
THE PENTAGON

Volume XXVI Spring, 1967 Number 2

CONTENTS

Page

National Officers 66

For A Product of Matrices What Result Do You Want?
By Gary L. Eerkes and F. Max Stein 67

Least Squares
By Derald Walling 78

Linear Involutions

By Shannon Smyrl 81

A Generalization of the Multiplication of
A Matrix by A Scalar

By Barry R. Wallerstedt and F. Max Stein 87

"Prime," "Elementary," and "Fundamental" Comparisons
By Stephen 1. Brown 95

Flexing Rings of Regular Tetrahedra
By Douglas A. Engel 106

The Problem Corner 109

Kappa Mu Epsilon News 115

The Mathematical Scrapbook 123



National Officers

FredW. Lott President
State College of Iowa, Cedar Falls, Iowa

George R. Mach Vice-President
California State Polytechnic College,

San Luis Obispo, California

Laura Z. Greene ----.. Secretary
Washburn University of Topeka, Topeka, Kansas

Walter C. Butler Treasurer
Colorado State University, Fort Collins, Colorado

J. D. Haggard Historian
Kansas State College of Pittsburg, Pittsburg, Kansas

Carl V. Fronabarger - Past President
Southwest Missouri State College, Springfield, Missouri

Kappa Mu Epsilon, national honorary mathematics society, was
founded in 1931. The object of the fraternity is fourfold: to further
the interests of mathematics in those schools which place their primary
emphasis on the undergraduate program; to help the undergraduate
realize the important role that mathematics has played in the develop
ment of western civilization; to develop an appreciation of the power
and beauty possessed by mathematics, due, mainly, to its demands for
logical and rigorous modes of thought; and to provide a society for
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For A Product of Matrices
What Result Do You Want?9"

Gary L. Eerkes
Western Washington State College

and

F. Max Stein

Colorado State University

1. Introduction. Matrices have long played an important
role in mathematics, and over the years a number of matrix oper
ations have been developed. The student in a course in Matrix
Theory or Linear Algebra, however, is seldom given the opportunity
to inquire as to whether these operations are the only possible ones.
For example, the definition for the product of matrices is normally
given as being predetermined without any discussion of other
possibilities or of the desired results. To show how other definitions
may arise and why one definition is more desirable than another,
we shall construct various possible definitions for the product and
give a bit of the motivation involved.

2. Preliminary Definitions. Throughout this paper we will
be dealing with the set S of square matrices of order two whose
elements are scalars from F, the complex number field unless
restricted otherwise. Over this set we shall define several different
products. Each definition will be viewed in the light of the alge
braic structure it gives us. That is, we shall examine the set for
each product to see whether the set forms a group, field, linear
space, etc., under the defined operation. For future reference we
shall list the requirements that must be met for various algebraic
structures.

A nonempty set of elements G is said to form a group if there
is defined a binary operation © between elements of G such that:

(1) a, b e G implies that a © b « G, (closure property).
(2) a,b,c bG implies that a © (b © c) = (a © 2>) © c,

(associative law).
(3) There exists an element e e G such that a © e = e © a

= a for all a t G, (identity element).
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(4) For every a e G there exists an element <rl e G such that
a © a-1 = a-1 © a = c, (inverses).

If in addition to properties (1) through (4) it is true that
(5) for every a, b t G, a © b = b © a, (commutative law),

then the group G is said to form an Abelian (or commutative)
group.

For a field we require two binary operations, called addition
( + ) and multiplication (• or juxtaposition), between elements
of the set F such that the elements form an Abelian group under
( + ) and all elements except the additive identity form an Abelian
group under (*)> and further that

(6) for all a, b, c e F, a • (b + c) = a • b + a • c and
(fc + c) • a = b' a + c • a, (the two distributive laws).

For a linear space (or vector space) an operation is defined
which uses elements from two sets, as can be seen by the following
definition. A set V is a linear space over a field F if V is an Abelian
group under an operation ( + ) such that for every y, k e F, and
every v, w e V a product represented by the juxtaposition of symbols
is such that the following properties hold:

(7) yv = vy e V, (closure property).
(8) y(v + w) = yv + yw, (one distributive property).
(9) (y + A)v = yv 4- kv, (another distributive property).

(10) y(Av) = (yA)v, (associative property).
(11) lv = v, (identity property).

Here 1 represents the multiplicative identity of F.
The requirements that a set A be a linear algebra over a

field F are that A be a linear space over F that satisfies the follow
ing additional properties:

(12) ab = c, (a closure property).
(13) a(ic) = (flfc)c, (an associative property).
(14) a(yb -t- Ac) = y(ab) + X(flc), (a distributive prop

erty).
(15) (yfe + Ac)a = y(.ba~) + X(ca), (another distributive

property).

Note that if (14) and (15) hold then (6) holds as well.
In the following we shall use the standard definition for

matrices of clement-wise addition and the conventional definition
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for the product of a scalar and a matrix. That is, the operation ®
in (1) through (4) is ( + ), the usual matrix addition.

3. Definitions of Multiplication. We now consider various
definitions for the product of matrices of order two, the elements
of S. Each definition will be viewed in light of the algebraic structure
of S under the defined product.

DEFINITION I.

fll a2 b, b*

a3 <*4 b* b<
_ .

atbi + aj)3

a3bi + a,b3

fl,I?2 + a2b4

a3b-i + atbt

This definition is obviously the standard definition for the
multiplication of matrices. It is well-known that our set of matrices
forms an algebra over the scalars for this definition. However, our
set S falls short of a group structure for this definition of multipli
cation since property (4), requiring an inverse for each element,
is not met unless our matrices are greatly restricted.

DEFINITION II.

Oi a..

a3 at b3 bt

fl,b, a-,b-.

a3b3 aAbt

For this definition it readily follows that properties (1)
through (15) are satisfied, and the set under this definition of
multiplication satisfies all of the properties required for an algebra.

In attempting to arrive at a group under this operation, how
ever, we are faced with complications. The identity, both right and
left, is

1 =
1 1

1 1

but no matrix with one or more of its scalar elements equal to zero
has an inverse. If we desire a group we must restrict our matrices
to arrays for which none of the scalar elements is zero. We shall
refer to this restricted set of matrices as S*. With this restriction
we have that
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1/fl, l/a2

l/«3 l/«4

is the inverse of

r —

a3

a-.

, aia2a3a4 =5* o

Therefore, we find that for this definition all elements of S*
satisfy the properties required for a group. It is evident that this
group is Abelian, and it is a simple matter to show that (6), the
two distributive laws, holds as well. However, we cannot conclude
that our system is a field since S* is not closed under addition. We
find that for a field structure we must further restrict our matrices
to arrays for which the scalar elements are equal.

DEFINITION III.

fli a2

a3 a.

bi b2

b3 bt

"tbi - a2b2 —a3b3 - atb4 ajb2 + a2t, + a3b< - a,b3
atb3 + a3bl —a2bt + aj}2 aj>4 + atbt + a2b3 —a3b2

This definition seems more complicated than it actually is,
as will be seen in the next section. It is evident that under this
definition properties (1) through (12) hold, and it can be shown
that (13) holds also. Properties (14) and (15) follow quite
readily, so S forms an algebra over the complex numbers.

Concerning a group structure under this product we have
properties (12) and (13) already. Next we observe that the
identity, right and left, is

J =
1 0

0 0

If we attempt to find an inverse, we find that
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<*i

a\ + a\ + a\ + a\

-as
a\ + a\ + a\ + aj

is the inverse of

-a2

a\ + a\ + a\ + a\

—a«

a\ + a\ + a\ + a\

«1 <*2

a3 a4

, if a? + a\ + + a* =5*= 0.
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Since a* + a* + aj + a\ = 0 has solutions in the complex field,
other than the obvious zero solutions, we must restrict our set S
if it is to be a group under this definition. A natural restriction
is to consider our matrices only over the real number field. In this
case every non-zero matrix (the zero matrix being the additive
identity) has an inverse. Note that this is the exact condition needed
for a field structure. We shall denote this set of matrices over the
real number field as S«.

We have shown that our set of non-zero matrices in S« forms
a group under multiplication, but thus far we have not considered
the commutativity of this product. Note, for example, that

whereas

0 2

1 0

-2 2

-4 -1

-2

1

Thus, this product is not commutative, and our group is non-
Abelian. With this development it is evident that we will be unable
to obtain a field structure unless we place many more restrictions
on its possible members. Apparently we are asking for too much
in attempting to arrive at a field in this case.
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DEFINITION IV.

a, as

a3 a4

\ b2
b3 bA

C\ c2

c3 c,

=

a2 «3

b2 b3

c2 c3

a, a2

b, b2

Ci C2

a4

bt

c<

at

bt

fli a3 a*

b> b3 bt

Cx c3 c4

«i a-. a3

b. b~ b3

Cx C2 c3

Here we have a ternary product rather than a binary opera
tion. (One should note that no associative property is involved in
this definition.) Since our algebraic structures require a binary
operation we do not consider this case further at this time, except
to note that the closure property holds.

DEFINITION V.

a, a?

a3 at

b, b2

b3 bt
— a,b, + a2b2 + a3b3 + atbt

It isobvious that we can also dispose of this case immediately
if we desire an algebraic structure since (12), the closure property,
is not satisfied.

4. A Second Look at the Products. We shall now examine
each of the above definitions from another point of view. In Def
inition I we haveour most familiar product. We observed in Section
3 that algebraically this product showed little promise, especially
when compared to Definition III. Nevertheless, of all the defini
tions this is by far the most useful.

Definition II is probably the most natural of all the definitions.
However, we observed that when this definition is examined in
relation to a group structure that our set of matrices is restricted
to such an extent that the product seems to be of little value. But
rather than drop the product or restrict the set, we see that valuable
insights can be gained if we view our matrices geometrically under
this product.
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Forexample, if weconsider only those matrices in Sa for which
the third and fourth scalar elements are zero we have a means of
representing points in two-space. That is, if we consider all matrices
of the type

«i a2

0 0
, ax, a2 e Reals,

we can pair each such matrix with the ordered pair (a„ a2) which
we consider as coordinates of a point in Euclidean two-space E2.
However, since these matrices do not have multiplicative inverses
because of the zero elements we shall consider instead the isomorphic
setofone-by-two matrices over the real field under the same element-
wise multiplication. Taking the inverse of a point in E2 reduces to
the problem of inverting the point about two inversion-lines, x = 1
or x = —1 and y = 1 or y = —1. With respect to those matrices
in S« in this case which do not have inverses we see that geomet
rically they reduce to two zero-lines (see [1]), x = 0 and y = 0.
The inverse of [3 - V2], say, is then [}A -2], see Fig. 1.

Fig. 1
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In short, our system (S«, +, •) is a near-field (see [1]),
since properties (1), (2), (3), (5) and (6), are satisfied for all
of S« under multiplication, and property (4) is satisfied for all ele
ments in SK except a known set of points, the two zero-lines.

Similarly, if we consider the set of all real one-by-three
matrices we can pair each such matrix [flia:a3] with the ordered
triple (a,, a2, a3) and its corresponding point in three-space E3.
In this case, again considering element-wise multiplication, the
problem of finding the inverse of a matrix reduces to taking the
inversion of the corresponding point in three-space about three
inversion-planes, x = ±1, y = ±1, and z = ± 1, the signs again
corresponding to the signs of the scalar elements a„ a., and a3
respectively. Those matrices which do not have inverses are repre
sented by three planes x = 0, y = 0, and z = 0, which we denote
as zero-planes. The inverse of [2 5/2 9/4], for example, is
[1/2 2/5 4/9], see Fig. 2.

(1/2. 2/5,

x>«la

Fig. 2

Finally, to carry the analogy to our set Sa of square matrices
we must expand our geometrical space to four dimensions. In this
case, we can readily follow the same line of reasoning as in three-
space with the zero-planes being replaced by the four zero-
hyperplanes (see [2]), x = 0, y = 0, z = 0, w = 0, and the
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inversion-planes being replaced by the inversion-hyperplanes x
= ±1, y = ±l,z = ±1, and w = ±1.

Along the same line of thought, if we now consider those
matrices which form a field under this definition (recalling that
that they are exactly those matrices in SR for which all the scalar
elements are equal), we observe that they are represented by the
line in four-space, x = y = z = w, a field isomorphic to the real
numbers themselves.

In Definition III we have a definition that is interesting
algebraically in that it satisfies every property except the commu
tative property without any restrictions on the matrices other than
that they be real. But other than that, this definition appears to
have little motivation initially. Upon closer observation we see
that our set SR of real matrices under this product is isomorphic
to Hamilton's quaternions under multiplication. Algebraically this
definition is quite productive but it is not as interesting geometri
cally as Definition II; certainly it is not as useful as Definition I.

Definition IV is unique in that it is a ternary operation and
consequently does not appear to lead anywhere algebraically. How
ever, if we take the ternary product and employ a particular matrix
in the product an interesting development arises. For example,
consider

Hi flj

a3 a«

bx b2

b3 K

0 0

0 1
=

a2b3 — a3b2 a3bt — atb3

Oxb2 — a2fcj 0

This result suggests the cross productof the two vectors (a,, «2, a3),
(fc„ b2, b3~) in three-space. Likewise,

fll a2 1 0 Cx C2

a3 at 0 0 c3 ct

_

0 a3ct — a4c3

a,c2 — a2c4 a2c3 — a3c2

suggests the cross product of (a2, a3, ««) and (c2, c3, c,). In short,
we find that when we replace any one of the three matrices in
our ternary product by any one of the following:

1 0
»

0 1
t

0 0
, or

0 0

0 0 0 0 1 0 0 1
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and consider the other two matrices as vectors in four-space, that
this product projects these two vectors onto a hyperplane and gives
the cross product of them in this three-space (actually plus or
minus the cross product, depending on the matrix replaced and
the particular matrix replacing it). That is, we have a product
that is highly suggestive of a relationship to the cross product of
vectors in three-space or to a generalized cross product. Realmatrices
under this product are isomorphic to the vectors in four-space under
the ternary product as defined by Williams and Stein [3].

In this light we see that if we interpret our matrices under
this product as vectors in four-space we have that the product ABC
can be described as an operation that yields a vector (matrix)
orthogonal to the three vectors (matrices) A, B, and C in the
product. That is, if we use A, say, then ACA B C) is the zero matrix
if we use Definition II, or the result is the scalar O if we use
Definition V. The result in either case is analogous to the cross
product in three-space where AX B results in a vector perpendicular
to both A and B. The magnitude of the resultant vector in four-
space is, according to Williams and Stein [3], equal to the volume
of a portion of a hypersurface with sides OA, OB, and OC. Again,
we see that this is a generalization of the fact that the cross product
A X Bin three-space produces a vector whose magnitude is equal
to the area of a parallelogram with sides OA and OB.

Continuing along this line, if we now consider Definition V
with Definition IV in the following manner

we have

a,

«3

a2

a4

bx b2

b3 b4

Cx C2

c3 C4

ax a2 a3 a,

bx b2 b3 b4

Cx C2 C3 C4

dx d2 d3 d4

dx ds

d3 d4

which is the quadruple scalar product in four-space (see [3]),
analogous to the triple scalar product in three-space. One would
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correctly suspect that this product yields a scalar whose absolute
value is the volume of a hypersolid corresponding to the parallele
piped in three-space. Note that although Definition V does not lead
to any of the algebraic structure that apparently would be desirable,
since we do not even have the closure property, the definition can
be interpreted as the inner product of vectors in four-space, a very
valuable concept.

5. Conclusion. We have taken a fresh look at various prod
ucts of matrices. In the process we have found, among other things,
that the definition for the product is not always a predetermined
one. The algebraist may well view matrices in an entirely different
light from the analysist or the geometrist and as a consequence might
employ a different product. So before you choose your definition
you should ask, for a product of matrices what result do you want?
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Mathematics is the science which draws necessary conclusions.
—Benjamin Pierce



Least Squares
Derald Walling

Faculty, Texas Technological College

Mood [2, page 309] points out that "there is a general prob
lem ofcurve fitting which is entirely unrelated to normal regression
theory but which may be solved by formulas identical with those . . .
obtained for estimating regression coefficients."

In various courses, the subject of curve fitting or the subject
of regression arises. We want to take this opportunity to outline
simply the difference between the two problems.

In order to illustrate the difference, we want to consider the
problem where we are given a set ofpoints (xi,yO, i = 1,2, • • •, N;
and where we suppose we want to fit

(1) y = a + bx

to these points.

Suppose we consider the set of N points as a sample set.
Assume that for any given x, y is a normally distributed variate
with mean a + bx and variance <r2 independent of x. Then, the
density of y is

_ \j ~ Ca + bx)y
(2) f(y;aA<r*,x) = -4= e 2°s

<rV2w

Thus, we have the one-parameter family of normal distributions
for which a, b, and a3 are fixed.

The problem is to determine the unknown parameters a, h
and <r. The method used to find a, b, and a2 is called the method
of maximum likelihood. The likelihood of y is

(3) L = (-*=) e
X\ji - a - bxtf

i = l

1_\N
V"2l

and thus

78
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(4) In L = -y In 2^ - y In a2

- h 2 cy* - - - **?
On putting the derivatives of In L with respect to tf1, a, and b

equal to zero, we obtain the equations

(5)

C6)

(7)

N*1 == 2 \ji - « - **?.
i = l

2 L>* - a - fa,], = 0,
i = 1

If

2 *iL>i - « - &*<] = o.

The last two above equations, equations (6) and (7), are
called the normal equations. We can solve the normal equations
to find a and b:

N

5>
i = i

2>
i = 1

y

2*1
i = i

-1
N

2*
t - I

1/

i = 1

Once we have a and fc, we can compute a2 where

Suppose we consider the same basic problem; that is, the fitting
0f y = a+ bx to the set ofN points (x,,y,), (x2,y2), •••, (*jr,y*).
Suppose, however, that no assumption is made concerning the dis
tribution of y. Suppose we decide to fit y = a + bx to these N
points in the sense of least squares. To find a and b, we simply
minimize

(8) !(«,&) = 2 L>i - « - **«?
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N

2*< X x,1

-1
w

.?/'
JV

»= i

Now, in this second case, the only reason that we used least squares
is that it leads us to a system of two linear equations in two un
knowns. Least cubes, least distance, least absolute values, etc.,
would not have led us to such anice system ofequations for a and b.

Once we have a and b, we can easily compute an estimate
of the error by finding

.v

I(a,fo) = 2 [y. - a - bx,y.
i - x

We observe that in both methods we are led to the same set
of two linear equations in two unknowns. Thus, we could (and it
is often done) refer to both problems as least squares and approach
the first problem by the method of least squares. However, we must
remember that there is a difference in the problems depending on
the initial assumptions.

Hildebrand [1, page 264] notes this difference in the prob
lems by pointing out that the first problem is handled under the
assumption that the "true" function is such that the residuals at
each of the N points can be reduced to zero, but that the impos
sibility of achieving this end in the case at hand is due to the pres
ence of independent random errors in the several observed values.
He points out also that under this assumption, certain additional
statistical information about the calculated coefficients can also
be found.

1.

2.
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Linear Involutions
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This paper attempts to study some of- the properties of a
linear involution on a vector space over a field.

We first study the matrix and some geometric properties of
a linear involution on a two-dimensional real space. Then we
generalize the results. We would also like to point out how geo
metric observations suggest theorems in a vector space.

1. Definitions and Notations: Linear transformations arc
denoted by capital letters A, B, • • • . The identity transformation
is denoted by I. Vectors are denoted by a, 0, y, ♦ • • . Scalars are
denoted by small letters x, y, z, • • • . We use row and column
matrices for vectors [1]. If M and N are two complementary sub-
spaces of a vector space V over a field F, then M © N is the direct
sum of these subspaces [2]. The zero vector will be denoted by 0.

2. Involutions on a Euclidean Plane: Let A be a linear
transformation on a real two-dimensional Euclidean space such
that A2 = 1. Let the matrix of A with respect to a rectangular
co-ordinate system be

M " C 5)"
Then

/a2 + be ab + bd\ = (1 0\
\ac + cd cb + d2) \0 IJ

This is equivalent to the set of equations

a2 + be = 1

ab + bd = 0

(1) ac + cd = 0
cb + d* = 1 .

To solve this set we consider different cases.

I. If b =£ 0, c ^ 0, then

81
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la b

A = I1 - a2

II. If b = 0, then we have the setof equations

a2 = 1

(2) ac + cd = 0
d2 = 1,

which impliesa = ±l,c(a + d) = 0, d = ±1.
In this case the matrix of an involution may be any of

(o l), (o -?), (I -i°), (~0 i),

( c ij, ( 0 -l),
where c ^ 0.

The characteristic equation of a linear involution on a two
dimensional real space, in all cases, is m' — 1 = 0, except for I
and —I.

Thus the proper values are m = 1, and m = —1.
Let us consider only

a b

A = I l - «• U ^ 0, c ^ 0,

Then the characteristic vectors of A corresponding to 1 and
-1 are respectively o = (a — 1, i) and 0 = (a + 1, fc). We
observe that these vectors arerespectively on the lines fa —(a —1)y
= 0 and fa — (a + l)y = 0. We respectively call these lines
L, and L2 (Fig. 1). Note that {a, /?} is linearly independent since

a - 1 b
a + 1 b

= -2b ^z 0.

For any vector y in the plane we have

y = Xa + yP.

Thus Ay = xAa + yAp = xa - yp. (Fig. 2).
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Fig. 1

Fig. 2

We observe that xa = Pa, where P is the projection on the
line L, along L2 and y/J = Qp, where Q is the projection on L2
along Lx. Thus

Ay = Py - Qy = (P - Q)y.

This shows that a linear involution is the difference of two
projections.
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3. Generalization to a Vector Space: In what follows we
exclude fields of characteristic two. Let V be a vector space over
a field F. Consider A to be a linear involution on V. That is A
is a linear transformation on V such that A" = /.

It is clear that I and -J are linear involutions. We shall
study cases where A ^ I and A =£ —I. Lei hi be a proper value of

A and a the corresponding proper vector, i.e. Aa = ma, n^ 0.
Then a = A2« = mAa = m2a which implies m = ± 1.

THEOREM 1. Let K = { t | At = t} and L = {£ | At
= —£ } be subspaces of V corresponding to proper value 1 and —1
respectively. Then V = E © L.

Proof. Let t e E D L. Then t e E and t e L. Now t t E

implies Ag = g and £ e L implies At = —|. Hence t = 0. Thus

K n L = {0}.
Now suppose V = K © L © M, where M ^ {0}. We shall

show that | e M implies At c M. For if g e M and At e K © L © M,
then At = v + £ + 8 where ^ e K, £ e L, and 8 e M.

| = A!t = r, - C + AS e M
-» ->

which implies t) = 0, £ = 0, and A£ = A28 e M. Therefore, M
is invariant under A.

Let B be equal to A restricted to M. Then B has a proper
—>

vector 0. That is Ap = Bp = ± p p ^ 0, p e M. But Ap = p
implies j8 e E and Aj8 = —p implies p t L. This contradicts the

-*• -» -»

fact that K n M = {0} and L n M = {0}. Therefore M = {0}
which proves the theorem.

THEOREM 2. A linear transformation A on V is an
involution if and only if A = P — Q, where P is the projection on
a subspacc E along a complementary subspace L and Q is the pro
jection on L along E.

Proof. Bv theorem 1 we know V = E © L where E
= { t | A£ = t) and L = {t \ At = ~t}. Any $ c V can be
written as { = ij + £ where >; c E and £ c L.

A$ = ACV + O = Av + AC = V - £.

We observe that i? is the projection of t on the subspacc E along L



The Pentagon 85

and that £ is the projection of g on L along E. Let P be the projec
tion on E along L and let Q be the projection on L along E. Then

Ag = Pg - Qg - (P - Q)*.

This implies A =• P - Q.
Conversely let A = P - Q, where P is the projection on a

subspace E along the subspacc Land Q is the projection on Lalong
E. Then PQ = QP = 0, and

A' = F* + Q* = P + Q = I.
4. A Geometric Observation. Let E be a fixed line through

the origin and let L be a variable line through the origin distinct
from E. Define A = P - Q where P is the projection on E along L
and Qis the projection on Lalong E. Let gbe a vector in the plane
(Fig. 3).

Then A£ = Pt ~ Q£- We observe that Qt = £ - Pi for

Fig. 3

every L. Define X= {v\_v = g + £, £*K}. Then Q£ t Xand
for every ij t X, Ay e -X. We define the transformation A such
that BX = { £ | £ = A£, £ e. X). Then B is linear and for every
geX, B2g = P2g + Q'£ = £which implies Bis an involution.
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5. Generalization to a Vector Space:
THEOREM l._ Let E be a subspace of a vector space V

over afield F. Let {X} be the quotient space of Vcorresponding to
E[2]. That is X= {r, | v = £ + £, gev, £*E}. Then B is a
linear involution {X} if and only if B = ±1.

Proof. Let A be a linear transformation on V such that
if £ e E, then Ag e E;

if g e X, then A£ e ±X.

This induces a linear transformation B on {X} by
BX = { £ | £ = A£, £ e X).

As was done in 4we can easily show Bis alinear involution on {X}.
We omit the proof since it is very similar to the one in 4. Conversely
let Bbe a linear involution on {X}, i.e.,

B2X = X.

_Let K= {g| g= o + £, £eE}. Clearly Kis the zero vector
of {X}. Since B is non-singular

CO BX = K

if and only if X= K. Now let BX = Y. Since Xand Yare in {X}
eitherX = Ywhich implies B= / or Xn Y= K. Now suppose
X ^ Y. Consider X + Y. We note that

B(X + Y) = Y + X = X + Y.

Then by (1) we have X + Y= K. This implies Y= -X and
l> = —I,
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A Generalization of the Multiplication
of A Matrix By A Scalar

Barry R. Wallerstedt

Coe College
and
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1. Introduction. In the theory of matrices the usual defini
tion of multiplication requires the matrices to be conformal; i.e.
the number of columns in the first matrix must equal the number
of rows in the second. Other definitions of multiplication do not
require this condition to be met; one such definition is for the
Kronecker product [2] and another is for the multiplication of a
matrix by a scalar.

In the latter case the multiplication of an m by n matrix
A = [a,.] with elements, called scalars. from the real or complex
number field 7 by any element d from 7 results in another m
by « matrix B = [&„] with b„ = da„. We note that d operates
only on elements from 7. If we consider d as a 1 by 1 matrix we
are led to amultiplicative operation between non-conformal matrices.

In this paper we shall define an operation (X), called X-
multiplication, between certain non-conformal matrices in amanner
analogous to that for scalar multiplication. Basically in X-multipli-
cation we replace all scalar elements by square matrices of order fe.
After determining the structure created by X-multiplication, a few
theorems similar to those for ordinary matrix multiplication are
proved. In the final sections of the paper we specialize the discussion
to the particular cases of scalar multiplication and ordinary multi
plication of square matrices.

2. Notation. Square matrices are represented by bold faced
lower case or capital Latin letters. In general the former denote
matrices of smaUer order than the latter. As a rule the lower case
letters represent fe by fe matrices and the capital letters represent

•ProDorod in a National Science Foundation Undergraduate Science Education P^gtam
ta^ShomalKS a? Colorado Slato University under the direction ol Professor Stein.

87



88 The Pentagon

u by » matrices, the elements being scalars in each case. Thus for
X-multiplication we have matrices of order k, such as y = [y„],
and matrices of order « that are partitioned, such as

A = = w,

where the elements of A are considered as matrices of order fe.
Note that the subscripts on a„ indicate the position, not the order
ot the sub-matrix. Hence, X-multiplication implies that m = mk
for mand fe positive integers. We shall consider the general case
tirst, assuming that fe =^ 1 and »i =56 1.

Diagonal matrices can be expressed as diag (&„, •••, &**)*
antl diag (a,„ •••, a,,,,),,,*, where the elements on the diagonal
are enclosed in parentheses, and the final subscript denotes the
order of the matrix.

Finally we let Sk = {a, b, x, y, •••, i, o} be the set of fe by fe
matrices and S„ = {A, B, X, •••, I, O} be the set of nby « matrices,
where » - mk. The symbols i, o, I, and Orepresent the multiplica
tive and additive identities in Sk and S„ respectively.

3. The structure of Sk or S„ over the scalars. We assume the
usual definitions of equality, addition (+), and ordinary multipli
cation (•) of square matrices. From these definitions either set of
square matrices forms an algebra [3] over the set of scalars 7
For the purpose of reference we shall list briefly the requirements
that the set Sk, say, forms an algebra over 7 . Under the operation
( + ) we have

(1) x 4- y = z, closure;

(2) (x + y) + z = x + (y + z), associativity;
(3)x + o = x, the existence of an additive identity;
(4) x + (—x) = o, each element has an inverse;
(5)x + y = y + x, commutativity.

These five properties render Sk a commutative group under ( + ).
Combining elements of Sk and 7 by juxtaposition we have
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(6) a(fa) = (a&)x, a kind of associativity;
(7) a(x + y) = ax + ay, one distributive property;
(8) (a + &)x = ax + bx, another distributive property;
(9) lx = x, the existence of a multiplicative identity.

From properties (1) - (9) we have that Sk forms a vector space
over 7 . The ordinary multiphcation (•) of elements of Sk gives us'

(10) x • y = z, a closure property;
(11) x • (y ♦ z) = (x ♦ y) • z, an associative property;
(12) x • (y + z) = x • y + x • z, a distributive property;
(13) (x + y)*z = x'z + yz, anotherdistributive property.

By properties (1) - (5) and (10) - (13) Sk forms a ring.
Finally the property,

(14) (x • y)a = x • (ya) = (xa) • y,

along with (1) - (13) yields Sk an algebra over 7 .
4. The definition of X-multiplication. If x c Sk and A e S„,

we define the operation (X), called X-multiplication, between ele
ments of these two sets as

x • a,, ♦ • • x • a,

x X A = and

x • arol ••• x • a„

A X x =

cw • x ••• a„

Thus X-multiplication from the left (right) gives a matrix in S„
which has matrices from Sk as elements; i.e. every fe by fe submatrix
of A is multiplied on the left (right) by the matrix x.
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5. The structure of S„ over S*. Our investigation of the
structure of S„ over Sk involves the proof of statements analogous
to properties (1) - (14) for the algebra of square matrices over
the field 7 .

It is obvious that properties (1) - (5) and (10) - (13)
hold for addition and ordinary multiplication in S„ since these
involve merely a substitution of matrices of order n for those of
order fe. We may also easily verify that properties analogous to (6) -
(9) hold for X-multiplication between elements of Sk and S„. For
clarification and reference, we restate these properties in their
appropriate form:

(6') x X (y X A) = (x -y) X A and (A X x) X y
= AX(x-y),

(7') x X (A + B) = (x X A) + (x X B) and
(A + B) X x = (A X x) + (B X x),

(8') (x + y) X A = (x X A) + (y X A) and
A X (x + y) = (A X x) + (A X y),

(9') iX A = AandAXi = A.

As the proofs to these properties follow quite readily from
the definition, we give onlyone of them as an example.

Proof of (6').

y • a„ ••• y • a„

x X (y X A) = x X

y * ami • • • y • Oma

x • (y • atl) ••• x • (y • a,m)

x • (y * aflI1) ••• x • (y • amm)
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(x • y) • a„ ••• (x • y) • a,

(x • y) • a™, (x • y) • a„

91

= (x • y) X A

Thus by possessing properties (1) - (5) and (6') - (9') S„
forms a left or right module [3] (a structure over a ring smiliar to
that of a vector space over a field) over Sk. We find, however, that
a property analogous to (14) is not valid due to the lack of com-
mutativity under multiplication between elements of Sk. Although
S„ does not form an algebra over Sk, we do have the associative
property

(15) x X (A • B) = (x X A) • B and (A • B) X x
= A • (B X x).

Therefore we conclude that the structural properties of S»
over Sfc, while not sufficient for an algebra, are beyond the require
ments for a module and an associative ring.

6. The determinant. It is a common result of matrix theory
that det(A • B) = (det A)(det B), where A and B are conformal
square matrices. Another well-known characteristic is det(a'A)
= d"(det A), where A is a square matrix of order n and d is a
scalar. Similarly for X-multiplication we have

THEOREM 1. Det(x X A) = (det x)ra(det A) for x
c Sk and A e S„.

Proof. Let X = diag (x, • • •, x)„ti, A = [aM], and I
= diag (i, • • •, l)m& all be elements of S„. Then form the matrix

det
X O

-I A

X

-I

and we get by Laplace's expansion

O

A

= (detX)(detA) = (detx)-(det A).
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To complete the proof we shall show that

det
X

-I

o

A
det(x X A).

We recall that the value of a determinant is unaltered when to any
row or column we add a constant multiple of any other row or
column [1], Thus in

det
X

-I

o

A

= det o

-i

x

o

-i

an **• a,„

«ml ' Om„ :mk

we can consider the determinant on the right as one of order 2wi
whose elements are matrices of order fe. To the (jh 4- r)-th column
of this matrix we add the following terms: (column 1) • alr, (col
umn 2) • a2r, • • •, (column >«) • ow, for r = 1, 2, • • •, m. The
determinant is then transformed into

det
X x X A

I O
(-1)« det(x X A)det(-I),

•imk

where the equality results from a Laplace expansion around the
last w columns and the first n rows of the determinant. Thus our
goal is reached provided the sign is correct. The sign of this expan
sion depends on a and det(-I). Since a is the sum of the first 2w
integers, a = 2w(2n + l)/2 = mfe(2mfe + 1). For det(-I) we
find by repeating Laplace's expansion that det(—I) = [det(—i)]m.
Since -i = diag (-1, •••, -1)*, we have that [det(-i)]m
= ( —1)"*. Therefore the sign associated with the expansion is
8 = (-!)»(-1)"'* = (-i)"*<*"*.2) which is positive for any
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choice of wi and fe since the exponent is always even. Thus det
(x X A) = (det x)"'(det A).

7. Multiplicative inverse elements. The multiplicative in
verse of any nonsingular matrix a e Sk is denoted by or1; it is such
that a-1 • a = a • a*' = i. A similar characteristic holds for any non-
singular matrix A e S„.

Suppose we let the matrix e e Sk be such that

e X A = I, or = diag (i, • • • , i)mkt

e • a™

under X-multiplication for A e Sn. From this equation we get the
equations

e • ar, = i, when r = s, and

e • a„ = o, when r ^ s.

These imply that a„ = o for r ^ s, and all a„ must be equal and
nonsingular if r = s. That is, A must have the form A = diag
(a„, • • •, a„)m*, where det a„ ^ 0. Under these conditions it
can be readily shown by the use of Laplace's expansion that A is
nonsingular. Furthermore e = a-J = • • • = a-^.

We now prove a theorem analogous to the well-known result
that (A • B)-1 = B"' • A', where A and B are conformal square
matrices.

THEOREM 2. Let x t Sk and A e S„ be nonsingular mat
rices. Then (x X A)-' = A1 X xr\

Proof. From Theorem 1 we have that if x and A are non-
singular then (x X A) is nonsingular. Thus by the n by n matrix
(x X A) possess an inverse and hence we can write

Thus

and

(x X A)-> • (x X A) = I.

(x X A)-' • (x X A) • A-1 = I • A-' = A1,
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(x X A)-' • (x X I) = (x XA)-* • {diag (x , • ••, x)rafc} = A*.
Then (x X A)-> • {diag (x, •••, x)m&} • {diag (jr\ •••, x"1)™*}

= A-1 • {diag (x-1,..-, x-Om*},

or (x X A)-1 • I = A-' • (I X x-1),

and (x X A)-1 = A"1 X x-'.

In asimilar manner we can show that (AX x)-1 = x-1 X A"1.
8. The transpose. We now wish to prove a theorem analo

gous to (A • B)' = B' • A', where A and B are conformal square
matrices.

THEOREM 3. For any x e Sk and A e S„, (x X A)' = A'
X x*.

Proof. Let (x X A) = B e S„. Let B' = D « S„, where
d« - (b,r)'- Now br8 = x • a„. Hence, b,r = x • a,r and
Cb.r)' = (a.r)' •x'. Thus (x X A)' = D, where d„ = (a.f)' •x',
and we have (x X A)' = A' X x'.

In asimilar manner we may prove that (A X x)' = x* X A'.
9. Special cases of X-multiplication. Throughout this paper

we have been concerned with two sets of matrices S„ and Sk, where
n = wife for mand fe positive integers. For the sake of generality we
have required m and fe to be other than one. The removal of this
restriction results in two special cases of X-multiplication, the multi
plication ofamatrix by a scalar and the ordinary product of square
matrices.

Case 1. If fe = 1, the product (x X A) becomes simply the
multiplication of an »i by m matrix A by a scalar x, and the usual
results are obtained. That is, Sm forms an algebra over 7 since
properties (1) - (14) are satisfied.

Case II. If m = 1 then ji = fe. We recall that X-multipli
cation is executed on a matrix A partitioned into submatrices of
order fe. Since A itself is now its only fe by fe submatrix, we have
ordinary multiplication between two matrices of order fe. Properties
(6'), (7'), and (8') become properties (11), (12), and (13)
respectively. The i and A of property (9') are now of the same
order. A property analogous to (14) still does not hold, of course,
since it did not hold for X-multiplication.

(Continued on page 128.)



Prime", "Elementary", and
Fundamental" Comparisons

Stephen I. Brown
Harvard Graduate School of Education

I. Introduction

That there exist multiplicative semigroups which do not enjoy
theunique prime factorization property (The Fundamental Theorem
of Arithmetic), is well known C 1 7, C 2 7. C 3, p. 317. So, for
example, let us denote the set ofnatural numbers by N, and confine
our attention to the subset E = {1} U {x : x = 2m for n e N) - 1
together with all the even elements of N. If we once again define
a prime as a number with exactly two different factors (both of
which must belong not only to N but to E this time), then we can
show that somenumbers in E are factorable into a product of primes
in two different ways. Thus, 36 = 6 • 6 = 2 • 18, 60 = 6 • 10
= 2 • 30, 100 = 10 • 10 = 2 • 50. It is not difficult to show
that any composite in E which is divisible either by two primes
(in E) both of which are greater than 2, or by some p2 where p
is a prime (in E) greater than 2, must violate The Fundamental
Theorem of Arithmetic in E.

Some numbers possess three different prime factorizations in
E. So for example, 216 = 6 • 6 • 6 = 2 • 6 • 18 = 2 • 2 • 54.
As a matter of fact, an obvious generalization of the case for two
distinct factorizations, enables one to find elements of E having
as many different prime factorizations as he wishes. Note that we
have included 1 in E (at the expense of closure under addition)
in order to permit the same definition of prime in both N and E.

As expressed in f 2J, a strong pedagogical reason for inves
tigating such a system is that it sheds further light on what seems
on first glance to be an obvious and trivial theorem in N. The fact
that the theorem fails in E suggests that there must in fact be a
profound conceptual difference between the two systems. We are
thus motivated to re-examine the proof in N with a new pair of
lenses — one which encourages us to syphen out relevant aspects
of the proof which justify the existence of a theorem in one set
and its failure in another.

In studying certain aspects of elementary number theory it
is profitable to extend the comparisons (between the natural num-

95
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bers and similar conjectures in particular subsets) substantially
beyond The Fundamental Theorem of Arithmetic, and it is a con
sideration of these problems (in II) that represents the focus of
this article. It is a considerable elaboration and refinement of com
parisons of this sort made elsewhere ([4]).

Many of the unsolved problems in N have trivially simple so
lutions in E. Problems that arc elementary in Nonly in the technical
sense that they do not invoke concepts of a complex variable or of
continuity principle for the real numbers, become truly elementary
in the common-sensical use of the term when investigated in E. We
shall proceed by enumerating several unsolved or difficult famous
prime number problems in N, and will suggest the answers in E.
In most cases the proofs in E arc simple and will be omitted. In all
cases the proofs in N (if they exist) are far from trivial, and can
be found in most introductory number theory texts.

We could of course disguise the fact that we are working in
E (as is done in [2]) by employing the isomorphic system of two
by two matrices with equal integral entries. For ease of exposition,
however, we shall not do so here.

II. Some Comparisons

A—On a formula to generate prunes:

What is the nth prime? The fact that the number of primes
in N is infinite (proven so elegantly by Euclid over 2000 years ago)
but countable, assures us that the question makes sense and has a
definite answer for each h. That it is theoretically answerable by a
"brute force" application of the definition of prime (or some con
sequence of the definition) in conjunction with the sieve technique
of Eratosthenes, however, docs not guarantee (even with the aid
of high speed computers) that the answer for large n may not take
centuries to compute. A formula that would generate all primes in
succession would represent a quite adequate solution to the problem.
Such solution, however, has eluded the grasp of research mathe
maticians for centuries, and a liberal revision of the question which
(though still requiring an infinite number of primes and only
primes) allows for the omission of many primes from the sequence
has also met with no success in N.

n

The functions of Fcrmat (F(«) = 22 + 1) and Merscnne
(M(ji) = 2'' - 1 for p a prime belonging to N) are well known
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17th century attempts to answer the revised question. The ineffi
ciency of "brute force" in determining primality is illustrated by
the fact that a century elapsed before a mathematician (and it took
the genius of Euler in 1732) furnished a counter-example to
Fermat's conjecture. Most revealing is the fact that FOO breaks
down at an embarrassingly early stage, for F(5) is divisible by 641.
Similarly Al(11) is not prime since it equals 23 • 89.

Though the conjectures as they stood were botli false, Mcr-
senne and Fermat have in a sense been vindicated by the following
two theorems (see [3, p. 50]) which represent modified converses
of the proposed conjectures:

1—If a" + 1 is a prime (in N) where a > 1, then a is even
and n = 2r.

2—If a" — 1 is a prime (in N) and u > 1, then a = 2 and
n is prime.

There exist many other simple formulas that generate a
significant number of primes before "breaking down". Though it
succeeds for the first forty substitutions, Euler's famous x- + x
+ 41 obviously fails to yield a prime for x = 41. Similarly x-
— 79% + 1601 works for the first eighty substitutions before
yielding a composite. In general, it can be shown that there exists
a polynomial function for any n which will yield at least u suc
cessive primes. Eventually though, the formula breaks down, and
whether or not the number of primes generated after such failure is
infinite, is still an unsolved problem. An attempt is made in [5]
to attack this problem in a probabilistic sense. Using a computer,
they showed that there exist some functions that arc quite rich
in primes. Thus for primes in the Euler form »i = *'-' + x + 41,
they found the ratio r of these to all numbers of this form n up
to ten million to be 5 = .475

In 1947 W. H. Mills proved that there exists an exponential
type function which does in a peculiar sense solve the problem of
generating an infinite number of primes in N (allowing for omis
sions). He has shown that there exists a real number A having the

n

property that [A3 ] is prime for every natural number n. The inter
esting twist in his "solution" however, is that the proof is purely
existential, i.e., nothing is known about the actual value (nor even
of the order of magnitude) of A.
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Let us now consider the prime generator question in E. The
first few primes are: 2, 6, 10, 14. Since any odd element of N
can have only odd factors, it is not difficult to see that any element
of the form 2 • (2h — 1) for any n e N must be prime in E.
Furthermore successive substitution of elements of N yields all
the primes of E in order. For aesthetic reasons, we may prefer a
formula whose domain is also E instead of N as in the above case.
Then we could characterize a prime as any number expressible in
the form 2e — 2 for e e E — {1}, and the Hth prime would be
equal to 2(2h) — 2. Notice that in E, since we readily meet with
success, there is no need to revise the original question (searching
for a formula that produces an infinite number of primes allowing
for a countable number of omissions).

B—On the infinitude of primes belonging to arithmetic pro
gressions:

In the previous section we indicated that for many polynomial
functions which are rich in primes, we cannot ascertain whether
or not they generate an infinite number, granted a countable
number of failures. This of course does not imply that (at this
time) the answer is undecidable for all polynomial functions. Two
obvious formulas which generate an infinite number of primes (and
incidentally an infinite number of composites also) are: n and 2n
— 1 for all n e N.

That we can generalize from the above instances to include
other arithmetic progressions, is a conclusion that was proved by
Dirichlct (1805-1859). Let us denote arithmetic progressions
by a + bn, where a and b are fixed and n varies in N. Though it
is obvious that the only candidates which have a chance of suc
ceeding are those for which a and b are relatively prime (for if
they have a factor in common greater than 1, each number will
be composite) it does not follow that the condition is a sufficient
one. One can gain an intuitive appreciation that this is the case for
any a and b, by constructing a sieve (of Eratosthenes) with b
columns, and noting that there arc many primes in all columns for
which a and b are relatively prime.

It is also possible in a few cases (like progressions of the
form 3 + 4« or 5 4- 6m) to provide a simple deductive proof of
the infinitude of primes belonging to arithmetic progressions, and
the proof is very similar in spirit to Euclid's original proof of the
infinitude of primes. Dirichlet's general proof is non-elementary,
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in that it requires concepts from complex number theory, and is
beyond the scope of an introductor}' course in elementary number
theory.

It was suspected for over a century that no "elementary" proof
of Dirichlet's theorem existed. In 1949, however, Atle Selberg
proved it without invoking complex variables or the principle of
the continuity of the real numbers. [6].

When we turn to E, we again appreciate that the character
ization of all arithmetic progressions which generate an infinitude
of primes is easily discovered and proved. That relative primeness
is neither necessary, nor sufficient, is demonstrated by the fact
that 6 + 12h succeeds while 4 + 6« fails (and for purposes of
analogy, we assume that the domain of m is E). It is not difficult
to see that a + bn generates an infinitude of primes in E (a, b, and
n, e E) if and only if a is prime in E. Furthermore, these generators
succeed in a way that the functions of Fermat and Mersenne fail,
i.e., if a is prime, then all elements generated by a + bn are prime.

C—On determination of prlmality:

That the problems of determining primality for any number,
and of producing a formula to generate all primes, may not be
equivalent is revealed by the fact that the former request is
theoretically answerable (though perhaps very time consuming)
for any element of N, while the latter has not been solved, and
as a matter of fact may be unanswerable Q7].

Evidence of the practical difficulty of determining primality
has already been cited with regard to conjectures such as those of
Mersenne and Fermat. Though the problem is conceptually the
same today as it was when Euler disproved Fermat's conjecture
for a ten digit number, the existence of computers has provided
additional motivation to dichotomize "superastronomically" large
numbers according to primality. Thus, Gillies in 1963 demonstrated
the primality ofM(11213), one of the largest known primes. Lest
we conceive of the task as insignificant, let us recall that the
number has approximately 3375 digits in decimal form.

Though several theorems provide us with a drastic reduction
in the number of divisions necessary to determine primality, they
do so at an expense that only the highest of high speed computers
can afford. It is easily seen that to determine the primality of n,
we need not divide by numbers which exceed y/n. There are other
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theorems which, though they require only one division, do involve
much larger dividends than is the case when we apply either the
definition or the square root law. Wilson (1741-1793) for example
established that a number mis prime if and only if(»i— 1)! = —1
(mod h). Also Proth in 1878 discovered a way of determining
primality for numbers of the form » = fe2m -f 1 for fe < 2m. If b
has the property that there exists no s such that s2 = b (mod h),

6-1

then h is prime if and only if b 2 s —1 (mod it). Notice that
the implied division involves such huge dividends that to determine
the primality of 103 by Wilson's formula would be a formidable
hand calculation.

In E on the other hand, the existence of a formula to generate
all primes, also solves the very practical problem of determining
primality tor any number. Since all primes of E are generated by
2e — 2, and all composites by 2e (for e e E — {l})it follows that
divisibility by 2 (in E) is the simple test for primality.

D—On distribution of primes:

Granted that we lack a simple formula for the generation of
primes in N, is there some way of determining their density, or
how they tend to cluster? Observation of a table of primes suggests
that, though the number of primes is infinite, as we progress
through the natural numbers, the number of primes within a fixed
span tends to decrease. So, in the first five groups of 5000 elements
of N, we have the following number of primes (respectively): 168,
135, 127, 120, 119.

The search for a simple formula to approximate the number
of primes ^ x for any x belonging to N (and u-(x) denotes that
number), captured the imagination of Gauss and Legendre in the
late 18th century. Over 100 years later, in 1896 two independent
proofs (known now as the Prime Number Theorem) by Vallee-
Poussin and T. Hadamard verified the accuracy of the 18th
century approximations.

Using concepts that depend upon functions of a complex
variable (and it took over fifty years to find an "elementary" —
in the technical use of the word — proof), Vallee-Poussin and
Hadamard asserted and proved the following:

hm — = L
X -» 00

In a;
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Thus

In x

Though this formula tells us how to estimate the number of primes
in an interval, it does not suggest a way of deciding where in the
interval those primes lie.

In [5], an attempt is made to determine to some extent paths
along which these primes tend to cluster. If points in a plane are
numbered in a counter-clockwise spiral sequence from the origin,
[5, fig. 1] and [8, cover], then if we examine those lattice points
which represent a prime number in the sequence, it seems to be
the case that they tend to cluster along straight line segments. Such
indices consist of values of a quadratic form, since the nature of
the spiral determines that the second differences between such
points be constant. In particular, Euler's form is one of the diag
onals.

Both w(x) and various spirals (only one of which we have
considered in the above discussion) lead to rather interesting com
parisons in E. Since elements of E are double those of N (with the
exception of 1), and since every other element is prime, it follows
that for any x e E, n^x") is approximately i • x. The formula is
exactly correct for any composite in E, and misses by £ if the number
in E is prime. It is easy to see that the "greatest integer" function
enables us to produce a single concise formula that covers all the
cases (including n-(l) ). Thus

x + 2

not only approximates w(*)i but furnishes us with an exact value
in each case. Note that the approximation due to the Prime Number
Theorem in N can never be exact for any element in the sequence
since it can be proven that In x is irrational for all integral x.

In the case of a spiral in E, we need only double each index
(with the exception of 1) that appears in spiral of N. Thus we
arrive at figure 1.
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A spiral grid indicating the distribution of "primes" in the set E

Fig. 1

It is easy to demonstrate that the tendency which is suggested in
the spiral of N becomes fully realized in E. Since any two elements
along a diagonal differ by a multipleof 4 (as they do by a multiple
of 2 in N) — with the obvious exception of 1 along its diagonal —
it is easy to see that the primality of any element along a diagonal,
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determines the primality of all elements that lie along it. Also since
any two adjacent elements (horizontal) differ by a multiple of 2
(again excluding 1) but not of 4, it is apparent why the primes
and composites align themselves along alternate diagonals as they
do.

We see once again that since the second differences are con
stant along any diagonal, formulas of a quadratic nature will gen
erate these elements that are "super-rich" in primes of E.

E—On Odds and Evens:

The (still unproven) conjecture of Goldbach (1742) that
any even it e N, greater than 2 can be represented as the sum of
two primes, is an obvious parity problem. In considering that same
problem in E, we must first define what we mean by "even" in that
set. If we employ the same definition as in N (divisible by 2), we
realize that, though all elements of E — {1} are even in N, they
arc not all even in E. We recall that none of the primes are divisible
by 2 in £, and that all composites are. Therefore, unlike N, all the
.composites of £ arc even, but just as in N, all the primes in £
(greater than 2) are odd. Goldbach's gnawing conjecture then
becomes a trivial one line theorem in E: 2e = (2e — 2) + 2.

The concept of parity tends to enrich another comparison
between N and E. We know that another unsolved famous prime
number conjecture is that there exists an infinite number of twin
primes. But what do we mean by "twin primes"? One obvious
interpretation is that in order to qualify, both p and p + 2 must be
prime. If we thus literally interpret the conjecture in E, then ob
viously there are no twin primes in that set, for all primes must
differ by 4.

Another way of looking at the problem, however, is to realize
that in N we are searching for twin primes from the set of succes
sive odd elements. It so happens that in N, odd elements differ by
2, but we need not choose this literal interpretation for the purpose
of generalizing to other domains. If we search for twin primes in E
from among the successive odd elements, then it is clear that the
twin prime conjecture becomes a bona fide theorem in that set,
since for any e e E — {1}, it is clear that 2e — 2 and 2e + 2
are both primes.

III. Conclusions

We have only begun to suggest the kinds of comparisons that
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can be made among different domains. The pedagogical relevance
of such an approach is that it encourages us to distill those abstract
properties (for example, mathematical induction) that do in fact
distinguish one domain from another. In cases where relatively
simple and "elementary" proofsexist in N (such as the Fundamental
Theorem of Arithmetic), the consideration of another domain in
which either the conclusion is different or the proof is more trivial,
goads the student to make more of proof than the digestion of some
one else's thinking.

Proofs that may be too difficult to include in an elementary
course (as Dirichlet's Theorem, or The Prime Number Theorem),
can at least be discussed in historical context, and can also be made
more significant for future encounter by whetting the appetite with
analogous problems in other domains that can (at the time) be
tackled. Unsolved problems (as Goldbach's conjecture, the twin
prime conjecture, production of a formula to generate all primes)
gain stature as one becomes aware of the fact that the obvious
techniques to solve the problem in other domains break down when
applied to N.

As we have indicated, there is much in the literature on
comparisons of domains with regard to The Fundamental Theorem
of Arithmetic, and we have, therefore, not emphasized comparisons
of this nature. We note in passing that the significance of the
theorem can be further strengthened by considering the pervasive
ness of consequences in domains where the theorem fails. The
number-theoretic functions like y>, r, a cannot be so simply expressed
as they are in N, for non-unique factorization destroys the multipli
cative nature of these functions. Many fractions cannotbe "reduced
to lowest terms" (in the sense of getting an answer), for there may
be more than one way of expressing an equivalent fraction so that
the numerator and denominator are relatively prime. Thus, for
example,

12/36 = 6_^2 = 2/6; but also 12/36 = 6*2 = 6/18.
6*6 18*2

There are many other simple divisibility properties that fail
in £. For example, the greatest common divisor theorem in N asserts
that every common divisor of a and b must divide the greatest com
mon divisor. The following counter-example suggests that the proof
depends upon properties that are not shared by N and Ex The great-
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est common divisor of 36 and 60 is 6. Also, 2 divides 36 and 2
divides 60, yet 2 does not divide 6.

The choice of E in order to make such comparisons has been
convenient but somewhat arbitrary, and we have found it profitable
to consider many other subsets of N — such as 1 together with
multiples of 3. The kinds of comparisons we have suggested in
this article gain in significance when it becomes necessary for us
to generalize concepts such as even and odd (for the purpose of
considering Goldbach's conjecture, or the infinitude of twin primes
for example) to sets that lack 2 as an element.
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Flexing Rings of Regular Tetrahedra
Douglas A. Engel

Student, Fort Hays Kansas StateCollege

A tetrahedral ring is formed by connecting opposite edges of
several tetrahedra to form a circular, hinged, chain [1]. The pur
pose of this paper is to show how rings of regular tetrahedra can
be formed with cychc properties of movement. If an element
(regular tetrahedron) of a ring is held non-rotatable in space and
the ring can be rotated about it any number of times, the ring is
flexible. A ring of eleven elements, witha 34 twist between its ends,
has an interesting cycle of flexations and a unique symmetry.

Two chains of regular tetrahedra can be wound about one
another to form a solidcore (Fig. 1). A chain that is given a simple

Fig. 1

twist forms a core with a shape congruent to that of two chains
wound about one another, but it is not rigid. Four of the rigid cores
can be connected at an intersection to give a structure that flexes
by windingthe opposite cores into the adjacent cores (Fig. 2). This

106
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Fig. 2

structure alone is not a true flexible solid, since any number of
rotations of the ring about an element are not possible. By leaving
a loose portion in each of the four arms they can be reconnected
into a four armed structure (Fig. 3). The resulting structure is
flexible.

Fig. 3
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A flexing structure type can be formed by winding two chains
about one another for a short ways and then winding one of the
chains out, around the other, before continuing the winding
process (Fig. 4). The flexing motion is a simple rolling of the

Fig. 4

tetrahedra in the protruding portion, in either direction, along the
ring. The protruding structure bends the cores about 30°, allowing
a circular chain of a number of protruding structures which is a
true flexing solid. The loose portions in the structure in Fig. 3 can
be replaced by a number of the structures in Fig. 4, giving a
flexible solid that is rigid except for its flexing movement. More
complex solids can be formed by having more four armed structures
in the ring. The number of twists between the ends of two chains

wound about one another is approximately — , where n is the total

number of elements. Regular tetrahedra in a linear core can be
flattened to a layer of squares. The four armed structure can be
reduced to a general type of tetraflexagon by flattening all four
cores [2] [3].

(Continued on page 122.)



The Problem Corner
Edited by H. Howard Frisinger

The Problem Corner invites questions of interest to undergraduate
students. As a rule the solution should not demand any tools beyond
calculus. Although new problems are preferred, old ones of particular
interest or charm are welcome provided the source is given. Solutions
of the following problems should be submitted on separate sheets
before October 1, 1967. The best solutions submitted by students will
be published in the Fall 1967 issue of The Pentagon, with credit being
given for other solutions received. To obtain credit, a solver should
affirm that he is a student and give the name of his school. Address
all communications to Professor H. Howard Frisinger, Department of
Mathematics and Statistics, Colorado State University, Fort Collins,
Colorado 80521.

PROPOSED PROBLEMS

201. Proposed by William Mikesell, Indiana University of Penn
sylvania, Indiana, Pennsylvania.
Prove the following statement: In the set of regular polygons

only three, the triangle, square, and the hexagon are such that
they can fit together exactly without any gaps or overlaps.

202. Proposed by R. S. Lutliar, Colby College, Waterville, Maine.
Show that there are infinitely many primes of the form:

x3 + y3 + z3 + u3 + t3.

203. Proposed by Layne Watson, Evansville College, Evansville,
Indiana.

Prove that the sum of N vectors of equal length radiating
from a point P is zero, where the angle between a vector and the

2 w_1 2 npreceding one is-jrr. Use this result to prove that ^ cos ~\T = ^

and 2 sm -tj~ = °> where Nis an integer > 1.
n=o N

204. Proposed by the Editor.
Show that among any ten consecutive positive integers, at

most five can be primes, and that five actually occur in only one
case. Must at least one of any ten consecutive positive integers
be prime?

109
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205. Proposed by Thomas P. Dence, Bowling Green State University,
Bowling Green, Ohio.

The Fibonacci sequence {F„} is defined as

F, = 0, F, = 1, • • •, F* = Fk.t + Ft-2 for fe^ 2.

Now let /(x) represent the continued fraction

/(*) = F0 + 1

Fx +

F2 +

Fs +

F« +

and let g(x) represent the continued fraction

g(*) = F0 + F,

F2 +

F4 +

F, +

+ J_
FB

+ F"-'
F„

Determine, whether possible or not, and if so, an exact value for
lim /(x) and lim g(x).
n-* oo « -» oo

SOLUTIONS

196. Proposed by William K. Sjoquist, University of California at
Berkeley, Berkeley, California.

If y = uv where « and v are functions of x, prove that the Hth
derivative of y with respect to x is given by
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yi») = MV<»> + jim'v<"-j> + m(m - 1) w'V»-2>/2!
+ w(h - l)(n - 2) m '" v<-3>/3! + ••• + h<">v.

Solution by Lyne H. Carter, University of Southern Missis
sippi, Hattiesburg, Mississippi.
Assuming that v° = v, we need to show that

<»y»> = av<»> + itaV"-1' ji(b - 1)m'V-2>/2!

+ n(n - 1)(h - 2)« '" r<-3V3!

n(« - 1)(h - 2) ••• 2«(n-,V

+ (» - Dl
+ «<n>r.

Note that the expansion for y<n) terminates at the C.n + l)th
term. A simple induction proof should suffice; let

S = {x | x is a positive integer, (*) holds for n = x).

Clearly 1 e S, since from the product differentiation formula (and
if / exists),

y(» = y = „'„ + uS = mv(1> + (1)*<1>t»-,>,

which is in the form of (*) with n = 1. Now assume that k e S
for some positive integer fe. Then (*) takes the form

»>y<*> = av<*> + fewV*-1' + fe(fe - l)«'V*-2>/2!

+ fe(fe - l)(fe - 2)« '" v«*-3'/31 •••

+ fe(fe - l)(fe - 2) ••• 2n<*-1>v7(fe - 1)1

Assuming that y(k+1) exists, take the derivatives of the functions on
each side of the equation and obtain

(IDytt+l) = UV<*+D + ufVlk) + ku'vik) + ku"vik-1>

+ kCk-lWv*-»/2l + fe(fe - l)«"'v<*-2'/2!

+ fe(fe - l)(fe - 2)« "' v<*-«/3! + • • •

+ fe(fe - l)(fe - 2) • • • 2««*V/(fe - 1)! + «<,t+1'v + «<*V.
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• yt.n _ „,,,*.„ + (k + !)Mv<*) + (fe + l)fca'V*-'>/2!

+ (fc + l)fe(fe- l)M"'i'(k-2,/3! + ••• + (fe+ l)(fe- l)fe
• • • 2n,*>i'7(fe - 1)! + h,&*»v.

This expression is clearly (*) with it = fe 4- 1, so since fe e S
implies that fe 4- 1 e S, the principle of mathematical induction
tells us that S is the set of all positive integers. Therefore (*) holds
for ail positive integers and the theorem is proved.

Also solved by Douglas Lind, University of Virginia, Char
lottesville, Virginia; Layne Watson, Evansville College, Evansville,
Indiana.

197. Proposed by Thomas P. Dence, Bowling Green State Univer
sity, Bowling Green, Ohio.

Let us denote a set of sequences {Xm,„} by

{X„„} = (1, 1, 2, 3, 5, •••) where Xm = 1
XU2 = 1
Xi,3 = 2

Xi,ic — Xlfs-i + Xi,k-2

{X2,„} = (1, 3, 4, 7, 11, •••) where X2„ = 1
X2>2 = 3
^2,3 = 4

X2,|; — X2,j;-i + X2,k-i

{X3,„) = (1, 4, 5, 9, 14, • • ♦) for similar definitions of XSm

{X|,„} = (1,1+ l,i + 2, 2i + 3, • • •) for i > 1, and where the
X's are defined by the
same recurrence relation
as before.
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Express the nth term of the ith sequence in terms of the Jtth term
of the first sequence, where the first sequence is actually the
Fibonacci sequence.

No solution. Note that Xi)n = X„„ + X,,„-,. The problem
is to express X^,,-, in terms of Xi,„.

198. Proposed by the Editor.
For what values of n is (11 X 14") + 1 prime?
Solution by R. S. Luthar, Colby College, Waterville, Maine.

1. Suppose n is odd.

11^1(5)

14" = -1(5)
11 X 14" = -1(5)

Hence, 11 X 14" + 1 is divisible by 5.
2. Suppose n is even, say 2fe

11 «* -1(3)
14» = 142* = 196* = 1(3)

11 X 14" == -1(3)

Hence, 11 X 14 " + 1 is divisible by 3.
11X14" +1 is a composite number and does not give

prime for any value of n.

Also solved by Thomas P. Dence, Bowling Green State Uni
versity, Bowling Green, Ohio; Douglas Lind, University of Virginia,
Charlottesville, Virginia; Layne Watson, Evansville College Evans
ville, Indiana.

199. Proposed by R. S. Lutltar, Colby College, Waterville, Maine.
Let A ABC be a right triangle with right angle at A. Construct
regular n-gons on AB, AC, and BC with respective areas a, p, y.
Prove a + p = y.
Solution by Layne Watson, Evansville College, Evansville,
Indiana.

The area of a regular K-gon with side s is given by

. s3n , it AB*n ^ v
A = —r- cot —. a = —-— cot —,

4 it 4 jt
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~AC2n it ~BC2n w
P = —-.— cot —, y = —t— cot —
r 4 n ' 4 n

and since ABC is a right triangle AB2 + AC2 = BC2. Multiplying

by

£ cot * gives £ cot -AB* + J cot - AC2 =5 cot -BC2
4 ji 6 4 it 4 n 4w

which is a + )8 = y.

Also solved by William Mikesell, Indiana University of Penn
sylvania, Indiana, Pennsylvania.

200. Proposed by E. R. Deal, Colorado State University, Fort
Collins, Colorado.

In the Fall 1966 issue of Tfee Pentagon, this problem was
incomplete. The complete problem should read as follows:

"Are those your children I hear playing in the garden?" asked
the visitor.

"There are really four families of children," replied the host.
"Mine is the largest, my brother's family is smaller, my sister's is
smaller still, and my cousin's is the smallest of all. They are playing
drop the handkerchief," he went on. "They preferbaseball but there
are not enough children to make two teams." "Curiously enough,"
he mused, "the product of the members in the four groups is my
house number, which you saw when you came in."

"I am something of a mathematician," said the visitor. "Let
me see whether I can find the number of children in the various
families." After figuring for a time, he said, "I need more informa
tion. Does your cousin's family consist of a single child?" The host
answered his question, whereupon the visitor said, "Knowing your
house number and knowing the answer to my question, I can now
deduce the exact number of children in each family."

How many children were there in each of the four families?



Kappa Mu Epsilon News
Edited by J. D. Haggard, Historian

Alabama Beta, Florence State College. Florence

At an initiation banquet in April, 1966, Alabama Beta initiated
thirteen new members: Eddy Joe Brackin, Mary Virginia Darby,
David Hammond, Joyce Hargrave, Ronald Killen, Martina Lamb,
Frank Lee, Pamela Sams, Mary Emma Wakefield Albert Wallace,
Michael Weston, Linda White, and Barbara Wright. The guest
speaker was James Hooper, a 1958 initiate of Alabama Beta.

Other programs in the spring of 1966 included lectures by
Dr. J. W. Wesson of Vanderbilt University on linear algebra and
on projective geometry, and a student program directed by Marjory
Johnson.

Six of our 1966 graduates have received graduate scholarships
and assistantships: Norman Cooper, N.A.S.A. Trainee Grant to the
University of Mississippi; Marjory Johnson, N.D.E.A. Fellowship
to the State University of Iowa and honorable mention for the
Woodrow Wilson Fellowship; Cecilia Holt, N.D.E.A. Fellowship to
the University of Kentucky; Bettye Bergin, NSF Graduate Fellowship
to the University of Alabama; Janice Cox, teaching assistantship to
Sanford University; Harold Darby, teaching assistantship to Tennes
see Technological University. Bettye Bergin, Cecilia Holt, Hugh
Huffman, and Patricia Powell were named to Who's Who in Ameri
can Colleges.

An alumnus, John Finley, received the annual "Faculty Mem
ber of the Year" award.

A reception for all freshmen who are interested in majoring or
minoring in mathematics was held to acquaint them with the pur
poses, advantages, and requirements for membership in Kappa Mu
Epsilon.

A coffee hour at the 1966 homecoming was attended by sixty-
two alumni and guests from nineteen different years of initiation.
Alabama Beta has initiated 410 members since its installation in
May, 1935.

Alabama Epsilon. Huntingdon College, Montgomery

Again this year the chapter is sponsoring a tutoring service for
students in high schools or nearby colleges. The participation in this
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program has been excellent. We are planning an initiation for later
in the semester.

Ulinois Beta, Eastern Dlinois University, Charleston

We now have sixty-seven members on campus, twenty-six of
these were initiated last spring, and twenty are faculty. Only
twenty-one members were participants last year, but this limited
numberof "two-year" people will be changed in the future byhaving
initiation of pledges twice a year. Those who meet the requirements
during spring or summer quarters will be initiated in the fall; those
meeting requirements during fall or winter quarters will be initiated
in the spring. There will continue to be only one banquet held in
conjunction with the spring initiation. We hope that membership in
Kappa Mu Epsilon for more than one year will help our organiza
tion become more active.

Four of our members attended the Regional Convention at
Mount Mary College, Milwaukee, Wisconsin. Expenses were shared
equally by the organization treasury and those who attended. There
were very favorable reports of the convention and requests for a
similar trip next spring.

Indiana Alpha, Manchester College, North Manchester

The theme for the programs this year is "Would You Believe,
Mathematics Is Everything?" Each program will be about applica
tions in or relations to other fields. We are also planning field trips
to the National Council of Teachers of Mathematics meeting in
Cincinnati and to a planetarium.

Indiana Gamma. Anderson College, Anderson

Last year's chapter president, James French, is now a graduate
assistant in mathematics at the University of Nebraska.
Kansas Alpha, Kansas State College, Pittsburg

Harold Thomas replaced J. Bryan Sperry as sponsor since Mr.
Sperry is currently enrolled in graduate work at the University of
Kansas.

Louise Gomer received the Mendenhall Memorial Award as the
outstanding senior majoring in mathematics.

Programs for the year included: "Conic Sections with Circles
as Focal Points" by Tom Potts; "The Five-Color Problem" by Dr.
Arthur Bernhart, University of Oklahoma; "The Planimeter" by
Roger Christian; "Game Theory" by Tony Dousette; "Mathematical
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Fallacies" by Curtis Woodhead; "Mathematics In Industry" by
John Brunet and Edd Grigsby, Phillips Petroleum Co., Bartlesville,
Oklahoma. Both of these men are former KSC students and members
of Kansas Alpha.

Kansas Epsilon, Fort Hays Kansas State College, Hays

Initiation of new members was held at the monthly meeting
on November 15, 1966.

On February 14, 1967, Lt. Dee E. Kimbell, a member of
Kansas Epsilon, was awarded the Department of Commerce Silver
Medal for contributions of unusual value to the department. Kimbell
is Chief of the Support and Maintenance Branch of the Satellite
Triangulation Division of the Geodetic Survey, an agency of the
Commerce Department's Environmental Science Services Adminis
tration, with headquarters in Rockville, Maryland.

Kansas Gamma, Mount St. Scholastica College, Atchison

Norma Henkenius is editor of the quarterly publication of
the Kansas Gamma Chapter entitled "The Exponent."

Some of the interesting programs of the chapter during this
past year have been: A Wassial Bowl Party which follows a custom
common in England at Christmas time during past centuries and
represents one of the unique ways of expressing "Good health" to
one's fellow man; "Geometric Transformations" by Pat Moran;
"Mathematical Paradoxes" by Roberta Robinson; "Fundamental
Groups of Topology" by Joe Ingle; "Introduction to Geometric Mod
els Based on Axiomatic Systems" by Leora Ernst; "Twin Primes" by
Elizabeth Murphy; "Hilbert Spaces" by Anna Agnew; "Equide-
composible Figures" by Andrea Meyer; and "An Introduction to
Fibonacci Numbers" by Bernita Meyers.

Maryland Alpha, College of Notre Dame of Maryland, Baltimore
All of the meetings this year (from October through March)

are being devoted to a study of computers: — their history, uses,
and languages. Each KME member is choosing a problem and a
computer language; then she will attempt to program and solve her
problem.

In April a specialist in the mathematics of the elementary
school will acquaint the members with the current curricular
changes.

The May meeting will be the formal initiation.
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Michigan Alpha. Albion College, Albion

This fall's meetings have included the following lectures:
"Laplace Transforms in Industry;" "Mathematics as a Career;"

and the "Computer."
This spring in addition to our regular presentation of pledge

papers we hope to obtain a visiting lecturer from the Mathematical
Association of America Visiting Lecture Program.

Mississippi Alpha. Mississippi State College for Women, Colum
bus

The annual initiation ceremonies and banquet were held
October 27, 1966. There were twenty-six new initiates this year.
The unusually large number of new members is the result of
changes in the curriculum, which permit a student to be eligible
for membership earlier in her college career.

A variety of programs has been planned for this year utilizing
students and faculty of MSCW and also invited speakers from other
institutions. Dr. Robert Plemmons of the University of Mississippi
is to present the program for November.

Our program usually centers around graduate study in mathe
matics. Last spring, Dr. Roy Sheffield of Mississippi State University
described their graduate program for our members.
Mississippi Gamma, Mississippi Southern College, Hattiesburg

The first meeting was held on October 19, 1966, to reorganize
and set up a program for the 1966-67 year.

On April 13, 1965, the members of Kappa Mu Epsilon en
joyed a steak cook-out and initiated seven new members. This
meeting was at the home of Jack D. Munn, corresponding secretary.
Missouri Alpha Southwest Missouri State College. Springfield

Meetings are held monthly on the third Tuesday of each
month. We have fifty active members this semester. Students are
preparing papers for the national convention to be held at Kansas
Gamma in April.

Missouri Beta. Central Missouri State College. Warrensburg
Missouri Beta Chapter of Kappa Mu Epsilon recently held

its first meeting of the academic year 1966-67 and at that time
initiated six students into the organization.

The chapter also presented an award to the outstanding
freshman in mathematics at the initiation ceremony. At the annual
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spring banquet held in conjunction with Sigma Zeta, the honorary
physics organization, the chapter presents its award to the outstand
ing senior student in mathematics.

Plans are under way to have papers presented for considera
tion at the National Convention. In addition, plans are underway
to provide a mathematics libraryfor interested students. The library
will be stocked with textbooks available from the mathematics staff
at the college. The club believes such a library will be quite bene
ficial. The Missouri Beta Chapter is looking forward to a very
successful year.

New York Beta. State University of New York. Albany

The New York Beta Chapter at the State University of New
York at Albany held its annual Christmas party on December 14
using mathematical games for entertainment.

On the more serious side, the February meeting was our
annual Mathematics Evening, open to all members of the Univer
sity. This year we held a panel discussion of the various career
opportunities open to mathematics majors. The members of the
panel included an economist, a statistician, an actuary, and a
computer programmer.

In April, at the spring banquet new officers were elected
and awards were presented for the best mathematics papers sub
mitted during the year.

New York Gamma, State University College. Oswego

Our first meeting was held September 29, 1966, at which
time we organized the club and discussed old business. At our
second meeting held October 27, 1966, we discussed the Mathe
matics Honors Program just started this year. Also, along with
Sigma Zeta, the science honorary society, we sponsored a faculty-
student tea held November 10, 1966.

Ohio Alpha. Bowling Greon State University, Bowling Green
The Ohio Alpha Chapter of Kappa Mu Epsilon is conducting

once-a-week help sessions for beginning mathematics students. To
also help new students in their selection of courses in the future,
the chapter is planning an open meeting of mathematics course
reviews presented by various members of the mathematics faculty.

Ohio Gamma, Baldwin-Wallace College, Berea

During the past quarter several interesting papers were pre-
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sented by Kappa Mu Epsilon members. In April, Camille Falcone
presented a paper on "Topology," and Bill Chen presented a
paper on "Nomography."

In March, Mr. Paul Diedrich from Clevite Corporation was
our guest speaker. He spoke on "The Care and Feeding of Bur
roughs Computers." Mr. Wayne Heritage from Sohio Company was
our guest speaker in May. His topic was "Fibonacci Numbers and
Computers." The election of officers was also held in May.

Art Davies, Terry Furman, and Bill Achberger accompanied
the staff to the spring meeting of the Ohio section of the Mathe
matical Association of America at Ohio Wesleyan University, Dela
ware, Ohio.

In October, we initiated twenty new members, bringing our
active total to fifty student members and four faculty members
and the all time list of members to two hundred ninety-four
initiated since installation in 1947. Several films from the Mathe
matical Association of America Committee on Educational Media
are being shown this quarter. Those presented to date are: "Pre
dicting at Random," "Let Us Teach Guessing," "Topology," "Pits,
Peaks, and Passes," "Fixed Points," and "Challenge in the Class
room."

Pennsylvania Beta, La Salle College, Philadelphia

Whereabouts of last year's Kappa Mu Epsilon members:
Bro. Jos. Braceland, teacher at Bishop O'Connell High School,
Arlington, Virginia; Jos. Chamber, NSF trainee, Georgetown Uni
versity, Washington, D.C.; Richard Clancy, teacher at Philadel
phia High School for Girls; Bro. Foss, teacher at South Hills Catholic
High School, Pittsburgh, Pennsylvania; Daniel Gallo, intern teach
ing program at Temple University, Philadelphia, Pennsylvania;
Frank Gutekunst, Pennsylvania Power Co., Allentown, Pennsyl
vania; Robert McCormick, NSA, Washington, D.C.; George Murr,
General Electric, Norristown, Pennsylvania; Robert Rigolizzo, as
sistantship, Villanove, Pennsylvania.

Future seminar papers include: "Quadratic Forms and Invari
ant Theory," Robert Minder; "Reduction of the General Quadratic,"
Michael Young; "Affine Geometry," William Becker; "Fourier
Series," Adrian Karsh; "Stereographic Projection," James Crockett;
and "Four Color Problem," Edward Keppel.
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Pennsylvania Delta, Marywood College, Scranton
New members initiated on May 12, 1966, were: Mary A.

Baldini, Ann M. CaporeUi, Linda Connor, Mary T. Grace, Suzanne
Klassner, Barbara Lachowicz, Linda McDonnell, Ann Meagher,
Mary Karen Merkel, Agnes Mullally, Mary L. Palla, Joan Jenkins,
and Ann Marie Solancis.

Lectures given: "When Computers Are Useful" by Mr. Law
rence Wheatley of Savannah River Laboratory, South Carolina;
"Computer Solution of Matrix Eigen-systems" by Mr. Robert Fun-
derlic of Oak Ridge Laboratory, Tennessee.

A series of six films will also be shown during the current
year.

Tennessee Beta. East Tennessee State University. Johnson City
Tennessee Beta Chapter began the year with three well-

attended and interesting meetings. The president, Harold Bullock,
presided at the business sessions. At the October meeting Professor
Tai-il Suh spoke on "Some Ideas of the Projective Plane;" at the
November meeting Director of the Computer Center, Stanford H.
Johnson, spoke on "Job Opportunities in Data Processing;" at the
January meeting Professor Charles Taylor gave a talk on "Meteors."
Members enjoyed a snack before each meeting.

The chapter had a spaghetti dinner party on February 9 at
the home of Mrs. Lora McCormick, corresponding secretary. Thirty-
five members were present and, following the dinner, enjoyed group
singing and a program of guitar music and songs presented by
Janette Gass and Harold Bullock.

Texas Beta, Southern Methodist University, Dallas

Texas Beta Chapter started this year with a luncheon meeting
featuring a talk on "The Calculus of Variations" by Dr. Richard
Williams. We had thirty-seven in attendance. We have also had
a Halloween Party and an "Information about Graduate School
and Coffee." We are planning a meeting in November which will
feature a talk by Dr. W. L. Ayres on "The Map Coloring Problem."
We have plans to send a delegation to the convention in April.

Texas Epsilon, North Texas State University, Denton

The Texas Epsilon Chapter received twenty applications for
membership for the Fall 1966 semester. The pledges have been
appointed to various committees to perform useful and needed duties
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in the Mathematics Building. Among these are responsibilities for
the Mathematics Reading Room and constructive bulletin boards.
Wisconsin Alpha, Mount Mary College. Milwaukee

Sandra Mertes, Kappa Mu Epsilon member graduate of 1966,
received a National Science Foundation Traineeship for study of
mathematics at the Catholic University of America, Washington,
D.C.

During the year the following programs were presented:
"Number Bases" by Rosemary Reuille; "The Trachtenberg System
of Basic Mathematics" by Sue O'Connor; "Panel on Three Mathe
maticians: Pythagoras, Euclid, and Archimedes" by Karen Mauro,
Shirley Bruder, Ellen Levine; "Demonstration on Curve Stitching"
by Delores Peirick; "Panel on Computers: Brief History, How They
Work, and Applications" by Jerrilyn Foster, Judy Pokrop, and
Grace Makarewicz; "Progressions: Arithmetical and Geometric" by
Tiia Ostrovskis and Maureen O'Donnell.

Mount Mary College also played host to the Mu Alpha Theta
regional meeting on January 7, 1967. The principal speakers were
Professor Hannekan, Department Chairman from Marquette Uni
versity, and William Golomski from industry.

Nine students and one faculty member are planning to attend
the National KME Convention, and Karen Johnson is preparing
a paper.

(Continued from page 108.)
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The Mathematical Scrapbook
Edited by George R. Mach

Readers are encouraged to submit Scrapbook material to the
editor. Material will be used where possible and acknowledgement
will be made in The Pentagon.

= A =

In one of its popular forms, the chain letter operates by
having the originator send a fixed number of letters (say five),
each receiver copies and sends five, and so on. If it were possible
that no person received two such letters, how many "rounds" would
it take for every American to receive one? Averaging one "round"
a week, could it be done in a year or two?

We want the sum of the series 5' + 52 + 53 + • • • + 5" to
equal our population, say 200,000,000.

S = a<jrn - 1) = 200,000,000
r - 1

5(5" - 1) = 200,000,000
4

5" - 1 = 160,000,000

Forgetting about the 1 and taking the logarithm of both sides
we soon see that three montlis would be plenty of time to circulate
the letters to everyone.

= A =

How many revolutions about its own center will a circular
disk (D) have made when it rolls around an identical fixed disc
(F)? Since the circumferences are the same and the circumference
of (Z?) is rolled out once along that of (F), the usual answer is
one revolution, but it is incorrect.

($©} A !
j * :
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You can try it with coins or easily visualize a similar situation
with squares (d) and (/). Note that (d) rotates half a revolution
about its own center in just getting the first notch, or one-fourth
of the way around (/).

Do these two examples have the same answer? Why? What
about M-sided regular polygons? What about dissimilar figures, for
example a square and a hexagon, with the same perimeter? Can
any general statements be made about a situation in which one
perimeter is an integral multiple of the other?

= A =

How many pairs of rational numbers, (x,y), are there for
which xv = y? Well, if x = y it is always true and that's not very
interesting. Most people quickly see that 2* = 42. Are there any
other pairs of unequal rational numbers? Is there a finite or an
infinite number?

To simplify and analyze the problem in one way, suppose we
let y = rx, where r is rational and r ^ 0. Then,

(x)« = (r*)r

OO1 = ("0*
xr = rx

x'-1 = r

i

x = rr-l

Now, x will be rational whenever —^—r is an integer,.n. Then,

n =
1

r - 1

1
r - 1 =

n

r = 1 + —, » 76 —1, since r ^ 0.
n

So, a number pair, (x,y), can be found if x = (1 + — )n,

and y = (1 + - )n*\ for each m = +1, +2, +3, • • •. When
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n= 1, (*,y) =(2,4); it =2, (x,y) =(|, ^ ); etc. This
analysis does not give all of the unequal rational number pairs but
it does give at least an infinite number of them. Notice that the
obvious x = y does not fit this pattern. Can you find additional
pairs of rational numbers which do not fit the above pattern for
some integer ji?

Now, suppose that we want to find pairs of integers, (x,y).
Using the same approach as before let y = rx, where r is an integer

i

and r =^= 0. As before, x = rr~l. Now, x will be an integer whenever

r is an integer, it. As before, r = 1 + —. But now r and
r — 1 6 it
n must both be integers. Apparently it = 1, r = 2 is the only
possibility. This yields the pair (2,4), which we already had. Can
you find a pair of integers which does not fit the above pattern?
Try (—2, —4). Is there a better approach to the problem than
this one?

= A =

Editor's note: The following was submitted by Rex L. Hutton,
formerly a student member of Ohio Gamma Chapter and now a
faculty member of California Gamma Chapter.

A Numeration System and a Problem

We are fairly familiar with various numeration systems in
cluding, of course, base 10 and base 2. With just two tokens at our
disposal and no digits like the 0, 1 of the binary system, is it pos
sible to count and have a numeration system? Well, one token can
be put down for "one" and both for "two." Then it is apparent that
some positional scheme must be used. We could denote "three" by
picking up both tokens and putting one down in a second position,
like the ten's position in the second column on an abacus. This
could be done with tally marks as well as tokens.

Consider this mixture of tally and positional numeration.
New numerals are subscripted with H.
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Base 10

Numeral

1

2

3

4

5

6

7

8

9

10

The Pentagon

Tally

/

//

/

/ /

//

/

/ /

/ /

//

/

New
Numeral

1„

2„

10„

11«

20w

100w

101H

110„

200„

1000„

Now, extending the numeration system we would continue:

11 = 1001,, 14= 2000„ 17=10010,, 20= 20000*

12 = 1010,, 15 = 10000„ 18 = 10100« 21 = 100000w

13 = 1100,, 16 = 10001,, 10 = 11000„ etc.

Note that the use of the digits, 0 and 1, is not required at all but
is just a convenient way to denote the tally.

Observe that the numerals

1„, 10„, 100,,, 1000„, 10000w, 100000,,, •••

represent numbers of the form

ji(m + 1)

where m is a natural number.

Further, observe the correspondence between ji and the posi
tion of the 1 in the H numeral.

Also notice, in a numeral such as 10010,, the rightmost 1
acts as a simple tally mark, its position giving its value.
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These observations make it relatively easy to convert an H
numeral to base 10. Examples:

10010,, = ('5-)2(-6-) + 2= 17
10oi„ =&pi +1= 11

1001000w = £Z21§2 + 4 = 32

200,, =^y^ + 3=9
20000,, = ^5y^ + 5 = 20

Now, consider writing the H numeral for a certain natural
number, fe > 0. The leftmost digit of our H numeral represents

2 f°r some natural number n. We desire to determine
the largest natural number n such that

2 — *'
We see that

m2 + « ^ 2fe

ji* < 2fe,

thus y/2k is an estimate for n.

To write 56 as an H numeral, we consider V(2)(56)
= vTH * 10. We try it = 10.

(10X11) = „
2

and 55 + 1 = 56, so that H numeral is 1000000001,,. Note that

in some cases V2fe may be too large and so we try y/2k — 1.
Problem: How can we compute with H numerals? For addi

tion, the problem is to write a sum such as

*Ol+12 + m+ K!l+_» + u

where m =^ n and J ^ fe, in the form
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2 + S'

where s ^ t.

Example: 1001,, + 1100,, = 4(4 + ^ + 1+4(4 + ]) +3

= 10+1 + 10+3

= 24

= 21 + 3

2 + 3
= 100100w.

How can this and other sums be obtained without base 10
computations? How can system H products be computed?

What kind of a numeration system can be devised with three
tokens?

(Continued from page 94.)

10. Conclusion. In this paper we have attempted to dem
onstrate how the multiplication of a matrix by a scalar can be
generalized in certain cases of non-conformal matrices. The final
section shows how the defined X-multiplication reduces to scalar
multiplication of a matrix on one hand and the ordinary matrix
multiplication on the other. A few analogies of standard matrix
operations have been given as examples of X-multiplication —
the reader may be interested in examining others.
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