organizations
which oppose the Establishment, and a fraction, r, of them
oppose the Vietnam War. Since Dr. Grant Ghettar is more of
a politician than an academician, will you determine for him
the least number of students who may be members of the drug-
taking opposition to the establishment and the Vietnam War
that should be admitted to BIG University next fall? Keep in
mind that some must be admitted in order to obtain grants.

Solution by the Editor (proposer of the problem)

Let P mean “take drugs”, Q mean “oppose the Establishment”,
and R mean “oppose the Vietham War”. Now the least possible
number of those who, being P and Q, are also R, may be found by
arranging the applications in a row, so that the PQ-category may
begin from one end of the row, and the R-category from the other
end, and counting the part where they overlap; and, the smaller
the PQ-category, the smaller the common part. Thus the PQ-category
must be made a minimum,

This may be accomplished by re-arranging the application
forms, so that the P-category begins at one end of the row, and the
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Q-category from the other; and the least possible number for the
PQ-category is the common part of this row, i.e.,

[ — (1 — g)] = [p + q — 1]. This may be pictured as

p

—nt
I —— M

————
-9 9
Now the least possible number for the PQR-category is the
common part, [p+q—1—- (-] =[p+ g+ r— 2]
This may be represented as

(r+q-1)

ot
(A-n r

Therefore, Dr. Grant Ghettar should select p + g + r — 2 appli-
cants who are members of the drug-taking opposition to the Estab-
lishment and the Vietham War for entrance at BIGU next fall.
Note that p + g4 + r = 3 and that the maximum of (1, p + ¢
+ r — 2) would be the best policy.

230. Proposed by the Editor.

In the long division problem below each of the odd digits has
been replaced by the letter O and each of the even digits has
been replaced by the letter E. Can you state the problem in
digits?

OOE
OOQE+EEQOOE
EOE
000
OEE
EOE
EOE

Let the quotient be OOE = ©,0;E; so as to distinguish it
from the divisor. Let COE =< 0,6.E, . Since EEOOE = 88998,
we have OOE < 199 < 298 < /88998 . Hence the first digit
of the divisor is 1. Furthermore, 6,6,E, = 798. An examination
of the products EOE, OEE, EOE reveals 7= 0, = 3,0, > 1 and
93 ?& 91 .
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Case 1. 6, = 3. Then OO = 11 3 X 00 =33
13 39
15 45
17 51
19 57.

Only OO = 13 offers any chance that OOE X 3 = EOE. This is
possible only if OOE = 138. Now ©, = 5or 7 and only ©, = 7
yields a product of the form 138 X ©, = OEE = 966. But an
examination of the possible values of EEOOE shows this is impos-
sible. Hence , % 3 .

Casell. o, =5. Then 00 = 11 5 X 00 =55
13 65
15 75
17 85 .

Reasoning as in case I, O = 13 or OO = 17. If OO = 17, then
6: = 3 which is impossible since it leads to the same kind of
contradiction as in case I. If OO = 13, then ©; = 3 or 7. Reasoning
as above OOE = 138, 8, = 7 leads to a contradiction 6, = 3
implies quotient ©,6,E = 532 but 138 X 532 contradicts EECOE.
Hence 6, £ 5.

11 77
13 7X00= g
Clearly only OO = 11 is acceptable and 7 X OOE = EOE implies
OOE = 116. Then 6, = 3 or 5. Also E; X 116 = EOE implies
E, = 2 or 6. Hence the quotient is among the numbers 732, 736,
752, or 756. Of these only 6,6,E, = 732 gives a preduct of the
form EEQOE. Hence the unique solution is:
732
116 | 84912
812 .
371
348
232
232

Caselll. o, = 17. Then OO =



The Book Shelf

EpiTED BY JaMES BIDWELL

This department of The Pentagon brings to the attention of its
readers published books (both old and new) which are of a common
nature to all students of mathematics. Preference will be given to
those hooks written in English or to English translations. Books to be
reviewed should be sent to Dr. James Bidwell, Central Michigan
University, Mount Pleasant, Michigan 48858.

Advanced Calculus, Stephen Hoffman, Prentice-Hall, Inc., Engle-
wood Cliffs, N.J., 1970, 383 pp., $10.50.

The number of different courses in advanced calculus being
offered today is a sizable percentage of the number of colleges
which offer the subject. It is, therefore, impossible for an author
of such a text to satisfy everyone. Mr. Hoffman has made no attempt
to write an all-purpose text but has concentrated on topics which
he considers important for his course in advanced calculus. This -
procedure has contributed to a continuity and clarity of ideas not
always found in such texts. The text is for the traditional advanced
calculus course, but has fewer topics than are sometimes found and
a greater continuity of material with more proof of theory. The level
of material has as prerequisite one year of calculus, and a student
at this level should be able to read this text with understanding.
Careful motivation and good explanations are given to the many
theorems which are carefully stated and proved.

The development is continuous and must be pursued in the
order given. The first one-third of the text is devoted to the devel-
opment of vectors and vector operations, leading up to the classical
Divergence Theorem and Stokes' Theorem in the real space of
three dimensions. The development of vectors is on n-dimensional
vector spaces satisfying the usual vector space axioms. Good proofs
are given to major theorems, and an adequate selection of exercises
is available with each section.

The middle third of the text is concerned with integration,
continuity, and differentiation. A theoretical treatment of integra-
tion is developed for functions on “quadrable” n-dimensional sets
into the reals, making use of concepts of upper and lower Riemann
integrals. Continuity of functions on n-dimensional sets is done
carefully with good balance between explanation and proof. The

108
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Heine-Borel Theorem is proved and applied to continuous functions
to obtain criteria for uniform continuity.

The last third of the text is devoted to improper integrals,
including the Divergence Theorem and Stokes’ Theorem with im-
proper integrals, infinite series, and power series representations.
This section includes a minimal treatment of the Laplace Transform
and Gamma Function, Fourier Series, and Orthogonal Functions.
For self-help, a short appendix on series solutions of differential
equations is adequate, but appendices on matrices, and partial
differential equations provide little more than definitions.

In general the book is well written with good explanations
and problem examples. If the series of topics listed above is desired
in an advanced calculus course, this text is worthy of examination.

C. ]J. Pipes
Southern Methodist University

Analytic Geometry and the Calculus, Second Edition, A. M. Good-
man, The Macmillan Company, New York, 819 pp., $12.95.

A. W. Goodman'’s second edition of his Analytic Geometry and
the Calculus is a rewrite of his 1963 textbook that includes several
additions in content, portions of which are adaptations of material
from his two volume series Modern Calculus with Analytic Geometry.
Chapters I and II are new material for the second edition as is
Chapter XXII. Chapter 1 is devoted to an explanation of terms,
notation, and the background mathematics assumed to be known
by the reader. Chapter II is a brief and quite concise discussion
of real inequalities, absolute value of real numbers, and directed
distances. The other new material, Chapter XXII, also the last
chapter of the text, presents basic linear algebra beginning with
the concept of n-dimensional vector spaces and then develops the
ideas of matrix algebra, linear transformations and eigen-vectors
in quick succession.

In this new edition most of the illustrations have been redrawn
and a number of exercises have been added. The sections on inte-
gration, primarily the definite integral, conics and series have been
revised. These revisions improve the content of the textbook and
enhance its value for classroom use. The material of the book is
organized so that it may be taught as a four-hour per semester, three-
semester sequence course, or as a three-hour per semester, four-
semester sequence course, or as a five-hour per quarter, four-quarter
sequence course, That is, the organization and presentation of
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calculus with analytic geometry in this textbook is standard and
consequently quite similar to the majority of the books available
for such courses. It is written for average science and engineering
majors. Mathematics majors and above average students would
need to supplement the material as presented by extra work taken
from the plentiful supply of references cited and the three appen-
dices in the book.

Outstanding features of the book are (1) it is readable and
well written, (2) it is clean of errors, (3) important equations and
formulas are enclosed in boxes, (4) it has ample exercises, (5)
many of the chapters are prefaced by a section entitled “Objective”
which outlines the intent of the presentation in the chapter and
also includes some appropriate historical notes, (6) answers are
given to the majority of the problems, (7) useful indices and refer-
ences are included, and (8) it has many very good illustrations.

Items which might not appeal to some are (1) it makes use
of the delta-increment notation in the presentation of limits, (2) a
number of important theorems are not proved and often when proofs
are given they are more intuitive than rigorous, (3) much of the
development of theory is intuitive in nature, (4) the material on
linear algebra stands by itself and for all practical purposes appears
to have no connection with calculus and analytic geometry, and
(5) the concepts of line integrals and Jacobians have been omitted.

It can be stated that this is a good, standard calculus with
analytic geometry textbook which may help illustrate the observa-
tion that no new calculus and analytic geometry problems have been
created in the past one hundred years. R

obert L. Poe

Berry College

Linear Analysis and Differential Equations, Richard C. MacCamy
and Victor J. Mizel, The Macmillan Company, Toronto,
Ontario, 1969, xiii, 561 pp.

This book is highly recommended for anyone having a back-
ground in elementary calculus that includes an introduction to
functions of several variables. The reader whose main interest is
applied mathematics or pure mathematics can profit from reading
this book.

The authors manage to integrate linear algebra and differential
equations while presenting physical motivation for most of the
important topics. The book is not complete in the sense that not
every theorem is proved. Indeed, the authors deliberately omit proofs
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that involve technical details. On the other hand, these theorems
are illustrated through applications and heuristic arguments are
never passed off as proofs.

The authors cover a wide range of material, including such
topics as infinite dimensional spaces, partial differential equations
and Stokes’ Theorem. The presentation is modern. For example,
many concepts are formulated by means of approximation theory.
Indeed, Fourier series are presented as an extension of least square

approximation. Richard Dowds
State University College, Fredonia, N.Y.

Calculus with Analytic Geometry, Volume I, Angus Taylor &. C. J.
Halberg, Prentice-Hall, Englewood Cliffs, N.J., 1969, 950
pp., $12.50.

This book has a balance of theory and applications approached
from both the intuitive and the theoretical. Perhaps the
intuitive approach to limits is carried to the extreme; that is, the
student could fail to have any appreciation for a more formal
approach after such a lengthy intuitive introduction.

An important asset of this text is the exercises—well chosen
and arranged so as to lead the student to the more difficult ideas.
On each topic there seems to be an ample supply of problems so
that the student needing additional practice has a ready supply.
The standard topics of functions of one variable are covered thor-
oughly with numerous examples. The concept of a function is
developed after a review of the essential ideas of pre-calculus
mathematics. The distinction between a function and a relation
is made quite clear. The length of discussion on various topics
could be tco much. The above average student would perhaps
become bored with the details. For the average or below average
student (if you can get this student to read) this text would be
excellent.

In the mass of calculus texts that have for years flooded the
market, this text seemingly could be rated in between the average
to above average category. An instructor would have to leave much
of the material as reading assignments, obviously not the basic
ideas but the discussion of these ideas. Any difficulties encountered
from using this book as a text could, as in most cases, be overcome
by a competent instructor. Lioyd Koontz

Eastern Illinois University
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MINIREVIEWS

Elements of Algebra, Francis J. Mueller, Prentice-Hall, Inc., Engle-
wood Cliffs, N.J., 1969, 356 pp., $7.95.

This book is a college text for students who have had little or
no algebra in secondary school. The content is standard secondary
school algebra with little modern terminology or use of sets in
the body of the book. Many examples are worked out. The appen-
dices include intuitive probability, progressions, set theory, and
statistics. Answers to odd-numbered exercises are included.

Modern Algebra with Trigonometry, John T. Moore, The Macmillan
Company, Toronto, Ontario, 1969, 423 pp.

This book is the second edition of a text designed as a pre-
calculus text without analytic geometry. Emphasis is on systems
of equations and matrices, exponential, logarithmic, and circular
functions. Also included are chapters on complex numbers, theory
of equations, and the binomial theorem. Properties of real numbers
are developed and concept of function integrates the book. The
approach used appears quite good for prospective majors. It could
be used either as a high school or college text although written for
the college level. Answers for odd-numbered exercises are included.

Management Decision Making under Uncertainty: An Introduction
to Probability and Statistical Decision Theory, T. R. Dyckman,
S. Smidt, and A. K. McAdams, The Macmillan Company,
Toronto, Ontaria, 1969, 662 pp., $10.95.

“This book is designed for use in an introductory course in
probability and statistics for students interested in the solution of
managerial problems.” Calculus is not required, but it is recom-
mended as a prerequisite. Problems are oriented for business
applications. Contents include, besides normal introductory mate-
rial, chapters on random variables, two-person games, utility theory,
sampling, and decision theory with and without sampling. Proofs
are often given for the basic theory involved.

Go with the Odds, Charles Goren, The Macmillan Company, New
York, 1969, 308 pp., $6.95.

This delightful book on gambling and bridge combines expe-
rience and mathematics to give a practical guide for players. Al-
though little real mathematics is involved, many probabilities and
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expectations are discussed. Casino games, lotteries, bridge, and
other card games are emphasized. The teacher may find the ex-
amples useful in the classroom or in his private interests!

Calculus, Arthur B. Simon, The Macmillan Company, New York,
1970, 626 pp., $11.95.

This text on calculus is designed to cover three semesters. It
contains no development of analytic geometry. The book begins with
a chapter on sets and functions. Chapter II is on computational
calculus without proof. Succeeding chapters develop the theory
underlying derivative and integral computation. This approach is
novel. The later chapters include an introduction to linear algebra,
multiple integrals and differential equations. A complete answer
key is appended.

Elementary Concepts of Mathematics, Third Edition, Burton W.
Jones, The Macmillan Company, New York, 1970, 400 pp.

The new edition of this text, originally published in 1940,
differs little from the second edition. Chapters include sets, logic,
number systems, topics in elementary algebra, probability, minor
geometry, Lorentz geometry, and topology. It would be of interest
to liberal arts students as well as prospective teachers of elementary
or junior high school. An answer key for odd-numbered problems
is included.

®

1 do not know what I may appear to the world, but to myself
1 seem to have been only a boy playing on the seashore, and
diverting myself in now-and-then finding a smoother pebble or a
prettier shell than ordinary, whilst the great ocean of truth lay
all undiscovered before me.—1. NEWTON



The Mathematical Scraphook

EpITED BY RICHARD LEE BARLOW

Readers are encouraged to submit Scrapbook material to the
‘Scrapbook editor. Material will be used where possible and acknowl-
edgment will be made in THE PENTAGON. If your chapter of Kappa
Mu Epsilon would like to contribute the entire Scrapbook section as a
chapter project, please contact the Scrapbook editor, Professor Richard
L. Barlow, Kearney State College, Kearney, Nebraska.

In practically every elementary algebra course, Pascal’s triangle
is derived by arranging in an infinite triangular table the coefficients
of the terms resulting from the expansion of the binomial (2 + b)",
where 2 = 0, 1, 2, 3 *++, Thus, Pascal’s triangle becomes:

After carefully observing the pattern of the numbers in each
row, the student scon notes that every number (except the first and
the last) in each row is equal to the sum of the two numbers which
lie above it to the right and left.

An interesting result occurs when Pascal’s triangle is written
in terms of a prime modulus. For example, Pascal’s triangle medulo
3 is:
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NO O0/20 O
1 INO/2 2N 0/1
1 2 IN2 1 2N1 2 1
INO O0/0N\O O/0\O O0/1
1 NO/O ONO/O0 O\ O0/1
1 2 IN/fO 0 OoN/0O 0 O\N/1 2 1
INO O/INO O/0NO O/INO O
1 INO/1 INO/0O \NO/1 INO/1 1
1 2 N1 2 1INvVO 0 o1 2 1N1 2

By forming the smaller upward pointed triangles of three rows
each as indicated above, it is noted that the resulting downward
pointed triangles contain only zero entries. The upward pointed
triangles, which we shall call basic triangles, consist of triangles
of three types:
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Observing the triangular patterns, one will note that the basic
triangles forming the ends of rows of triangles are all the same

type, namely

The other basic triangles, however, are formed by taking the sum
of the two basic triangles lying above it to the right and to the
left, as was the case with the numbers in the usual Pascal’s triangle.
This concept, which we developed for modulo three, also holds for
Pascal’s triangle in any prime modulus.

Can you show this is true modulo five?
_ A —

In the Scrapbook section of the Spring 1969 issue of The
Pentagon, a formula was presented for determining the day of the
week upon which the rth day of the mth month of the year N
would fall. At that time, it was noted that the formula presented
was valid only for the years N = 1600, which were years after
the 1582 Gregorian revision of the Julian calendar. One might
ask why was the calendar revision necessary in 1582 and is our
present calendar completely accurate?

One of the carliest known calendars was developed in primitive
Egypt as an aid to the farmers plagued by the floods of the Nile.
The Nile floods occurred quite regularly and approximately coin-
cided with the heliacal rising of the star Sirius. Hence, in the year
(approximately 2773 B.C.) in which the Egyptian calendar was
adopted, the first day of the first month began with the observation
of the heliacal rising of Sirius, which also approximately coincided
with the beginning of the summer season. Their year consisted of
three seasons of four months each, with each of the twelve months
having exactly thirty days followed by an intercalary period of five
days. This resulted in each year having a uniform length of 365
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days. Since the constant 365 day calendar year was approximately
one-fourth of a day shorter than the actual solar ycar, the calendar
advanced until, at the cnd of 1456 solar years, it had gained one
complete solar year and arrived back at its starting point. Even with
the Egyptian calendar’s inaccuracies, it served them well and it
was retained for almost 3000 years.

In 46 B.C., Julius Caesar introduced the Julian calendar which
was created by the Alexandrian astronomer Sosigenes. This calendar
was to correct the 0.25 day per year error of the Egyptian calendar
by regularly adding one day every fourth year (the years divisible
by four), called leap years.

However, the estimate of 0.25 day rather than the actual
0.2422 day resulted in an error of the Julian calendar. This slight
but ever increasing crror in the Julian calendar resulted in an
accumulated ten day error by the 16th century. In 1582, the
Gregorian revision of the Julian calendar was introduced by Pope
Gregory XIII to correct this error. This correction was made by
omitting ten days of that year (the day following October 4 was
October 15) to bring the calendar and the sun back into corres-
pondence. To correct the leap year problem, leap years were to
occur every year divisible by four except in the centurial year. A
centurial year is a leap year only if it is divisible by 400. (Thus
the years 1700, 1800, and 1900 would not be centurial leap years
but the year 2000 would be a centurial leap year.) While the
Gregorian calendar was adopted by many countries around 1582,
England and her colonies did not adopt the Gregorian calendar
until 1752 and Russia not until 1918. Is our calendar completely
accurate? Not quite. There is a slight error in the fourth decimal
place, which will amount to a full day in about 3,300 years.

— A —

The classical algebraic proof that 2 = 1 is known by almost
every mathematics student. The following proof is onc which involves
a method which can be adapted to show the equivalence of any
natural number and 1 by properly choosing the algebraic function.

Suppose y = v/x. Then by solving for x we have x = y2.
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Then,

“ dydx = S (y + kydx

= g (xv2 + kydx

= §2%2 4+ kx + k;,
where the ks represent some constant.
Also,

o

X (x + ks)dy

= j (9? + keddy

=¥ +hyt+k
= 3x%/2 + kx'/2 + k,,
where the k’s again represent some constant.
But since,

jg dydx = Sg dx dy, we have

807 o+ kyx + ks = 3292 + kx'? + k,

Since these polynomials are equal, their respective coefficients
of like terms must be equal.

Hence,
§=i’
k=0,
0=k3,
kz=k|.

But if 8 = &, then 2 = 1. Can you find an error?



Kappa Mu Epsilon News

EpiTEDp BY EDDIE W. ROoBINSON, Historian

Albama Beta, Florence State University, Florence

25 members, Charles E. Wilson, President; Dr. Elizabeth T.
Woolridge, Corresponding Secretary.

Fourteen new members were initiated at a banquet in April,
1969. The speaker was William Green, a 1935 charter member
of the chapter. Activities include a tutoring service for elementary
and secondary students in the local area as well as university stu-
dents. A coffee hour was held at Homecoming with twenty-five
alumni members from twenty-one different years attending.

Mrs. Mary R. Hudson, sponsor, retired at the end of the
1968-69 school year. She received the University’s annual “Faculty
Member of the Year” award and was honored by a “This is Your
Life” program at a KME meeting,

A 1966 initiate, Eddy Joe Brackin, has returned to the teach-
ing faculty.
Alabama Gamma, University of Montevallo
21 members, 8 pledges, Edgar C. Torbett, III, President; Ned A.
Lowrey, Corresponding Secretary.

Eight members were initiated in December. Two programs
presented were “Kinds of Infinity” and “An Introduction to Non-
Euclidean Geometry.” The chapter sponsored a get-acquainted
party for freshman mathematics majors and minors.

Alabama Epsilon, Huntingdon College, Montgomery
8 actives, 3 pledges, Gloria Spikes, President; Dr. Rex Jones, Cor-
responding Secretary.

The chapter sponsored a trip to Oakridge National Labora-
tories and is planning a trip to Houston’s Manned Space Flight
Center.

California Gamma, California State Polytechnic College,
San Luis Obispo

46 student members, 23 faculty, 24 pledges, Dick Bradshaw,
President; Dr. George Mach, Corresponding Secretary.
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Dr. Leonard Tornheim, Chenson Research Company, spoke
at the January initiation banquet honoring twenty-four new mem-
bers. The chapter started a free tutorial service, available to all
students.

California Delta, California State Polytechnic College,

Kellogg Voorhies Campus, Pomona

20 members, 11 pledges, Jack Parker, President; Professor A.
Konigsberg, Corresponding Secretary.

The chapter has a five-day tutoring program each week and
a lecture series, “Careers in Mathematics.” Activities include a
display at the annual California Polytechnic Open House, “Poly
Vue,” and a year-end picnic for graduating members,

Connecticut Alpha, Southern Connecticut State College,

New Haven

67 members, Donald Browning, President; Mrs. Loretta Smith,
Corresponding Secretary.

Two programs were “The Use of Computers in the Class-
room” by Dr. Washburn and “Inconsistencies in Euclidean
Geometry” by Dr. Grant. Chapter members helped to revise the
mathematics curriculum.

lllinois Beta, Eastern Ilinois University, Charleston
Denny Han, President; Ruth Queary, Corresponding Secretary.

The highlight of the year is a banquet which follows the spring
quarter initiation. The O'Brien Scholarship, the Van Deventer
Calculus Prize, the Taylor Award, and the Freshman Award are
to be presented at this banquet. The chapter and the Mathematics
Club is sponsoring a trip to the Museum of Science and Industry
in Chicago.

Illinois Epsilon, North Park College, Chicago

14 members, Roberta Nuckals, President; Alice Iverson, Corres-
ponding Secretary.

Programs have included the movie, “The Search for Solid
Ground,” and three lectures: “Color Plus Math Equals Insight” by
P. McCray, “Geometric Solitaire” by C. A. Jacakes, and “Continued
Fractions” by Roger Griffith. The Visiting Lecturer for 1970 will
be Professor Wade Ellis.
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Indiana Alpha, Manchesier College, North Manchester

14 members, Phil Bantz, President; David Neuhouser, Correspond-
ing Secretary.

The chapter meets every other week with programs given by
faculty, students and outside speakers. Speakers have been Dr.
Zimmerman, Goshen College, and Dr. Bittinger from Indiana
University.

Iowa Gamma, Morningside College, Sioux City

36 members, Craig Bainbridge, President; Elsie Muller, Corres-
ponding Secretary.

The chapter has sponsored visits by lecturers from MAA,
SIAM, and the Statistics Association and co-sponsors a colloquium
with two neighboring liberal arts colleges. Four members participated
in the William Lowell Putnam Competition.

Kansas Alpha, Kansas State College of Pittsburg

55 members, James Harlin, President; Dr. Harold L. Thomas, Cor-
responding Secretary.

Curtis Woodhead discussed the problem of the probability
that Friday falls on the 13th day of the month at the October meet-
ing. Kathy Peterson presented the November program with a paper
on the trisection of an angle. Additional programs were the “Pro-
jective Plane” by Dr. Elwyn Davis and a discussion of student
teaching experiences. Recipients of the annual Robert Miller Men-
denhall Award for scholastic achievement were Mary Blood and
Helen Gardner. Steven Armstrong was recognized as the Outstand-
ing Senior in Secondary Education.

Kansas Gamma, Mount St, Scholastica, Atchison
8 members, 7 pledges, Judy Graney, President; Sister Helen Sulli-
van, Corresponding Secretary.

Semimonthly meetings are held, featuring student papers. A
program about computer mathematics was presented by Sr. DeMont-
fort Knightly of Lillis High School, Kansas City. Other programs
included a pledge presentation, “The History of Mathematics.”

Maryland Alpha, College of Notre Dame of Maryland,
Baltimore

7 members, 3 pledges, Susan Landgraf, President; Sister Marie
Augustine, Corresponding Secretary.
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Programs have included “The Magic of Magic Squares” by
Susan Landgraf, “Odd Numbers” by Jeanette Gilmore, and a joint
meeting with Maryland Beta when Dr. A. I. Thaler spoke on
“Braids.”

Maryland Beta, Western Maryland College, Westminater
20 members, David K. Baugh, President; James E. Lightner, Cor-
responding Secretary.

The planning meeting for the year was held at the home of
the faculty adviser. Two programs are geared for mathematics edu-
cation and mathematical applications in industry and government.
The chapter established the Clyde A. Spicer Award to be given to
the sophomore who shows the most potential as a mathematics
major. The first recipient was Miss Gloria Phillips.

Michigan Alpha, Albion College, Albion

Cathy Amos, President; W. K. Moore, Corresponding Secretary.
Programs and meetings: Movie, “Let’s Teach Guessing,” “Se-

quences” by John Wenzel, Albion College; “Graph Theory” by

Professor Arthur White, Michigan State; “Regular Polyhedra with

Holes,” Professor B. M. Stewart; “Topology,” Cathy Wassick; “Space

Filling Curves,” Professor Donald Malm.

Michigan Beta, Central Michigan University, Mount Pleasant
45 members, Marie Barns, President; Dean Hinshaw, Correspond-
ing Secretary.

Activities included the fall picnic, tutoring, high schoo) visita-
tion program, initiation, showcase, and planning for the Regional
Convention on April 17-18.

Mississippi Alpha, Mississipp! State College for Women,
Columbus

12 members, 14 pledges, Susan Vaughan, President; Dr. Donald
King, Corresponding Secretary.

Activities include a Christmas party and a picnic. Program
speakers included Dr. Noel Childrens and Dr. Stephen Puckette.
Mississippi Gamma, University of Southern Mississippl,
Hattiesburg

20 members, William Marshall, President; Jack V. Munn, Corres-
ponding Secretary.
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The chapter plans to undertake a membership drive. Plans
are being made to send members to speak at surrounding high
schools and to sponsor a tutoring service.

Missouri Beta, Central Missouri State College. Warrensburg

21 members, 19 pledges, Mary Lou Russell, President; Velma S.
Birkhead, Corresponding Secretary.

Programs have included a film, “Mathematical Peep Shows,”
and guest speakers: Mr. Wallace Griffith, “Concepts in Computer
Programming;” Dr. Norman Royal, “Facts and Fantasies of the
Space Age;” Mr. John Myrick, “Applications of Mathematics at
Western Electric;” and Dr. Henry Polowy, “How to Count Fish
in a Pond, Lake or Ocean.” Activities have included: Hub partici-
pation, selling CRC handbooks, sponsoring mathematics mixer for
all students interested in mathematics, a car in the homecoming
parade, College Bowl, registration at (MAT)? Conference, Christ-
mas party for members and their dates and the Spring Banquet for
KME and Sigma Zeta.

The 1970 Regional Conference is to be held on CMSC
campus, April 25.
Missouri Gamma, William Jewell College, Liberty
8 members, Don Page, President; Sherman Sherrick, Corresponding
Secretary.

Programs and activities: Mr. Truett Mathis, “An Enumeration
of Logical Functions;” movie, “Donald in Mathemagicland;” Wai
Mui Lau, “Some Nonparametric Methods;” Judy Wyss, “Mathematics
in the Secondary Schools;” Dr. Darrell Thomas, “Special Topics in
Probability and Statistics;” banquet and initiation, Seymour Schuster,
speaker.

Missouri Epsilon, Central Methodist College, Fayette
12 members, 7 pledges, Barbara Richardson, President; W. H.
Enrich, Corresponding Secretary.

At least one paper is presented at each meeting. Activities
included a display and entertainment for Parent’s Day, tutoring
sessions for freshmen and publication of a brochure on graduates
and their activities for promotional activities.

Missouri Zeta, University of Missouri, Rolla

17 members, 16 pledges, Quince Hadley, President; Lyman T.
Smith, Corresponding Secretary.
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Activities include two meetings a month, banquet and initia-
tion, and various speakers at the different meetings.

Missouri Eta, Northeast Missourl State College, Kirksville

24 members, 3 pledges, Patrick O'Rourke, President; William
Weber, Corresponding Secretary.

Activities have included: annual spring picnic, attending
National Convention, tutoring program, guest lecture series, attend-
ing professional meetings. Programs have been: “Fermat’s Last
Theorem,” “Pythagorean Triples,” “A Study of N-Dimensional
Equations,” “The Area of a Pythagorean Triangle and the Number
Six,” “Inversions of Conic Sections through a Unit Circle,” and
“Fixed Points.”

Nebraska Alpha, Wayne State College. Wayne
30 members, Doris Haltorf, President; Maurice Anderson, Corres-
ponding Secretary.

Meetings are held once a month with initiates presenting
papers. Thirtcen new members were initiated this fall. A banquet
is planned for April in conjunction with Lambda Delta Lambda.
Eleven students attended the National Convention at Cedar Falls,
Iowa, and the chapter plans to send a delegation to Warrensburg,

Nebraska Beta, Kearney State College, Kearney
46 members, 19 pledges, Larry Babcock, President; Richard Barlow,
Corresponding Secretary,

Activities were: Christmas party, spring banquet with a visiting
lecturer, distribution of 1500 copies of the chapter newsletter to
the area high schools. A $50 scholarship will be awarded to a
deserving KME member at the spring banquet. Fourteen members
and two faculty sponsors are going to attend the Regional Convention
in Warrensburg.

New York Zeta, Colgate University, Hamilton
20 members, Bruce Schwaidelson, President; T. K. Frutiger, Cor-
responding Secretary.

Meetings have included two lectures: “Buffor’s Needle Prob-
lem” by Professor A. R. Strand and “Godel’s Theorem” by John T.
Koranda. The initiation meeting will have Professor Wade Ellis
as speaker,
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New York Theta, St. Francis College, Brooklyn

18 members, 8 pledges, Robert Vincent, President; Donald Cascia,
Corresponding Secretary.

This chapter was organized and installed during the past year.
Programs have included a reception, linear algebra seminar, and
two films, “Limits of Sequences” and “Definite Integral.”

Ohio Alpha, Bowling Green State University

30 members, James Eiting, President; Harry Mathias, Corresponding
Secretary.

The Chapter visited Marathon Qil's Computer Center and
sponsored an open forum for the mathematics curriculum. The
primary event was publication of the magazine The Origin with
biographies on all faculty and KME members.

Oklahoma Alpha, Northeastern State College, Tahlequah

43 members, Robert Hughes, President; Dr. Raymond Carpenter,
Corresponding Secretary.

Meetings are held on the first and third Thursday of each
month with programs given by chapter members. Fall initiation
accurs at the Christmas party and spring initiation at the Founders’
Day Banquet in April.

Oklahoma Beta, University of Tulsa

31 members, Gary Miessler, President; Dr. Thomas Cairns, Cor-
responding Secretary.

During the month of October, the officers, assisted by a
number of other members, assisted in the arrangement of a new
faculty evaluation system, particularly as it concerned the mathe-
matics department. This evaluation system involved the filling out
of appropriate forms by students in all classes; subsequent evalua-
tion of the faculty was accomplished by punching the responses on
computer cards which were then analyzed by use of a Control Data
computer.

The current officers were fortunate in having a considerable
sum of money in the treasury from previous years. The society
members are now in the process of arranging a special “Kappa Mu
Epsilon Award” to be given to some deserving undergraduate
mathematics student. It is hoped that the local finances can be
restructured so that this award may be made an annual one.
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Pennsylvania Alpha, Wesatminster College, New Wilmington
15 members, 19 pledges, Brian Pontuis, President; Dr. Thomas
Nealigh, Corresponding Secretary.

Thirty members toured the Gulf Petroleum Research Facilities
and one program was Mr. Alan Sternberg discussing employment
opportunities for mathematics majors.

Pennsylvania Epsilon, Kutztown State College, Kutztown

21 members, 15 faculty, 10 pledges, David P. Zerbe, President;
Dr. Dwight Daugherty, Corresponding Secretary.

Programs consist of KME students presenting papers. Two
annual initiation dinners are held with outstanding speakers.
Freshmen are invited to attend and participate in meetings.

Pennsylvania Zeta, Indiana University of Pennsylvania

47 members, Charles Breindel, President; Ida Arms, Corresponding
Secretary,

Nineteen members were initiated on October 21, 1969. Mr.
Joseph Angelo, 2 member of the mathematics faculty, presented a
talk on “Continued Fractions.” At the regular meeting in November,
Mr. William R. Smith, Faculty Adviser, presented “The Dance
Problem.” He also presented this topic later at a regional meeting
of NCTM in Cleveland. At the regular meeting in December, Mr.
John Busovicki, a new member of the mathematics faculty this
year and a graduate of IUP, talked about graduate study and oppor-
tunity for assistantships. Mr. Busovicki is a charter member of
Pennsylvania Zeta Chapter. At the meeting in December officers
for the next two semesters were elected. They are: President,
Donald Laughery; Vice-President, Elaine Eichorn; Secretary, Bonita
Miller; Treasurer, Frances Coledo.

During the spring semester we are having as a guest lecturer
Dr. Haskell Cohen from the University of Massachusetts, and a
bangquet is planned for May.

The members and faculty advisers of Pennsylvania Zeta
Chapter are pleased that the National Council has decided that the
Biennial Convention will be held on the campus of Indiana Univer-
sity of Pennsylvania during April of 1971. We are looking forward
to serving as your hosts for this important event.

Pennsylvania Eta, Grove City College

30 members, Richard Gies, President; Cameron Barr, Jr., Corres-
ponding Secretary.
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Initiates are required to prepare a ten-minute paper as require-
ment for admission into KME and these papers are used for pro-
grams. One recent program was Cindy Sexton’s paper, “Computers
in Education.”

Pennsylvania Thela, Susquehanna University, Selinsgrove

15 members, 15 pledges, Margaret Harris, President; Carol Jensen,
Corresponding Secretary.

Activities included a mathematics faculty reception, a tutoring
program for students, and attendance at a mathematics convention

at Swarthmore College. Two recent papers presented were “The
Unique Colorability of Maps” and “The Value of an Infinite Series.”

Pennsylvania Iota, Shippensburg State College
42 members, Sharon L. Fortna, President; John S. Mowbray, Cor-
responding Secretary.

This chapter was installed November 1, 1969, and since that
time their activities have included a motion picture and discussion
and a visiting lecturer, Dr. Preston Hammer of Pennsylvania State
University, who spoke on “Beware of Axiom Mongers” and “Con-
tinuity— What It Means.”

Texas Alpha, Texas Technological College, Lubbock
53 members, John Harris, President; Dr. Derald Walling, Corres-
ponding Secretary.

Seven new members were initiated at the fall banquet and a
picnic was held in September. Programs included Dr. Russel Seacat,
“Math and Engineering;” Dr. George Innis, “Computers and Mathe-
matics;” and an IBM representative who spoke on “Activities in a
Computer Center.”

Texas Zeta, Tarleton State College. Stephenville
11 members, 2 pledges, German Daniel, President; Timothy Flinn,
Corresponding Secretary.

Programs have been three guest lecturers and one film. Activ-
ities included a pizza party for new mathematics majors and the
Mathematics Club.

Virginia Alpha, Virginia State College, Petersburg

26 members, 3 pledges, Linda Bailey, President; Emma B. Smith,
Corresponding Secretary.
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The Spring 1969 Banquet was in honor of the sponsor, Dr.
R. R. McDaniel, who retired as head of the Mathematics Department.

Wisconsin Alpha, Mount Mary College, Milwaukee

20 members, Mary Ellen Naber, President; Sister Mary Petronia,
Corresponding Secretary.

Plans are being made for the annual mathematics contest. Pro-
grams have been the following: “Friday the Thirteenth,” Jeanette
Hoene; “Some Ideas in Topology,” Mary Schwamb; “Solutions to
Mr. and Mrs. Adams’ Problem in Moving Their Furniture—Per-
mutations,” Gloria Saffald; “Introductory Ideas about Vectors,”
Susan Gesell; “Tricks in Multiplication,” Barbara Kasseckert; “Linear
Programming,” Cathy Palzin; “Permutations and the Insanity
Cubes,” Linda Schneider; “Paper Folding,” Barbara Pozorski;
“Gonks,” Betty Witt; and “Computing Devices,” Sister Catherine
Ann.

..........................................................
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Eighteenth Biennial Convention

April 2-3, 1971

3 The eighteenth biennial convention of Kappa Mu Epsilon
» will be hosted by the Pennsylvania Zeta chapter and will be
. held on the campus of Indiana University of Pennsylvania on
b April 2-3, 1971. Students are encouraged to prepare and
 submit papers for presentation at the convention. Complete

directions for the submission of papers are found on page 97
of this issue of The Pentagon.

All chapters are encouraged to plan early for as large
a delegation of students and faculty as possible,

George R. Mach
National President
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