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Kappa Mu Epsilon, national honorary mathematics society, was
founded in 1931. The object of the fraternity is fourfold: to further
the interests of mathematics in those schools which place their primary
emphasis on the undergraduate program; to help the undergraduate
realize the important role that mathematics has played in the develop
ment of western civilization; to develop an appreciation of the power
and beauty possessed by mathematics, due, mainly, to its demands for
logical and rigorous modes of thought; and to provide a society for
the recognition of outstanding achievements in the study of mathe
matics at the undergraduate level. The official journal, THE PENTA
GON, is designed to assist in achieving these objectives as well as to
aid in establishing fraternal ties between the chapters.



Godel's Incompleteness Theorem*
John W. Bridges

Student, Southwest Missouri State College

Many centuries ago the Greeks introduced into the study of
mathematics a method called the axiomatic method, in which the
truth of a few statements called postulates was assumed, and other
statements called theorems were proved from the few. This axiomatic
method began to come into its own about two centuries ago when
mathematicians began to devise postulate sets and formal develop
ments for many branches of mathematics, old and new.

The axiomatic method was rightfully recognized as one of the
most powerful methods and tools ever devised. It possessed beauty,
form, and logical rigor. From the time of the primary development
of the axiomatic method until 1931, it was commonly felt that,
given a branch of mathematics, say geometry or arithmetic or what
ever, one could devise eventually a set of postulates from which
could be proved all the so-called "true" theorems of that system. In
1931, however, a German mathematician, Kurt Godel, proved that,
for the ordinary arithmetic, if a postulate set was consistent, then
there are necessarily true statements which cannot be proved, no
matter how complete the postulate set.

There are two ideas basic to this discussion: consistency and
completeness.

A system is said to be consistent if it is impossible to deduce
a statement A and its negation -~>A. This property must be present
in any postulate set, for it is easily proven that any statement what
ever, true or false, may be derived from an inconsistent system. Of
course, a postulate set from which every statement is derivable is
useless as a mathematical structure.

A system is said to be (intuitively) complete if a given set of
statements, the so called "true" statements, can be derived from
it. Godel proved that if arithmetic is consistent, or free from internal
contradiction, then it is necessarily incomplete.

It will be the purpose of this paper to examine the ingenious

•A papor presorted at the 1967 National Convontlon of KME and awarded tint place
by Iho Awards Committee.
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method which Godel used to prove an exotic theorem such as this.
Indeed, the proof is as interesting as the theorem itself.

Before we examine Godel's proof, let us examine what is
called Richard's paradox, the proof of which is very similar to
GSdel's proof.

Consider the set

{sentences | the sentenceexpresses a property of integers}
restricting ourselves, of course, to sentences which can be written
using the undefined terms of the system.
Examples:

* is a prime.

x is greater than 3.
* is a composite number.
x has no divisors besides 3 and 17.

Consider the set of all such statements. Arrange them in numerical
order based on the following criteria:

1) the number of letters in the statement.

2) if two statements have the same number of letters, arrange
them in alphabetical order.

We now have the set of definitions of properties of integers ar
ranged in numerical order:

A» A2, A3, A4 •••

where each A is a definition of properties of integers.
Two things may now happen. Consider the formula A asso

ciated with the number ».

Case 1. n may have the property A.
Example: 17 *—* "n is a prime"
Case 2. n may not have the property A.
Example: 19 «—* "n is not a prime"

Now consider the following statement:
"x does not have the property of the expression associated with the
number x."

This statement, being a definition of a property of numbers,
is among our list of definitions, and is therefore associated with
some number «. Question: Does n have the property of the expres
sion associated with it?
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If « has the property of the expression associated with it, then
"n does not have the property of the expression associated with the
number »." — Contradiction.

If « does not have the property of the expression associated
with it, then "n does have the property of the expression associated
with n." — Contradiction.

Of course the reasoning is fallacious. A little thought will
show that the given "definition" does not belong in the list as
we originally described it, and thus the entire argument is fallacious.

However, the basic method:
1) associating a statement of a property with a number,
2) finding a statement which asserted something about the

number to which it was associated,
was used by Godel in his proof.

First of all, Godel devised a way to associate a unique number
with every statement of arithmetic. He did this in the following
manner.

AH statements are builtoutof certain formal "pieces." We have
1) logical symbols , V, =>, 3, =, 0, ', (, ), ,
2) numerical variables — x, y, a, b, • • •
3) sentential variables — p, q, r, • • •
4) predicate variables — P, Q, R, • • •
To each of these Godel assigned a unique number, in the following
manner:

1) logical symbols ~V=>3 = 0'(),

i I 1 i i i i 1 1 1
12 3456789 10

2) numerical variables x y z • • •

I I I

II 13 17 •••

3) sentential variables p q r • • •

I i I

IV 132 17* •••

4) predicate variables P Q R

I I I
ll3 133 173 •••
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We now have a number for every symbol. We assign a number to
a formula in the following manner:

( 3 * ) ( x = y ' )

I I I 1 I i I 1 I A
2" 3' 5" 79 11s 13" 17s 19" 237 29D

Thus for every formula in arithmetic we have associated a unique
number. Moreover, given any number, we can find the statement
from which it was derived.

Take, for example, the number 243,000,000.
243,000,000 equals 2° 3s 5°

I i 1

6 5 6

i I 1

0 = 0.

Consider another example:
100 equals 22 52 is not the Godel number of any formula what
ever, since 2 and 5 are not consecutive primes.

We now have established a 1 - 1 relationship between a subset
of the natural numbers and the set of all statements in the arith
metical calculus.

One more item, before we leave Godel numbering. Consider
a statement Q and a series of statements, P1( • • •, P„ which consti
tute a proofof Q. Then if P„ • • •, P„ haveGodel numbers N„ • • •,
N„, then the Godel number of the proof we will define to be

N N N
2 * • 3 2 p» " where p„ is the «th prime.

Consider this statement:

"The sequence of formulas with Godel number x is a proof
of the formula with Godel number z." Denote this strictlynumerical
relationship between x and z by A(%, z).
Consider finally the statement

(1) (Vx)- A(x, z) which says,

"For ever)' x, the sequence of formulas with. Godel number x is not
a proof of the formula with Godel number z."
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or in other words,

(2) "The formula with Godel number z is not demonstrable."

Formula (1) is a legal formula and therefore has a Gobel
number, say z'.
Claim: The formula (\/x) - A(x, zO is a true formula which
is not derivable from the postulates of the arithmetic.

The formula aboveis the formal representation of the following
sentence:

(3) "The formula with Godel number z' is not demonstrable."
Call this statement A.

We have constructed a statement A such that

(4) A means that A is unprovable.
If arithmetic is consistent, then we must have that

(5) False formulas are unprovable.
Now we are in a position to present an intuitive proof of the unde-
cidability of the statement A. There are essentially four possibilities.
1) A is false and provable. This statement contradicts (5).
2) A is false and unprovable. A cannot be false, for then we have

that A is not unprovable, or provable, by (4), contradicting
(5).

3) A is true and provable. This possibility can not happen since
A true means by (4) that A is unprovable, contradicting our
assumption.

4) The only possibility left, intuitively, is that A be true and un
provable. Indeed, Godel proved that this is exactly the case.
This consideration, then, is basically the proof of Godel's

theorem that if arithmetic is consistent, then it is necessarily incom
plete. What does this theorem mean? It is full of important meaning.

First of all, it implies that there are some inherent, rather
basic limitations to the axiomatic method. It implies that no matter
how large or all inclusive our postulate set, there will always be
a class of true statements which are not derivable.

It also implies that there will never be a replacement for the
thinking ability of man. Suppose that we had a huge computer
which was programmed to prove theorems with lightning speed,
and suppose we gave this computer a set of postulates and a set of

(continued on page 41)



An Introduction to Geometric Models
Based on Axiom Systems"

Leora Ernst

Student, Mount St. Scholastica College

Modern mathematics consistently emphasizes the necessity of
beginning with a set of undefined terms and relations, then setting
up the rules or axioms they are to follow, and finally deducing
theorems from the axioms. The possibilities inherent in this method
have enabled geometricians to step out of the confined area of
Euclidean geometry. We wish to demonstrate how a set of axioms
can be interpreted into models when undefined terms are replaced
by words with meaning. We shall first introduce the set of axioms
comprising Incidence Geometry, an interesting system developed
by David Hilbert during the first decade of the twentieth century.

The undefined elements to which no specific content is as
signed are point, line, and plane. Intuitively seeing these as dots,
pencil streaks, and sheets is helpful in illustrating but should never
be used as the basis for a proofof a theorem. The undefined relations
are:

1. incidence between a point and a line,
2. incidence between a line and a plane.

The axioms of incidence are as follows

1. Two distinct points are incident with one and only one
line.

2. Three distinct points that are not incident with any line
are incident with one and only one plane.

3. If distinct points A, B are incident with plane ?', then
each point incident with line AB is incident with "p•

4. If two planes are incident with a point, then they are
incident with a second point.

5. Each line is incident with at least two points; and each
plane is incident with at least three points that are not all three
incident with the same line.

•A paper prosontod at the 1967 National Convention o! KHE and awarded second place
by the Awards Committee.
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Remember that this is an abstract system and the undefined
terms point, line, plane could be replaced by the nonsense syllables
hoig, boig, loig without changing the logical structure of the theory.
For example, one of the theorems derived from these axioms would
be translated: If two distinct bigs have a hoig in common then the
set of all their common hoigs is a boig. What seems like an exercise
in nonsense actually helps to point up the advantages of an abstract
formulation of a mathematical theory. For if the basic terms are
literally meaningless, literally devoid of content, the possibility is
opened of assigning them content in new and challenging ways.

These axioms of incidence are not statements in the ordinary
sense but abstract prepositional functions or open sentences. They
become true or false statements when meaningful content is as
signed to the basic terms point, line, and plane. A geometric model
is just such an interpretation of these undefined terms which makes
the axioms of the system true statements. Here then is a simple
interpretation.

points: the numbers 1, 2, 3, 4, 5

lines: the unordered number pairs (1, 2), (1, 3), (1, 4),
(1, 5), (2, 3), (2, 4), (2, 5), and the unordered
triple (3, 4, 5)

plane: the set of five numbers (1, 2, 3, 4, 5)

incidence: An element is incident with an unordered pair
or triple if it is contained in it.

Fig. 1

In order to prove that this interpretation is a model of incidence
geometry, it must be verified that it makes the five axioms of inci-
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dence geometry true statements. Examining the lines, it is obvious
that any two points, such as 2 and 3, are incident with only one
of these lines. Axioms 2, 3, and 4 are true only trivially since only
one plane is involved. In verifying axiom 5, it is found that each
line is in fact incident with at least two points; and there are three
points not on the same line which are incident with the plane, such
as the line (1, 2) and the point 3, or the line (3, 4, 5) and the
point 2.

Now if there is introduced into this set of axioms the additional
axiom that corresponding to a line L and a point not incident with
it, there is one and only one line incident with the point and parallel
to the given line, then a whole new geometry called affine geometry
has been defined. There is also the possibility that there may be
two lines through a point each parallel to a given line. The type
of geometry built upon this axiom is called hyperbolic. Finally, the
addition of the axiom that all lines incident with a plane are inter
secting, or in other words that there are absolutely no parallel lines,
defines projective geometry.

We shall take a look at the following model and try to deter
mine whether it satisfies the axioms of affine, hyperbolic, or projec
tive geometry.

points: the numbers 1, 2, 3, 4, 5
lines: the unordered number pairs (1, 2), (1, 3), (1, 4),

(1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)

plane: the unordered number quintuple (1, 2, 3, 4, 5)
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The verification of the first five axioms is straightforward and in
the same manner as was used with the first model. Now, if we
choose the line represented by the pair (1,2) and the point 3, we
find that (3, 4) is parallel to (1, 2). But we cannot stop there
because so is (3, 5) even though it does not look that way in the
diagram. Another instance which is even more startling to our
Euclidian-trained minds is the line (3, 5) and the point 1, because
both (1, 4) and (1, 2) are parallel to (3, 5). Consequently, it
has been verified that this is a model of a hyperbolic geometry.

Since most mathematicians, until they delve into modern
geometry, are more familiar with the axiom of unique parallelism
which defines affine geometry, it will be more interesting to explore
a model of a projective geometry in which there are no parallel
lines.

points:

lines:

plane:

the elements A, B, C, D, E, F, G

the unordered triples (A, B, D), (B, C, E),
CD, C, F), CD, G, E), (A, E, F), (B, G, F),
(A, G, C)

the set (A, B, C, D, E, F, G)

Fig. 3
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To verify that all these lines intersect, it is necessary to examine
all the triples in the set, and it is found that any two triples have
one element in common. Consequently, there are no parallel lines
in the projective geometric system of which this model is a repre
sentation.

Models can also be very helpful in proving important quali
tative properties of a mathematical science. In one such application,
models are used to prove that a system is consistent. Now a mathe
maticalsystem, or its setof axioms, is consistent if, within the system,
it is impossible to deduce two theorems that contradict each other.
In incidence geometry one of the first theorems that can be deduced
is that two distinct lines areincident with at most one point. Should
it happen that in the courseof further development of this geometry
it would be found possible to prove that two distinct lines are
incident with at least two points, then obviously there would be an
inconsistency in our axioms. To prove that a theorem is consistent
with a set of axioms one need merely display a model in which the
interpretations of both the set of axioms and the theorem are true
statements.

Suppose it is necessary to know if this theorem is consistent
with affine geometry.

If each of two intersecting lines incident with one plane
is parallel to a second plane, then the two planes are parallel.

The following model of affine geometry can be used and tested to
determine whether the theorem is a true statement as interpreted
in the model.

Points Lines

a, b, c, d, e, f, g, h (a, b), (a, c), (a, d),
(a, e), (a, f), (a, g),
(a,h), (b,c), (b,d),

(b,e), (b,f), (b,g),
(b,h), (c,d), (c, e),
(c, f), (c, g), (c, h),
(d,h), (e,f), (e.g),
(e,h), (f, g), (f,h),

(g,h)
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Planes

(a, b, c, d), (e, f, g, h),
(a, b, f, e), (d,c, g, h),
(a, b, g,h), (e, f, c, d),
(a, c,g, e), (b,d,h, f),
(a, d,h, e), (b, c, g, f),
(a, d, g, f), (b,c,h, e),
(a, c, f, h), (b,d,e, g)

13

Fig. 4

The intersecting lines (a, b) and (a, c) are incident with the plane
(a, b, c, «i) and the only plane which is parallel to each of these
lines is (e, f, g, /i); and (a, b, c, a") is parallel to (e, /, g, /j). In
the diagram this is obvious. However, if one examines the inter
secting lines (a, a") and (a, g), it is found that they are incident
with the plane (a, d, g, f) and are each parallel to the plane
(fc, c, h, e), and these two planes are parallel though it irks ones
intuition to think so. Consequently, it has been shown that this
theorem is consistent with the axioms of affine geometry.

An interesting but distressing kind of problem often arises in
mathematical research when a student conjectures a theorem and
has trouble proving it. He may suppose his conjecture wrong and
try to prove the opposite theorem. But suppose he does not succeed
in this either. He may then wonder whether the theorem cannot
be deduced from the postulates of the theory, or whether he has
just not been clever enough to find a proof. If the theory is formu
lated abstractly, as arc all the geometric systems presented in this
paper, then fortunately there is a procedure for coping with the
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problem. Consider a specific example. Suppose in the theory of
incidence one conjectures the property that every line contains at
least three points. If this is a true theorem, that is if it is deducible
from the axioms of incidence, then it must be valid for every model
of the theory of incidence. But one can easily find a model which
falsifies the given property. For example, refer back to the first
model of Incidence Geometry. This simple model proves the theorem
false because all the lines except one contain only two points. Con
sequently, the given property cannot be deduced from the axioms
of incidence; it is said to be independent of these axioms.

It is also possible to prove that a certain axiom, say axiom A,
of any set of axioms is independent of the others, or in other words
not deducible from them, if one can display in which axiom A is a
false statement and the interpretations of the other axioms are true
statements. Yes, models are extremely useful tools for proving the
relative consistency and independence of axiom systems not only
in geometry but in nearly all fields of the mathematical, physical,
and even biological sciences whenever the axiomatic approach is
used.
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There is an astonishing imagination, even in the science of mathe
matics. . .. We repeat, there was far more imagination in the head
of Archimedes than in that of Homer. —Voltaire



Adjoining an Idempotent to the
Field of Real Numbers

Robert W. Prielipp

Faculty, Universityof Wisconsin

How can a student of a first course in modern algebra review
in a new setting several of the concepts on rings and ideals to
which he has just been exposed? It seems likely that an investigation
of the nature described below would be of considerable value in
clarifying some of the terminology of ring and ideal theory while
at the same time providing a deeper feeling for the mathematical
ideas involved.

Let R be the field of real numbers and set K =
{a + bj: a, b e R, f = j, and / f R). Define equality, addition, and
multiplication as follows:

Definition 1. (Equality) a + bj = c + dj if and only if
a = c and b = d.

Definition 2. (Addition) (a + bj) + (c + dj) =
(« + c) + (b + d)j.

Definition 3. (Multiplication) (a + fc/)(c + dp =
ac + Cad + be + bd)j.

It can easily be verified that (K, +, •) is a commutative ring
with unity. Since ;(; - 1) = 0 but j =£ 0 and / =£ 1 it is clear
that K has proper zero divisors and hence is not an integral domain.

Let z = a + bj. We proceed to define the norm of z which
we shall denote by N(z).

Definition 4. N(z) = NCa + bj~) = (a + b;)((a + b) - bj)
= a2 + ab.

Theorem 1. N(z,z,) = N(z!)N(z2).

Proof. Let Zi = a + bj and z* = c + dj. Then z,z2 = ac
+ C"d + be + bd~)j and N(z,z2) = Cacy +
CacXad + be + bd) = aV + a-cd + abc* + abed.
Also N(z.) = a2 + ab and N(z2) = c2 + cd. Hence
N(zJN(z2) = (a2 + ab)Cc2 + erf) = a2c2 + a*cd
+ abcs + abed.

15
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Therefore N(z,z2) = N(z,)N(z3).

Theorem 2. If z,z, = 0 then N(z,) = 0 or N(z2) = 0.

Proof. By hypothesis z,z2 = 0. Hence 0 = N(0) = (V^z.)
= N(z!)N(z2) which implies that N(z,) = 0 or
N(z2) = 0.

Theorem 3. Let z = a + bj be an element of K. Then z has
an inverse if and only if N(z) ^ 0 and z_1 = ((a + b)
- b/)(N(z))-»

Proof. Let z have an inverse, z-'. Then zz_1 = 1 and 1 = N(l)
= N(zz-') = N(z)N(z-'). Hence N(z) ^ 0.
Suppose N(z) ^ 0. Then (a + fc/)[((a + b) - bj)
(N(z)-1] = [(a + bj)(Ca + b) - bj)} (N(z)-1
= N(z)(N(z))-1 = 1.

Theorem 4. Let z = a + b/' be an element of K. If N(z) = 0
then z = bj or z = a — aj.

Proof. By hypothesis z = a + bj and N(z) = 0. Hence 0
= N(z) = a2 + ab = aCa + b) which implies that a
= 0 or b = —a.

Therefore if N(z) = 0 then z = bj or z = a —aj.
We will denote the set of elements of K whose norm is
zero by I; that is, I = {z: z e Kand N(z) = 0}. Perhaps
I is an ideal. A little thought, however, quickly indicates
that this is not the case because / is not closed under
addition since; e 1and 1 —/ e I but 1 = (1 —j) + j fl.
But, if we consider the two sets h = {bj:b e R] and h
= {a —aj:a e R) we find that each is an ideal in K.

Theorem 5. h = {bj:b e R} and h = {a —aj:a e R} are both
ideals in K.

Proof. Let zx and z2 be elements of I,. Then Zi = fc,; and z2
=b2j which implies that z» — z2 = i,; — bj =
(b, - b2)j e J,.

Let z be an clement of K and z, be an element of h-
Then z = a + bj and z, = b,;. Hence zz, = (a + b/)
(b,/) = ab,/ + bb,/ = CK + bb^j e I,.

Therefore J, is an ideal in K.
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In a similar manner it can be shown that I. is an ideal
in K.

Theorem 6. I, U I2 = I.

Proof. For each z e h U I2, z c I, or z e I2.

Case 1. z e /,. Then z = bj and N(z) = 0. Hence
z e / and Ji C I.

Case 2. z e I2. Then z = a — aj and N(z) = 0. Hence
z e 1 and J2 C /.

Thus I, U Z2 C I.

For each z e 1, N(z) = 0. By Theorem 4, z = bj or
z = a — aj which implies that z e I, or z t I-.

Thus I C h U f2.

Therefore I, U I. = I.

Theorem 7. I, n I, = (0).

Proof. Clearly (0) C L. n I2.

For each zd, D ^zd, and z e J2. Hence z = bj and
z = a — aj from which it follows that z = O. Thus
h n 72 £ (0).
Therefore I, n Ij = (0).

Theorem 8. h • h = (0).

Proo/. Clearly (0) C I, • I2.

For each z e L. • I2, z = Cbj)C<t ~ aj) = 0. Thus
h • h C (0).

Therefore I, • I2 = (0).

Theorem 9. It is a principal ideal generated by / and J2 is a
principal ideal generated by 1 — ;'.

Proof. Clearly h £ (;).
For each z e (;), z = (a + bj)j where a + bj e K; that
is, z = (a + b)j e I,. Thus (;) C J,.

Therefore /, = (j).

In a similar manner it can be shown that J» = (1 — ;')•
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Theorem 10. Both 7, and 72 are prime ideals.

Proof. We begin by showing that J, is a prime ideal. Let ZjZj e 7,
and suppose z, f 7,. To complete our proof we must show
that z2 e I,. Set z, = a + bj and Z2 = c + dj. Zi j 7,
implies that a ^ 0. z,z2 = (a + bj)(c + dj) = ac
+ Cad + be + bd)j. Thus ac = 0 since z,z2 £ I„ and
hence c = 0 because a ^= 0; that is, z2 e I,.

Therefore 7, is a prime ideal. In a similar manner it can
be shown that I: is a prime ideal.

Suppose we pause for a moment to look at the residue classes
determined by I, and 72. Let z, = a + bj and Zj = c + dj. Since
z, = z2(mod lt) if and only if z, —z2 e /,, a + b; = c + <i/'(mod 7,)
if and only if (a —c) + (b — a*); e 7, which follows if and only
if a = c. In a similar manner it can be shown that z, = z^mod 72)
if and only if a —c = —(b — «"); that is, if and only if a + b
= c + d.

It is now easy to establish that both K/7, and K/l2 are iso
morphic to R.
Theorem 11. K/7, ,S R.

Proof. Let a + bj be the residue class of K/Ii which contains
a + bj. Define a mapping ij>: K/7, -> R by <f>(a + bj) = a.
Clearly 4> is onto. <£(a + bj) = </>(c + dj implies that
a = c and thus that a + bj s= c + djCmod 7,); that is,
that a + bj = c + dj. Hence </> is 1 — 1. <f>Ca + bj
+ c + dj) = $(Ca + c) + (b + d)j) = a + c
= d\(a + bj) + 4>Cc + dj). <f> (a + bj • c + dj)
= <}>(ac + Cad + be + bd)j) = ac = £(a + bj)
*Cc + dj).
Therefore K/7, S 71

Theorem 12. K/72 £ R.

Proof. Let a + bj be the residue class of K/72 which contains
a + 7>/. Define a mapping $: K/72 -» R by $(a + bj)
= a + b. Clearly o> is onto. d\(a + b/) = ^>(c + aj)
implies that a + b - c + d and thus that a + bj =
c + djCmod I2); that is, that a + bj = c + dj. Hence
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<l> is 1 — 1. 4>Ca + bj + c + dj) - ^.((a + c) +
(b + d)j) = (a + c) + (b + rf) = (a + b) +
(c + «") = d.(« + bj) + <f>Cc + dj).

<j>Ca + bj • c + dj) = «/>(ac + (««" + be + b<0/) = ac
+ Cad + be -I- bd) = (a + b)(c + d) = tf,(a + £/)
• 4>(c + rfj).

Therefore K/7... = «•

Theorem 13. 7, and 72 are maximal ideals in K.

Proof. We begin bv showing that 7, is a maximal ideal in K.
Let 7* be an ideal such that 7, C 7* C K. If I, # 7*

then there exists a z e 7* such that z / 7,. The congru
ence zx = b(mod 7,) is solvable for every b in K since
K/7, is a field. Hence zx — b e 7, and zx — b f 7*
from which it follows that b e I*; that is, K C 7*.

Therefore 7* = K and 7, is a maximal ideal in K.

In a similar manner it can be shown that I? is a maximal
ideal in K.

Theorem 14. 7, and 72 are the only proper ideals in K.

Proof. By Theorem 13 the only possibility is that there exists
an ideal 7* such that (0 j =?& 7* C 7, or (0) ^ 7* C I,.
Case 1. (0) =£ 7* C 7,. Then there exists an element

z ^fc 0 such that z e. 1*.

Since z t 7,, z = b/. z ^ 0 implies that t ^ 0, Let
z, e 7,. Then z, = b,/.

Since R is a field and 1^0 there exists an x f R such
that xb — b„ Thus z, = b,/ = (xb); = x(b/) e 7*
and 7, C 7*.

Hence 7* = 7,.

Case 2. (0) ^= 7* C 72. Then there exists an element
z ^ 0 such that z r 7*. Since z f 72, z = a — aj. z =£ 0
implies that a ^ 0. Let z2 e 72. Then z» = az — a-.j.
Since R is a field and a =£ 0 there exists an x e R such

(continued on page 49)



Harmonic Vibration Figures*
Bradley J. Beitel

Student, California State Polytechnic College, Pomona

The harmonograph is a device employing harmonic motion to
describe a graphical figure. It was originally designed to have two
pendulums swinging at right angles to one another in a back and
forth manner only. Such a machine, when properly fitted with a
drawing device, produced harmonograms known as Lissajous figures.
These figures have found application in the field of electronics as
discussed later. The twin elliptical harmonograph, as shown in
Figure 1, is used to describe the figures discussed in this paper and
is a similar device except that both pendulums are allowed to swing
freely in the various phases of the ellipse. Such a machine can
produce Lissajous figures as well as a multitude of modified ones.

The various figures are produced by varying the amplitude,
the ratio of the pendulums' periods, the respective axes of the
ellipses in which the pendulums swing (the shape of the ellipse),
and by changing the direction of swing either to concurrent or
countercurrent. As is easily ascertained with the number of variables
involved, the number of different drawings obtainable is almost
endless. However, many of these drawings are similar in many
respects, and the purpose of this paper is to show where they are
similar and give the mathematical reasons.

Initially a basic understanding of the machine and pendulum
motion is necessary. Pendulums, as used in this machine, swing
with a relatively small amplitude; and, therefore, the maximum angle
the pendulum shaft makes with the vertical axis is small. For small
angles, pendulum motion follows a sine curve [1:75]. This knowl
edge will be used later in deriving equations for the figures. The
period, or the time for a pendulum to make one complete swing, is
constant for any given pendulum length. This holds true whether
oi- not the pendulum swings back and forth or follows an elliptical
path and does not vary even for different amplitudes; therefore, the
period relics solely on the length of the simple pendulum [1:80].
This result is usually true for the pendulums used on the machine.

*A paper prosontod at the 1967 National Convention oi KMT and awarded third plaeo
by tho Awards Committee.
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Figure 1

It is complicated only by the fact that there is some top weight on
the pendulums. As shown in Figure 1, the pendulum rods extend
above the point of suspension. The weight above the suspension
point will cause the pendulum to swing slower; the more weight,
and the higher up the rod it is placed, the longer the period. How
ever, once this weight is fixed, the period will remain constant no
matter how the pendulum is swung. It must be remembered that
the amplitudes must be kept relatively small so that the sine curve
will be simulated. This is even more important when dealing with
top weight.

The machine draws the figures by setting its two pendulums
in motion. On top of one pendulum is mounted a table on which
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the figure is drawn. A long arm with pen attached is mounted on
the other pendulum with the pen resting on the table. As the
pendulums swing, the pen traces the motion of its pendulum on
the table, which is moving in the pattern of the other pendulum.
This motion will begin to decrease as friction slows the motion, and
the figures will grow smaller. This frictional decrease is of the form
c-" where r is a constant of friction [2:899]. Naturally, the larger
r is the faster the system will dampen out, therefore, friction is
kept at a minimum. The pendulums arc suspended on knife edges,
and the pen, where most of the friction is concentrated, is counter
balanced.

With this basic understanding of the machine, we can now
move forward into the study of the figures themselves. One of the
first things noticed about the figures is in respect to the ratio of
the periods of the two pendulums. Good drawings seem to center
around simple ratios, i.e., 1:1, 2:3, 3:4, etc. If the ratios are large
numbers, 12:17 for example, the figures will lack harmony and
symmetry and will seem to be a mere jumble of lines. The figure
will have so diminished in size before it has completed so extensive
a series of loops that the harmony of the design will not be apparent.
These figures are known as discords. Figure 2 is a good example

Figure 2
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of a discord. The ratio here is approximately 10:13. This figure,
as well as all other discords, is actually just as truly the product of
harmonic law as the simple ratio figures and holds to the same
properties. It is not so pleasing because of its long duration. Com
pare Figure 2 with the harmony of Figure 3.

Figure 3

This comparison brings us to an interesting parallel with music
in which, as is well known, the harmonious chords are those which
combine sound vibrations whose periods are in ratios of small num
bers, while the combination of two notes whose ratio of vibrations
is represented by high numbers produces an effect of discord on
the ear. Table I compares the various ratios with their musical
equivalents [1:36].

Another interesting phenomenon takes place when the periods
are slightly out of tune, say a ratio of 1:1.05. Here we will get a
figure which rotates; each successive loop is slightly rotated — the
farther out of tune, the faster the rotation. At the same time the
figure is rotating, it will be changing shape. The individual loops
which make up the figure will begin to change in shape, broadening
or contracting as one pendulum gains on the other.
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TABLE I

Comparison of Pendulum Ratios to their Musical Equivalents

Ratio of Period Musical Chord Component Notes

1:1 Unison CC

5:6 Minor 3rd CE*
4:5 Major 3rd CE

3:4 Major4th CF

2:3 Major 5th CG

3:5 Major 6th CA

1:2 Octave Cc

1:3 Perfect 12th Cg

1:4 Double octave C(f

Since the ratios are nearly equal, this change is gradual, and
the figure remains very pleasing. (See Figure 3.) As the difference
in ratio becomes greater, this change will soon become a major
factor, and the figure will lose harmony.

For each separate ratio (let us assume we are considering the
simple ratios) there is a distinct family of curves. These families
are most noticeable when the pendulums are swinging in straight
lines perpendicular to each other. Here we will find that the number
of loops along each side will correspond to the numerical ratio of
the periods. For example, a figure with a 2:3 ratio would have
two loops or nodes along one side with three along the perpendicular
side (the figures produced being somewhat rectangular in shape).
If the pendulums are swinging in ellipses, a different phenomenon
will take place. The number of loops in a counter-current figure
is the sum of the ratio numbers, while in a concurrent figure, the
difference of the ratio numbers gives the number of loops. For the
counter-current figure, these loops will point outwards from the
center; while when the pendulums are swinging in the same direc
tion, they will point towards the center.



The Pentagon 25

Each family of curves contains almost endless variations, and
these are produced by changing the phase, amplitudes, and respec
tive axes of the pendulums. By starting one pendulum ahead of
another a phase difference will be effected. A different picture for
each phase difference will result, sometimes with so great a varia
tion it is hard for one to distinguish it as a member of its family.

Figure 4 Figure 5

(Compare Figures 4 and 5.) Both figures were drawn identically
except for a 45° phase angle difference. Increasing the amplitude
of pendulum in any one direction will, of course, stretch the figure
in that direction, but since it takes the same time for the pendulum
to make its swing, no other changes due to amplitude will result.
Changing the various axes of the ellipses in which the pendulums
swing is, in effect, varyingthe amplitude in that particular direction.

Another variable of which we must be concerned is the angle
the major axes of the respective ellipses make to one another. The
major axis may run anywhere from parallel to perpendicular, and
the resulting figure is, of course, changed. This change is often hard
to predict. As will be seen later, it is dependent upon how much
the rotation of the ellipses change the respective x and y coordinate
amplitudes. The last variation is concerned with the direction the
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pendulums are swinging. If the pendulums are both swinging
counter-clockwise, a different figure will result than if they were
swinging in opposite directions. As mentioned before, the number
of loops will be different as well as the direction in which they point.

Derivation of a General Equation

for the Figures Produced

As we know, the figures are produced by combining the move
ments of two pendulums swinging in an ellipse, or more simply, the
combination of two ellipses which are ever decreasing in size. Let

Figure 6

us start with a single ellipse as in Figure 6. The first step is to write
the equations for an ellipse in parametric form:

x = a cos $ cos t — b sin 8 sin t

(1)
a sin cos t + b cos 6 sin t

where t is the phase angle measured in radians [3:203].
Equations (1) would very well describe the pendulum's move

ment if started at the point (a, 0) and if the angular velocity were
+1, but in actual practice, the pendulum may be started at any
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point around the ellipse. We, therefore, must show the initial start
ing point, or the initial phase angle. This angle will be a constant,
a, shown in Figure 6. In equations (1), t will now be replaced by
(t + a). The last remaining problem deals with the period of the
pendulum. This period can, of course, be changed to almost any
desired length. In reality, the shorter the period, the faster the
angular velocity. This angular velocity varies directly with the
period. We can, therefore, multiply t by <•>, the angular velocity,
and thereby change the period; a can be either positive or negative,
allowing for either clockwise or counter-clockwise motion. We shall
consider counter-clockwise to be the positive direction. Our final
equations for x and y are as follows:

x = a cos 0 cos (<ot + a) — b sin 8 sin (cot + a)

(2)
y = a sin 8 cos (tot + a) + b cos 0 sin (cot + a) .

Equations (2) are the undampened description of the pendu
lum motion. The exponential dampening factor <r" applies to our
conditions of small amplitude; the pendulums will dampen by this
factor equally in all directions. Therefore, any point (x*, y*) on
the curve described by the pendulum at any time t will be given by

x* = e-"(x)

(3)

y* = e-r'Cy')

where r is a constant of friction applying to the considered system.
We now have a set of equations (3) which completely describe the
motion of one pendulum. Naturally, we have a similar set for the
second pendulum, the onlydifference is that the constants a, b, 8, a,
and a may be different for the second set. It will be of interest to
note the relationship between «,, and a>2, the respective angular

velocities. Their ratio l^Li is exactly the same as the ratio of the
I <°2 I

two periods.
The last step in deriving the equations for the harmonic figures

is relating the two motions. A quick study of the apparatus soon
reveals that the pendulums actually subtract from one another.
This result is easily demonstrated by having the two pendulums
swinging in exactly the same ellipse with equal periods, i.e., a, = at,
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b, = b2, 0, = 82, «, = «2 and u, = «2. The resultant figure will
be a single point at the origin. Assuming (x^, y*) and (x*, y*) to
be any two points of the ellipses described by the respective pendu
lums at any given time t, the point (X, Y) on the resulting curve
will be given by

X = x* - x*

(4)

v = y\ - y\ •

Substituting equations (2) and (3) into (4), we arrive at the final
equations for the resultant figure

X = errt {[a, cos 0, cos (<o,t + «,) - b, sin 0, sin (co,t + a,)]

— [a2 cps 02 cos (<o2t + «2) — b2 sin 02 sin (<i>2t + a2)]}

(5)

Y = tr" {[a, sin 0, cos (to,t + «,) + b, cos 0, sin (w,t + a,)]

— [a2 sin 02 cos (<o2t + o2) + b2 cos 02 sin (w2t + a2)]} .

We have now related all the variables in one expression. With a
little careful inspection, one can determine the change that will
result if one or more of the conditions are altered. It would now
be possible to produce these figures on a computer coupled with one
of the new plotting devices by feeding in the equations and the
proper data for the constants. By making r small figures with very
close lines could be drawn. In effect we could actually make the
figures seem as though they were entirely shaded in, or by making
r somewhat larger, make them dampen out very swiftly, producing
lines far apart.

Naturally, one wonders if these figures have any application.
As mentioned earlier, Lissajous' figures are used in electronics. The
Lissajous figure is produced by having the pendulums swing back
and forth in straight lines perpendicular to one another. The loops
along the sides will give the ratio of the periods. By feeding a wave
of unknown frequency and a wave of known frequency into an
oscilloscope at right angles, a Lissajous figure will be produced on
the screen. The number of loops will determine the frequency of
the unknown wave. Waves of a desired frequency could be gen
erated by the same method. Even the initial phase angle can be
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determined. The elliptical figures have found no application to
date except for giving a visual account for dampened harmonic
motion.

Included arc several more examples of the work done by the
harmonograph. Below each figure the pattern followed by the
pendulums, the initial phase angle, and the ratio of their periods
are given. All these figures are near unison, i.e., the 1:1 ratio. The
figures here are alike in many ways, yet they differ considerably in
appearance.

(ta.i>
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On Least Absolute Values
Derald Walling

Faculty, Texas Technological College

Least Squares is often used out of convenience. (For a better
understanding of this statement, see [2]). Is it not reasonable to
suppose that for certain problems, we would be better off with a
solution based on least absolute values, least cubes, etc. It is true
that it appears that such solutions are, in general, hard to find. It
would appear that the "norm" we should use would depend on the
problem at hand.

The following theorem illustrates some of the above thoughts.
Note especially the wide range of points (x2, y.) can be without
changing the fit.

Theorem: Let (x„ y,), (x2, y2) and (x3, y3) be three
points in the real x, y-plane such that x, < x2 < x3. Suppose it is
desired to find a and b such that y = a + bx is the best fit to
these three points in the sense of least absolute values; i.e., it is
desired to find a and b such that

(1) 7 (a, b) = £ | yf - a - bx( |
i=t

is a minimum. Let (a„, b„) be the solution of the equations

(2) a + bx, = y,

a + bx3 = y3

Then, I is a minimum when 7 = 7(a0, b0).
Lemma: If x, < x2 < x3, then | c + dxx \ + \ c + dx3 \

> | c + dx2 | where c and d are any two real numbers and at least
c or d is nonzero.

Proof of Lemma: (i) a* > 0. If a* > 0 and c is any real
number, then x, < x2 < x3 implies that c + dxx < c + dx2
< c + dx3. If 0 ^ c + ax, < c + dx~ < c + dx3, then
| c + <7x3 | > | c + i7x2 | and therefore | c + ax, | + | c + c7x3 |
> | c + dxa |. If c + a*x, < 0 ^ c + dx2 < c + ax.,, then
| c + i7x3 | > | c + dx.. | and therefore | c + <7x, | + | c + «x3 |
> | c + Wx2 |. If c + «7x, < c + dx. < 0 ^ c + dx.„ then
| c + <7x, | > | c + rfx- | and therefore \ c + dxt \ + \ c + dx3\
> | c + dx. \. If c + i/x, < c + dx. < c + dx3 < 0, then

30
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| c + <7x, | > | c + dx2 | and therefore | c + a*x, | + | c + «"x3 |
> | c + a*x2 \.

(ii) <7< 0. If d < 0 and c is any real number, then
*i < *a < x3 implies that c + dx3 < c + «*x2 < c + tix,. If
0 ^ c + dx3 < c + dxz < c + <7x„ then \c + dxt \ > \ c + dx2\
and therefore | c + dx, | + | c + dx3 | > | c + «"x2 |. If c + dx3
<0^c + Jx2<c + dxu then | c + ax, | > | c + dx2 | and
therefore \c + dx,\ + j c + c7x3 | > \c + dx2\. If c + dx3
<c + dxi<0^c + dxlt then \c + dx3\ > \c + dx2\ and
therefore | c + ax, | + | c + dxs \ > \ c + dx2 \. l£ c + dx3
< c + dx2 < c + ax, < 0, then | c + dx3 \ > \ c + dx2 | and
therefore | c + «**, | + | c + <7x3 | > | c + <7x2 |.

(iii) d = 0. For a" = 0 and c ^ 0, | c + dx, | +
| c + dx3 | > | c + dx2 | becomes | c | > 0 which is clearly true.

Proof of Theorem: Since a0 and b0 are solutions of the
equations (2), the term (yi — a0 — b0x,) and the term (y3 — a0
— b0x3) are identically zero. Let.

I (a0, b0) = | y2 — a0 — b0x2 | = e,.

Assume that there exist some a* and b* such that

7(a», b») = J) | y, - a* - b»x( | = e2 < «,.
1=1

Define (f = a* - a0 and b' = b* — b0. Now, at least a' or b'
is nonzero for otherwise e, < e,. Now,

* =i; i* - «• - b*xs i
i=l

= Iy, - (a' + a0) - (b' + b0)x, |
+ \yz - Co1 + a0) - (b' + b„)x2 |

+ | y, - (^ + «o) - O' + W*a I
= | - a' - b'x, | + | y2 - a,, - b„x2 - (a* + b'x2) |

-f- 1 - a' - b'x3 |
^ | a' + b'x, | + | a1 + b'x3 \ - \ a' + b'x2 | + El

From the above lemma, | a' + b'x, | + | a' + b'x, | > | a' + b'x2 |
and therefore it follows that | a' + b'x, | + | a* + b'x3 | -
| a' + b'x.. | = p where p is some positive real number. Thus,
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E« — p + e, > e,. We have a contradiction. Thus, y = a0 + box
is the best fit in the sense of least absolute values.

Any extension to more points is likely to be very difficult to
prove. It is interesting to observe that the choice of the best fit
line is independent of y2. We also observe that it is independent
of x2 as long as x2 is such that x, < x2 < x3. In certain problems,
it might be very desirable to find a fit not subject to some of the
ordinates.

Some interesting questions arise. When fitting a line to four
points in the sense of least absolute values, would the location of
all points be important? What about when five points are used?
Would one of them be "free" in the sense that the (x„ y2) point
in the above theorem was "free"? What about the general case?

The proof of this theorem for the three point case helps to
illustrate the fact that working with other "norms" can lead to
very difficult problems. Buck [1, page 299] presents a problem
concerning least distance. He discusses the solution to the problem
and presents the necessary formulas to find a line L which "fits"

.v

a set of N points best in the sense that it minimizes V <** where

dj is the distance from the point P, to the line L. This problem
also illustrates that one might, at times, prefer least distance to
least squares even considering the fact that it is more difficult to
handle.
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Mathematicians are like Frenchmen: whatever you say to them
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Finite Differences and the
Summation of Series*

Joyce R. Curry
Student,California StatePolytechnic College, San LuisObispo

The summation of series is a field of mathematics whose basic
notions arose through the study of numbers and the attributes of
numbers arranged in various patterns. The subject matter of sum
mations is divided into two fields of study: the summation of
infinite series and the summation of finite series. Infinite series
are relatively familiar to most students of mathematics since the
techniques for summing infinite series often utilize calculus. Un
fortunately, the sum of a finite series presents a problem which is
not adaptable to the methods of integral or differential calculus.
For example, without using calculus, find the sum of the first »
terms of the finite series whose first four terms are

3, 9, 2, 16 .

The method of finite differences offers a relatively simple general
approach to the summation of any finite series, such as the series
introduced above.

Let a finite series be defined as the sum of a set of numbers
determined by some rational integral function of the positive integer
n. If each number is represented by nt, for x = 1, 2, • • •, n, then
the series may be written as

S = m, + h2 + u3 + • • • + u„ (1)

or, in summation notation,

S = 2 «*•
X=I

Note that the given series could have been any set of rational
numbers. The method is general, but for computational purposes a
set of positive integers was selected as an illustrative series.

Finding the general term is the first step in the summation
of a finite series. By induction, the general (or xth) term of any

•A paper presented to the 1967 national convention of KME.
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finite series may be expressed as

(x — n (x — iv*>«, = «, + Kx, Ah, +^L_i2_A2„, +... + A*-.Ml . (2)

The symbol Ar is read as "the rth difference of." A difference is
defined by the relation

A'h* = A'-'Mtn - A'-'Mfc.

From (2), some of the differences may be calculated:

Am, = «2 - m, (A0 = 1)
A2h, = A«2 — Am,

Asm, = A2M2 — A2M, .

The general term is expressed in terms of the first term and its
successive differences. The symbol y(n) is read "y to the » factorial."
A factorial is defined thus:

y<») = y(y — l)(y— 2) •••

« factors

For example, from (2), (x - 1)<2> = (x -l)(x - 2).
The formula for the genera] term is most conveniently derived

from a table of differences. The table is constructed by separating
each term of the series denoted by S, and then subtracting each
term from its successor, as shown below.

"l «2 U3 Ut • • • M„ «„.,

Am, Ahj. Am3 • • • Ah„

A2M, A2M2 A2M„-l

A3M, • •

The formula for the general term may be read directly from the
table of differences by using the first diagonal on 'the left side of
the table. For example, to find the general term of the given series,
construct the table as follows: ^

3 9 2 16 ^'' 85
6 -7 14 ^'^69

-13 21 „'' 55
34 ^'" 34

0
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Then the general term is read from the first diagonal as:

n. = 3 +6(x - 1) - »C«-1)'» + "C* ~ D»> ,

There are some tacit assumptions inherent in this problem,
and in any finite summation problem. First of all, we are assuming
that the four given terms determine a unique scries, so that the
fourth differences are all 0. This implies that all higher differences
are also 0. (See the dotted line portion of the table of differences).
If the fifth number is projected to be anything but 85, the series is
different from the one whose general term was just found. Then
the general term is unique for this series determined by the four
given terms. The scope of this paper is limited, but for a proof of
the above statements for the general finite series, consult Boole's
Calculus of Finite Differences. [1]

If a relationship may be established between the general term
of a series and the sum of the series, we draw a step closer to the
final goal of the summation of the finite series. In a manner ana
logous to the method of integral calculus, the finite integral, vr,
is defined as the function whose first difference is uT, which says
that

Av, = ut.

In a more conventional manner, let the finite integral be defined
as the inverse of the first finite difference, so

A-'m, = vr + C,

where C is an arbitrary constant of integration. A definite integral
with limits a and b may be evaluated according to the Fundamental
Theorem of Finite Integration (analogous to the Fundamental
Theorem of Integral Calculus):

At I b
A "* a = n — Va '

in which the constant C is evaluated according to the limits.
If the summation problem can be reduced to the problem of

evaluating a finite integral, the work is reduced considerably: in
stead of the addition of n terms, the summation may be expressed
as a single subtraction. It is necessary to prove that the summation
of any series may be expressed as a finite integral.
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Let v, be a function whose first difference is ur, so

Av, = ux .

Then, from the definition of a first difference:

Av, = v2 — V, = H,

AV2 = V3 — V2 = H2

Ar3 = v4 — v3 = u3

• • •

AV„-, = V„ — V,,., = M„-i

AVn = V„t, — V„ = U„

If the middle terms are added, the equality of the sum of the right
side of the expression is unchanged, so

Vn*i — V, = M, + H2 + M3 + • • * + M„ .

Then, the right side is just the earlier definition of S, and the left
side may be written in limit notation, so

I « + 1 cvx | j = S.

But ut is the first difference of vx, which implies that

v, = A-'w, + C.

Then if we substitute for v* its equivalent, the summation of a
series becomes

C * , I « + 1 /JNS = A-»M, j . (3)

Thus, to sum any series, first determine the general term. Then
evaluate the definite integral of the general term between the limits
1 and « + 1.

Note that any "polynomial" in finite calculus must be ex
pressed in terms of factorials. The factorial in finite calculus plays
the same role as does the power in integral calculus. For example,
the student of mathematics knows that, in general,

x-dx = , , + C
M + 1J

If we setup a mapping between integral calculus and finite calculus,
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the finite integral would be

a-'x<»> = JL—- + c .
» + 1

Then, to find the sum of a finite series, the general term is
expressed in terms of factorials (as in (2)), then the finite
integral is set up and evaluated. In terms of the specific example,
the sum is

S= A-M, = A- (3 + 6(x - 1) - 13(* - 1)'-"
j. 14(x - 1)«>\ I « + 1

"/ I 13!

Then the sum is

S = 3«"» + 3«(2> - ii w<3> + H ««»
3 ! 4 !

Now the sum of the first n terms of the finite series has been de
termined. However, there still remains one problem: the sum is
in factorial form, which is not convenient for calculations from a
given «. Then we wish to transform this factorial form to a more
familiar polynomial form.

The transformation from factorials to polynomials could be
effected by multiplying the factors and grouping like terms. How
ever, imagine the work involved in finding x(,0», which is not an
unusual factorial to encounter in sums. Then, instead of using
multiplication, define a new function which will effect the trans
formation directly. That is, let

x<"» = S"x« + S»x2 + S"x» + ••• + S"x" ,

where Sn, are constants known as Stirling Numbers. A recursion
formula is readily developed (see Richardson's text) which gen
erates a table of Stirling Numbers, part of which is shown below.
For example, «<«> = -6m + 11»2 -6m3 + n*. Each term of the
sum may be evaluated in similar manner to yield:

13,„3 _ ,„, L2m) 34
4 !

Cn* - 6»3 + 11m2 - 6m)

S = 3» + 3(m2 - ») - ii(M3 - 3«2 + 2«) + H
3 ! 4 !
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so that

S = -}- (17m1 - 128h3 +301m2 - 154n).

s"i
« 1 S S S S

1 1 1

2 I -1 1

3 1 2 3 1

4 1 -6 11 -6 1

Now that the sum of the series is in polynomial form, exactly what
does it mean? If, for example, we evaluate the expression for n = 4,
we find that the sum of the first four terms is 30. If we evaluate
the expression for n = 20, we find the sum of the first twenty
terms. This particular problem has illustrated the goal of the
numerous statements and equations found in the earlier sections:
the summation of a finite series.

For a long time finite series have been important to men such
as actuaries, who must determine a trend for a short period of
time. It seems that now, in the era of rapid change, finite series
will demonstrate once again the ever-growing role of mathematics
in industry and business.
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Installation of New Chapters
Edited by Sister Helen Sullivan

ILLINOIS ZETA CHAPTER

Rosary College, River Falls, Illinois

On Sunday, February 26, 1967, the Illinois Zeta Chapter was
installedby Dr. Jerome Sachs, president of Illinois Teachers' College,
Chicago North. Dr. Sachs gave a short talk on "Euclid, Mersenne,
Perfect Numbers and the Binary Notation." After the ceremony a
tea was held for the initiates, their parents, and guests.

The following are charter members: Carol Anderson, Elaine
Bardick, Elizabeth Brennan, Thomasyne Campbell, Joanne Capito,
Karen Charvat, Victoria Davis, Verona Fischer, Joan Gengler, Mary
Jo Guzzardo, Mary Pat Hawley, Marie Hill, Patricia Husson, Kath
leen Hytry, Patricia Johnston, Katherine Kahler, Jean Karasch, Judy
Kaiser, Carol Kenealy, Christine Krol, Alice Kuehne, Margaret Mc-
Shanc, Gayle Madonna, Janet Plaza, Patricia Pung, Gail Rihacek,
Sister John Grace, Sister Susan Mary, Diane Shields, Celina Tan-
nura, Joan Weiss. The faculty members are: Dr. John M. Mihaljan,
Mrs. Richard Schooley, Sister M. Colum, Sister M. Raimonda, Sister
M. Philip.

The officers of the chapter are:

President Gayle Madonna
Vice-President Jean Karasch
Secretary Janet Plaza
Treasurer Marie Hill
Faculty Sponsor Sister M. Philip
Corresponding Secretary Mrs. Patricia Schooley

SOUTH CAROLINA BETA CHAPTER

South Carolina State College, Orangeburg, South Carolina

South Carolina Beta Chapter was installed on May 6, 1967,
by Alabama BetaChapter of Florence State College. Dr. Elizabeth T.
Wooldridge, corresponding secretary of Alabama Beta Chapter, was
the installing officer, and Miss Pamela Sams and Miss Mary Virginia
Darby assisted with the ritual. Miss Barbara Wright, Benjamin Fouts,
and Ronald Williams also represented Alabama Beta at the instal
lation. Mrs. Geraldync P. Zimmerman of South Carolina State

39
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College was the conductor. A luncheon was held in the Walnut
Room of the College Dining Hall following the ceremony.

Charter members are: Gary E. Bell, John T. Bowen, Daniel
M. Ferguson, Jr., Lutricia W. Gaillard, William Gilyard, III, Robert
Gyles, Titus J. Hastie, Jr., Eugene Lomax, Binah R. Miller, Mary A.
Nash, Alexander Nichols, Jr., Paul E. Perry, and Harold D. Thomp
son. The faculty members are: E. Melvin Adams, Randall R. Harris,
Dr. George W. Hunter, Mrs. C. Allen Jones, Frank M. Staley, Jr.,
and Mrs. Gcraldyne P. Zimmerman.

The chapter officers are:
President Gary E. Bell
Vice-President Lutricia W. Gaillard
Secretary Binah R. Miller
Treasurer Alexander Nichols, Jr.
Corresponding Secretary Frank M. Staley, Jr.
Sponsor Mrs. C. Allen Jones

TEXAS ZETA CHAPTER

Tarleton StateCollege, Stephcnville, Texas

Texas Zeta Chapter was installed on May 14, 1967, by Dr.
David Cecil, sponsor of Texas Epsilon Chapter at North Texas
State College, Denton. Following the ceremony, a banquet was held
and Dr. Cecil spoke on "Frieze Groups."

Charter members are: John Ammons, Kenneth Carrol, Sam
Daniel, Jr., William Daniel, Dennis Dillin, Floyd R. Hamiter, M. I.
Knudson, Jr., Suzanne Marx, Carroll Wayne Pilgrim, Mary Jo
Stewart, Paul W. Todd, and Marty Wrinkle.

The officers are:

President Dennis Dillin
Vice-President John Ammons
Secretary Mary Jo Stewart
Treasurer William Daniel
Corresponding Secretary Suzanne Marx
Publicity Chairman Paul W. Todd

CONNECTICUT ALPHA CHAPTER

Southern Connecticut State College, New Haven, Connecticut

On May 29, 1967, the Connecticut Alpha Chapter was in-
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stalled by Professor J. D. Daugherty of Kutztown State College,
Kutztown, Pennsylvania. A banquet was held in the Faculty Dining
Hall for the twenty-three initiates and Professor and Mrs. Daugh
erty. The installation followed the dinner, and Professor Daugherty
spoke on "The History of Kappa Mu Epsilon."

The charter members include five faculty members and eight
een students: Chester F. Bass, Helen Bass, Francis J. Degnan,
Henry P. Gates, J. Philip Smith, Lynne A. Alexander, Robert G.
Bishop, Jr., Joyce A. Cromie, Marjorie A. Ewer, Clayton R. Hall,
Arthur H. Hourwitz, Michele A. Joyce, Rae E. Lawson, Richard A.
Loris, Karen M. McDermott, Ronald P. Mileski, Joan A. Moeckel,
Rita C. O'Brien, Janice E. Olcsvary, Rita Renee Parks, Patricia B.
Parsons, Nicholas J. Rinaldi, and Dominic L. Santossio.

The officers are:

President Janice Olcsvary
Vice-President Dominic Santossio
Secretary Karen McDermott
Treasurer Rae E. Lawson
Corresponding Secretary Loretta K. Smith
Faculty Sponsor Chester F. Bass

Mrs. Smith is a member of Virginia Beta Chapter.

(continued from page 7)

rules for derivation of theorems. If we let it run forever, proving
theorems by these rules, there would always be some theorems
which a man, by his ability to think and reason, could prove which
a machine could not. There will never be a replacement for the
mind of man.

BIBLIOGRAPHY

Nagel, Ernest, and Newman, J. R., Godel's Proof, New York: New
York University Press, 1960.

Kleene, S. C, Introduction to Metamathematics. New York: D.
Van Nostrand Company, Inc., 1952.



The Problem Corner
Edited by H. Howard Frisinger

The Problem Corner invites questions of interest to undergraduate
students. As a rule the solution should not demand any tools beyond
calculus. Although new problems are preferred, old ones of particular
interest or charm are welcome provided the source is given. Solutions
of the following problems should be submitted on separate sheets
before March 1, 1968. The best solutions submitted by studnts will be
published in the Spring 1968 issue of The Pentagon, with credit being
given for other solutions received. To obtain credit, a solver should
affirm that he is a student and give the name of his school. Address
all communications to Professor H. Howard Frisinger, Department of
Mathematics and Statistics, Colorado State University, Fort Collins,
Colorado 80521.

PROPOSED PROBLEMS

206. Proposed by Raymond Huck, Marietta College, Marietta, Ohio.
Show that tan2 18° + tan= 36° + tan2 54° + tan2 72° = 12.

207. Proposed by Charles W. Trugg, San Diego, California.
There is only one three-digit number which is equal to twice

the sum of the squares of its digits. Find this number.

208. Proposed by Steven R. Conrad, Flushing, New York.
Find all values of x for which the expression 4* + 4" + 4"

is a perfect square.

209. Proposed by Thomas F. Cleary 111, State University of New
York at Albany, Albany, Neu> York.
Given: An arbitrary triangle A ABC and an arbitrary point P

in the interior of the triangle.
Prove: The sum of the lengths of the perpendiculars from

point P to each of the sides of AABC equals the length of an
altitude of AABC.

210. Proposed by Thomas P. Dence, Bmvling Green State Univer
sity, Bowling Green, Ohio.
The Fibonacci sequence {F„} is defined by F0 = 0, F, = 1,

F„ = F_, + F„.2 for m ^ 2.
Similarly, the Lucas sequence {L„} is defined by L, = 1,

L2 = 3, L„ = L„-, + Lu-2 for w ^ 3.
Then for a given positive integer k, find

42
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lim Fatk I Ln
n -» eo

SOLUTIONS

201. Proposed by William Mikesell, Indiana University of Penn
sylvania, Indiana, Pennsylvania.
Prove the following statement: In the set of regular polygons

only three, the triangle, square, and the hexagon are such that
they can fit together exactly without any gap or overlap.

Solution by Myron J. Fouratt, Montclair State College, Upper
Montclair, New Jersey.
Suppose P is a regular polygon of k sides with vertex angle a.

By drawing a line from each vertex to the center of the polygon, we
construct k isosceles triangles in P. (Each side of P acts as a base
of a triangle). Since there are 180° in each triangle, the

Sum of all angles in P — 180k.

Of this, a certain amount occurs at the vertices but the amount at
the center is a constant 360°. Thus, the

Sum of the angles at the vertices of P = 180fe — 360
= 180 (fe- 2).

Since there are fe vertices in P, each vertex angle is

n _ 180(fe - 2)a j . (1)

Since we do not know how many polygons P are needed to fit to
gether about a common point, let n denote the requisite number.
Now, each of these n polygons contributes its vertex angle to the
common point and, in order that there are no gaps or overlaps, the
number of vertices times the size of each vertex angle must equal
360°:

360°«a = 360° or a = ^=- . (2)
M

Equating (1) and (2), and simplifying,

2fe

h = fe - 2 "
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Adding and subtracting 4 from the numerator, factoring the numer
ator, and then dividing, we obtain

» = 2 +
fe - 2 '

We recall, at this point, the restriction on n:

a) n must bea positive integer, and
b) n must be greater than orequal to 3.

Since fe must also be a positive integer greater than or equal to 3,
wetry fe = 3 in the last equation and obtain w= 6, a valid solution.
If fe = 4, we have n = 4, another valid solution. However, if fe = 5,
n = 3 + 1/3, which fails to satisfy the first condition. Thus, the
regular pentagon will not work. If fe = 6, n = 3, and a third valid
solution is possible. If fe = 7, n = 2 + 4/5, which fails to satisfy
both conditions. In fact, all numbers for fe greater, than 6 afford no
other valid solutions since the corresponding n will be a fraction
between 2 and 3.

In the set of regular polygons, then, the only ones that fit
together exactly without gap or overlap are the equilateral triangle
(fe = 3), the square (fe = 4), and the regular hexagon (fe = 6).

Also solved by John C. Kieffer, University of Missouri at
Rolla, Rolla, Missouri; Layne Watson, University of Evansville,
Evansville, Indiana.

202. Proposed by R. S. Luthar, Colby College, Waterville, Maine.
Show that there are infinitely many primes of the form:

x3 + y3 + z3 4- u3 + f.

Solution by Layne Watson, University of Evansville, Evansville,
Indiana.

Let x = fe + 1

y = fe - 1

z = -k

u = -k

t = 1

Then x3 + y3 + z3 + K3 + t3 = 6fe — 1, and there are in
finitely many primes of the form 6fe — 1.
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203. Proposed by Layne Watson, University of Evansville, Evans
ville, Indiana.

Prove that the sum of N vectors of equal length radiating
from a point P is zero, where the angle between a vector and the

JV-l
2ttMpreceding one is —. Use this result to prove that 2) c°s ^— = 0

, ^ . 2*w
and ^j sin-— = q, where N is an integer > 1.

Solution by Calvert A. Jared 77, Butler University,
Indianapolis, Indiana.
We will look at two cases.

Case I. Let N = 2. Then the angle between the two vectors
is w (they both lie on the same line). So if w, and w2 are the two
vectors, w2 can be expressed as —wt. Hence

w, + w2 = w, — w, = 0 .

Case 11. Let N > 2. Pick any of the vectors as a stationary
one. Then if we take the vector immediately following it (as we go
from right to left), and place its origin at the endpoint of the sta
tionary one, the angle between the two vectors will be (*• — 2*r/N).
If we do this for all N vectors, i.e., keep putting the next vector at
the endpoint of the preceding one, we will have a figure of N equal
sides and all angles having size (jt — 2sr/N). Hence the figure
will be a regular polygon of N sides. Therefore it will be closed;
the last vector will have its endpoint at P. Hence the vector sum
will be zero.

-V-l

Let ^ w„ = 0 denote the sum of the N vectors. Since each
n=o

vector is of the same length we can express wn as wan where <x„ is
a unit vector in the direction of w„.

JV-t A'-l K-\

So 2W» = 2"'a" = "S""' But cacn vector a» can Be
n=0

expressed by a component in the x direction (x„l) and a component
in the y direction (y„D- Hence



46 The Pentagon

n=o ">=«

.V-l .V-l

= w]gx„i + w2)vj.
11=0 n=o

But x„ = r cos 0„

y„ = r sin 0n where r = 1
So x„ = cos &a

y„ = sin 0n

But if m = 0 0o = 0

« = 1 0, = 2r/N

„ = 2 «, = 2r(2)/N

2-nSO Xtt = COS -j^-

2ttm

N '
sin

0a = 2nn/N

i-\ 2jt»i , , '^ • 2ttm _ nSo w5) cos -jTT- i + wjnn-jrl - ° •
11=0 «=»

Hence wVcos^i = 0 and u-Y sin -ff-i = 0 or

(„,|\os^)i =Oand|ii>'|sin^)i =0.
But w is non-zero and i and 1 are both unit vectors by definition, so

_-^ 2i7tl _ i v-v • *~n — n^ cos -j-p = 0 and £ sin -^- = 0.
n=o n=0

204. Proposed by the Editor.
Show that among any ten consecutive positive integers, at
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most five can be primes, and that five actually occur in only one
case. Must at least one of any ten consecutive positive integers
be prime?

Solution by Thomas F. Cleary III, State University of New
York at Albany, Albany, New York.
Among any ten consecutive positive integers five are odd and

five are even. With the exception of the integer 2, which is both
even and a prime, the five even integers cannot be prime since they
are divisible by 2. The five odd integers can all be prime, thus there
can be at most five primes among the ten consecutive integers.

Consider the exception described above where the integer 2
is among the ten consecutive positive integers. There are two pos
sibilities:

1,2,3,4,5,6,7,8,9,10 or 2,3,4,5,6,7,8,9,10,11

The first contains the four primes 2, 3, 5, and 7. The second
contains the five primes 2, 3, 5, 7, and 11. To show that this second
possibility is the only one that contains five primes, consider all
remaining sets of consecutive positive integers whose first integer
is greater than 2. From before, every such set contains a subset of
five consecutive odd integers all of which may be prime. Denote the
first three of these integers A, A + 2, and A + 4 where A is odd.
If A is divisible by 3 then A is composite, therefore there can be
at most four primes among the five odd integers. This proves the
uniqueness of the above set of five primes. However, if A is not
divisible by 3, then either A = 3fe + 1 or A = 3fe + 2, where fe
is a positive integer.

If A = 3fe + 1 then A + 2 is divisible by 3. If A = 3fe + 2
then A + 4 is divisible by 3. Thus in any case one of the three odd
integers A, A + 2, and A + 4 is divisible by 3. Therefore among
the ten consecutive integers at most four are prime. This proves
the uniqueness of the above set of five primes.

It is possible that among the ten consecutive positive integers
there are no primes as is the case in the following examples:
114, 115, ••♦, 123 or 200, 201, • • •, 209 or 212, 213, • • •, 221

Also solved by Thomas P. Dence, Bowling Green State Uni
versity, BowlingGreen, Ohio; Calvert A. Jared II, Butler University,
Indianapolis, Indiana; John C. Kieffer, University of Missouri at
Rolla, Rolla, Missouri; James Lander, Illinois State University,
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Normal, Illinois; R. S. Luthar, Colby College, Waterville, Maine;
Layne Watson, University of Evansville, Evansville, Indiana.

205. Proposed by Thomas P. Dence, Bowling Green State University,
Bowling Green, Ohio.

The Fibonacci sequence {F»} is defined as

F0 = 0, F, = 1, Ffc = F*., + Fk.2 for fe ^ 2.

Now let /(») represent the continued fraction

fCn) = F„ + 1

F» + 1

F2 + 1

Fs +

F« +

and let g(«) represent the continued fraction

g(M) = F„ + F,

F2 +

F, +
+

Fe +

+ J_
F„

+ Iv,
F„

Determine, whether possible or not, and if so, an exact value for
lim /(m) and lim g(«).

m -* oo » -* 00

Solution by Layne Watson, University of Evansville,
Evansville, Indiana.

The continued fractions for f(») and g(») are infinite, so
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they arenot rational numbers. Further, since the continued fractions
are not periodic, fCn) and g(M) are not quadratic surds. Because
of the nature of continued fractions, /(m) is greater than each odd
convergent and less than each even convergent, and each convergent
lies between the preceding two. Each convergent is a rational num
ber, and /(«) is the least upper bound of the (infinite) set of odd
convergents. Therefore /(») is a real number. Similarly, since g(M)
is the least upper bound of an infinite set of rationals (its odd con
vergents), it is a real number. fCn) and g(M) can be thought of as
infinite nonrepeating decimals, and therefore no exact values can
be given. Numerically,

.5888739525489335 < /(m) < .5888739525489339

and

.6416600010214519 < g(w) < .6416600010214521 .

©

(continued from page 19)

that xa = a2. Thus z2 = a2 — a2j = xa — xaj =
x(a - aj) e I* and 72 C 7*.

Hence 7* = 7,.

Therefore 7, and 72 are the only proper ideals in K.
Corollary. Every ideal in K is principal.

It can also be shown that K is isomorphic to a particular
set of 2 X 2 matrices under the correspondence

|_0 a + bj



The Book Shelf
Edited by John C. Biddle

This department of The Pentagon brings to the attention of its
readers published books (both old and new) which are of a common
nature to all students of mathematics. Preference will be given to
those books writen in English or to English translations. Books to be
reviewed should be sent to Dr. John C. Biddle, Mathematics Depart
ment, Central Michigan University, Mt. Pleasant, Michigan 488S8.

Modern Mathematics — An Elementary Approach, Ruric E.
Wheeler, Brooks/Cole Publishing Co., Belmont, California,
1966. 438 pp., $8.95.
This text is one of many recent publications designed to pro

vide the elementary education major with a sufficient mathematical
background to teach the modern elementary arithmetic curriculum.
The preface states that the text essentially fulfills CUPM recom
mendations. The preface also notes that the book grew out of train
ing of elementary school teachers. The coverage of topics is adequate
and the presentation is good; hence it can be safely recommended
as an addition to the growing collection of similar adequate texts.

Specifically the text covers arithmetic and number systems
through the real numbers in 268 pages. Geometry is allotted eighty-
three pages and algebra (including complex numbers) is given only
thirty-two pages. Within the arithmetic coverage, fifty pages is
devoted to number theory. The text is clearly sufficient for a course
in arithmetic. However, coverage is too light to provide sufficient
background in geometry or algebra, particularly algebra, for the
teaching of modern elementary programs.

A brief introductory chapter discusses mathematical "reason
ing"; an equally brief development of sets follows in the second
chapter. The development of equivalence relation and one-one
correspondence is not adequate as a foundation for the rest of the
material of the text. The third chapter discusses the concepts of
natural number, order, cardinal number, ordinal number, infinite,
whole number, and zero in the restricted space of less than two
pages. The rest of the chapter adequately develops the ring prop
erties of the whole numbers as well as the inequality laws.

In chapter four on numeration systems (covered in less than
thirty pages of exposition) topics are handled too lightly. Four pages
are used to cover the standard historical systems. Another four pages

50
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are allocated to our decimal place value system together with the
properties of exponents. The rest of the chapter concerns other base
systems.

The next three chapters cover integers, rational numbers, and
real numbers. This development is good and uses sufficient exposi
tion. Proofs of properties are adequate. The author weakens the
text when he discusses (on page 131) the "likeness" between natural
numbers and positive integers; he also mentions the idea of "em
bedding." However, he has defined the integers to be an extension
of set of natural numbers, so there is indeed identity not isomor
phism between the sets. The rationals arc defined as usual as
equivalence classes of ordered pairs of integers. Here only isomor
phism can exist between the integers and the appropriate subset
of rationals, yet on page 159, he says "the integers are 'imbedded in'
or 'contained as a subset of the set of rational numbers." Clearly,
the careful reader will be confused. The author fails to mention the
term "isomorphism," but stresses the idea of extension.

The treatment of real numbers is very good. A careful devel
opment, of course, is not proper for this type of text. A real number
is defined to be an infinite decimal number. Addition is considered
(informally) as the limit of the partial sum; multiplication is sim
ilarly defined. This work is preceded by the usual topics of repeating
and non-repeating decimals.

The geometry chapters are good but brief. They include a
good development of measure of a segment and an angle, but a weak
treatment of area. A good beginning is made for congruence and
similarity proportion of triangles. The treatment of algebra is quite
inadequate and deals primarily with quadratic relations.

In summary, the text is a good one and can be handled by the
elementary major. Most of the flaws mentioned above can be
easily handled and overcome by the instructor. The level and tone
of the text is moderate and reasonable. Problem sections are adequate
and a complete answer key is provided as an appendix. Chapter
summaries are provided and additional readings are suggested.

J. K. Bidwell
Central Michigan University

Mathematical Quickies, Charles W. Trigg, McGraw-Hill, New York,
1967, Cloth, 210 pages, $7.95.
To anyone familiar with the problem sections of Mathematics
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Magazine, The Pentagon, School Science and Mathematics, the name
Charles W. Trigg is a well-known one. Mr. Trigg, now Dean Emer
itus of Los Angeles City College, was for forty years a teacher of
science and mathematics. He has published over 600 articles and
problem solutions, has a collection of over 16,000 intriguing prob
lems, and from these he has selected 270 that he considers most
stimulating and worthy of the label "Quickies". The reader is pre
sented with a double challenge — to solve the problems and to
devise more elegant solutions than those provided by Mr. Trigg and
102 of his fellow problemists (including such names as N. Anning,
M. Beberman, M. Klamkin, L. Moser, C. Read). An elegant solution
is defined as "one characterized by clarity, conciseness, logic, and
surprise."

Some of Mr. Trigg's "Quickies" proved to be "Longies" for me
(e.g. "Solve x3 + 1 = y2 as a Diophantine Cubic") I did indeed
find solutions of (-1, 0) and (0, ±1) quickly. (2, ±3) took a
bit longer, but then to prove there were no more — well, if it's a
"Quicky" for you, congratulations! There are many problems ele
mentary school children will enjoy, and some problems involving
algebra, geometry, trigonometry, or number theory. Consider these
intriguing problem names: "The End of the World," "The Dozing
Student," "The Beauty Contest," "The Hula Hoop." For the purists,
we find the Steiner-Lchman Theorem and the Fibonacci Series.

From a teacher's standpoint, when using the book as a source
of problems to spice a particular unit, I would have preferred the
problems to b? grouped according to branches of mathematics. The
heterogeneous mixing of types by the author is intentional, however,
as he feels an important part of the challenge of any problem is to
settle upon the particular branch of mathematics to be used. The
teacher will therefore have to meet the challenge before he can
challenge his students. If you're not always able to find the time for
all the challenges a teacher is faced with these days, the detailed
solutions of each problem provide quick and welcome help. I predict
the reader of this book will have fun and also learn many helpful
problem-solving techniques — whether his solutions be "Quickies"
or "Longies."

Donald F. Marshall
Harvard Graduate School of Education
Cambridge, Mass.



The Mathematical Scrapbook
Edited by George R. Mach

Readers are encouraged to submit Scrapbook material to the
editor. Material will be used where possible and acknowledgement
will be made in THE PENTAGON.

The Fall 1965 MATHEMATICAL SCRAPBOOK had a note
about the reciprocals of primes as repeating decimals. Let's take
another look at some of them.

When we divide any number by 13 there are just twelve

possible non-zero remainders. As we saw before, — = 0.076923
13

where the bar indicates the repeating digits. Since this decimal re
peats six digits, just six of the possible remainders appear (10, 9,
12, 3, 4, 1 in that order) and then they repeat if the division is
continued.

It is interesting to note that — = 0.153846 and that this

division yields the other six possible remainders (7, 5, 11, 6, 8, 2
in that order) and then they repeat. Of course, zero is not a possible
remainder and no remainder can belong to both sets. Why? Note
that the sum of each set of remainders is 39. Why 39?

However, more interesting properties of these repeating deci

mals are yet to be seen. As expected, — = 2(—) =

2(0.076923) = 0.153846 . The repeating decimals for all proper
fractions with denominator 13 exhibit only these two cyclic se
quences of digits, the different ones simply starting with a different
digit. The patterns are easily seen when they are arranged as follows

± = .076923 A. = .153846

10 7-jj = .769230 — = .538461

jj = .692307 A. = .384615
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12

13

3_
13

_4
13

44 = .923076

= .230769

-4- = .307692

The Pentagon

U

13

Ji
13

_8
13

44- = .846153

44 = .461538

44 = .615384

Can you find a pattern which determines or limits how the
fractions are segregated into these two sets? What happens in the

case of a reciprocal like y , where all six of the possible non-zero

remainders appear in the division process? Well, — = 0. 142857

and — =0.285714 looks like an interesting start. What happens

in the caseof a reciprocal like — , where just four of the possible

forty non-zero remainders (18, 16, 37, 1 in that order) appear and
then they repeat if the division is continued? A few of the repeating
decimals follow:

44 = .02439 44 = .12195 44 = .21951
_1
41

_2_
41

41

_4
41

5

41

6

41

7

41

8

41

9

41

10

41

U

41

12

41

= .04878 —- = .14634 44 = .24390

44 = .07317 -tt = .17073 ^r = .26829

-4 = .09756 44 = .19512 44 = .29268

Note the patterns appearing already. Into how many cyclic
sets do you expect all forty of them to fall? Is it important to note
that there are five digits in the repeating portion of the decimals?
Think of a good question yourself and then try to answer it.

= A =

Consider a triangle ABC, its circumscribed circle, and its in
scribed circle. (The sides of the triangle are chords of the circum-
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scribed circle and they are tangent to the inscribed circle.) Select
any point D other than A, B, or C on the circumscribed circle and
lay out from it two chords DE and DF of that circle, each tangent
to the inscribed circle as indicated.

Is it possible that a third chord EF, which completes the tri
angle DEF, might also be tangent to the original inscribed circle?
What happens when ABC is equilateral? Are there any other inter
esting special cases? Can any generalizations be made?

= A =

Magic squares and magic circles have had recent mention in
the MATHEMATICAL SCRAPBOOK. Domino magic squares may
be formed in much the same manner as magic squares. Using all
members of an ordinary double six set of dominoes, a 7 x 7 square
(a column of blank sides of the dominoes on one edge completes it)
can be formed with each row, column, and diagonal summing to 24.

Using just a part of the dominoes, many even order squares
can be formed. An example of a 4 x 4, whose sum is five, is given
below.
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*

• •

If we use the complement of each number with respect to six,
we get a square whose sum is nineteen. If we complement each num
ber with respect to four, we get a square whose sum is eleven, etc.
However, many essentially different squares of order four (as well
as other orders) exist. Get out some dominoes and see what you can
do.

=A=

The late Professor W. F. White reported a student's question
and his answer regarding fourth dimension by analogy as follows:

Q. If the path of a moving point (no dimension) is a
line (one dimension), and the path of a moving line is
a surface (two dimensions), and the path of a moving
surface is a solid (three dimensions), why isn't the path
of a moving solid a four-dimensional magnitude?

A. If your hypotheses were correct, your conclusion
should follow by analogy. The path of a moving point is,
indeed, always a line. The path of a moving line is a
surface except when the line moves in its own dimen
sion, "slides in its trace." The path of a moving surface
is a solid only when the motion is in a third dimension.
The generation of a four-dimensional magnitude by the
motion of a solid presupposes that the solid is to be
moved in a fourth dimension.



Kappa Mu Epsilon News
Edited by Eddie W. Robinson, Historian

The Sixteenth Biennial Convention of Kappa Mu Epsilon was
held April 6, 7, and 8, 1967, with Kansas Gamma at Mount
St. Scholastica College, Atchison, as host chapter.

THURSDAY, APRIL 6, 1967

Following the registration, a Relaxer was held in the Riccardi
Center Game Room. Chapter news and ideas were exchanged, chap
ter songs were sung and all delegates to the convention got
acquainted. The National Councilmet in the Library SeminarRoom.

FRIDAY, APRIL 7, 1967

The meetings were held in the Administration Building Audi
torium. National President, Fred W. Lott, of Iowa Alpha presided.
President Gustane C. Zader of Mount St. Scholastica College gave
the address of welcome and National Vice-President George R. Mach
responded for the society. The roll call of the chapters was made
by Laura Z. Greene, National Secretary. The following chapters,
approved for membership since the last national convention, were
welcomed:

Iowa Gamma, Morningside College, Sioux City,
Maryland Beta, Western Maryland College, Westminster,
New York Zeta, Colgate University, Hamilton,
Illinois Zeta, Rosary College, River Forest.

Petitions for new chapters at Grove City College, Grove City,
Pennsylvania, South Carolina State College, Orangeburg, and Tarle-
ton State College, Stephenville, Texas, were presented and approved.

Dr. George R. Mach presided during the presentation of the
following papers:

1. A Platonic Philosophy of Zero, Joseph E. Hilber, Iowa
Gamma, Morningside College.

2. Finite Differences and the Summation of Series, Joyce R.
Curry, California Gamma, California State Polytechnic
College.

3. The Movable Figures, Andrea Lee Meyer, Kansas Gamma,
Mount St. Scholastica College.
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4. Communications Networks Using Matrices, Judy Kalden-
berg, Iowa Alpha, State College of Iowa.

After lunch in Riccardi Center and the taking of the group
picture, the faculty members and students met separately in two
"Let's Exchange Ideas" discussion sections.

The convention reconvened at 2:30 p.m. and after reports
from the two sections, the following student papers were presented:

5. Godel's Incompleteness Theorem, John W. Bridges, Mis
souri Alpha, Southwest Missouri State College.

6. Ah Introduction to Topological Groups, Jo Ingle, Kansas
Gamma, Mount St. Scholastica College.

7. Harmonic Vibration Figures, Bradley J. Beitel, California
Delta, California State Polytechnic College.

8. Fibonacci Numbers, Karen Johnson, Wisconsin Alpha,
Mount Mary College.

A banquet was served in Riccardi Center with Sister Malachy
Kennedy, Kansas Gamma, as Mistress of Ceremonies. Sister Helen
Sullivan, Chairman, Department of Mathematics, Mount St. Scho
lastica College, gave the invocation. After some vocal selections from
the Mount Ensemble, the guest speaker, Professor Seymour Schuster,
University of Minnesota, spoke on "Mathematicians that Work on
Films." He showed two films: "Geometry" and "Curves of Constant
Width."

SATURDAY, APRIL 8, 1967

The program began at 8:30 a.m. with the following student
papers:

9. Am Introduction to Geometric Models Based on Axiom
Systems, Leora Ernst, Kansas Gamma, Mount St. Scholas
tica College.

10. Symbolic Logic and its Relation to Computers, Donald
Marks, Michigan Beta, Central Michigan University.

11. A Method Beyond the Taylor Series for Computing Values
of an Integral for Large X, Martha Robinette, Missouri
Alpha, Southwest Missouri State College.

12. Significant Theories and Subsequent Observations on the
Subject of Twin Primes, Elizabeth Murphy, Kansas
Gamma, Mount St. Scholastica College.
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The following papers were listed by title:
1. The Axiom of Choice, Lawrence D. Tomlin, Kansas Beta,

Kansas State Teachers College.
2. Om the Nature of Mathematics, Sheila R. Predmore, New

York Beta, State University of New York at Albany.
3. Am Introduction to Fibonacci Numbers, Bernita Meyer,

Kansas Gamma, Mount St. Scholastica College.
Professor Charles B. Tucker, Kansas Beta reported for the

nominating committee. The following list of national officers was
elected for 1967-1969.

President Dr. Fred W. Lott, Jr.
University of Northern Iowa

Vice-President Dr. George R. Mach
California State Polytechnic College

Secretary Professor Laura Greene
Washburn University of Topeka

Treasurer Professor Walter C. Butler

Colorado State University
Historian Professor Eddie W. Robinson

Southwest Missouri State College

Professor Ronald G. Smith, Kansas Alpha, Chairman of the
Awards Committee made the following awards to the students listed
below for papers presented during the convention.

First Place John W. Bridges, Missouri Alpha
Second Place Leora Ernst, Kansas Gamma

Third Place Bradley J. Bcitel, California Delta

Professor D. V. LaFrcnz, Missouri Gamma, reported for the
resolution committee. The following resolution was adopted:

Whereas the sixteenth biennial convention on this beautiful
college campus has been a very enjoyable and profitable conference,
be it resolved that we express our appreciation to:

1. The host chapter, Kansas Gamma, and its moderator
Sister Helen Sullivan, to Mount St. Scholastica College of
Atchison, Kansas, for their hospitality, and efficient organiza
tion of all major and minor details that contributed so well to
the success of the convention, and to the Mount Ensemble for
their musical entertainment.
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2. Each national officer: President Professor Lott, Vice-
President Professor Mach, Secretary Miss Laura Greene,
Treasurer Professor Butler, and Historian Professor Haggard,
and all their efficient assistance.

3. Professor Kriegsman, the editor of THE PENTAGON,
and to Professor Waggoner, the business manager of THE
PENTAGON, who have so satisfactorily maintained the qual
ity of our magazine.

4. Professor Seymour Schuster, who provided the edu
cational inspirational program at the convention banquet.

5. The fifteen students who have prepared and pre
sented the excellent papers which formed an integral part
of the convention program.

REPORT OF THE NATIONAL PRESIDENT

These are days of rapid change in colleges and universities
which is reflected in the continued growth of Kappa Mu Epsilon.
There were 2,836 new members initiated this biennium as com
pared with 2,364 in the previous biennium, an increase of twenty
per cent. During the two years of this biennium we have installed
eight new chapters. These are: Pennsylvania Beta at Indiana Uni
versity of Pennsylvania; Arkansas Alpha, Arkansas State College;
Tennessee Gamma, Union University; Wisconsin Beta, Wisconsin
State University at River Falls; Illinois Zeta at Rosary College; Iowa
Gamma, Morningside College; Maryland Beta, Western Maryland
College; and New York Zeta at Colgate University. A new chapter
was recently approved for Southern Connecticut State College by
vote of the Chapters and arrangements are now being made for its
installation. By your vote yesterday three more chapters will soon
be added. We now have seventy-six active chapters and the four
additional chapters to be installed in the near future will make a
total of eighty.

There were two regional conventions held last year. Mount
Mary College in Wisconsin was the host chapter for the North
Central Region. There were four chapters represented with sixty
KME members attending. The Middle West Regional Convention
was hosted by Southwest Missouri State College with an attendance
of 101 from fifteen chapters. We should continue to support these
regional conventions in the even-numbered years and encourage
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other regions to plan such meetings. For this purpose the national
organization provides up to $100 to help defray the expenses of
the host chapter of each regional conference.

The action of this convention in strengthening the member
ship requirements and authorizing the National Council to seek
membership in the Association of College Honor Societies is an
important step forward and will have significant impUcations for
the future development of Kappa Mu Epsilon.

As you noted from the Treasurer's Report, our operations for
the last biennium resulted in a small deficit for the first time. Part
of this is due to the greater distances for most chapters to the previ
ous national convention resulting in somewhat larger travel allow
ances. Another reason of course is the increase in general costs of
operation in the last fourteen years since the present dues were
established in 1953. Perhaps an increase in initiation fees is inev
itable sometime in the future; however, after careful consideration,
your National Council has decided against making such a recom
mendation at this time. We are a non-profit organization and there
is no reason to make substantial increases in the treasury each
biennium. This situation will be under continual study to make
certain that the assets of Kappa Mu Epsilon remain at a level that
will assure sound financing.

The method of basing travel allowances of convention dele
gates on railroad costs has become quite awkward. In recent years
it has become more difficult to travel by train or even to get a
quotation of what rail travel would cost. Last night your council
approved a change to a simple five cents per mile allowance. Since
this requires a change in the constitution, this matter will be sub
mitted to the chapters for their vote during the fall term.

One of the heartwarming aspects of being a part of Kappa Mu
Epsilon is the way people respond to help with the on-going program
of the organization. A society such as Kappa Mu Epsilon could not
exist without the voluntary efforts of many people. The national
officers whose reports you have just heard spend many long hours
carrying out their responsibilities. We are indebted to the Editor
and Business Manager of THE PENTAGON for the excellent
journal they produce. This magazine is among the most important
projects of Kappa Mu Epsilon. These last two days one is immedi
ately aware of gracious services of our host chapter in planning and
providing for the needs of this convention. Then there are those
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who serve on committees and other convention responsibilities, those
who have prepared and presented papers, those who have made the
regional conventions possible, the student officers, faculty sponsors
and corresponding secretaries at local chapters throughout the coun
try. The list is extensive. To all those persons who have had a part
in carrying forward the work of Kappa Mu Epsilon I would like
to express both my personal appreciation and that of the entire
organization.

Fred W. Lott, Jr.

REPORT OF THE NATIONAL VICE PRESIDENT

On April 23, 1966, the National Council appointed me vice-
president to fill an existing vacancy. I appreciated the confidence
placed in me by the National Council. Since then, I have conferred
personally with the National President and the National Secretary
and by mail with the other officers. I have enjoyed working with
the National Council under President Lott's direction.

My major effort this past year has been toward arranging and
conducting the student presentations for this convention. An an
nouncement including instructions for submitting papers was sent
to all chapters in October and a similar announcement appeared in
the Fall 1966 issue of THE PENTAGON. I appointed and acted
as chairman of the Student Paper Selection Committee, which
included as members: Professor Raymond Carpenter, Oklahoma
Alpha; Professor Z. T. Gallion, Mississippi Alpha; and Professor
Margaret Martinson, Kansas Delta. Fifteen papers were submitted
from ten chapters. Twelve were selected for presentation and three
as alternates. All instructions and correspondence with the students
was done by me.

Kappa Mu Epsilon is a student society and it exists to honor
and serve its members. It is recommended that we seek to attain
the widest possible representation at the biennial conventions so
that the mathematical experiences of the delegates and their chapters
may be enriched. It is also recommended that sincere encourage
ment be given to students to prepare papers for presentation at our
conventions and publication in THE PENTAGON. Kappa Mu
Epsilon offers to its student members these unique and valuable
opportunities which they might not get in any other way.

George R. Mach
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REPORT OF THE NATIONAL SECRETARY

Kappa Mu Epsilon has more than twenty-three thousand
members with seventy-six chapters in twenty-seven states.

All routine correspondence with the national organization
comes to the secretary's office. We process membership reports,
orders for invitations, jewelry, and supplies. We maintain a file
of the original membership cards, initiation reports and chapter
by-laws.

I appreciate the cooperation of the corresponding secretaries
of each chapter in carrying out the many details of the office.

Laura Z. Greene

REPORT OF THE EDITOR OF THE PENTAGON

During the past biennium there have been several changes in
the editorial staff of THE PENTAGON. At the last convention
Fred W. Lott requested that a new editor be appointed as he
assumed other responsibilities in Kappa Mu Epsilon. At the same
time Jerome Sachs asked to be relieved of his position, and George
R. Mach, California State Polytechnic College, became the new
associate editor in charge of the Mathematical Scrapbook. Beginning
with the Spring, 1966, issue H. Howard Frisinger replaced F. Max
Stein as Problem Corner editor — both of these men are from
Colorado State University. Recently, James P. Burling, State Uni
versity College ofOswego, has replaced Harold Tinnappel of Bowling
Green State University, who served as Book Shelf Editor for the
first three issues. J. D. Haggard, Kansas State College of Pittsburg,
the National Historian, has continued to keep the fraternity informed
of the activities of the various chapters by editing the Kappa Mu
Epsilon News. The reports of Installation of Chapters have been
handled by Sister Helen Sullivan of Mount St. Scholastica College.
Each of these people has worked diligently, and I do wish to express
appreciation to each of the former editors who gave valuable assist
ance to his successor.

Two other individuals who deserve much recognition for their
untiring efforts and patience are the business manager, Wilbur J.
Waggoner, andthe manager of the University Press, Irwin Campbell,
both of Central Michigan University. They have been especially
helpful to the new editor through their valuable suggestions. We
would also be remiss if we did not recognize the assistance of the
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sponsors, corresponding secretaries, and other faculty members of
the chapters who have supplied information and encouraged stu
dents to submit papers and who have refereed papers.

There have been three issues of THE PENTAGON published
since the last convention and the fourth issue is now in the process
of being printed. In addition to the regularly published sections
there have been twenty-one articles, including fifteen student papers
and six written by faculty members and others.

THE PENTAGON, as the official journal of Kappa Mu
Epsilon, attempts to reflect the objectives of the organization, and,
therefore, stresses the role of the undergraduate student of mathe
matics. I would like to urgeeach of the students to become an active
participant in this publication through writing papers, proposing
problems, or submitting solutions to ones already posed, and I hope
that each faculty member will encourage the students in their
endeavors. This work will require time and effort on the part of
both the student who prepares the manuscript and the faculty mem
ber who guides him, but I am sure that the rewards of publication
will bz gratifying. Of course, we are always ready to consider any
article which is interesting and stimulating to the student so papers
from faculty members and others are also welcome.

A few of you have made suggestions and comments relative
to THE PENTAGON and these have been given the careful atten
tion of the editor involved. We welcome these ideas and invite your
criticisms, but above all contribute your articles, problems, solutions,
and other appropriate items.

Helen Kriegsman

REPORT OF THE BUSINESS MANAGER OF THE PENTAGON

I feel somewhat like an elder citizen or patriarch in making
this report as Business Manager of THE PENTAGON. This is the
fifth biennial conference of Kappa Mu Epsilon to which I have
reported. During the ten-year period covered by these reports, every
editor of THE PENTAGON and officer of Kappa Mu Epsilon has
changed except for our distinguished National Secretary, Miss
Greene. Also during this ten-year period, I have seen many changes
in the circulation of our national magazine.

Ever)' comparative statistic reported concerning higher educa
tion in the United States is one of marked increase.. The number
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of PENTAGONS printed also shows this marked increase. Last fall
we printed three thousand fifty copies. This represents more than
a fifty percent increase in ten years. The Fall, 1966, PENTAGON
went to every state except Idaho and Montana and also was mailed
to many foreign countries.

The circulation pattern of THE PENTAGON has changed
due to new chapters being added and also to varying enrollment
expansion among our chapters. In the first two reports I made to
this convention concerning circulation, more PENTAGONS were
mailed to Kansas than any other state and Pennsylvania was not
listed among the six states receiving the most magazines. For each
of the last two issues, the greatest number of copies was mailed to
Pennsylvania. Over one-half of all copies went to just nine states:
California, Illinois, Indiana, Kansas, Missouri, New York, Ohio,
Pennsylvania, and Tennessee.

Since THE PENTAGON is published twice yearly, in May
and December, some subscribers might justifiably question receiving
their first journal in September or March. THE PENTAGON is
not a magazine that goes out of date. Therefore, rather than having
an initiate wait as long as six months before receiving his first issue,
I try to stock enough magazines so that I may mail PENTAGONS
to initiates as soon as their subscription card is received from the
national secretary. This procedure is followed until a reserve of
fifty copies is reached. This reserve is needed to fill requests for
back issues.

The inside front cover of THE PENTAGON carries a state
ment that copies lost because of failure to notify the business man
ager of change of address cannot be replaced. I would urge each of
the delegates present to apprise their chapter members of this fact.
Many subscribers do not receive one or more of the journals to
which they are entitled because of failure to keep a current address
on file. Once a magazine is returned to my office because the post
office could not deliver it, the subscription card for this subscriber
is pulled and no more PENTAGONS are mailed to him.

To those of you who presented papers to this biennial con
vention, your subscription will be extended two years. Authors of
articles printed in THE PENTAGON receive five additional copies
of that issue.

I would like to express my appreciation to our editor, Helen
Kriegsman and her associate editors for their efforts in publishing
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a journal of which this society can be proud. As circulation manager,
I have an unequaled opportunity to see the interest that libraries
and individuals have in THE PENTAGON. It has again been my
privilege to serve Kappa Mu Epsilon by directing the distribution
of our journal.

Wilbur J. Waggoner

REPORT OF THE NATIONAL HISTORIAN

The Office of National Historian is primarily that of a
depository of records and documents relative to events and activities
occurring in the several chapters across the country. We have fol
lowed the practice, over the last four years, of soliciting from each
active chapter the names of the local officers and an account of
new items they consider newsworthy. In this connection, we would
urge each corresponding secretary to respond to this annual inquiry
concerning the activities of the local club. By this means, we can
maintain a permanent record of many worthwhile activities that
would otherwise be forgotten.

The cooperation over the past years of the many corresponding
secretaries, the national officers, and THE PENTAGON editor
has been outstanding.

We are now able to deposit with our successor, a fairly com
plete file on each active chapter and a complete collection of all
back issues of THE PENTAGON.

J. D. Haggard

Reprints of

The Pentagon
Information may be obtained from:

Johnson Reprint Corporation
111 Fifth Avenue

New York, N.Y. 10003



KAPPA MU EPSILON

FINANCIAL REPORT OF THE NATIONAL TREASURER

For the period April 21, 196S to April I, 1967

1. CASH ON HAND APRIL 21, 1965 $ 9,079.37

RECEIPTS

2. RECEIPTS FROM CHAPTERS (Sec Accompanying Sheet)
Initiates (2836 it $5.00) $14,180.00
Miscellaneous (Supplies, Jewelry,

Installations, etc. 3.650.98

Total Receipts from Chapters $17,830.98
3. MISCELLANEOUS RECEIPTS

Interest on Bonds 187.92

Pentagon (Surplus) 44.94
So. Carolina State (Escrow) 40.00
Over Payments 66.00
Short Checks 20.00

Total Miscellaneous Receipts 358.86
4. TOTAL RECEIPTS $18,189.84
S. TOTAL RECEIPTS PLUS CASH ON HAND ' $27,269.21

EXPENDITURES

6. NATIONAL CONVENTION, 1965
Paid to Chapter Delegates
Officers Expenses
Miscellaneous (Speaker, Prizes, etc.)
Host Chapter

Total National Convention

7. BALFOUR COMPANY (Memberships,
Certificates. Stationery, etc.)

8. PENTAGON (Printing. Mailing of 4 Issues)
9. INSTALLATION EXPENSE

10. NATIONAL OFFICE EXPENSE

2 Regional Conventions
11. MISCELLANEOUS EXPENDITURES

Refunds

Treasurer's Bond

Short Checks

Secretarial Expense
12. TOTAL EXPENSE

13. CASH BALANCE ON HAND APRIL 1, 1967

14. TOTAL EXPENDITURES PLUS CASH ON HAND

15. BONDS ON HAND APRIL I, 1967
16. SAVINGS ACCOUNT + 268.91 INT.

17. TOTAL ASSETS AS OF APRIL

18. TOTAL ASSETS 1965

19. NET LOSS FOR PERIOD

1967

$ 4,050.43

1,148.50

161.10

IS6.48

$ 5.516.51

S.342.6S

6,307.44

179.75

169.04

116.58

69.64

62.50

20.00

1,093.68

$18,877.79

8,391.42

$ 3,000.00

3.512.85

$27,269.21

$ 6,512.85

$14,904.27

15.323.31

Respectfully submitted,

Walter C. Butler, Nat'I Treas.
April I, 1967
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