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Kappa Mu Epsilon, national honorary mathematics society, was
founded in 1931. The object of the fraternity is fourfold: to further
the interests of mathematics in those schools which place their primary
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realize the important role that mathematics has played in the develop
ment of western civilization; to develop an appreciation of the power
and beauty possessed by mathematics, due, mainly, to its demands for
logical and rigorous modes of thought; and to provide a society for
the recognition of outstanding achievements in the study of mathe
matics at the undergraduate level. The official journal, THE PENTA
GON, is designed to assist in achieving these objectives as well as to
aid in establishing fraternal ties between the chapters.



Paths and Knots as Geometric Groups*
Barbara Elder

Student, Washburn University

A group is a useful and versatile part of abstract mathematics
which enables classification of objects according to five properties.
These are:

1. There must be a binary operation defined on the ele
ments of a set. A binary operation is a process which relates in pairs
elements of a set.

2. The set must be closed under the binary operation. That
is, the element produced from the paired association, called the
product, must be an element of the set.

3. The elements must be associative.

4. The set must have an identity element which, paired
under the operation with any second element, yields the second
element.

5. Each of the elements, except the identity, must have an
inverse which takesit into the identity element under the operation.

One is guaranteed that the fourth and fifth properties produce
the same answer regardless of the order of operation. This property
is known as commutativity; however, not all the elements of a group
need be commutative. If all elements possess this property, the group
is a special type called an Abelian group.

Let us consider the integers modulo 4 under the operation
addition ®. Mod 4 refers to the remainder obtained by dividing an
integer by 4. Refer to

© 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

*A P?P?I pmanted at tho 1968 regional convention of XME at Tahloquah, Oklahoma.
April 20 and awarded lint place by the Awards Commlttoo.
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Observing the inner square, note that the only elements which
appear are 0, 1, 2, 3, the elements of the original set. Thus closure
holds. Associativity can be tested by exhausting all possible com
binations of the four elements three at a time: consider (2 0 3)
03 = 0 = 20(3 0 3).

The identity elementis clearly 0 and it is unique. Inverses are
for 0, 0; for 1, 3; for 2, 2; for 3, 1.

So we see that the integers mod 4 under addition do form a
group. In fact, the group is Abelian since the mod of any two ele
ments is the same regardless of the order in which they are taken:
203 = 1 = 30 2.

The reason our table contains only the elements 0, I, 2, 3 is
that all other integers can be linked by the same remainder to these
four numbers. For example, 6 is in the same class as 2 since 6/4
has a remainder of 2 and 2/4 has a remainder of 2. We call 0, 1,
2, 3 the equivalence classes of mod 4 denoted by [0], [1], [2], [3].
We can manipulate classes just as ordinary numbers:

[3] 0 [2] = [1]. 0, 1,2, and 3 serve as representatives for
the sets {0, 4, 8, •••}, {1, 5, 9, •••}, {2, 6, 10, • • •} and
{3, 7, 11, •••}, respectively.

It is fairly obvious that group properties can be tested as long
as our setconsists of numbers. What would happen if we constructed
some type of geometric set, defined an operation on the elements,
and tested to see if this set constitutes a group?

Let us define a closed path in space as a directed segment
beginning and ending at a fixed point (Fig. 1). The shape of this
path is immaterial, but we will be interested in the ability to change

Fig. 1
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its shape. We can define an equality relation (known as a homotopy)
on our set by saying «i = a2 iff «i can becontinuously deformed into
a2 (Fig. 2). If our space is empty, that is, free from obstacles, then

Fig. 2

any closed path «i is homotopic to any at. However, if the Euclidean
plane isour space and it contains a fixed disc, then any path enclos
ing the disc cannot be shrunk continuously into a2 without passing
through the forbidden region R (Fig. 3).

Fig. 3
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Now that we have established our set, we can define a binary
operation on it. Recall that we call this operation product. Starting
at the fixed point P in two-space, detach the terminal side of a, at
point R (Fig. 4) and the initial point ofa2 atQ (Fig. 5). Then join
R to Q_ resulting in the closed path b (Fig. 6). Thus <i,a2 = b.

Fig. 4

Fig. 6

O
R

Fig. 5

We construct the equivalence classes of closed paths by requir
ing that Oi and a, are in the same class iff they can be continuously
deformed into each other. Classes will be denoted by [a,] ~[a2~\, •••

Now let us consider classes of closed curves in three-space.
Define A as a closed curve. The set E, ~ A is the manifold of A
(Fig. 7). Pick P, apoint in the manifold, then a, can be continuously



Manifold

E3*^A

The Pentagon

o

Fig. 7

shrunk into P while b cannot be without penetratingA, just as before
in the Euclidean two-space (Fig. 8).

Fig. 8
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Thus a, falls in one equivalence class [I] and b e [a] whose mem
bers loop once around A.

Defining an inverse for b, we say that brx e [V]-1 is the inverse
of b iff bb1 = b-xb = a e [J], Let b be an arbitrary closed path.
Then b-% is the path obtained by tracing b in the opposite direction

Fig. 9

(Fig. 9). Now form Hr» (Fig. 10). After this, consider b-lb (Fig.
11) using the product as we defined earlier. Continuous deforma
tion yields P e [Z] in both cases.

Fig. 10
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Fig. 11

We must now verify that [I] [a] = [a] [I] = [o]. Recall
that [T\ is the class of paths which can be continuously deformed
to a fixed point. Obviously, the product atb yields a path homotopic
to [&] thus axfe = bot [I] [a] = [a]. Similarly, [«] [I] = [a]
(Figs. 12, 12a, 12b).

Fig. 12
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Fig. 12b

We can form a product using two paths from the same class.
Let b and V e [a]. Then bb' = b* which loops twice around A
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Fig. 13

Fig. 13a

(Fig. 13). We can verify the associative law by choosing b, V, and
V from [a] (Figs. 14, 15, 15a). These result in b3 e [ajs which
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Fig. 14

(bb')b"

Fig. 15
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b{b'b")

loops thrice around A.
Since we have satisfied all the necessary conditions, we can

conclude that the class of all closed paths homotopic to a forms a
group. To test the commutative law, look at paths of the form W
and Vb (Figs. 16, 16a).

Fig. 16
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Fig. 16a

This type of work has several applications. One is the use of
paths as integration curves in complex variables. A second applica
tion is in knot theory of topology. A knot is defined to be a path in
three-space which is homomorphic to the unit circle, sc* + -f = 1.
By working with orientation-preserving operations in different mani
folds, one obtains invertible knots of the following types where (1)
is a figure-eight knot and (6) is its mirror image. The operation
preserves orientation (Fig. 17).

Invertible Knots

(Fig. 17)
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Only recently, H. F. Trotter was able to exhibit a class of non-
invertible knots. This example is a fascinating one where the number
of loops increases by a factor of two moving to the right (Fig. 18).

Non-invertible Knots

Fig. 18

The books listed in the bibliography give more interesting in
formation about path groups and knots.

BIBLIOGRAPHY

Arnold, B. H. Intuitive Concepts in Elementary Topology. Engle-
wood Cliffs, N.J.: Prentice-Hall, 1962.

Crowell, R. H. and R. H. Fox. Introduction to Knot Theory. Boston:
Ginn and Company, 1963.

Crossman, I. and W. Magnus. Groups and Their Graphs. New York:
Random House, 1964.

Massey, W. S. Algebraic Topology, An Introduction. New York:
Harcourt, Brace and World, Inc., 1967.



Another Use of the Gradient#

Glenn Grove
Student, University of Northern Iowa

The gradient has many applications in mathematics and the
sciences. In this paper the author will develop another use of this
mathematical concept to assist in solving n-degree simultaneous
equations.

DEFINITIONS: The gradient is a vector valued function,
called the gradient function of F and defined by means of the equa-

tion V F(m) = (Fi«, F2W), where u = (x, y) is a vector function
(a function with domain of reals and a range of vectors), and Fi
is the first partial derivative with respect to * and F2 is the first
partial derivative with respect to y. The gradient may be extended
to R3 to R functions or F" to R functions. For Rs to R functions, the
gradient of F = V F = F,» + F8; + F3k, where the gradient is
written in vector component form, with i, j, and k unit direction
vectors.

EXAMPLE: b(x, y, z) = 3**y - yV. Evaluate the gradient
at the point (-1, -2, -1). V 0 = 6xyi + (3x* - 3y2z»);
+ 2y3zfc = -12» - 9; - 16fe.

APPLICATIONS: The first application of the gradient
needed is the concept of directional derivative. The directional de
rivative is the rate of change of functional values in any direction

vector a! Its value is LVf(x) = F(x) *u. Therefore, by the defini
tion of the dot product for vectors, the maximum rate of change of
functional values is in the direction of the gradient, as when the
definition of dot productis maximum when the cosine is one, which
implies that the angle between the vectors is zero. From the above
statement the maximum decrease of functional values is in the
direction of the negative gradient.

The secondconceptof the gradientthat is needed is the concept
of normality to a surface. If a space curve is given by a vector equa-

_* ^-*

tion, R = F(t), and to say that the curve lies in a given level surface
_^ _jk

means that R satisfies the equation /(R) = c, for each t, where

*A paper presented at the regional convention of KME at Rosary College, RWor Forest,
Illinois, April 5-6, 1968.

16
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/(*> y, z) = c is the equation of the surface. Taking the derivative

of both sides of the equation f(R) = c, the result is V /(R) • DtR

= 0, which implies that f(R) is normal to the surface. This result
follows because of the definition of the dot product of vectors.
(When the dot product is zero the value of the cosine of the angle
between the vectors is zero, which implies that the angle is ninety
degrees.) Therefore, if P is any point of our level surface, then the
gradient of f(x, y, z) = c, evaluated at the Point P, is normal to

the tangent line (.DtR~) at P, to any curve that lies in the surface and
contains the point P. (Recall that a level surface in three dimensions
is analogous to that in two dimensions. If c is any number in the
range of the function f on R3 and the graph of the equation f(x, y, z)
is a surface in space, then the surface is called a level surface.)
There are an infinite number of space curves that pass through the
point P and are in the given level surface, and each has a tangent
line that is perpendicular to the gradient of f at the point P. These
tangent lines all lie in the same plane and thus a tangent plane is
formed to the level surface at the point, P.

With these two ideas, the method of approximation can be
developed. We can approximate the rate of change of functional
values of an R to R function by the change in the tangent line drawn
to the curve at a point P. It is assumed that function is continuous
and that only very small changes in functional values are taken.

For an R2 to R function, we can approximate the change in
functional values (provided they are small) by a change in the
tangent plane, to a given point. Therefore, if we pick any point on
our level surface, an approximation can be made of the change in
functional values around that point by changes in the tangent plane
drawn at that given point.

We will leave our limited three dimensional world behind and
travel into fcur-space or M-space. We can discuss an R3 to R function,
where some w = (x, y, z). For our function, all the partial deriva
tives exist and are continuous. It can be proved (by applying the
mean value theorem several times) that we can approximate changes
in functional values by a new concept of tangency which we call
A wafP. We have no visual idea of what it will be, but one can think
of something similar to that in three-space to get an idea.

This A Waw is givenby the equation A wapp = F,(x, y, z) A x
+ F»(*» y, z) A y + Fs(x, y, z) A z, where F„ F„, and F, are the
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partial derivatives of the function with respect to x, y, and z. These
partial derivatives are evaluated at some point P0 = (x, y, z), and
A x, A y, A z, are small changes in the function.

With this very general equation we can solve very complex
problems. For example let us try to solve the problem below:

PROBLEM: Solve the three equations simultaneously.

1) 2x + 3y + 4z=5,
2) x2 + y2 + z2 = 7, and
3) xyz = 4.

If we write these three equations as a function of x, y, and z as
follows we can apply our approximation method. f(x, y, z)
= (2x + 3y + 4z - 5)* + (x2 + y2 + z2 - 7)2 + (xyz - 4)2
and solve for f(x, y, z) = 0, the problem is solved. The reason for
squaring each term is to force each equation to zero.

In any approximation method, we start with a guess. Let
Po = (Xo, y0» Zo) be a first guess and suppose the result is not zero,
and in this case F(x0, y0, Zo) = U is positive, which implies that
we must decrease the functional value. But in what direction? and
how far? From our development of the gradient, we know the maxi
mum rate of change of functional values is in the direction of the
gradient, so we will want to decrease the functional values in the
direction of the negative gradient, because it will give us the most
rapid decrease. Therefore, A x, A y, A z will be in the direction
of the negative gradient, with each change in functional value going
in the direction of its counter part of the gradient, evaluated at the
point Po- The next question must also be answered. To insure the
right distance let us multiply by a variable h. This implies that
A x = hfu A y = hf2, and A z = hf3. This implies that A w»pp
= fihfi + f2hf2 + fihfz, which is our method of approximation.
Our next question is what value of h makes A Wepp = —fo- It
stands to reason that if we are five over our goal, we will want to
decrease it by five in the next approximation. To solve for this
answer, we write the equation A Wapp —f\ h + f\h + f*3h = —f0,

which implies that h = , 2 , //, , 2 . If the point P0 was not

a correct answer, we want to subtract the small change from the
point. Therefore, x = x0 — A x, y = y0 — Ay, and z = Zo
— A z, where x, y, and z is our new guess. Substituting the known
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valuesfor A x, A y, and A z, the new guess becomes x = x0 —hfu
y = y0 ~ hf2, and z = Zo — hf3. We can substitute the value of h
that we have found and arrive at the values of

_ f.f.x - %o f2 + f2 + ft, y - yo

foft , Toft
-, and z = Zo

f' + f2 + f*' ~ U* + ft + f3°'

For this problem, the first guess was ( —V 2, —V 2, 2) = P0.
f(x, y, z) = /( —V~2» —V"2» 2) = 18. To lessen confusion the
partial derivatives are listed separately as follows:

U = (2x + 3y + 4z - 5) • 4 + 4x(x2 + y2 + z2 - 7)
+ 2yz(xyz — 4),

ft = (2x + 3y + 4z - 5) • 6 + 4y(x2 + y2 + z2 - 7)
+ 2xz(xyz — 4),

U = (2x + 3y + 4z - 5) • 8 + 4z(x= + y2 + z- - 7)
+ 2xy(xyz —4).

For the first guess, U = -22, f2 = -30, and f3 = -24, and
then h = .009. Substituting these values in our approximation
method, the new guess is x = -y/~2 - (.009)(-22) = -1.20,
y = -V 2 - (.009)(-3O) = -1.14, and z = 2 - (.009)
(-24) = 2.22. With these values, the function of fix, y, z)
gives us a value of 5.22, which is greatly reduced from the original
guess, which gave us a value of 18. The approximation method can
be apphed again and the result is a functional value of 3.00. If the
method of approximation is repeated enough times the correct
answer can be found, provided that one does exist. The beauty of
the method is that the number of simultaneous equations that can
be solved is unlimited, and their degree can also be unlimited. The
computation may look long and hard, but this can be programmed
to a computer and it will do all the work in a matter of seconds.

Thus still another use of the gradient and its related concepts
has been developed for the use of mathematicians and scientists.



An Interesting Case of "One-Way Only"
in Linear Algebra

Douglas H. Moore
Faculty, University of Wisconsin—Green Bay

Consider the following two theorems, in which the c's are
vectors and a, b, c, and d are scalars.
THEOREM 1: If ae, + bet and ce-, + de2 are linearly inde
pendent, then they span the same vector space as e1 and e2.
THEOREM 2: If ad + be2 and cex + de2 are linearly inde
pendent, then ex and e2 are linearly independent.
The reader should generalize these theorems mentally to the case
of n linear combinations of « vectors.

Suppose it is desired to prove these theorems as close to first
principles as possible. In particular we will assume no knowledge
about solvability of simultaneous linear equations and we assume
nothing has been proved yet following the definitions of vector
space, linear dependence, and spanning set. If Theorem 1 is proved
first then Theorem 2 follows, as we will show. This writer felt
strongly that, vice versa, if Theorem 2 were proved first, then Theo
rem 1 would follow. But the writer finally convinced himself that
Theorem 2 (or the n-vector generalization) cannot be proved first.
Here is the case of "one-way-only" that is the subject of this paper—
the way is from Theorem 1 to Theorem 2, and cannotbe from Theo
rem 2 to Theorem 1. If one sets out to prove Theorem 2 from first
principles, he will find that he must prove Theorem 1 first. Those
who find this as surprising as the writer found it, may want an "ex
planation" as much as the writer did, and an explanation will be
given.

We will restate the theorems for the case of four linear com
binations of four vectors as follows, where the «'s and the e's are
vectors in the same vector space, 2.
THEOREM 1. If (m„ u2, m3» w«) is a linearly independent set
and if (e,, e2, c3> e«) spans 2, then (w„ «2, «3. u<) spans 2.
THEOREM 2. If (u„ w2, w3, w4) is a linearly independent set
and if (e„ e=, e3, e4~) spans 2, then (elt e2, e», e«) is a linearly in
dependent set.
First we state two lemmas which follow directly from the defini
tions of dependence and spanning set.

20
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LEMMA 1. If v = at?! + be2 + ce3 + de4 and if a =j£ 0,
then (v, e2, e3, e4) spans the same vector space as (elt e2, e3, e«).

LEMMA 2. If v = ae, + te2 + ce3 + det and if ( v, e2,
e%, e4) is linearly independent, then (eIf e2, e3, e4) is linearly inde
pendent.

The proofs of these lemmas are good exercises for the beginner in
linear algebra.

Note that the hypotheses in Lemma 1 follow as conclusions
from the hypotheses of Lemma 2, but not vice versa; in Lemma 1,
it is possible for (v, e2, e3, e4) to be linearly dependent (e.g. let
e, = e2 = e3 = e4, and Lemma 1 still holds). Here is the source of
the one-way-only phenomenon. We will use Lemma 1 to prove
Theorem 1; then we will use Lemma 2 to prove Theorem 2. But
we can not go the other way and use Lemma 2 to prove Theorem 2
first. We must begin with the lemma that has the weaker hypotheses
(Lemma 1). These weaker hypotheses will be satisfied when the
lemma is applied, permittingus to draw a conclusion and get started;
but the stronger hypotheses of Lemma 2 would not be satisfied if
Theorem 1 had not been proved first, as we shall see.

PROOF OF THEOREM 1. The idea of the proof is to
begin with (elf e2, e3, e4), replace one of the e's by ut and observe
that the new set is still a spanning set; then replace another e by
tt2, and another e by «3, and the last e by a4, observing at each step
that the new set is still a spanning set.

Since (_uu u2, u3, m4) is a linearly independent set, no one of
these vectors equals zero. Since (e,, e2, e3, e4) spans 2, «i = a,e,
+ a2e2 + a3e3 + a4e4. At least one coefficient is not zero since
Mi =£ 0. After relabeling the e's if necessary, a, ^ 0, then, using
Lemma 1, (m„ e2, e3, e4) spans 2. Since (m„ e2, e3, e4) spans 2,
m2 = !;,«, + b2e2 + b3e3 + btet. Now («i, m2) is linearly indepen
dent since (m„ m2, m3, u4) is linearly independent, and so one of
the coefficients b2, b3, or b4 is not zero. After relabeling the e's if
necessary, b2 =£ 0. Then using Lemma 1, («,, m2, e3, e4) spans 2.
Similarly (m,, u2, h3, e4) spans 2, and finally («i, u2, m3, u4) spans
2. q.e.d.

Let us put it this way—we have laid a sequence of stepping
stones in proving Theorem 1. The stepping stones are the successive
spanning sets:
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(1) (.eu e2, e3, ej
(2) (Mi, e2, e3, e4)
(3) («,, h2, e3, e4)
(4) (m„ m2, m3, e4)
(5) (Mi, H2, M3, H4)

which have been numbered for convenience. In the proof of
Theorem 2, we will retrace these stepping stones from (5) back
to (1) using Lemma 2. We will see that the stepping stones had
to be there before we started; they cannot be laid in the order from
(5)to(l).

PROOF OF THEOREM 2. Since (4) is a spanning set
(thanks to having proved Theorem 1 first), m4 = aM, + bu2 + cu3
+ de4. Since (5) is a linearly independent set, then (4) is a
linearly independent set from Lemma 2. (Note that the hypotheses
of Theorem 2 do not insure that e4 =£ 0. If we tried to prove (4)
linearly independent without having proved Theorem 1 first, we
would first have to strengthen the hypotheses of Theorem 2 with
the addition, e4 ^ 0.) Since (3) is a spanning set (from proof of
Theorem 1) and (4) is a linearly independent set, then (3) is a
linearly independent set from Lemma 2. Similarly (2) is a linearly
independent set, and finally (1) is a linearly independent set. q.e.d.

Altogether, if we tried to go from (5) to (1) using Lemma 2
only, without Theorem 1, the hypotheses of Theorem 2 would have
to be strengthened by the following additions:

m4 = a,M, + a2u2 + a3u3 + a4et (or e4 ^ 0)
u3 = fc,Mi + b2u2 + b3e3 + b4e4
Ut = c^H! + c2e2 + c3e3 + c4e4.

The importance of Theorem 1 (or its generalization to n
linear combinations of n vectors) in linear algebra is the almost
immediate conclusion that any two bases in a finite dimensional
vector space have the same number of elements—which number is
then the dimension of the space. Suppose, if possible, that 2 con
tained one basis, S„ with six elements, and another basis, S2, with
four elements. Let S3 be any subset of S, containing four elements.
From Theorem 1, S3 spans 2 and so is a basis. Then Si cannot be
a linearly independent set since one of its members equals a linear
combination of the others. Then S, is not a basis—a contradiction.



Lorentz Geometry
Constance C. Edwards

Student, College of Notre Dame of Maryland

Introduction. Until the nineteenth century, Euclidean geometry
was the geometry. As is well known to students of mathematics,
Euclidean geometry is an excellent example of the axiomatic method.
But by modifying one or more of the axioms of Euclidean geometry,
a new and "different" geometry can be developed. In the nineteenth
century, the works of Gauss, Bolyai and Lobachevsky resulted in
such a new type of geometry, called a non-Euclidean geometry. A
little later, at the turn of the century, another "different" type of
geometry was developed by Henrik Antoon Lorentz, and this
geometry carries his name. Lorentz geometry is related to non-
Euclidean geometry but in mathematics it is not as popular as the
geometries of Lobachevsky and Riemann. This type of geometry is
of more importance in contemporary physics, a topic to be dis
cussed later in this report.

Definition of Lorentz Geometry. Lorentz geometry is concerned
with a special set of transformations. These transformations "take
the point (x, y) into the point (x*, y') where

x? = fex + c

y' - i + d
with c and d any real numbers and k any positive real number"
[5; p. 292]. It can easily be shown that this set of transformations
constitutes a group of transformations. And ". . . the study of the
properties of the points of a plane which remain invarient under
this group of transformations is known as Lorentz geometry" Q3;
p. 149].
Lorotations. When the above transformation equations are re
duced to the case where c = d = 0, a special type of Lorentz geom
etry results. This more limited set of transformations (x' = kx;
y = y/fe) is similar to Euclidean rotations in that it leaves the
point (0, 0) fixed. Therefore, this special case of Lorentz geometry
is sometimes called lorotations. The remainder of this report will
be concerned primarily with lorotations.
Eifects of Lorotating. As was stated earlier in this report, k is

23
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restricted to being a positive real number. If 0 *= k < 1, then under
a lorotation the x-axis will contract while the y-axis will stretch. As
an example let k = Vi. The "new" x coordinates will be determined
by x* = Vzx, which implies a contraction. And similarly the "new"
y coordinates will be determined by y* = y/Vi or y* = 2y, which
indicates an expansion. If k = 1, it is readily seen that all points
remain fixed under this lorotation, and finally the case where k > 1
would result in an expansion of the x-axis and a contraction of the
y-axis.

The effects of lorotating suggest that under most circumstances
Euclidean distance and angle measure will not remain the same.
This result can be verified by any simple numerical example where
k ^ 1; therefore, the Euclidean concepts of distance and angle
measure are not invarient properties of Lorentz geometry.
The Lorcle. What happens to a circle under a lorotation? A simple
computation will show that it is transformed into an ellipse.

Let the circle be given by

x2 + y" = r2, r > 0

Under a lorotation

x' = kx x = xf/k
/ = y/k y = k/

Substituting in the equation for the circle gives

Cx'/ky + (k/y = r2

or

(xO2 + k*C/¥ = fc2r*

which is the equationof an ellipse.

In Euclidean geometry, a circle has a special property: ". . . we
can get as many points of it as we please by rotating about the
center through different angles any pointon the circle" [5; p. 297].
Since a lorotation is in many ways analogous to an Euclidean rota
tion, the next logical step would be to find a figure derived from
lorotations (instead of Euclidean rotations) which has the same
fundamental property in Lorentz geometry that the circle has in
Euclidean geometry. This new figure will be called a lorcle and is
defined as ". . . the locus of all points obtainable from a single point
by lorotations about a fixed point called the center of the lorcle"
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C5; p. 298]. The following example demonstrates how a lorcle can
be obtained.

Let the center of the lorcle be at the origin and let
(1, 2) be a point on the lorcle. In order to find more
points on the lorcle, lorotations must be applied to
the point (1, 2). A few examples of such lorota
tions are:

fe = Vs transforms (1, 2) into (16, 6)
since x" = Vax = Vb • 1 = Vb

/= 3y= 3*2= 6

transforms (1, 2) into (16, 4)

transforms (1, 2) into (1, 2)

transforms (1, 2) into (2, 1)

transforms (1, 2) into ( 3, %)

k

k

k

k

V2

1

2

3

Or in general any lorotation transforms (1, 2)
into (fe, 2/fe). Graphing these points results in the
graph of a portion of the rectangular hyperbola
xy = 2.

y

5 I

t I

— * ' * ' * * J ' *

0 5 x
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The graph of this lorcle is restricted to the first
quadrant since the point (1, 2) of the lorcle is in
die first quadrant and all other points of this lorcle
are of the form (fe, 2/fe) where k is positive.

Therefore, the quadrant in which a lorcle centered at the
origin lies can be determined by the location of any point on the
lorcle. If the center of the lorcle is not at (0, 0), the resulting lorcle
is a regular hyperbola of the form x2 — y2 = a*. As with the straight
line in Euclidean geometry, a lorcle in Lorentz geometry cannot
be drawn in its entirety.

Tangents to a Lorcle. The definition of a tangent to a lorcle in
Lorentz geometry is analogous to the definition of a tangent to a
circle in Euclidean geometry. That is, there is only one line through
a point on a lorcle which touches the lorcle in only one point and
this line is called the tangent to the lorcle at that point. Since a
lorcle is a hyperbola, we know that the tangent exists and there is
only one tangent through a given point on the lorcle, and the equa
tion of the tangent to a lorcle can be found using elementary calculus.
In order to more fully justify this statement, it is necessary to recog
nize that in Lorentz geometry, as in Euclidean geometry, two points
determine one and only one straight line.

The general equation of a lorcle centered at the
origin is xy = c.
Taking the derivative of this equation gives the slope
of the tangent

ii = _ 1
dx x

And putting this into the point slope equation of a
straight line, the tangent to a lorcle at a point
(xo, y„) will be

(y - yo) = - -£(x - Xo)
As an example, using the previously derived lorcle,
xy = 2, the equation of the tangent to this lorcle at
the point (1, 2) is

(y - 2) = - |(x - i)
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or

y = -2x + 1

Lopendicular Lines. As was seen earlier, Euclidean angle measure
is not an invariant property in Lorentz geometry. This presents a
problem when defining "perpendicular" or lopendicular lines in
this new geometry. Here is where the lorcle is very useful. ". . . The
tangent to a lorcle is [said to be lopendicular] to the line connecting
the center [of the lorcle] with the point of contact" [5; p. 300],
This definition is analogous to the theorem in EucUdean geometry
which states that "a line perpendicular to a radius at its extremity
is tangent to the circle" [1; p. 283].

Lortance. Since Euclidean distance is not an invariant property
in Lorentz geometry, a new definition of "distance" is necessary.
This new definition of "distance" must have the property that the
"distance" between two points is left unchanged by lorotating. This
new "distance" is called the lortance between two points (x„ y,)
and (x2, y2) and is defined to be (x, —x2)(y, —y2). The follow
ing statements provide a proof that the lortance between two points
is an invariant property of Lorentz geometry.

Let P = (x„ yO and Q = (x2, y2) be any two
given points. The lortance between P and Q by
definition is

(x, - xtXyi - yO-

Lorotating P and Q will give

P' = (fex„ y,/fc) and Q' = (fex2, y2/fe) respectively.

The lortance between P' and Q' by definition is

(fex, - kxtXyi/k - y2/fe)

which is equal to

K*. - *0 C* ^ y,) = (*i - x2)(y, - y2)
which is the lortance between P and Q.

Rotations and Lorotations: An Analogy. In Euclidean geometry,
allpoints on the circumference of a circlecan be obtainedby rotating
a line of fixed length (the radius) about a fixed point. For the sake
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of simpUcity, let the fixed point be at the origin and let (x, y) be
a point onthe circle. In Euclidean geometry the length of this radius
by definition is V(* - 0)* + Cy —0)! or V*1 + y2- In order for
the length of the radius to remain invariant, the distance of any
other point (x/, /) on the circle to the center of the circle must be
equal to y/x3 + y2. That is,

VOO2 + (/)* = V*2 + f

or by squaring both sides

(xO2 + (/)2 = x2 + y2.

In Euclidean geometry, this type of rotation which transforms
a pointon a circle into another pointon the circle can be represented
by the following transformation:

x' = rx + sy

/ = — sx + ry where r2 + sa = 1.

In their present form, this transformation looks unfamiliar. But by
consulting any analytic geometry book, it can be seen that these
equations are just a restatement of the equations used to rotate the
axes of a coordinate system through an angle 0 about the origin.

[x' = x cos 6 + y sin 9 "1
y = — x sin 8 + y cos 0
where cos20 + sin20 =1 J [4; p. 124].

The following gives a proof that this transformation actually does
take any point of a circle into another point of the circle.

Let (x, y) be a given point on a circle centered at
the origin. By definition its distance from the center
of the circle is the square root of x2 + y2.

Using the above equations, the point (x, y) can be
transformed into the point (x*, y*) whose distance
from the origin is the square root of (x*)2 + (y*)2.
In order to show that (x*, /) is also on the circle, it
must be proved that:

(x')2 +00" = x2 + y2.

The proof is as follows:
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CO' + Cyy = (rx + syy + (-sx + ryy
= r2x2 + 2rsxy + s2y2 + s2x* - 2rsxy + r'y2
= (r2 + s2)x2 + (r2 + s2)y2
= x2 + y2 since r2 + s2 = 1 .

[5; p. 302].

Therefore, every circle in EucUdean geometry is left unchanged by
this transformation.

Since lorcles in Lorentz geometry are analogous to circles in
EucUdean geometry, the next logical step is to find a similar trans
formation in Lorentz geometry which takes any point on a lorcle
into another point on the lorcle. Again for the sake of simpUcity,
let the lorcle (hyperbola) be represented by x2 —y2 = a2 (xy = b
is a special case of this more general form of an hyperbola) where
(x, y) is a point on the lorcle. Let (x, y) be transformed into
(x*, y') by the following equations:

x* = rx — sy

y' = -sx + ry where r2 — s2 = 1 .

In order to prove that the point (x*, y') is also on the lorcle, it
must be shown that:

(x')2 - cyy = a2

or

(*02 - cyy = x2 - y2.

The proof follows:

OO2 - Cyy =Crx- syy - (-sx + ryy

= (r*x2 - 2rsxy + s^2-) - ($V - 2rsxy + r'y2')

= (r2 - s2)x2 - (r2 - s2~)y2

= x2 — y2 since r2 — s2 = 1 .

[5; p. 302].
Therefore, in Lorentz geometry, the lorcle (hyperbola) is invariant
under this transformation.

H. A. Lorentz and the Theory of Relativity. This simplified ver
sion of the sort of geometry developed by Henrik Antoon Lorentz
plays a very important role in the theory of relativity.
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"At the turn of the century, H. A. Lorentz was regarded by
theoretical physicists of allnations asthe leading spirit..." [7; p. 5].
To the people of the Netherlands, Lorentz was a national hero. As a
student, he was always precocious. He excelled in all subjects but
his favorites were mathematics and physics. After graduating summa
cum laude from Leyden University in Holland, Lorentz decided
". . . that he could study the subjects necessary for his Doctor's
examination just as well by himself . . ."[7; p. 27]. Three years
later he passed his exam, summa cum laude.

During the years that foUowed, Lorentz became acquainted
with the works of the great English physicist James Clark Maxwell,
the originator of the electromagnetic theory of light. Lorentz de
voured everything that Maxwell published. This feat was remarkable
since Maxwell's writings "... were sometimes referred to as an
'impenetrable intellectual jungle-forest'"[7; p. 32].

From MaxweU's works, Lorentz went on to develop "... a
complete theory covering all electromagnetic phenomena known at
the time, including the electromagnetics of moving bodies" [7; p. 7].
According to Einstein, this was a work of rare clarity, logical con
sistency and beauty. In this work, Lorentz presented his famous
transformations:

x? = fe(x - vt)

y = y
z' = z

t' = fe(t - vx/c2)

where fe = y l — v2/c", c being the speed of Ught.
[2; p. 303].

In nature as we know it, the measure of length is a simple
thing. "Suppose that a passenger walks from one position to another
along the deck of a moving ship. What is the distance from his
initial to his final position?" [6; p. 433]. This distance can easily
be found using the Galileo transformation:

x* = x — vt

y = y
* = z

t = t

[2; p. 301].
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where v is the velocity of the ship. In the seventeenth century,
Newton and other physicists beUeved that this small scale repre
sentation was sufficient to represent the mechanics of the whole
universe. Newton believed in absolute space and absolute time.

But in 1905, the Michelson-Morley experiment on the velocity
of light showed that the velocity of the earth docs not affect the
velocity of light relative to the earth. This result was a contradiction
of the Newtonian belief that the velocity of the earth would either
add to or decrease the velocity of Ught, just as the velocity of the
current in a river would add to or decrease the velocity of a row
boat. Therefore in order for physical laws to conform to experimental
fact, ". . . the basic assumption that the velocity of light is the same
for all observers in the universe regardless of how they may be
moving relative to each other . . . [and the assumption] . . . that
no physical body has a velocity which exceeds that of Ught [had
to be adopted]" [6; p. 439].

"The concepts of absolute space and time, which Newton
needed to frame the true laws of the universe, [were discarded by
the theory of relativity]. Accepting the fact that two observers
moving relative to each other will disagree on the measurements of
space and time, [was introduced as] the motions of 'local length'
and local time' "[6; p. 439]. Two observers who are in motion
relative to each other will obtain "different" measurements of dis
tance and time between the same two events. And what each observer
sees is, in the theory of relativity, governed by the previously stated
Lorentz transformation:

x1 = fe(x - vt)

y = y

z' = z

f = fc(« - vx/c2)

where fe = V1 —v2/cs , c being the speed of Ught

In this transformation, (x, y, z, t) represents the coordinate system
of one observer and (x*, /, z', t*) represents that of the other. The
velocity of theirmotion relative to each other is represented by v.

"H. A. Lorentz had shown that in the same manner in which
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Newton's equation F = ma [force = mass times acceleration] is
invariant against the GaUleo transformation x* = x — vt, Maxwell's
equations [on electromagnetism] are invariant against the trans
formations [shown above]. Although Lorentz did not realize the
full significance of this fact, these transformations carry his name"
[2; p. 303]. The most important consequence of the Lorentz trans
formations is that space and time are no longer considered to be
two continua existing independently beside each other.

So what connection does this have with Lorentz geometry? As
was previously stated in this report, the transformations in Lorentz
geometry which leave a lorcle invariant under a lorotation are given
by:

x" = rx — sy.

y = —sx + ry.

With a little manipulation it can be shown that these equations are
a form of the Lorentz transformations used in the theory of relativity.

To make things easier, let ct = y and ct? = /
(since c, the speed of Ught is the same in any sys
tem). Substituting in the above equations gives:

x* = rx — set

ct' = —sx + ret

or

f = -sx/c + rt.

Letting r = k and s = kv/c, results in:

xf = (fe)x - (fev/c)ct x? = fe(x - vt)

t? = -(fev/c)(x/c) + kt if = fe(t - vx/c2)

which are the Lorentz transformations so famous
in the theory of relativity.

(Continued on page 39)



A Simple and Interesting Topological Space
R. L. Poe AND S. K. Hildebrand

Faculty, Texas Technological College

When devising examples to illustrate properties of topological
spaces it is natural to examine the real Une and subspaces on the
real Une This space is the one with which students are most familiar
and it illustrates nicely most of the elementary concepts of topology.
The example illustrated below demonstrates that, with a slight alter
ation in the topology, several of the properties of the subspace may
be altered. The example was originally composed to study certain
types of invertible spaces, but its usefulness in illustrating more
ordinary properties was soon realized.

EXAMPLE: Consider first the subset S = [0, 1) U (2, 3) U
(4, 5] of the real line. Let a = {(a, b~) f~l S\a, b real numbers
and a < b) be a collection of open sets in S. This basis produces
the relative topology, t, of S induced by the usual topology for the
real line. Now S as a subspace of the real line has the following
properties:

a) Ti for t = 0, 1, 2, 3, 4, 5. (A T3-space is regular and T,;
a T4-space is normal and T,; a T5-space is completely normal and
T,.)
b) First countable.
c) Second countable.
d) Separable.
e) Perfect (S C S', where S' is the derived set of S).
f) Regular. (S is regular if F is a closed subset of S and x e S,

but x £ F, then there exist two disjoint open subsets of S, one
containing F and the other containing x.)

g) Lindelof. (Every open covering of S is reducible to a countable
subcovering.) Every second countable space is Lindelof.

h) Normal. (S is normal if F, and F2 are two disjoint open sub
sets of S, one containing Fi and the other containing F2.)
Every regular Lindelof space is normal.

i) Metrizable. Every regular second countable Ti-space is metriz-
able.

j) Completely normal. (S is completely normal if A and B are
two separated subsets of S, then there exist two disjoint open

33
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subsets of S, one containing A and the other containing B.)
Every regular second countable space is completely normal.

k) Completely regular. (S is completely regular if F is a closed
subset of S, x e S and x * F, then there exists a continuous
mapping f:S -» [0, 1] such that f(x) = 0 and f(F) ={1}.)
Any normal, regular space is completely regular.

1) Tychonoff. (S is a Tychonoff space if S is completely regular
and T,.)

m) Locallyconnected,
n) Locallycompact.
0) Paracompact. (S is paracompact if for every open covering of

S there is a locally finite open cover which refines it. When
A and B are two families of subsets of S, A is a refinement of
B, or A refines B, if each member of A is a subset of some
member of B. E, a family of subsets of S is locaUy finite (des-
crete) iff every point of S has a neighborhood which has a non
empty intersectionwith at most a finite number of the members
of E.) Every regular Lindeloff space is paracompact.

On the other hand, S is neither connected, compact, nor
countably compact.

Now let a be the collect of open sets constructed as follows:
{1/2} U (2, a*) or {9/2} U (2, a*) where 2 < d ±= 3. (a, b)
n S where 1/2 i (a, b), 9/2 t (a, fc), a and b are real numbers
where a < b. a is a base for a topology of S since S = U A, and

A0s«r'
for each x e S and each pair 17, V e a for which x e 17 and x e V,
there exists W e a such that xeWC(L/nV).A topology, /,
formed from arbitrary unions of sets of a alters S in the following
ways:

1) S is not T2 since there do not exist disjoint, open subsets of S
such that one contains 1/2 and the other contains 9/2.

2) S is not regular since there do not exist disjoint, open subsets
of S such that one contains [1/4, 3/4] and the other contains 9/2.

3) S is not normal since there do not exist disjoint, open subsets
of S such that one contains [1/4, 3/4] and the other contains
[17/4,19/4].

4) Since every completely regular space is regular, S cannot be
completely regular as it is not regular. It is a simple exercise to
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show that there does not exist a continuous mapping / which takes
S into [0, 1] such that f(l/2) = 0 and ft (4, 5]} = 1.
5) Since every completely normal space is normal, S cannot be
completely normal as it is not normal. The sets of 3) above also
demonstrate that S is not completely normal.
6) S is not T3.

7) S is not T4.
8) S is not T5.
9) S is not Tychonoff.
10) S is not metrizable.
11) Since a paracompact space is normal (a regular, Lindelof
Space), S cannot be paracompact as it is not normal.

We leave it to the reader to show that (S, /) is T0, Tu first
countable, second countable, separable, perfect, and Lindelof.
It should be noted that (S, / is locaUy connected. In fact the sets,
(2, 3) U {1/2, 9/2}, (2, d) U {1/2}, and (2, d) U {9/2} are
all connected. Also, (S, / ) is locally compact. Showing local com
pactness at the points 1/2 and 9/2 is all that is of interest. This
exercise is left for the reader.

The space (S, t) is the union of the three connected separated
sets, [0, 1), (2, 3), and (4, 5] each of which is both open and
closed in S. The space (S, /) is the union of five connected, sepa
rated sets, [0, 1/2), (1/2, 1), (4, 9/2), (9/2, 5], and (2, 3)
U {1/2, 9/2} each of which is both open and closed in S. Also,
the sequence {2 + 1/m} converges to each of the points 1/2 and
9/2 in (S, t') but does not have a Umit in the space (S, t).

The interested reader should be able to find other properties
of both (S, t) and (S, /)•

€

Thus all human cognition begins with intuitions, proceeds from
thence to conceptions, and end with ideas.

—I. Kant



In Memoriam

. Dr. Harold E. Tinnapel, National Vice-President of KME from
1961 to 1965, died last spring at his home in Pemberville, Ohio.
He had been a member of the BowUng Green State University
faculty since 1949. He was graduated from Ohio State University
with B.A., M.A. and Ph.D. degrees. He taught at Indiana Technical
College in Ft. Wayne from 1940 to 1943. He was a member of
Phi Delta Kappa, Sigma Xi, American Mathematical Society, Math
ematics Association of America, Ohio Council of Teachers of Mathe
matics and the Greater Toledo Council of Teachers. He was editor
of the book review section of the Mathematics Teacher.

In tribute to Dr. Tinnapel, Past President Carl V. Fronabarger
said, "Those who knew Harold E. Tinnapel have been saddened to
learn of his untimely death at the age of forty-nine. He served Kappa
Mu Epsilon in many ways—as one of those on the BowUng Green
Faculty who planned so well for the National Convention which was
held on the Bowling Green State University campus and as editor
of the Book Shelf section of The Pentagon. As National Vice-
President from 1961-1965, he capably assumed the responsibiUty
of giving directions for the preparation and the selection of those
papers to be presented at two biennial conventions. As a person, he
had a warm personaUty, a fine sense of humor, and a sense of
responsibiUty that enabled him to effectively carry out any obUga-
tions that he assumed. I am glad to have had an opportunity to
know him as a friend and as a colleague in the activities of KME."

€

Installation of New Chapters
Edited by Sister Helen Sullivan

NEW YORK ETA CHAPTER
Niagara University, Niagara, New York

The New York Eta Chapter of Kappa Mu Epsilon was in
stalled at Niagara University, Niagara, New York, on Saturday, May
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18, 1968. The ceremonies were held in the presidential suite of
O'Shea Hall with Dr. Wilbur J. Waggoner of Central Michigan
University serving as the installing officer. Twenty-seven charter
members were inducted among whom were seven faculty members.

New officers are:

President Robert W. Pierce

Vice-President Gregory SUwa
Secretary Mary Burgess
Treasurer Peter Milonni

The faculty sponsor and corresponding secretary is Robert L.
Bailey.

€)

Seventeenth Biennial Convention
May 2-3, 1969

The seventeenth biennial convention of Kappa Mu
Epsilon will be held on the campus of University of North
ern Iowa, Cedar Falls, Iowa, on May 2-3, 1969. Students
are urged to prepare papers to be considered for presenta
tion at the convention. Papers must be submitted to Pro
fessor George R. Mach, National Vice-President, CaUfornia
State Polytechnic College, San Luis Obispo, CaUfornia,
before February 3, 1969. For complete directions with
respect to the preparation of such papers, see page 38 of
the Fall 1968 issue of The Pentagon.

I hope that every chapter will be well represented at
the convention.

Fred W. Lott
National President



Directions for Papers to be Presented
at the Seventeenth Biennial

Kappa Mu Epsilon Convention
Cedar Falls, Iowa

May 2-3, J969

A significant feature of this convention willbe the presentation
of papers bystudent members of KME. The mathematics topic which
the student selects should be in his area of interest, and of such
scope that he can give it adequate treatment within the time allotted.

WHO MAY SUBMIT PAPERS: Any student KME member may
submit a paper for presentation at the convention. Papers may
besubmitted byundergraduates and graduates; however, under
graduates will not compete with graduates.

SUBJECT: The material should be within the scope of the under
standing of undergraduates, preferably the undergraduate who
has completed differential and integral calculus. The Selec
tion Committee will naturally favor papers that are within this
limitation, and which can be presented with reasonable com
pleteness within the time limit prescribed.

TIME LIMIT: The usual time limit is 20 minutes, but this may be
changed on the recommendation of the Selection Committee
if requested by the student.

PAPER: The paper to be presented, together with a description of
charts, models or other visual aids that are to be used in the
presentation should be presented to the Selection Committee.
A bibliography of source materials, together with a statement
that the author of the paper is a member of KME, and his
official classification in school, undergraduate or graduate (at
the time of the convention), should accompany the paper.

DATE AND PLACE DUE: The papers must be received in the
office of the national vice-president no later than February 3,
1969.

SELECTION: The Selection Committee will choose about ten to
twelve papers for presentation at the convention. All other
papers will be Usted by title and student's name on the con
vention program, and wiU be available as alternates. The
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authors of all papers submitted will be notified as soon as
possible after the selection is made.

PRIZES: The author of each paper presented wiU be given a two-
year extension of his subscription to THE PENTAGON. Au
thors of the two or three best papers presented by undergradu
ates, according to the judgment of the Awards Committee
composed of faculty and students, will be awarded copies of
suitable mathematics books. If enough papers are presented
by graduate students then one or more similar prizes will be
awarded to this group.

George R. Mach
National Vice-President, Kappa Mu Epsilon
Department of Mathematical Sciences
CaUfornia State PolytechnicCollege
San Luis Obispo, CaUfornia 93401

(Continued from page 32)
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The Problem Corner
Edited by Robert L. Poe

The Problem Corner invites questions of interest to undergradu
ate students. As a rule the solution should not demand any tools
beyond calculus. Although new problems are preferred, old ones of
particular interest or charmarewelcome provided the source is given.
Solutions of the following problems should be submitted on separate
sheets before March 1, 1969. The best solutions submitted by students
will be published in the Spring 1969 issue of The Pentagon,with credit
being given for other solutions received. To obtain credit, a solver
should affirm that he is a student and give the name of his school.
Address all communications to Professor Robert L. Poe, Department
of Mathematics, Texas Technological College, Lubbock, Texas 79409.

PROPOSED PROBLEMS

216. Proposed by Thomas P. Dence, University of Colorado,
Boulder, Colorado.

Show that given a natural number, », we have

log [log 9"].H = °(o-»i«2*3+4)/5 f?-*/ J
rvv

[ V

« radicals — y— 6 + 7 + 8

217. Proposed byCharles W. Trigg, San Diego, California.
(a) Using the nine positive digits just once each form two

positive integers, A and B, such that A = 7B. Find all
possibilities.

(b) Find the unique solution to part (a) above when all
ten digits are used.

218. Proposed by All R. Amir-Moez, Texas Technological College,
Lubbock, Texas.
Prove the following known theorem of plane geometry (a)
directly, (b) indirectly, (c) algebraically, and (d) analytic
ally. Theorem. If the bisectors of two angles of a triangle are
equal, the triangle is isosceles.

219. Proposed by Rosser J. Smith III, Texas Technological College,
Lubbock, Texas.

Show that Q, the number of positive integers no greater than
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the positive integer M with initial digit no greater than n
(» = 1, 2, 3, • • •, 9), is

[m, if 1 =? M±= k
Q= ,M _ (9 - »)(10> - DflfT<gM<(,+ 1)10>

|»(io*** - l)^ .f ^ + 1)1Qfc ^ M< 1Qfc+1

where fe = 0* 1, 2, 3, • • •, and T = max {« + 1, 10*} for
10* ^M < 10*+1.

220. Proposed by Charles W. Trigg, San Diego, California.
In the following cryptarithm each letter represents a distinct
digit in the decimal scale.

6 CHITFLY) = FLYHIT

Identify the digits.

SOLUTIONS

211. Proposed by J. F. Leetch, Bowling Green State University,
Bowling Green, Ohio.
Prove that in the Fibonacci sequence 1, 1, 2, 3, 5, •••, every

fifth term is divisible by 5 and that these are the only terms having
this property.

Solution by John David Nichols, Union University,
Jackson, Tennessee.
Expanded the sequence is 1, 1, 2, 3, 5, • • •, F„.2, F»_i, F„,

Fn + Fn-„ 2Fn + Fn-„ 3Fn + 2F„.1, 5F„ + 3Fn.u 8F„ +
5F„-i • • \ Let I be the statement: F , the Mth-fifth term of the

s s

Fibonacci sequence 1, 1, 2, 3, 5, • • •, is divisible by 5. I, is true.
s

If Ik is true, then I k is true since if 5 | Fk then 5 | (8Fk
9 S 5 5

+ 5Fk _j). Hence by induction every fifth term is divisible by 5.
s"

Now if 5/FB, then 5/(F„+s = 8F„ + 5Fn_i). Since 5
does not divide F„ F2, F3, and F4, 5 cannot divide Fin+6 for i
= 1, 2, 3, 4 and n a positive integer not divisible by 5. Therefore,
only fifth terms are divisible by 5.
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Also solved by Dana Mabbott, Marietta College, Marietta,
Ohio; WilUam R. MacHose, Grove City College, Grove City,
Pennsylvania; Don N. Page, WilUam Jewell College, Liberty,
Missouri.

212. Proposed by Charles W. Trigg, San Diego, CaUfornia.
There is only one three-digit number which is six times the

sum of the fourth powers of its digits. Find this number.
Solution by Edgar C. Torbert III, Alabama College,
Montevalle, Alabama.
Let x, y, z be the three digits of the number. The number is

then represented by the expression: lOOx + lOy + z. The sum
of the fourth powers of the digits is represented algebraically as:
x* + y4 + z*. It is given that: lOOx + lOy + z = 6(x* + y4
+ z4). If the number has three digits, then l^x^9, 0 ^ y ^ 9,
and 0 =^ z *= 9. Expansion of the right side of the equation yields
the foUowing: lOOx + lOy + z = 6x* + 6y* + 6z4. 6x* + 6y*
+ 6Z4 must be less than 100(x +1). Furthermore, acceptable val
ues for x must satisfy the following condition: 6X4 < 100(x + 1),
and these values must be in the range stated above. Reference to
the table below reveals that one and two are the only values which
satisfy the two conditions stated for x, since larger values yield pro
gressively greater values for 6x* — 100(x + 1).

X X4 6X4 100(x + 1

1 1 6 200

2 16 96 300

3 81 486 400

Letting x = 1, we can derive the following equation:

6(1)4 + 6V4 + 6Z4 = 100(1) + lOy + z

6 + 6y* + 6Z4 = 100 + lOy + z

6y4 + 6Z4 = 94 + lOy + z.

Now a condition may be set forth for the possible values for y when
x = 1. We may state that: 6y* + 6z4 < 94 + 10(y + 1). Then,
6y* < 94 + 10(y + 1). From the following table we find three
suitable values: 0, 1, 2.
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y r 6y4 10(y+ 1) 94 + 10(y + 1)

0 0 0 10 104

1 1 6 20 114

2 16 96 30 124

3 81 486 40 134

Letting x = 1 and y = 0, we derive the following equations:

6(1)4 + 6(0)4 + 6z4 = 100 + 0 + z

6 + 0 + 6z4 = 100 + z

6z4 - z - 94 = 0.

Solving this fourth degree equation we find one acceptable root.
That value for z is 2. Therefore, the three-digit number 102 is a
solution satisfying all conditions established for the three digits.
A quick check reveals that 102 also satisfies the condition stipulated
in the proposed problem.

The uniqueness of the answer is affirmed by the following
checks. Letting x = 1 and y — 1, we derive this fourth degree
equation: 6z4 — z — 98 = 0. This equation has no roots in the
given range for z. Letting x = 1 and y = 2, we derive the following:
6Z4 — z — 8 = 0. Again no acceptable roots are found. This veri
fies that there are not other three-digit numbers with x = 1 that
are satisfactory.

Letting x = 2, we can make tables showing that 0, 1, and 2
are values for y satisfying the condition that: 6y4 < 104 +
10(y + 1). No acceptable solutions are found for the resulting
equations: 6z4 - z - 104 = 0, 6z4 - z — 108 = 0, and 6z4 - z
— 28 = 0. It may be concluded that there are no solutions for this
problem with x = 2. Since x cannot have values other than one or
two, we can say that the uniqueness of our solution, 102, is affirmed.

Also solved by Alvin M. Black, North Texas State University,
Denton, Texas; Anthony D. Girolama Jr., Texas Technological
College, Lubbock, Texas; Roy J. Holt, Southern Methodist Univer
sity, Dallas, Texas; Dana Mabbott, Marietta College, Marietta, Ohio;
Frank Mathis, Southern Methodist University, Dallas, Texas; Ronald
Mileski, Southern Connecticut State College, New Haven, Connecti-
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cut; Peter W. Milonni, Niagara University, Niagara University,
New York; WilUam R. MacHose, Grove City College, Grove City,
Pennsylvania; Don N. Page, WilUam Jewell CoUege, Liberty,
Missouri.

213. Proposed by R. S. Luthar, The University of Wisconsin,
Waukesha, Wisconsin.

If w is an odd integer with at least two distinct factors, prove
that:

log » =^ (fe - 1) log 3 + log 5

where fe is the number of distinct prime factors of «.
Solution by Dana Mabbott, Marietta College, Marietta, Ohio.
We assume that w is positive; otherwise log n is undefined.
Let au a2, • • ♦, a* be the fe distinct prime factors of » so that

n = ai1 • a22 a**, where the z's are all positive integers.
We are given that fe =i 2. Since the a's are prime and odd, no a is
1 or 2. Hence «i =i 3 for all f = 1, 2, • • •, fe. At least one of the
af's is greater than or equal to 5, since at least two distinct ai's exist.
We will not sacrifice generality if we assume that at =s 5, so that
a2^3,a3^:3,««-,afcSs:3.

Hence « =^ 5*1 • 3""2 • 3*s 3**. We have zt =* 1,

z2 =i 1, za =i 1, • • •, z* =i 1, so that 5*1 • 3*2 • 3*a 3**
=* 5 • 3 » 3 • ••• • 3.

fe — 1 terms

Therefore n =i 5 • 3(*-". Taking logarithms of both sides, we
obtain log n S=± log[5 • 3*-'], or log n ^ log 5 + (fe - 1) log 3.

Also solved by Don N. Page, Williams Jewell College, Liberty,
Missouri.

214. Proposed by J. F. Leetch, Bowling Green State University,
Bowling Green, Ohio.
Join consecutively the points (1,0), (Vz,(W)2), (W,0),

0A,wyx ..., (£.(£)•). (jjVt0)- - «* «•» •*
ments, and include (0,0) in the resulting graph. Does this graph
have length?
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Solved by Peter Milonni, Niagara University, Niagara Uni
versity, New York.
The graph forms an infinite number of triangles with base

on the x-axis. Each triangle is of the form

\ 2n+l / \2n / ( 2n-l ' °/

Call L„ the perimeter of each triangle minus the segment of the
X

triangle along the x-axis. Then if 2 L» is a convergent scries we can
n = l

say that the graph "has length." From the diagram we see that

" " VMr-T " £)' - &y
+ Jf-L L_V + (-LV

-(iVW^F
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Now let the height of the »,b triangle—(l/2n)2—define the
diameter of a circle C„. The circumference of circle C„ is

«• - m - - H-tr
Form the ratio Ln/S„ =

IT

It is easily seen that

-—• < 1(the largest value J( ?if \2 + j

takes is V 5 and the largest value

takes is V2» and V5 + y/2 is greater than jr.) Also note that

-•W^)"+ ' +Vfe^-f)' - •) - ^ <*•
Now consider the infinite series 1C,£ 2^(1/2)(-^-J = ~

n=l n-\ \ZllJ 4

2 L„ is term by term less than the convergent series 2 C„,
n=i ' n=i
CO

2 L„ must be a convergent series so that our graph does indeed
n = l

have length.
Also solved by Thomas P. Dence, University of Colorado,

Boulder, Colorado; Roy J. Holt, Southern Methodist University,
Dallas, Texas; Dana Mabbott, Marietta College, Marietta, Ohio;
William R. MacHose, Grove City CoIIege.'Grove City, Pennsylvania;
Don N. Page, William Jewell College, Liberty, Missouri.

215. Proposed by Leigh Jones, State University of New York at
Albany, Albany, New. York
Circles a, b, c with respective centers A, B, C and radius one

are such that a and c are tangent to b. Points S, A, B, C are
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collinear. Line ST is tangent to c at T, and intersects circle b at P
and Q. How long is PQ?

Solution by Frank Mathis, Southern Methodist University,
Dallas, Texas.
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RecalUng from geometry that a tangent to a circle is perpen
dicular to the radius drawn to the point of contact and that the line
of centers of tangent circles passes through the point of contact, we
know that STC forms a right triangle with SC = 5 and CT = 1.
Then sin L CST = 1/5. Also SB = 3 and PB = QB = 1. Using
the law of sines in triangle SBQ:

sin L BSP _ sin L SQB
1 1

or sin L SQB = 3/5 and cos L SQB = 4/5.
Using the law of cosines in triangle PBQ:

PB2 = BQ2 + PQ2 - 2PQ • BQ • cos L PQB
or, 1 = 1 + PQ2 - (8/5) PQ.

Then, PQ = 0 or PQ = 8/5.
« • 4 »

If PQ = 0 then PT would be tangent to b and SA perpen

dicular to AC which contradicts the given information that S, A,
B, C are collinear.

Therefore, PQ = 8/5.
Trigonometric solutions also given by Alvin Black, North

Texas State University, Dalton, Texas; Gregory Holdan, Indiana
University of Pennsylvania, Indiana, Pennsylvania; Mickey Kerr,
WilUam Jewell College, Liberty, Missouri.

Geometric solutions were given by Dana Mabbott, Marietta
College, Marietta, Ohio; WilUam R. MacHose, Grove City College,
Grove City, Pennsylvania; Don N. Page, WilUam Jewell College,
Liberty, Missouri; Edgar C. Torbet III, Alabama College, Monte-
vallo, Alabama.

An analytical solution was presented by Jerry K. Stonewater,
Drake University, Des Moines, Iowa.

EDITORIAL NOTE:

It has been pointed out by Don N. Page, William Jewell
College, Liberty, Missouri, and Kenneth M. Wilke, Topeka, Kansas,
that the solution printed for problem 208 in the Spring, 1968 issue
of The Pentagon is incomplete. They both observed that x = 4
also makes 4r + 48 + 4" a perfect square, i.e., 44 + 48 + 4"
= 2s + 210 + 222 = 2" + 2 • 21* + 222 = (24 + 2"y =
(16 + 2048)2 = (2064)2.



The Mathematical Scrapbook
Edited by George R. Mach

Readers are encouraged to submit Scrapbook material to the
editor. Material will be used where possible and acknowledgement
will be made in THE PENTAGON. All of the Scrapbook material for
this issue was submitted by members of the Iowa Gamma Chapter.

Editor's note: The following was submitted byS. Ron Oliver.
Today is Wednesday, September 18, 1968. Did you ever

wonder how long it will be before September 18 has fallen on every
day of the week? By an appUcation of modular arithmetic this ques
tion is rather easily answered. Since 365 is congruent to 1, modulo
7, the answer would obviously be 7, if it were not for leap year.
Ah! But we do have a leap year in our wonderfully accurate system
of measuring time.

Now four times three hundred and sixty-five plus one is con
gruent to 5, modulo 7. Hence, every four years the 18th of Sep
tember falls over a span of five days of the week. Obviously, then,
one of those five days is skipped as a result of leap year. Thus, in a
seven-year period, one day is skipped and one day is hit twice in a
row as our four-year spans of five pass through the seven-day week
twice.

Since we obviously skip one day the first time through the
week, we must go through at least twice. But since we are working
with a cycUc group, twice will be sufficient. To span two weeks we
need to go through three, four-year cycles (a span of five days per
four-year cycle). Since this will span fifteen days, it will actuaUy
be more than enough. Hence, over a twelve-year period, the 18th
of September wiU have hit every day of the week at least once. And
we can see that there will have been five duplications (12-7). Since
we needed to go through only two complete four-year cycles to span
a two-week period, we necessarily skipped only two days. Hence,
only two of the five duplications were necessary. Thus, a nine-year
period will insure us that the 18th of September has fallen on every
day of the week. This nine-year period is both sufficient and neces
sary.

Another interesting question that arises is how many years
must pass before September 18 has fallen on every day of the week
an equal number of times. To answer this question we simply need
to determine how long it will take before our four-year period ends

49
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on the same day of the week it began. In other words, what is the
order of 5, modulo 7, under addition? Obviously, since we are
working with a cycUc group, the order of 5 is 7. Hence, seven four-
year periods or twenty-eight years are required for the 18th of Sep
tember (or any other day of the year, February 29 included) to fall
on every day of the week an equal number of times.
Editor's note: 1968 is a leap year. The seven-year, twelve-year, and
nine-year periods mentioned above have patterns if started in 1968
that they might not have if started in other years. Also, periods con
taining a century year would be interesting to contemplate because
the year 2000 wiUbe a leap yearbut the year 2100 will not.
Editor's note: The following was submitted by Mrs. Pamela Fehr.

Some squares involving only the digit "1" have interesting
patterns when written as fractions in just the right way. Consider
(ll)2 written as follows:

(11).= 121 =1|1= 22'22
4 1+2 + 1"

Notice the numerator uses all "2's" and the denominator has
a "2" in the middle. Also, the denominator has the same digits as
the beginning number.

Another similar number is 12,321.

(Ill)2 = 12,321 = 333 * 333
1 + 2 + 3 + 2+ r

Each factor in the numerator is made up of three "3's" and
again "3" is the middle digit of 12,321. The denominator has a
"3" in the middle and also is made up of the same digits as 12,321.

Try to write similar fractions for the foUowing numbers:

123,454,321
12,345,654,321

1,234,567,654,321

123,456,787,654,321.

Editor's note: The following was submitted by Craig Bainbridge.
In the Mathematical Scrapbook section of the spring 1968

issueof THE PENTAGON therewas a discussion of a quick method
of squaring numbers that end in 5. This presentation brings to mind
a "quick" system of computation developed by Jakow Trachtenberg,
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the founder of the Mathematical Institute of Zurich. To give an
example of his method of multipUcation, several definitions are in
order.

A neighbor of a digit X is the digit immediately to the right
of X. "Half" of a digit is the greatest integer less than or equal
to the algebraic half of the digit.
With these terms in mind, to multiply a number by 7, the

rule is: double the digit on the extreme right and add "half" the
neighbor; further, if the digit is odd add 5. An example follows:

7 X 4631

7 1 doubled is 2, but 1 is odd; therefore, add 5.
Result, 7.

17 3 doubled is 6, but 3 is odd; therefore, add 5. Add
"half of neighbor 1 which is 0.
Result, 11. Record 1 ten.

417 6 doubled is 12. Add "half of neighbor 3 as well
as the 1 hundred. Result, 14 hundreds. Hence,
write 4 hundred.

2417 4 doubled plus "half" of 6 gives 11 and the 1
thousand makes the total 12 thousands. Write 2
thousand.

32417 0 doubled is 0. Add "half of 4 and the 1 ten
thousand to yield 3 ten thousands.

A glance tells us that continuing the process results in suc
cessive zeros on the left and the product is completed. Therefore,
7 X 4631 = 32,417.

Can you prove this multipUcation is valid in general?
Editor's note: The following was submitted by Tom Cooper.

In the December, 1916, issue of THE AMERICAN MATHE
MATICAL MONTHLY there appears a proposed solution by Aron
Ingvale to an old problem, the trisection of an angle.

Given: L A'OB'.

Construct circle C with radius, R, and center, O, and call the

intersection with OA' and OB', A and B, respectively. Construct
circle, C, tangent to C at A with center on OA and radius 3A R.
Call the intersection of OB and C, E, and construct a tangent to C
at E and call the intersection with C, F. Bisect L AOF and call the
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intersection with C, G. Extend BO, FO, (X), and AO to C and call
the intersection points H, I, J, and D, respectively. Now construct
lines through I and F parallel to BH and call the intersection with
C, T and P, respectively.

What's wrongwith the following proof?
L FOG_ —L GOA, by construction. FD is parallel to GJ is

parallel to A£since they subtend equal arcs. T7 is parallel to BH is
parallel to FP by construction. Therefore, triangle BOJ is isosceles.

K is the intersection of_B/ and DF, E' is the intersection of
BH and DF. DF paraUel to JG implies that triangle BKE' is isosceles
and triangle BKE' is similar to triangle POJ. N is the intersection of
FP and AI._DF is parallel to NI, BH is parallel to FN, and BJ is
parallel to FI. Triangle FNI is isosceles and is similar to triangle
BKE'. Mis theintersection of DF and TI. Triangle FNI is congruent

(Continued on page 55)



The Book Shelf
Edited by John C. Biddle

This department of The Pentagon brings to the attention of its
readers published books (both old and new) which are of a common
nature to all students of mathematics. Preference will be given to
those books written in English or to English translations. Books to
be reviewed should be sent to Dr. James Bidwell, Central Michigan
University, Mount Pleasant, Michigan 48858.

A Nonparametric Introduction to Statistics, Charles H. Kraft and
Constance van Eeden, The MacMillan Co., New York, 1968,
342 pp., $9.95.
To the reader who is familiar with the usual texts for an intro

ductory, non-calculus prerequisite, course in elementary statistics,
this book will be a distinctly different text designed for the same
type of course. For as the author states in his preface "Part I of this
text is designed as a one-term introduction to statistics. We chose
nonparametric methods as the principal vehicle for this introduction
because of the simplicity of their basic probability theory. This sim
pUcity permits an introduction to inference, that is, to the estab
lishment of a relationship between observations and a family of
models, to precede a discussion of probability."

Part II of this text contains descriptions of nonparametric tests
such as the Wilcoxon, Mann-Whitney test, the sign and median tests,
and so on. The author suggests that "With supplementation, by
examples from experimental sciences, Part II could serve as a basis
for a second course."

For the instructor who is searching for an unusual introduc
tory text in statistics, this book would fit that description. This re
viewer, however, is of the opinion that this text will be less readable
for the student than the introductory texts using a parametric ap
proach. On the other hand the student would be made more aware
of the relationship between statistical inference and mathematical
models. Most of the first part of this text is concerned with building
a model for treatment effect.

The problem sections are not long and after chapter twelve are
non-existent which probably will detract from its desirability as a
textbook. The table section at the end of the book is excellent and
presents the distributions of several test statistics.

For the student who is interested in nonparametric statistics,
this book will serve as an admirable introduction to this topic, but
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for the student who is interested in an introduction to statistics, this
reviewer feels that the present texts in introductory statistics are
more suitable.

Wilbur Waggoner
Central Michigan University

Mathematics for Applied Engineering, Edward J. Cairns, Prentice-
Hall, Englewood Cliffs, New Jersey, 1966, $10.50.
The text covers a wide range of mathematical topics presently

covered in high school/college freshman level courses: algebra, in
cluding complex numbers, trigonometry, analytic geometry, and
differential and integral calculus.

The format of the book is to provide rules and formulas fol
lowed by worked examples and a collection of routine exercises with
both of these areas involving engineering applications whenever
appropriate. Thus, the mathematical level is below that necessary
for a student of science or modern engineering, although as the
cover advertises, it could be regarded as a "manual for use by
design engineers, draftsmen, and technicians as well as readers
preparing to enter these vocations."

T. Robertson
Occidental College

Calculus of Vector Functions, Second Edition, R. E. Williamson,
R. H. Crowell, and H. F. Trotter, Prentice-HaU, Englewood
CUffs, New Jersey, 1968, $10.50.

The book under review is the second edition of a book which
first appeared in 1962.

The book is a modern course on functions of several variables.
Theauthors develop the necessary Unear algebra in the first chapter,
so that the only prerequisite for reading this book is the customary
year of elementary (one variable) calculus.

The amount of revision that went into this second edition is
substantial and the reviewer feels that the current edition is much
superior to the first edition. In particular, the chapter on linear
algebra has been completely rewritten and expanded. This chapter
is very well written and students should find it quite readable. In
addition, new material on the various forms of Stokes' theorem
(including a brief introduction to differential forms) has been
included. Now the student is made aware of the elegant fact that
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Stokes' theorem is a generaUzation of the fundamental theorem of
calculus!

R. E. Dowds
State University CoUege, Fredonia, New York

College Algebra and Trigonometry, Daniel E. Dupree and Frank L.
Harmon, Prentice-Hall, Inc., Englewood CUffs, N. J., 1968,
$7.95.
The authors have developed a book which should be a great

help to those students who have a rather meager background in high
school algebra and trigonometry, especially those students who wish
to continue their study of mathematics.

The subject is approached from a deductive line of reasoning,
beginning with an excellent chapter deaUng with logic, sets, and
the real number system. The students are then led through a series
of chapters involving functions, inverse functions, equations, in
equalities, identities, applications of algebraic and trigonometric
functions. The text concludes with chapters on determinants and
matrices and exponential and hyperbolic functions.

The format of this book presents a very good background for
the study of the calculus. The book is well suited to a basic course
for coUege freshmen.

Sister Edmund Marie
St. Bonaventure School

©

(Continued from page 52)

to triangle FMI. Therefore, triangle FM7 is isosceles. Z DF1 = Z 1FP
= Z BJG = Z FIA. But, Z IFP = Z 10H = L FOB. Z IFP
= LBJG = L FOG. Therefore, L BOF = Z FOG, and Z FOG
= Z GOA by construction. Z BOF = L FOG = L GOA. Therefore,
Z BOA has been trisected.

Prove that the above is correct if Z AOB = 90° or 180°, but
fails in general.



Kappa Mu Epsilon News
Edited by Eddie W. Robinson, Historian

Twenty years ago: Colorado Alpha, Missouri Delta, and CaU
fornia Alpha were instaUed, making a total of forty chapters on the
roU.

Ten years ago: L. P. Woods, one of the founders of KME, died
on February 26. Members began preparing papers for the 1959
convention at Bowling Green, Ohio. CaUfornia Beta sponsored
a Mathematics Field Day for five hundred students from southern
California high schools. Kansas Beta hosted the 1958 regional
KME convention.

Five years ago: The Fourteenth Biennial KME Convention was
held at Illinois State Normal University. Forty-five chapters were
represented by a total of 307 registrants.

Indiana Alpha, Manchester College. North Manchester
Meetings were held every other week with some outside speak

ers and some from the local chapter. Emphasis was on problem
solving and prizes were awarded to those who had solved the most
problems. A field trip was taken to Chicago to attend an area meet
ing of the National Council of Teachers of Mathematics.

Indiana Gamma, Anderson College. Anderson

Last year's President Larry McFarUng is now a graduate assist
ant at Purdue University and KME alumnus Gary Wood is now a
graduate assistant at Miami University. Chapter members attended
the North Central Regional Convention at Rosary College.
Kansas Gamma, Mount St Scholastica College, Atchison

Activities for the spring semester, 1967-1968, included the
presentation of expository papers by students, a pledge party for
actives, an evaluation meeting and a fareweU banquet. Special
activities were attending the Regional Convention at Tahlequah,
Oklahoma, and hosting the High School Invitational Mathematics
Contest. The guest lecturer for the semester was Dr. Fred Van
VUck, who spoke on "Applications of Matrix Theory in Economics
and Social Sciences."

Missouri Alpha, Southwest Missouri State College, Springfield
Chapter activities for the spring semester, 1967-1968, in

cludedthe presentation of expository papers by students and faculty,
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a banquet at which new members were initiated and attendance at
the Regional Convention at Tahlequah, Oklahoma. TheKME Chap
ter Merit Award was presented to Harold Weatherwax, chapter vice-
president.

Missouri Epsilon, Central Methodist College, Fayette
Ten members were initiated on March 5, 1968, and new

officers were installed on May 7, 1968. The programs for the chap
ter meetings consisted of paperson number theory, statistics, election
predictions, teaching projections and other selected topics. Each new
member made an abacus and presented it to his sponsor.

New York Gamma, State University College, Oswego
Dr. John Walcott is the corresponding secretary and Dr. James

Burling and Dr. Frederic Fischer are faculty sponsors.

Ohio Epsilon, Marietta College, Marietta
Chapter members held tutorial sessions for beginning mathe

matics students before mid-term and final exams. New members
were inducted at the end of February.

Texas Alpha. Texas Technological CoUege, Lubbock
On November 16, 1967, a meeting was held by interested

faculty and students who qualified for membership in Kappa Mu
Epsilon and it was decided to reactivate the Texas Alpha Chapter.
Forty new members were initiated on December 7, 1967, at a
banquet which featured Dr. Patrick Odell, Chairman of the Depart
ment of Mathematics, as the speaker. Three important chapter meet
ings had the following programs:

January 4, Mrs. Harmon Jenkins, who spoke on the function
and services of the placement office.

February 8, Dr. Thomas Baullion presented a talk on "Tech
niques for Summing a Series."

March 14, Dr. George Innis, who spoke on "Computer Models
in Agriculture."

Thirty-four new members were initiated in April, 1968, bringing
the total membership to 728. The chapter officers for 1968-1969
are: Wayne Woodward, President; David Henneki, Vice-President;
Judy Murrah, Secretary; Judy Forsman, Treasurer; and Derald
Walling, Faculty Sponsor.
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Wisconsin Beta, Wisconsin State University, River Falls

Twenty-six new members were initiated bringing the total
membership to fifty-six. Dr. Warren Land, University of Minne
sota, was the guest speaker. His topic was "The Place of Abstraction
in Applied Mathematics." Other speakers for the year were Mr.
Douglas Mountain, speaking on "The Portrait of Pi," and Mr. Bruce
Williamson, speaking on "The Golden Section, Nature's Divine
Proportion."

Report on the 1968 North Central Regional Convention
Ninety Kappa Mu Epsilon members from the North Central

area attended the 1968 Regional Convention held at Rosary CoUege
on April 5-6. Colleges and universities participating included Ander
son CoUege, Central Michigan University, Drake University, Illinois
State University, Mt. Mary CoUege, North Park CoUege, Rosary
CoUege, and the University of Northern Iowa at Cedar Falls.

Friday evening registration and dinner opened the convention,
followed by a lecture given by the guest speaker for the weekend,
Dr. Fred C. Leone, presently in the program of visiting professors
and from the Department of Statistics and the Department of
Industrial Management and Engineering at the University of
Northern Iowa at Iowa City. His very interesting talk accompanied
by amusing and realistic examples concerned "Statistics—Its Use and
Abuse." Later, students and faculty members and guests exchanged
ideas and became acquainted over coffee, punch, and cookies at an
informal gathering in the college student lounge.

Following an evening at the Oak Park Arms Hotel near Rosary,
out-of-town members attended breakfast and further registration at
the college. The presentation of student papers began shortly after
wards. The papers and students participating were:

"The Nine-Point Circle" by Mary Brousil
Illinois Zeta Chapter, Rosary College,

"Irrational Roots of Complex Numbers" by Dennis McGavran,
Iowa Beta Chapter, Drake University,

"Geometric Inversion" by Marilyn Lalich,
Wisconsin Alpha Chapter, Mount Mary College,

"Konigsberg Bridge Problem" by Judy Kaiser,
Illinois Zeta Chapter, Rosary College,

"Approximation Method Using the Gradient" by Glenn Grove,
Iowa Alpha Chapter, University of Northern Iowa,
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"Properties Common to Fields and Groups"
by Susan O'Connor,

Wisconsin Alpha Chapter, Mount Mary College,
"Superellipses" by Robert Otto,

Michigan Beta, Central Michigan University.
Students and faculty members then voted on the three papers

they felt were the most interesting and worthy of special merit.
Robert Otto and his "Superellipses" ranked first, followed by Glenn
Grove's "Approximation Method Using the Gradient," and Marilyn
Lalich's "Geometric Inversion." Special notice was also given to
Dennis McGavran's paper on the "Irrational Roots of Complex
Numbers."

The convention was also honored by the attendance of Kappa
Mu Epsilon's National President, Dr. Fred Lott, from the University
of Northern Iowa at Cedar FaUs. He presented the welcome and
delivered a brief address to those attending the Saturday luncheon
that succeeded the presentation of the student papers. Judy Kaiser,
President of the Rosary College Chapter, then introduced the officers
of the Illinois Zeta Chapter: Sr. M. Philip, Faculty Moderator; Mrs.
Richard Schooley, Corresponding Secretary; Joan Weiss, Vice-
President; Joanne Capito, Secretary; Pat Husson, Treasurer; and
Sr. Marie de Ricci, Dean of Studies at Rosary. Attending faculty
members from each attending chapter were then introduced.

Dr. Fred Leone closed the convention with an excellent presen
tation on the topic, "Why Design Experiments Statistically," em
phasizing the accuracy and decision making involved and resulting
from this method.

Report on the South Central Regional Convention
Kappa Mu Epsilon chapters in Arkansas, Iowa, Kansas, Mis

souri, Nebraska, New Mexico, Oklahoma and Texas attended the
Regional Convention held at Northeastern State College, Tahlequah,
Oklahoma, on April 19-20, 1968. Oklahoma Alpha, the first chapter,
of KME, was the host chapter.

Many chapters had large delegations including students and
faculty members. Three national officers attended: Laura Z. Greene,
Secretary, Eddie W. Robinson, Historian, and Dr. Carl V. Frona-
barger, Past President. The luncheon speaker was Dr. Emmit R.
Wheat, Northeastern State College, who spoke on "Math and Music."
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Papers presented were the foUowing:
"Identification of Geometries through Transformation"

Norma Henkenius, Kansas Gamma Chapter

"Magic Squares"
Mrs. Doris Standley, Missouri Beta Chapter

"Cubic Quadruples from Pythagorean Triples"
S. Ron OUver, Iowa Gamma Chapter

"Relation Method'
RossRoye,Oklahoma Alpha Chapter

"A Comparative Study of Some Special Methods of
Approximate Integration" Judy Graney,

Kansas Gamma Chapter

"Paths and Knots asGeometric Groups"
Barbara Elder, Kansas Delta Chapter

"The Use of Matrices in the Classification of Conies"
Mary Peterson, Iowa Gamma Chapter

"Contributions by Dedekind"
Carolyn Wyatt, IowaGamma Chapter

Pat Hossman, President, Oklahoma Alpha Chapter presided
at the presentation of the papers and introdouced the following
officers of Oklahoma Alpha Chapter:

James Fisher, Vice-President; Patti Compton, Secretary; Dale
Moris, Treasurer; Dr. Raymond Carpenter, Corresponding Secre
tary; Mike Reagan, Sponsor.

©

It is difficult to estimate the probabiUty of the results of induc
tion.

—Laplace


