THE PENTAGON

Volume XXVI Fall, 1966 Number 1

CONTENTS

National Officers — - oo emee—em e 2

On Arbitrarily Large Postulate Sets for the Propositional
Calculus: A Constructive Proof

By John W. Bridges —— - ommmeeemmm 3

Galois’ Theory for the Group of an Equation
and the Criterion of Solvability

By Leora Ernst — oo mmem e 9
Some Applications of Partially Ordered Boolean Matrices

By Bernard G. Hoerbelt oo 15
Linear Set Equations and Set-Theoretic Matrices

By Robert H. Lohman o emmmeemm e 23
Generalizing the Law of Repeated Trials

By R. F. Graesser —— oo e ccmmmmmmmmm e mmmm 28
The Degeneration of Sequences of Integers by Division

By Gary L. Eerkes and F. Max Steint oo 33
The Mathematical Scrapbook - oo 40
Directions for Papers to be Presented at the Sixteenth

Biennial Kappa Mu Epsilon Convention - —--cce—eowee- 43

Installation of New Chapter — e cmmcoomm e 45
The Problem Corner o cmeem e 46
The Book Shelf —_ oo 54

Kappa Mu Epsilon News o mmmommcmme e 61



National Officers

FrepW. Lorr - - - - . . . President
State College of lowa, Cedar Falls, Iowa

GeoRGE R. Macn - - - - - Vice-President
California State Polytechnic College,
San Luis Obispo, California

LAuRAa Z. GREENE - - - - - - Secretary
Washburn Municipal University, Topeka, Kansas

WALTER C. BUTLER - - - - - - Treasurer
Colorado State University, Fort Collins, Colorado

J. D. HaGearp - - - - - - - Historian
Kansas State College of Pittsburg, Pittsburg, Kansas

CARL V. FRONABARGER - - - - Past President
Southwest Missouri State College, Springfield, Missouri

Kappa Mu Epsilon, national honorary mathematics society, was
founded in 1931. The object of the fraternity is fourfold: to further
the interests of mathematics in those schools which place their primary
emphasis on the undergraduate program; to help the undergraduate
realize the important role that mathematics has played in the develop-
ment of western civilization; to develop an appreciation of the power
and beauty possessed by mathematics, due, mainly, to its demands for
logical and rigorous modes of thought; and to provide a society for
the recognition of outstanding achievements in the study of mathe-
matics at the undergraduate level. The official journal, THE PENTA-
GON, is designed to assist in achieving these objectives as well as to
aid in establishing fraternal ties between the chapters.



1.

a)

b)

On Arbitrarily Large Postulate Sets
For the Propositional Calculus:
A Constructive Proof *

Joun W. BRIDGES
Student, Southwest Missouri State College, Springfield

Introduction

There are many different-sized postulate sets for the proposi-
tional calculus which are independent and complete. For
example:

Nicod [3] exhibits the single postulate
Cp/Cq/r)/{[s/Cs/DT/CC/ )/ {(Cp/8)/ (p/D} 1}

with the Sheffer stroke function as a primitive operation de-
fined by p/g =p ~p V ~ q.

Nicod shows that this postulate is complete.

Rosser [5], with primitive operations ~ and A, shows that
the following set of three postulates is sufficient to develop
the propositional calculus:

Pl.p > pAYP
P2.p Ag->yp
P3. (p = q) > [~(g Ar) = ~( APl
It may be shown that this set is independent.

¢) Of the famous Russell-Whitehead postulates, the following four

are independent and complete [1]:
Pl.pVp—rp

P2. g 2> pVyg

P3. pVg—qVyp

P4. (q =) = [(p Ve = (V]

where ~ and V are the primitive terms.
There are other different-sized postulate sets known. Tarski

*A paper prosoniod at the KME Roglonal Convention at Springtield, Missouri, April 23,
1966, and awardod first place by tho Awards Committce.
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4 The Pentagon

[6] uses a set of seven postulates; Kleene [2] uses a set of ten;
Novikov [4] uses a set of eleven.
2. On arbitrarily large postulate sets.

We pose the obvious question: Does there exist for all » a
set of n independent, complete postulates for the propositional cal-
culus? Before proving this and a much stronger result, we proceed
to a useful lemma.

In the succeeding work all propositional functions will be
written in terms of the two primitive operations negation (~) and
implication (—=).

If a function a(p,,ps, *++, i) is a tautology in this context
then it may be written in the form

%(0(1:., e, ) = ¥(py, 00, pk))

where &, is a recursively defined function equivalent to 1 negations
of its argument, and where 6(p,, ***, p) and ¥(py, ¢, m)
consist of the antecedent and consequent, respectively, of the major
implication in a.

DerFiNiTION. Let a be a propositional function, Define N(a)
to be the total number of uses of all variables in e.

LEMMa. If a and B are functions of one variable,
a(p) = $i(0:(p) = ¢:(p)) and B(p) = ¢;(0:p) > y.(p)), and

if N(0.(p)) _, N(6:(p))
N (p)) 7 N=(p))’

then there exist no propositional functions A and y such that

s: (a(p)) and S” (B()) are identical.

Proof.

It will suffice to show that under the circumstances described
any substitution will preserve the original ratio under the function
N. If M = E, then assume that some substitution

N
% is made in «, and suppose that formula A contains 2 uses of k

variables. Then any substitution made in 8, will also be made in v
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and we now have
NG _ wr _ 1

NG¢D ns s’

Since all substitutions are thus ratio-preserving as far as the number

of variables is concerned, and since the two ratios are initially not

equal, they can never under simple substitution be identical.
Q.E.D.

We know that the rationals may be well-ordered by a scheme
such as the following:
1/1 = 1/2 1/3 = oo
< A
2( 1 2/2 2/3 oo
3/1 7 3/2  3/3  eee

[ ] L] . .
L ] L * [ ]
L] L] e L]

We now have the sequence 1, 1/2, 2, 3, 1/3, +++ in which all
rationals appear. If we associate with each rational number a tau-

tology in the following manner:

1/1 -
172 «—>
2/1 -
3/1 <> p Vv
1/3 «—

Vo

~ =
< <
fa~ e e e a1

A A

Y4
P
r
/4
pVpVyp

then by the Lemma above no two of these will ever be identical
under substitution, since each has a distinct ratio associated with it.
Call the set of these tautologies C. Define C* to be the set whose
elements are the quadruple negated elements of C.

TueoreM. For every n > 2, we may construct a set of »
independent complete postulates for the propositional calculus.

Proof.

Let t,, ts, ***, ta-s be distinct elements of C*.
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Consider the set

PlL. ¢,
P2. ¢,

P(n — 3). t,s

P(n — 2). t; = (t2 = **+* = (tas > [P = pP]) **°)
P — 1)ty = (82 = 22 = (tas = [Pg = 7]) *°°)
P(n). t, = (tz -3 sse — (t;;—a - [x‘_] ) ...)
where X is (p = q) = [(~gr) = (~rp)]).

Completeness. Follows from the completeness of Rosser’s set
(above) which is obviously derivable from this set.

Independence.
I.  Of the t's. Consider ¢;, 1 =i < (n — 3)
(1) By substitution

a) Noty, j 5= i, will yield t; by the lemma;

b) None of the last three will yield ¢; by substitution
since their major connective is implication while
the major connective in t; is negation.

(2) By modus ponens

a) Not, j # i, will yield ¢; by modus ponens since
modus ponens may not be applied to a statement
whose major connective is not implication.

b) Modus ponens on the last three will yield, without
possible further simplication, only the following
(with t; deleted):

ti = (tia > 000 > (p ~opp) )
ti = (tin 2 2or = (pg = p) *+7)
ti—.(tbl—)."_’( X )o-o)

none of which will yield ¢; by substitution or by
modus ponens.,

II. Of P(n — 2).
We take as a model a 3-valued algebra with operations ~
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and — defined by:

? |~p -] 0 1 2
0 1 0j]0 1 0
1 2 110 0 O
2 2 210 1 O

It may be easily verified that all of the postulates except
P(n — 2) have the hereditary property in this medel of
taking only value 0 or 2.

II. Of P(n — 1).

We construct a model similar to the one above, with operations
defined by the following tables:

pl~p ->|0 1 2
0 1 o|1 1 1
1 1 110 1 O
2 0 211 1 1

In this model all postulates except P(# — 1) have the heredi-
tary property of always taking value 1.

IV. Of P(n).

We construct a model similar to the above, with operations
defined by:

p|~p =0 I 2 3
0 1 0|0 2 2 3
1 2 111 0 0 1
2 3 211 0 0 1
3 3 310 2 2 3

In this model all postulates except P(#) have the hereditary
property of always taking on value O or 3.

Q.E.D.

Tueorem. For cvery n > 3, there exist an infinite number
of independent, complete postulate scts with cxactly » elements.

Proof.
Obviously there are an infinite number of ways of choosing
a set of » — 3 rationals, and it may be seen that the proof

of the previous theorem holds regardless of the particular ele-
ments of C* chosen. Therefore, the subset of C* associated
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with any such (# — 3) element subset of the rationals will

satisfy the theorem.
Q.E.D.

BIBLIOGRAPHY

Ackerman, W., and Hilbert, D., Principles of "Mathematical
Logic. Translated by L. M. Hammond, et. al. New York:
Chelsea Publishing Company, 1950.

Kleene, S. C., Introduction to Metamathematics. New York:
D. Van Nostrand Company, Inc., 1952.

Nicod, J., “A reduction in the number of primitive proposi-
tions of logic,” Proceedings of the Cambridge Philosophical
Society, 19(1916), 32-42.

Novikov, P. S., Elements of Mathematical Logic. Reading,
Mass.: Addison-Wesley Publishing Company, 1965.

Rosser, J. B., Logic for Mathematicians. New York: McGraw
Hill Book Company, Inc., 1953.

Tarski, A., Introduction to Logic and the Methodology of
Deductive Sciences. New York: Oxford Press 1941.

®

Science, particularly mathematics, though it seems less practi-

cal and less real than the news contained in the latest radio dis-
patches, appears to be building the one permanent and stable edifice
in an age where all others are cither crumbling or being blown to

—E. Kasner and J. NEwMaN



Galois’ Theory for the Group of an Equation
and the Criterion of Solvability *

Leora ERNST
Student, Mount St. Scholastica College, Atchison, Kansas

Evariste Galois was a French mathematician who was born in
1811 and lost his life in a silly boyish duel before he had reached
the age of twenty-one. The night before the duel he wrote a letter
to his friend Aguste Chevalier in which he set forth briefly his
discovery of the connection of the theory of groups with the solu-
tions of equations by radicals.

Long before entering their first college analysis course budding
mathematicians know that one of the important functions
of mathematics is to solve equations. Algebraic equations are classi-
fied according to their degree. The general equations of the first
and second degree and their solutions were known as early as 1700
B.C.

Dax + b =0 x = —b/a

x = —=b = \V B* — 4ac
2a

2) ax* + bx + ¢ 0

3 ax* + bx* + ex +d =0
4) ax* + bx* + ex* + dx + e = 0

But the solutions for the cubic and quartic were not formu-
lated until the sixteenth century. Note that the solutions are
obtained in terms of the coefficients by the use of rational operations
and the extraction of roots, and as the degree increases the solution
becomes rapidly more difficult. Although sixteenth century mathe-
maticians could not solve general equations of degree higher than
four, still they believed that such equations could be solved and
eventually would be. It was not until the nineteenth century that
solutions of these equations were shown, by means of the theory of
groups, to be impossible.

This statement is obviously a very sweeping one, and admit-

*A paper presented at the KME Rogional Convontion at Springtiold, Missouri, April 23,
1966, and awarded second place,
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tedly needs qualification. First of all, just what sort of an impossi-
bility is meant here. Whether a problem can or cannot be solved
depends upon the conditions imposed upon the solution. The
equation, x + 5 = 3, can be solved if negative numbers arc per-
mitted, but cannot be solved if negative numbers are excluded.
Similarly, 2x + 3 = 10 can bz solved if x represents a number of
collars, but cannot be solved if x represents a number of persons
since x = 3. An algebraic exprcssion may be reducbile (that is
factorable) or irreducible depending upon the ficld in which the
factoring is to be done. Thus, x* + 1 is irreducible in the field of
real numbers but reducible in the field of complex numbers. In
other words, it is meaningless to say that an expression can or
cannot be factored without specifying the field. Consequently,
mathematicians have learned the importance of indicating the en-
vironment in which a statement is true or false or perhaps entirely
meaningless.

Therefore, in what sense has it been proved impossible to
solve the general equation of degree higher than four? The answer
is that it is impossible to solve it by radicals. This means that the
unknown cannot be expressed in terms of the coefficients, only, by
the use of rational operations and the cxtraction of roots. Group
theory proved to be the important tool that facilitated this discovery.

Essentially a group is a mathematical structure or system and
as such it must have elements and an operation. For individual
groups this operation may vary widely; and the more common ones
are the rational operations, substitutions, and the following of one
rotation by another. It is customary, no matter what the operation,
to call it multiplication. A group has four definitive qualifications.
It must have: 1) closure, 2) associativity, 3) an identity element,
and 4) each element must have an inverse.

Also, in order to understand Galois’ theory, some information
about subgroups is necessary. A subset of the original group, G, is a
subgroup if and only if it satisfies the qualifications of a group
under the same operation as G. It can be shown that the order of
any subgroup is a factor of the order of the given group. For ex-
ample, a group of order 24 may have subgroups of order 2, 3, 4, 6,
8, and 12 because each of these will divide 24.

A particular kind of subgroup that is important to an under-
standing of Galois’ theory is an invariant subgroup. Now, a sub-
group is called invariant if it remains unchanged when all of its
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elements are conjugated by all the elements of the original group.
To illustrate what is meant by the conjugation of one element by
another, examine the group of six substitutions:

G = {(D, (12), (13), (23), (123), (132)}
and a subgroup of it

S = {(D, (12)}

Taking the element (12) multiply it on the right by (123) and
on the left by (132) which is the inverse of (123).

(132) (12) (123) = (23).

The result, (23), is then called the conjugate of (12) by (123).

Particularly important among invariant subgroups is a maximal
invariant proper subgroup. It is one which is not contained in a
larger invariant proper subgroup. Now if G is a given group and if
H is a maximal invariant proper subgroup of G, K a maximal invari-
ant proper subgroup of H, etc., and if the order of G is divided by
the order of H, and the order of H divided by the order of K, etc.,
the numbers obtained are called the composition factors of
the group G. If these are all prime numbers, G is called
a solvable group.

With these few facts at hand, it is now possible to explore
Galois’ discovery concerning the group of an equation. Every equa-
tion has a definite group associated with it for a given field. Taking
for example, an equation of the third degree, ax®* + bx* + cx + d
= 0 having three distinct roots, x,, Xz, x5, and some function of
these roots, such as, x,x. + x; in which these x's can be replaced by
each other, there would be six possible substitutions, that is, 3!.
Similarly for an equation with four roots, there would be 4! substi-
tutions in the function we choose. And in general for n roots there
would be n! possible substitutions. It is important to note that when
a substitution is applied to a function it may or may not alter the
value of the function. For instance, the substitution (12) applied
to x, + x. does not alter its value because addition is commutative;
but if (12) is applied to x, — x., it does alter the value since it
changes x, — x, to x; — x,, and subtraction is not commutative.

Supposing an equation of degree n, having n distinct roots
X1, X2, X3 ** * X, it can be shown that in the function,

V; = mXx; + MmM2Xs + msXs + v 4 MupXn,
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which is sometimes called the Galois function, the m's can be chosen
so that every possible substitution (%! in all) of the x's does alter
the value, V, of this function; and therefore, this function can have
n! different values. These n! values are represented by Vi, V., V;
*++, V,i ; and the expression

PG =G -V) G —V)er (y — V)

can be formed where y is a variable. This polynomial may or may
not be factorable depending upon the ficld in which the factoring
is to be done. Suppose, for example, that for a given field P(y) is
factored so that the part containing V, which is not further reducible
in that field is (y — V. )(y — Vo) = y* — (Vi + V)y + V,V..
Note that in this case the only V's involved are V, and V.; and there
are just two possible substitutions for these, the identity substitution
and that substitution of the x's which changes these V’s into each
other. Now, these substitutions form a group which is called the
group of the given equation for the given field.

{I, (V: V.)} I (V,V2)
1 1 (V,V2)
Vi Vo) | (ViV2) I

This function remains unaltered by all the substitutions of this
group. Similarly, if the irreducible part of P(y) had contained
besides the V,, also V. and V,, the group would then consist of all
those substitutions which would leave this irreducible part unaltered.
In general, then, the group of an equation for a given field is deter-
mined by that part of P(y) which is irreducible in the given field
and contains V,. If this irreducible part is denoted by G(y), then
G(y) = 0 is called a Galois resolvent. '

There are two important characteristic properties of the group
of an equation which enable one to find which of the possible sub-
stitutions form this group without actually going to the trouble of
finding a Galois resolvent. First, it can be proved that if the value
of any function of the roots of an equation is in a given ficld, then,
this function must remain unaltered in value by all the substitutions
of the group of this equation for that field. Secondly, if the value
of a function is not in the ficld, the group must contain a substitu-
tion which does alter the value of the function,
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To illustrate these properties one may consider the quadratic
equation x* + 3x + 1 = 0 having two roots, x, and x,. Since there
are only two roots, the only possible substitutions are I and (12).
The group of this equation must contain either both of these or I
alone, and that depends on the field which is chosen. With the
function of the roots x, — x., the quadratic formula and a little

_V b — dac

algebra yields that x, — x, = — Since in the given

quadratic equationa = 1,b = 3,andc = 1, x, — x, = V5. Now
if the field chosen is the field of rational numbers, then the value of
this function is not in the field; and therefore, this group must have
a substitution which does alter this function. Obviously (12)
must be in the group, and the group for a rational field, therefore,
contains both I and (12). If on the other hand, the field of real
numbers is chosen, the value /5 is in the field; and therefore,
X, — X, must remain unaltered by all the substitutions of the group.
Then the group cannot contain (12) because this- substitution alters
x, — x,. Consequently, the group of this equation for the field of
real numbers contains only I — not very interesting, but it is a
group!

Finally, this information concerning the group of an equation
for a given field and how to find it can be used in the Galois cri-
terion of solvability. It should be recalled that a solvable group is
one for which the composition factors are all prime numbers. Galois
showed that an equation is solvable by radicals if and only if its
group, for a field containing its coefficients, is a solvable group.

Since the general quadratic ax? + bx + ¢ = 0 has two roots,
its group, G, for a field containing its coefficients, consists of the
substitutions I and (12). Its only maximal invariant proper sub-
group is obviously I, so its only composition factor is 2/1 = 2.

G I, (12
H 1
Since this factor is prime, then according to the Galois criterion
it has been proved that every quadratic is solvable by radicals.
The general equation of degree four,

ax* + bx®* + cx* 4+ dx + e = 0,

G/H = 2/1 = 2

has a group of order 4! or 24. A series of maximal invariant proper
subgroups:



14 The Pentagon

G: order 24 24/12 = 2
H: order 1 12/4 : 3
K: order 4/2 : ) Prime
L: order 2 -
2/1 2
M: order 1

consists of orders 12, 4, 2, and 1 respectively; and the composition
factors are 2, 3, 2, and 2 — all prime numbers!

For the general equation of degree five, G contains 5! sub-
stitutions, H contains 5!/2 substitutions, and the only invariant
proper subgroup of H has only one element, 1. The proof of this
statement can be found in Modern Algebraic Theories by Leonard
Dickson. Therefore, the composition factors are 2 and 5!/2, but
51/2 is not prime. Consequently, the general equation of degree
five is not solvable by radicals. In fact this is true for the general
equation of degree » = 4, since the composition factors are 2 and
n!/2, and the latter is not prime.

The use of groups to determine the solvability of equations
is by no means the only application of the wonderful idea of groups.
In fact, group theory is fundamental in projective geometry and
the theory of relativity. The farsighted speculation of C. J. Keyser
in his book, Mathematical Philosophy, suggests that the group con-
cept will revolutionize modern thought in history, philosophy, and
even psychology.
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Some Applications of Partially Ordered
Boolean Matrices

BerNARD G. HOERBELT
Faculty, Prince George's Commaunity College,
Suitland, Maryland

Introduction. In any mathematical system having a well-defined
set, it is possible to define a partial ordering, =, on the set. It is,
however, difficult in some cases to display this partial ordering in
a systematic fashion so that an analysis of the system can be under-
taken. We show here a method of displaying the partial order on a
set by means of Boolean matrices. In this discussion, we will limit
ourselves to sets called lattices according to the following definition:
D1: A lattice L is a partially ordered finite set such that every
set consisting of any two elements of L has a least upper bound and
a greatest lower bound.

In addition to this, we will need the following definitions:
Consider a set L of # elements with a partial ordering, =. Let the
set of all a; for i any positive integer from 1 to n be elements of L.
D2. Let a; = a;. Then by a; > a; we shall mean a; = g; and
a; % a;. By a; = a; we shall mean a; = a; and then a; < a; will
mean a; = 4q; and a; # a;.

D3: Letc = a, > a. > a. > *** > a, be any simply ordered
subset of L. Then we call ¢ a chain of L. We say ¢ has length n — 1
where # is the number of elements of L in the chain.

D4: Let L be a partially ordered set and a,, 4., elements of L.
Then a, is said to cover a4, if 4, > a. and if there exists no x in L
such that a, > x > a.. a, is said to order a. if a, = a..

In view of these definitions we can now display a partially
ordered set by two Boolean matrices as defined below.

D5: Let L be a partially ordered set with elements x;. The n by
n Boolean matrix (a;;), having a;; = 1 if x; covers x; or i = j, and
a;; = 0 if x; does not cover x; and i  j, is called the cover matrix
of L. The matrix will be denoted by C.

D6. Let L be a partially ordered set with elements x;. The n by
n Boolean matrix (a;;), having a;; = 1 if x; orders x; and a;; = 0
if x; $ x;, is called the order matrix of L. This matrix will be
denoted by M.

15
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Before proving the three main theorems noted here, let us
consider an example of the order and cover matrices. Consider the
set L of subsets of the set {0, 1}. Clearly L has four elements,
namely, x, = {0, 1}, x, = {1}, x. = {0}, and x, = o. If we par-
tially order L by means of set inclusion, then L is capable of
matrix treatment defined in D5 and D6. We have the following
chains in L: x, > x. > x,, and x. > x;, > x,. The cover and order
matrices are displayed in Figure One.

1 1 1 O 1 1 1 1
_{(0o 1 0 1 _{0 1 0 1
C=1lo 0 11 M=1o 0 1 1
0 0 0 1 0 0 0 1

Figure One

There is an interesting relationship between these cover and
order matrices and indecd for those of any partially ordered set.
We note in the case consicered C* = M. The rest of this paper will
be concerned with finding the smallest » such that C* = M. We
remark that in taking powers of matrices Boolean algebra is involved.

An n by » matrix is caid to be upper triangular if a;; = 0
for i == j. Our definitions of C and M imply that each of these is
upper triangular. Since the product of any two upper triangular
matrices is also upper triangular, it follows that (C)*, for any posi-
tive integer, t, is also upper triangular. Thus, if we represent the
ith row and jth column of (C)' by a;;, we have ,a;; = O for i > j.

Now Parker [ 1] has proved for any Boolean matrices X and Y
having each of their diagonal elsments equal to 1, that whenever
an element x;; of X is equal to 1, then the corresponding element
(xy):; of the matrix XY is equal to 1 and the element (yx);; of YX
is equal to 1. A cover matrix C is a Boolean matrix having each of
its diagonal elements equal to 1. Therefore, by applying Parker’s
theorem, we see that a;; = 1 in C implies that (a;; = 1 in (C)*.

Comparing the matrices C and M for the partially ordered
set L, we now note that:

(1) Both C and M have the element in the ith row and jth
column equal to one if i = j.
(2) Both C and M have the element in the ith row and jth
column equal to zero if i > j.
(3) If C has an element a; = 1 for i < j, then for the cor-
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responding element by; of M, bi; = 1.

(4) If M has an element b;; = 0 for i < j, then for the cor-
responding element a;; of C, a;; = 0.

(5) M has an element b;; = 1 for i < j when the corresponding
element a;; of C is equal to zero if and only if there exists in the
partially ordered set, L, a chain of length p, as follows:

Xy > Xr, > x > Xr, > e > Xr, > xj

where each element covers the one which follows it, and p = 2.

We show the complete relationship between C and M by
means of the following three theorems.
THEOREM 1: Let C be the n by n cover matrix for the partially
ordered set L. Let i < j and a;; = 0 in C. If ai; = 1 in (C)%,
where ¢ = 2, then there exists some element x, in L such that
Xi > X > X5
Proof. The proof is by induction on g. Since aix = O in any
cover matrix for i > k, then for ¢ = 2 we have .ai; = Q¢
* @isyy + **° + digony * @y-n; = 1. Hence at least one of these
terms, say di, * 4., i > r > j, must be 1. Hence both ai, and
a,; must be 1 by Boolean multiplication. By DS (since r 5 i and
r # j), x; covers x, and x, covers x;. Thus, x; > x, > x;.

Now assume the theorem holds for g. Then let ai; = O,
i < jin C, and let ¢,ai; = 1 in (C)** where ¢ + 1 = 2, Sup-
pose ¢@;; = 1. Then g = 2, and by the inductive hypothesis there
exists some x, such that x; > x, > x;. On the other hand, if
@iy = 0, then 4n@i; = @i * @y + °°° T+ @ig-n ° By-1
= 1, Thus, at least one term, say (ai¢ * ay = 1, i < t < j. Hence
both (a;; and a;; are 1. Consider a;; in C. Suppose ai; = 1. Then
x; covers x; and x; > X;. But since a;; = 1, x > x4. Thus x;
> x; > x;. But if @i, = 0, then g = 2 and by the induction hypoth-
esis, there exists some x, such that x;, > x, > x;. But since ay;
= 1, x; > x;. Hence x; > x, > x;.
Tueorem 2: Suppose in C we have the following conditions:

(1) a;; = O for some i, j such that i < j;

(2) there exists in the partially ordered set L a chain of

length p from x; to x;; i.e., there are elements

Xep Xrpp *00 5 Xr of L

such thatx; > x, > %, > **° > % > %
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and each element covers the one-which follows it;

(3) there exists in L no such chain from x; to x; of length

greater than p.

Then in (C)?, ,a;; = 1.
Proof: The theorem will be proved by induction on p. If p = 2,
there exists a chain x; > x, > x; where x; covers Xr, and X,
covers x;. By definition D5 ai; = 1 and a,; = 1, where i < n,
< j. Hence air * @5 = 1. Now since a;; = 0, .a4i; = @i
* @iy + °** + @iy-ny * @y-ni = 1. Hence the theorem is true
for p = 2.

Assume the theorem is true for p = s. Let a;; = 0 and let
there exist in L a chain x; > Xep DX, D0t > x D>ox of
length s + 1, where each element covers the one which follows it,
such that no chain exists in L from x; to x; of length greater than
s + 1. We shall show that ,..a;; = 1. Now x; > X > e
> x, > %, is a longest chain from x; to x,, for otherwise
there would exist a chain from x; to x; of length greater than s + 1.
Furthermore, each element covers the one which follows it. Since

s = 2, x; does not cover x, . Hence ai, = 0. By the induction
hypolhesis, aair’ = 1. Now iy = A ay 0 + .a‘,‘ . a,.‘,
+ c+c + .. a,. But since x, covers x;, a,; = 1. Hence
iy = L.

We can now conclude the following theorem, its proof de-
pending on the results of the two previous theorems:

THEOREM 3: Let C and M be the n by n cover and order mat-
rices, respectively, of a partially ordered set, S. If in S, the maxi-
mum length of any chain is p, then (C)? = M.

Proof: Let ,ai; and b;; represent corresponding elements in (C)?
and M, respectively. We must show that these elements are equal
for alli, j, 1 == i=nand 1 = j=n, Clearly ,a;; = by, for
i=j.

Let i < j and let ,a;; = 1. Consider a;; in C. If a;; = 1,
then b;; = 1 in M. On the other hand if a;; = 0, then by Theorem
2, there exists some x, such that x, > x, > x;. Hence x; > x;
and b;; = 1. Then bi; = 1 when ,a;; = 1.

Now let i < j and let ,a;; = 0. Then a;; = 0, for if a;; = 1,
then by Parker's theorem ,a;; = 1. Now by, 5= 1, for suppose
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biy; = 1, then x; orders x; by D6. Since a;; = 0, there must exist
some x, such that x; > x, > x;. Hence there exists at least one
chain from x; to x;. Let x; > Xe, > % > 00> X > x
be a longest such chain. Then each element covers the one which
follows it. By Theorem 2 ,a;; = 1. But the maximum length of any
chain is p so that 4 = p. Hence by Parker’s thecorem ,ai; = 1,
contradicting our premise that ,a;; = 0. Hence b;; = 0. This
concludes the theorem.

Applications of Boolean Matrices. Using these theorems we can
now present two applications, This concept of Boolean matrices
can be applied directly to sorites. This notion is especially valuable
in the interpretation of those sorites with a great number of
premises such as those of Lewis Carroll. A simple syllogism such as:

All men are mortal.
John is a man.
Therefore, John is a mortal.

contains the chains p — ¢, ¢ — r, therefore p = r or, according
to our lattice interpretation, the chain p > q > r.
Consider an example of a set of premises from Lewis Carroll:

Babies are illogical.
Nobody is despised who can manage a crocodile.
Illogical persons are despised.

Let us use the notation b — i for the first premise, d — —c
for the second, (where —c means not ¢), and i — d for the third.
Since we have four terms here, there is a four by four matrix which
can describe this set of premises. We stipulate that for a = b, then
a covers b in the Boolean matrix. The cover matrix for this set
of premises is given by:

b i d -—c
b/1 1 0 0O
_ ilo 1 1 o
¢ = dlo o 1 1
—c\0 0 0 1

In order to see all possible conclusions (orderings) from this
set of premises we take the third power of this four by four matrix
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since three is the length of the maximum chain given.

1 1 1 1
0 1 1 1
3 = =
© 0 0 1 1 M
0 0 0 1

This matrix displays all possible conclusions and shows that babies
cannot manage a crocodile, babies are despised, and illogical per-
sons cannot manage crocodiles.

The moves made by chessmen in a game of chess are also
concucive to lattice treatment. If we order an » X n chessboard
by giving each position a number 1 to »?, then we can define a
legal move from position @ to b by saying a covers b in the same
sense as in definition D4. Although any of the chessmen are
capable of matrix treatment according to this definition, the
knight's move offers the most novel application. Its complete move
is a vertical or horizontal move for two spaces and then one space
to the left or right.

Suppose a knight is in position i of an 1 by n chessboard and
it is desired to move it to position I. The problem to be answered is:
How many complete moves will this take?

One considers the chain i > +++ > [ whose elements are
positions on the chessboard with the ordering j > k meaning the
knight can move from j to k in one move. The answer to our ques-
tion, then, lizs in the analysis of the number of elements in the
chain i > +++ > [; that is, in the length, of of the chain.

This analysis may be accomplished by using Theorem 3. We
must examine a cover matrix having one row and one column for
each of the #* positions on the board. The resulting n* by »*
cover matrix will have entries a;; = 1 if i = j or if the knight
can move from position i to j in one complete move.

As a simple example, consider the three by three chessboard
with spaces numbered from one to nine as shown in Figure Two.

11213
4|5]|6
71819
Figure Two

A Three by Three Ordered Chessboard
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A knight in position 1 can move to positions 6 and 8 in one
move; a knight in position 2 can move to positions 7 and 9 in one
move; etc. Thus 1 > 6,1 > 8;2 > 7, 2 > 9; etc. The nine by
nine cover matrix for the above chessboard for a knight's move is
given below where the columns and rows are ordered from 1 to 9
left to right, and top to bottom.

1 0o o0 01 0 10
¢ 1 0 0 00 1 01
0 011 0 0 0 1 0
0 011 0 0 0 01
0O 0 0 01 0 0 0 O
1 o0 0 011 00
01 00 011 00
1 01 0 0 0 ¢ 1 O
01 01 0 0 0 01

Figure Three
The Cover Matrix for the Chessboard Given in Figure Two

One move, then, corresponds to the cover matrix raised to
the first power. The result of Theorem 3 implies that two moves
will correspond to the second power of the cover matrix, three
moves will correspond to the third power of the cover matrix, etc.

We make two important observations concerning the cover
matrix. First it is always symmetric about its main diagonal since
if @ > b, then certainly b > a by the definition of cover as used
in this example. Second, it can be shown (sec Parker, 1) that an
n by n Boolean matrix, a;;, has the property (a;)" = (aig)*®
= a;;)"* for any integer p. Interpreting the second of these facts
for our example, we find the nine by nine matrix, C, raised to
the 8th power will be equal to C raised to 8 + p. However, by the
first observation any of these matrices is symmetrical so that raising
it to the fourth power in this case will be sufficient.

The powers of the cover matrix are given in Figure Four and
the order matrix in Figure Five. Thus, if onc wishes to see if he
can move from position i to position j on the chessboard in =
moves, he merely notes if there is a one or a zero in position a;; of
the matrix C*. A one implies the move can be made; a zero
implies that it cannot be made. We note in our example that the
zeros along the fifth row and fifth column imply that »#o moves
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can be made from position five on our chessboard.

To answer our original problem one needs to generalize the
above method for an n by n chessboard by obtaining the »* by nt
cover and order matrices.

101001110 111101110
010101101 111101101
101100011 111101011
011100011 111100111
C=f 000010000 JC°=J 000010000
110001110 111001111
110001101 110101111
101101010 101101111
011100101 011101111

Figure Four

Powers of the Cover Matrix for » = 2 and 3 for the
Chesshoard of Figure Two

1 1 1 1 0 1 1 11
1 1 11 0 1 1 1 1
1 1.1 1 01 1 1 1
i1 1 1 1 01 111
C=f 0 0 0 01 0 0 0 0 =2
1 111 0 1 1 11
1 111 01 11 1
1111 01 111
1 1 1 1 0 1 1 1 1

Figure Five

The Order Matrix for the Chessboard given in Figure Two
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Linear Set Equations and
Set-Theoretic Matrices

RoBerT H. LonmMaN
Student, University of lowa, lowa City

Introduction. The problem of solving a system of simultan-
eous non-linear set equations was discussed by Goodman [1]. In
this paper we consider special systems of linear set equations. We
obtain necessary and sufficient conditions for the homogencous
and constant systems to have solutions. These results, in turn,
are used to obtain necessary and sufficient conditions for the
existence of an inversc of a set-theoretic matrix. Finally, a slightly
more general system of equations is solved by means of the inverse.

Preliminaries. A matrix over a universal set U is a rectangu-
lar array of subsets of U. The terms element, dimension, trans-
pose, row vector and column vector have the usual meanings. An
m X n matrix A is denoted by [Ai;Jmm and A’ is the transpose
of A. Two matrices are equal if and only if they have the same
dimension and corresponding elements are equal.

DeriniTioN 1. If A = [Ai;] and B = [Bi;] have the
same dimension, the sum of A and B, written A + B, is the matrix
[Ai; L Bis].

DeriniTION 2. If A = [AaJiwwm and B = [Bxjlim, the
product of A and B (in that order), written AB, is the matrix

[Cuj(m,"), where Ci; =kU (Au‘ n Bk;).
s 1

It is easy to verify the following properties:

(a) matrix addition is commutative and associative;

(b) matrix multiplication is associative;

(c) the right and left-hand distributive laws hold;

(d) (ABY = B’A’ whenever A is conformable to B for
multiplication;

(e) if 8. = [0Jcmm» then A + 0, = A for all # X n
matrices A;

) if l; is the n X n matrix with U on the main diagonal

and o elsewhere, then l': A= Al: = Aforallm X n

23
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matrices A over U.
Notations. If A = [Ai;](mwm), we will write A = [A?, *++, A"],
where each A* is the column vector {A, ***, Am}. We may also
write A = {A,, ***, An}, where each A, is the row vector

[Ap, ***, Apn]. We define D(A) = O 0 A;j. The constant
i=1 j=1

column vector [S]u will be denoted by V.
Linear set equations. The system of equations,
(]) U(A;,ﬂx;):Bi, i=l,"',ﬂl
1

is called a system of linear set equations in the n unknowns
Xy, *++, X,. In matrix form, (1) becomes AX = B, where A, X
and B are defined in the usual manner. System (1) is said to be
a system over U if both A and B are matrices over U. If (1) is a
system over U and X is a vector over U which satisfies AX = B,
then X is called a solution of (1).

Homogenous system. The system
¢y [AY, =+, AP JX = V;'

is the homogeneous system. The solution X = V; is called the
trivial solution. A nontrivial solution is a solution X = {X,, *+*, X,)
such that X; % e for at least one j.

THEOREM 1. Let (2) be a system over U. A necessary and
sufficient condition that (2) have a nontrivial solution is that

D(A*) 5 U for at least one i. In this case, X = {i., cee, FJ-(',.},
where ’i; = C D(A), i = 1, *+-, n, is a maximal solution. A
necessary and sufficient condition that the vector Y = {Y,,*++, Y.}

be a solution of (2) isthatY; C X;,i=1,+++, n. -
Proof. If (2) has a nontrivial solution X = {X,, +-, X,},

then A;; N X; = o for all i and j. Thus D(A*) N X; = o for all 4.

Since X is nontrivial, Xy 5= @ for some k, whence D(A*) £ U.

We must also have X; C C D(A") for all i; this establishes 3(‘ as
a maximal solution. On the other hand, if D(A!) 5= U for some i,

then X #*= V; from which it follows that X is a nontrivial solution
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of (2). The last statement of the theorem is clear.
Constant system. The system,

(3) {Al) t*ty Am}x = V:r

where S 5% o, is called a constant system of linear set equations.

Taeorem 2. Let (3) be a system over U. A necessary
and sufficient condition that (3) have a solution is that § C D(AYD,
i=1c°, m

Proof. I£S C D(A),i=1,+**,mthen X = V_ isa
solution. If a solution X exists, then A, X = S, i = 1,°°+, m. This
implies D(A;) N D(X) D § which yields § C D(A;) for all i,

Trueorem 3. If (3) has a solution, then X = (Xy, **+, Xa),
where X; = S U C D(A®), i = 1, »*+, n, is a maximal solution.
Furthermore, if W = {W,, **+, W,}, where § N D(AY) C W,
CXi,i=1,+++,n then W is also a solution.

Proof. Assume (3) has a solution. Now X = V: + 7(’, so that
by Theorems 1 and 2, we have AX = AV, + AX = V7 + v,

= V:. Hence X is a solution. If AY = V’:where Y={Y,* ", Y.},
then for all i and j, we have A;; N Y; C S. This implies D(AY)
N Y, C S for all j. Therefore Y, C S U C D(AY). This proves

the maximality of X. The last statement of the theorem may be
easily verified by the reader.

Inverses. If A is a matrix of order n over U, A is invertible
if and only if there exists a matrix B over U such that AB = BA

=1 ; In this case, B is called the inverse of A and we write B = A
If C is also over U and CA = AC = l;, then C = Cl; = C(AB)

= (CA)B = 1:8 = B. Therefore inverses, when they exist, are

unique. We now show that invertible set-theoretic matrices do
indeed exist.
Tueorem 4. Let A be a matrix of order n over U. Then
A is invertible if and only if
(). D(AY) =DA) =1, i=1,+°°,n
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(ii). Every line of A (both rows and columns) is com-
posed of mutually disjoint sets.

In this case, A* = A’

Proof. 1If (i) and (i) hold, it is easily verified that A’A
= AA = 1.

Suppose B is a matrix over U such that AB = BA = I;. Then
AB = I: implies
(4) A‘B‘=U, i=l’ooo’n‘
BA = I: implies

(5) {Bi:'.'tBi~h B‘ol,...;Bn}A‘ = V;-l,

i = l’ e . m,
(6) BA* = U,
By Theorem 2, (4) and (6) imply
(7) D(A) =D(AD =D(B) =D(BY =U, i=1,+++,m
Theorem 1 and (5) imply
U B, )
k=1
kaf

We assert that the rows of A are composed of mutually disjoint
sets. Fix #; if j 5= p, then by (8)

(8) Ay € C

" n
A”nA;,CC::’lB"‘)n (‘J(tfl BN)
kaj kzp
= (G D(B*)
= 0.

B'A’ = I? yields

(9) (B, ==, (BRY, (BWY, oo, (BY)A] = V™,
i =1, *»+, n. By Theorem 1, we have
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O Ba )
k=1
kej
To show that the columns of A are composed of mutually disjoint
sets, apply (10) in the same manner as we applied (8). Thus A
satisfies conditions (i) and (ii) of the theorem. By the first part,
A has an inverse A’, Since inverses are unique, A’ = B.
CoroLrary. Let (1) be a system over U. If A is invert-
ible, there is a unique solution given by X = A’B.

(10) Ay € (@
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SIXTEENTH BIENNIAL CONVENTION

April 7-8, 1967

The sixteenth biennial convention of Kappa Mu Epsilon
will be held on the campus of Mount St. Scholastica College,
Atchison, Kansas, on April 7-8, 1967. Students are urged to
prepare papers to be considered for presentation at the con-
vention. Papers must be submitted to Professor George R.

Mach, National Vice-President, California State Polytechnic
College, San Luis Obispo, California, before January 16, 1967.
For complete directions with respect to the preparation of
such papers, see pages 43-44 of this issue of The Pentagom.
I hope that every chapter will be well represented at the

convention.

Fred W. Lott

National President




Generalizing the Law of Repeated Trials

R. F. GRAESSER
Faculty, University of Arizona, Tucson, Arizona

Many college algebra students know the Law of Repeated
Trials. This law states that, if the probability of a contingent event
is p, then the probability of r successes in » independent trials of
the event is

(2)rta - pa )
Here ( :) is the number of combinations of n things taken r at a

time. This result may be stated in slightly different form as follows:
Given n independent events each of which has a probability p, then
the probability of r successes is given by (1). To generalize this
last statement let the probability of the first independent event be
1, that of the second independent event be p, and so on to the nth
independent event with the probability .. What then is the prob-
ability of r successes? This problem has a pleasing and elegant solu-
tion, which is not difficult. Consider first a special case where
n = 3 and r = 1. Let the required probability be P 1 . Then,

Pupy =p(1 — p2)(1 — ps) + p:(1 — pO(1 — Ps)
Tl —pd(—p) (2
=t P+ p) = 2(pp: + pips + paps) + 3pipeps.
Let S* mean p, + p. + pi; S* mean pp: + ?1ps + pips and S°
mean pyp.ps then Py = §' — 282 + 38§,

To obtain a second solution of this problem, we may proceed as
follows: It should be clear that the sum of the products in the right
member of (2) can be expressed as A,S' + A,$* + A,S?, (3)
where A,, A, and A, are constants. To determine these constants
we return to the problem of repeated trials. In this problem all of
the p's are equal, say p, = p, = p; = p. Then (3) becomes the
probability of exactly one success in three independent trials of a
contingent event with the probability of success p in each trial. By

the Law of Repeated Trials this probability is ( ?) p[(1 — p)7]

so that we have

28
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(3)” [(1 — p)*] = AS' +A8 + AS® (4)
In (4) §* has become

S‘=p+p+p=3p=(i’)r- (5)

In (4) $* has become
§ =pp + pp+pp =3 = (g)p*- (6)

In (4) $* has become
S =pp=p = (g)r’- 7

(?)P[(l — p)*] can be expanded

(G = 1= (W)~ G+ G}

Substituting the results in (5), (6), (7) and (8) in (4), we have
DeLE) - G)r + G
- A.(:;’)p + A,(;)p‘-' + A;,(g)p:‘. (9)

Then (9) is an identity in p, and the coefficients of like powers of
p in the two members must be equal so that we obtain

() = A(2) o = Q)+ ()= »
- () = )= - (D ()=
() - #3) e n - (D) ()= »

Now consider the binomial expansion of $'(1 + §)-* with §* = 0
if K > 3, 3 being the number of contingent events in the problem.
Using the Binomial Theorem for negative exponents,
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$(1 + Sy = §(1 — 28 + -——_("2)2(,‘3)32)
= § — 28§ + 388

The value of P 1} may, therefore, be expressed symbolically as
Pu; = $'(1 + 8)2 where $* = 0 if K > 3.

Considering the foregoing we might suspect that given n inde-
pendent, contingent events with the probabilities, p,, i = 1, 2, 3,
* + +, #; then the probability P |,, of r successes would be given sym-
bolically by

Py = SC1 + 8y, (10)

where $¥ = 0 if K > »n, » being the number of contingent events.
Equation (10) may be established by the procedure used in the
second solution of our special case with n = 3, and r = 1. In the
general case above, (2) becomes

Py = Spapspe = pu(l — pad(1 ~ pg) +++ (1 — pu). (11)

Here in each product there are r factors p; and » — r factors

(1 — p;), and the sum is formed by adding all the products ob-
tained by choosing the r factors p in every possible way from the
given p's. Then as before P (,, may also be expressed as A,S*
+ A,uS™ 4+ + e« + A,S" Here the S’s are defined as before; that
is, S* means the sum of all possible praducts of K factors p chosen
from the given p's. Again let all the p’s be equal, and equate the
two resulting expressions for P (,; . We have

O V) (S R
+(n ; f)P’ L oeee
e (e Al s af, 3 e

n re2 co e n n
+ Am(r ; z)r +oeee 4 A,.(n)p. (12)

Equating the cocfficients of like powers of p in the Jast two members
of (12), we have
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(,’1)(” 2 r) = A"’(r ; 2)’ and
= (3 7=
o ()5 2 7) = as(}) ana

A= -5 V=) = S

(r + D!,
1! S

Hence P[,] - S' -

(f + z)l r+2 s e —_— 'l-f___l!__ n
+ S + + (—1) = r)ms. (13)

But the right member of (13) is the first (» — r + 1) terms of
the binomial expansion of $7(1 +8)-"-'. Hence we see the validity
of (10).

A further pleasing result is obtained by finding the probability
P, of at least r successes. This is found by summing the probabilities
of r successes plus (r + 1) successes and so on up to n successes.

Thus we have symbolically
P, = S(1 + 8™ + S™(1 + 8§) = + ¢+ + §"(1 + §)™.
From probability theory we have
P,y =P, — Pin
Lettingr =0, 1,2, :

Phb=Pi—Puw =l -7y 35 1733



32 The Pentagon

P,=P, Pm_1+s a+398: a0+ s
3 _ _ s? _ N _ S
Py=P,— P, = a+8 O+ a+ 8
In general

— S' — r -
Pr—m—s(l'*'s) )

where, of course, it is understood that $* = 0if k > n.

Mathematics is a science. It is the most exact, the most ele-
gant, and the most advanced of the sciences and therefore it has
been called the Queen of Sciences. Nothing, not even the modern
miracles of applied science and technology, gives a better idea of
the apparently unlimited capacity of the human mind than higher
mathematics.

—H. M. Dabourian



The Degeneration of Sequences of
Integers by Division *

Garvy L. EERKES
Western Washington State College
and
F. Max STEIN
Colorado State University

1. Introduction. If we divide 11 by 2, 3, or 4 we get re-
mainders of 1, 2, and 3, respectively. Similarly, if we divide 59
by 2, 3, 4, or 5 we get the respective remainders of 1, 2, 3, and 4.
However, if we divide 59 by 6 also, the next integer in the first
sequence, the remainder is 5, the next integer in the second se-
quence.

In this paper we propose to show how to construct the num-
bers N, recursively which when divided by 2, 3, *++, ¢ give re-
mainders of 1, 2, +++, g — 1, respectively. That is if N,., is known
we shall show how N, can be determined in all cases.

Problems of a similar nature have been studied for centuries.
Sun-Tsu in a Chinese arithmetic, about the first century (see [1]),
found all positive integers which have remainders 2, 3, 4 when
divided by 3, 5, 7, respectively. In the seventh century Brahmegupta
(see [1]) proposed the problem of finding an integer having re-
mainders 5, 4, 3, 2 when divided by 6, 5, 4, 3, respectively; and
in the thirteenth century Leonardo Pisano (see [1]) treated the
problem of finding an integer which gives the remainders 1, 2,
***, 9 when divided by 2, 3, *+ -, 10, respectively.

The first problem can be dealt with in terms of what is
normally called the Chinese remainder theorem (see [2] and [3]),
since the given integral divisors in this case are all relatively prime
in pairs. In the second and third problems this is not the case and
to our knowledge the standard approach has been to deal with each
individual problem independently. We propose to develop a system
by which this latter class of problems can concisely be dealt with
in general.

2. The Degenerator of a Sequence. In this section, after

*Prepared in a National Sci Foundation Undergraduate Sci Ed fon_Program
in Math tics at Colorado State University under the direction of Professor Stein.
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defining the notation, we present two preliminary lemmas and the
main theorem of the paper. In the theorem we consider the three
possible cases that occur.

DerFiniTION 2.1. For the sequence of positive integers
2, 3, *++, q we define the “degenerator of the sequence,” denoted
by Nq, to be the smallest positive integer such that

(2.1) Ng=(m—1) (modm), (m =2,3,°°, q).

Notice that the degenerator is defined to be the least positive
integer satisfying (2.1); it is obvious that the number (2 + 3 -
+++ + ¢g) — 1 would provide the necessary remainders, but such
a number may not be the least such number. However, whether
(2 +3¢+++++g) — 1is the least or not, the fact that it does
provide the desired remainders guarantees the existence of a smallest
number due to the well-ordered property of the natural numbers.

ThueoreM 2.1. For every sequence of positive integers
2, 3, *++, g, the degenerator N, can be determined whenever N,
is known and

(a) N, = g(Ng, + 1) — 1, if g is prime.

(b) N, = p(Ng, + 1) — 1, if there exists a prime p
and a positive integer t > 1 such that 4 = p*.

(c) N; = Ng.,, if q is composite but not equal to a prime
raised to an integral power.

The proof of this theorem is straightforward, but first we must
establish the following preliminary lemmas.

LemMma 2.1. For the degenerator N, of every sequence of
positive integers 2, 3, *°°, ¢,
(2.2) x| Ng+1,(x=2,3,°*",9);

moreover, N, is the smallest positive integer for which (2.2) is true.

Proof. For every given sequence of positive integers 2, 3,
«++, g we know that the degenerator N, exists. By Definition 2.1
we also know that there exist non-negative integers yz, s, ***, Yo
such that

Ne=2p+1=3y +2=-c20=gy + (g — 1),
or
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Ne+1=2(.+1)=3(ps +1)=++2=4gq(y, + 1),
from which it is evident that
x| Ng + 1, (x =2,3, ¢, g

To see that N, is the smallest positive integer for which this
is true, we assume that there exists a positive integer t smaller than
N, for which

x|t + 1, (x=2,3,°, 9.
Therefore, there exist positive integers z;, z5, ***, zg such that
t + 1 = 22, = 3z, = 00 = gz,
or
(2.3) t=2z,—1=32,— 1 =¢c0=gz,— .
But from (2.3) we have that
t=(m — DD(mod m), (m = 2, 3, «++, ¢),

which contradicts Definition 2.1 since t < N,. Therefore, t = N,
and the proof is completed.

LemMma 2.2. For every prime p and every degenerator
Ng, p | Ng + 1 if and only if p < 4.

Proof. Suppose that there exists a prime p > g4 such that
p | Ng + 1. Therefore, there exists an integer j such that N, + 1
= pj. By Lemma 2.1 we have that

(2.4) x|pj, (x=2,3,°°¢, 9.
Since p is prime and p > g, (2.4) implies that
xlj’ (x=2, 3’ooo'q).

But this contradicts Lemma 2.1 since j < Ng + 1. Therefore,
=9

The converse is immediate, for if p = g then by Lemma 2.1
r | No + L

Now that we have established the results to prove Theorem
2.1 we can proceed with its proof.

Proof. As was mentioned previously, the proof is completed
by considering three cases, the case depending upon the value of
the subscript g for N,. Since the theorem rests upon the assumption
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that N,_,'s value is obtainable, we will assume that it is known
throughout the proof.

Case 1. We consider first the case when ¢ is prime. By
Lemma 2.2 we have that ¢ J N,-, + 1. Lemma 2.1 states that N,
is the smallest integer for which

(2°5) xl Nfl + lt (x= 21 3"'.! ‘1)-
Lemma 2.1 also gives us that N,., is the smallest integer for which
(26) x|[Nea+1, (x=2,3,2,4—1)

It is evident, though, that g(N,, + 1) does satisfy (2.5). That
g(N,., + 1) is the smallest positive integer to satisfy (2.5) follows
from the fact that Ny, is the smallest positive integer to satisfy
(2.6) and the fact that g is prime.

Therefore, by Lemma 2.1 when g is prime
Ny = q(Ngsy + 1) — 1
or
N, = gNgw + (g — DD

Case 2. We now consider the case when g is a composite
number for which there exists a prime p and a positive integer ¢t > 1
such that p* = 4. Again, as in case 1,

.7 q f Nou + 1

To see this, assume that (2.7) is false. Then, since ¢ = p*,
P | New + L

Therefore, there exists an integer k such that

2.8) Ng + 1 = kpt.

By Lemma 2.1 we have that

(2.9 x| Nea+1, (x=2,3,°°2,9— 1

Because p is prime we can conclude from (2.8) and (2.9) that
x | kptt, (x=2,3,, 9 — 1),

which contradicts Lemma 2.1 since kp'' < Ng., + 1. Therefore,

(2.10) g fNea + 1orpt [ Now + 1.
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Observing that p*' < p* = g we have by Lemma 2.1 that
2.11) Pt | Nea + 1.

Now, we also know from Lemma 2.1 that N,, + 1 is the smallest
positive integer such that

(2-12> xINq-lJ'_l’ (x=2! 3:'..!{1_1)'

Therefore, by (2.10), (2.11), and (2.12) we have that
(N + 1) is the smallest integer for which

x| pP(Ng-w + 1), (x = 2,3, ¢, g = pt).

From this fact and Lemma 2.1 we sec that when g is composite
and equal to a prime p raised to an integral power then

Nq = p(NQ-l + l) - 1 = qu-l + (p e l)c

Case 3. Lastly, we consider the remaining case, when ¢
is composite but not equal to any prime raised to an integral power.
If we express ¢ as a product of primes as follows:

9 = PPz Puy

we obtain a set of # prime numbers which we designate as the set P.
We know that there exist at least two primes p; and p; in P such
that p; # p;. Now, take the set P and divide it into two disjoint
subsets P, and P, P, = {p.: p.e P; p- = pi; i, x integers} and
P. = {p:: p:e P; p. 5= pi; i, x integers}. Let ¢, be the integer
produced by taking the product of all the elements in P, and ¢, the
integer formed by repeating this process for the elements in P,.

Since both t, and t. are less than g we have by Lemma 2.1
that

(2.13) t, | Noow + 1
and
(2.14) t: | Neow + 1.

Because ¢, and ¢, are relatively prime, (2.13) and (2.14) imply that
tit; | Noo + 1.
But also, since t,t;, = ¢, we have that
q | Neaw + 1,
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Therefore, when g is composite, but not equal to any prime raised
to an integral power,

Nq = Nq-l'

This completes the proof of Theorem 2.1 for we have proved
that N,, in each of three cases, can be expressed in terms of Ny

3. Application and Discussion. As was pointed out in the
introduction of this paper, we proposed to develop a concise means
of determining the degenerator of a sequence of integers 2, 3,
e+, g. It is evident that Theorem 2.1 allows us to reach this
end but it may not be obvious that this approach is concise due to
the recursive nature of the theorem. However, as can be seen by
the following example, even if the previous degenerator N, is
unknown, N, can quickly be determined.

Example. What is the smallest positive integer which will
have remainders 1, 2, **+, 13 when divided by 2, 3, ***, 14,
respectively?

Recalling that the degenerator N is equal to 1 and assuming
that this is the only degenerator known at present we determine
N.. by applying Theorem 2.1. Observe that 2, 3, 5, 7, 11, 13
are primes and that 4 = 22, 8 = 2, 9 = 3? are composites equal
to primes raised to integral powers and finally that 6, 10, 12 are
composites which do not fall into one of the above classifications.
Therefore, applying our theorem we have that

Ny=24+3¢2+5¢7+2+3-11+13 =1
or
N, = 360359.

The only real limitation we have in applying this method is
our knowledge of primes and our ability to recognize composites
which are equal to primes raised to integral powers. However, with
the tables that are available today this limitation need rarely be of
concern.

Throughout this paper we have been concerned with the
smallest positive integer which has the characteristics of the de-
generator. It should be pointed out that although this has been our
primary concern, Theorem 2.1 does enable us to determine every
positive integer in this class. In particular, we have that each
integer
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(N, + Dk — 1, (k=12 ¢+

has remainders of 1, 2, **+, g — 1 when divided by 2,3,++¢, 4,
respectively. Morcover, every integer with this property is of the
above form.

Approaching Theorem 2.1 in another light we see that we can
also employ it to obtain integers having remainders of 2, 3, +--
less than the divisors, instead of merely one less as developed in
this paper. Similarly, Theorem 2.1 enables us to obtain the smallest
integer divisible by 2, 3, »<+, ¢. In fact, this paper could have
casily been developed along any one of the above lines, especially
the latter,
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One may be a mathematician of the first rank without being
able to compute. It is possible to be a great computer without having
the slightest idea of mathematics.

—Novavrs



The Mathematical Scrapbook

EpiTep BY GEORGE R. MacH

Readers are encouraged to submit Scrapbook material to the
editor. Material will be used where possible and acknowledgment
will be made in The Pentagon

=A=

Dice are always constructed so that the spots on opposite faces
total seven. Even with this restriction a die can be made in more
than one essentially different way. With no restrictions at all, in
how many essentially different ways can the faces of a cube be
numbered with the digits 1 to 6 You might be surprised that there
are 30 ways. In how many essentially different ways can the faces
of a regular tetrahedron be numbered with the digits 1 to 4? It is
even more surprising that there are only 2 ways.

A general formula for the number of ways (W) of numbering
all regular polyhedra is given by

_ FH
GO

where F is the number of faces and ¢ is the number of edges of each
face. You can see the development of this formula by considering a
cube. At first glance there might seem to be (6)(5)(4)(3)X(2)X(D
= 720 ways. But since any one of the faces might be numbered
first (placed down), we must divide by 6. Then for each of these
possibilities we may view the cube from four sides since the base
has four edges and hence we must divide by 4 to get the essentially
different ways.

w

=A=

Pythagorean triangles, like our familiar 3-4-5 and 5-12-13
ones, have been of interest for many years. The early Greeks knew
the following formulas to yield integer sides, A-B-C, of a right
triangle:

A=m —n
B = 2mn
C=m + n*,

where m and u are arbitrary integers, called generators. If m and »

40
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are consecutive integers, the sides B and C are always consecutive
integers. Can you prove this?

If m and n are unlike parity (odd-even) and with no com-
mon factor, then A, B, and C will have no common factors and
constitute what is called a primitive Pythagorean triangle. In every
primitive Pythagorean triangle, one of the sides is divisible by 3
and one by 5. The product AB is divisible by 12 and the product
ABC is divisible by 60. Can you prove these properties?

=A=
An interesting and very useful extension of the technique of
integration by parts can frequently be effected by inserting a wisely
chosen arbitrary constant in the proper place. As a review, consider

the usual
Judv = uw — { vdu.

In calculating v from dv, we always omit adding an arbitrary con-
stant to v, preferring to have one grand constant of integration at
the end. Adding an arbitrary constant to the v is permissible but
it’s usually not done.

Consider this example:

I = f (x) arctan xdx

# = arctan x dv = xdx
1 _xt
du = mdx v = —2—
1=£arctanx— i’i
2 J21+ x

This latter integral can be solved but it requires long division first.
Wouldn't it be nice if that x* in the numerator were (1 + xf)?
By adding an arbitrary constant of 4 to v the numerator will be
Q + x).

Preferred Solution:

#u = arctan x dv = xdx
_ 1 _ x* 1 _x* + 1
du = T3 vE3tI T T
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4+ 1) _ dx

I = 3 arctan x -
_ (= + 1D - X .
= = arctan x > + C.

It can easily be verified that both methods yield the same result.
Here’s another example:

_ In x
= gro®
_ dx
u = In x dv = m
_ 1 _ -1 — x
du—;dx v—x+l+l pomr
[ = Xhx dx
Tox + 1 x + 1
_ XxInx
= m In (x + l) + C.
i1ov . . . — dx
See how we avoided integration by partial fractions ( m—ﬁ)
by adding 1 to v and creating an x in the numerator of v?
=A=

Editor’s note:  The following was submitted by R. S. Luthar,
Waterville, Maine.
A specialized solution of Fermat's last theorem,
x4 =2,

is found if we consider the set S = {0, 1, 2, 3, 4, 5} with multi-
plication and addition defined on it as ordinary multiplication and
addition reduced modulo 6. It can now be verified that

3" + 1" = 4", n .S and n #~ O.



Directions for Papers to Be Presented
at the Sixteenth Biennial
Kappa Mu Epsilon Convention

ATtcHisoN, Kansas
April 7-8, 1967

A significant feature of this convention will be the presenta-
tion of papers by student members of KME. The topic on mathe-
matics which the student selects should be in his area of interest
and of such a scope that he can give it adequate treatment within
the time allotted. By this time the preparation of his paper should
be well underway, and he should take advantage of all opportunities
available to present his paper before groups interested in mathe-
matics.

Who may submit papers: Any member may submit a paper for
use on the convention program. Papers may be submitted by
graduates and undergraduates; however, undergraduates will
not compete against graduates. Awards will be granted for the
best papers presented by undergraduates. Special awards may
be given for the best papers presented by graduates, if a
sufficient number are prescnted.

Subject: The material should be within the scope of the under-
standing of undergraduates, preferably the undergraduate
who has completed differential and integral calculus. The
Selection Committee will naturally favor papers that are within
this limitation and which can be presented with reasonable
completeness within the time limit prescribed.

Time Limit: The usual time limit is twenty minutes but this may
be changed on the recommendation of the Selection Com-
mittee.

Paper: The paper to be presented together with a description of
charts, models or other visual aids that are to be used in the
presentation of the paper should be submitted to the Selection
Committee. A carbon copy of the complete paper may be
submitted, or in lieu of the complete paper an outline (suffi-
cient in detail to give the committee a clear idea of the content,
methods, and scope of the paper) may be submitted before the
January 16th deadline to be followed by the complete paper

43
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before February 15, 1967. A bibliography of source materials
together with the statement that the author of the paper is
a member of KME and his official classification in school,
undergraduate or graduate, should accompany his paper.

Date and Place Due: The papers must be submitted no later
than January 16, 1967, to the office of the National Vice-
President.

Selection: The Selection Committee will cheose about ten to
twelve papers for presentation at the convention. All other
papers will be listed by title and student’s name on the con-
vention program. The authors of the papers selected for pre-
sentation will be notified as soon as possible after the selection
is made.

Prizes:
1. The author of each paper presented will be given a two-
year extension of his subscription of The Pentagon.

2. Authors of the two or three best papers presented by
undergraduates, according to the judgment of a committee
composed of faculty and students will be awarded copies
of suitable mathematics books.

3. If a sufficient number of papers submitted by graduate
students are chosen for presentation, then one or more
similar prizes will be awarded for the best paper or papers
from this group.

George R. Mach

National Vice-President

California State Polytechnic College
San Luis Obispo, California 93402

)

Mathematics in its widest signification is the development of
all types of formal, necessary, deductive reasoning.
—A. N. WHITEHEAD



Installation of New Chapter

EpITED BY SISTER HELEN SULLIVAN

NEW YORK ZETA CHAPTER
Colgate University. Hamilton, New York

New York Zeta Chapter was installed on May 16, 1966, by
Professor Emmet C. Stopher of State University College, Oswego.
The installation was held at Merrill House, followed by dinner and
a meeting at which Professor Stopher gave an informal talk on
Kappa Mu Epsilon.

Charter members are Edwin Downie, Barry Fernbach, Stephen
Garypie, Brian Gerber, Ira Haspel, Edward Macias, William Mastro-
cola, Jay Menitove, Carl Munshower, Donald Oakleaf, Malcolm
Pownall, James Reynolds, Munir Saltoun, George Schwartz, and
James Wardwell.

The officers of the chapter are:

President ____________________ Jay Menitove
Vice-President ______________ James Reynolds
Secretary ______________________ Ira Haspel
Treasurer . _____________ Ira Haspel
Faculty Sponsor ____________ James Wardwell
Corresponding Secretary ______ Malcolm Pownall

Guests at the installation ceremony and dinner included Pres-
ident and Mrs. Vincent Barnett, Dean James A. Storing, and other
interested faculty and students.

()

No process of sound reasoning can establish a result not con-
tained in the premises.

—J. W. MELLOR
45



The Problem Corner

Epitep By H. HowaRp FRISINGER

The Problem Corner invites questions of interest to undergraduate
students. As a rule the solution should not demand any tools beyond
calculus. Although new problems are preferred, old ones of particular
interest or charm are welcome provided the source is given. Solutions
of the following problems should be submitted on separate sheets
before March 1, 1967. The best solutions submitted by students will be
published in the Spring, 1967, issue of The Pentagon, with credit being
given for other solutions received. To obtain credit, a solver should
affirm that he is a student and give the name of his school. Address
all communications to Professor H. Howard Frisinger, Department of
Igalthergatics and Statistics, Colorado State University, Fort Collins,

olorado.

PROPOSED PROBLIMS

196. Proposed by William K. Sjoquist, University of California at
Berkeley, Berkeley, California.

If y = uv where u and v are functions of x, prove that the nth
derivative of y with respect to x is given by
y™ = wr'™ + au'v? 4+ oa(n — 1) wfvir-n/21
+ n(n — 1)(n — 2) u '’ vI/3) 4 eee + yivy
197. Proposed by Thomas P. Dence, Bowling Green State Univer-
sity, Bowling Green, Ohio.
Let us denote a set of sequences {X,,.} by

{th} = (lr ,1: 2) 3: 5) ...) Where xl)l = l
Xy = 1
XI:S = 2

Xik = Xpga + X2
{Xan} = (1, 3,4, 7, 11, +++) where X;,; = 1
252 = 3
e = 4

Xan = Xonar + Xakes
46
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{Xsn} = (1, 4, 5, 9, 14, *++) for similar definitions of X;,,

(Xiw) =(Qli+ 1,84 2,2i +3,++) fori > 1, and where the
X’s are defined by the
same recurrence relation
as before.

Now express the uth term of the ith sequence in terms of the
nth term of the first sequence, where the first sequence is actually
the Fibonacci sequence.

198. Proposed by the Editor.

For what values of » is (11 X 14*) + 1 prime?

199. Proposed by R. S. Luthar, Colby College, Waterville, Maine.
Let A ABC be a right triangle with right angle at A. Construct
regular n-gons on AB, AC, and BC with respective areas a, 3, v.
Prove « + B8 = y.

200. Proposed by E. R. Deal, Colorado State University, Fort
Collins, Colorado. :
“Are those your children I hear playing in the garden?” asked

the visitor.

“There are really four families of children,” replied the host.
“Mine is the largest, my brother’s family is smaller, my sister’s is
smaller still, and my cousin’s is the smallest of all. They are playing
drop the handkerchief,” he went on. “They prefer baseball but there
are not enough children to make two teams.” “Curiously enough,”
he mused, “the product of the members in the four groups is my
house number, which you saw when you came in.”

How many children were there in each of the four families?

SOLUTIONS

191. Proposed by Thomas P. Dence, Bowling Green State Univer-
sity, Bowling Green, Ohio.
Express the square root of any positive integer as an infinite
continued fraction.
Solution by William Mikesell, Indiana University, Indiana,
Pennsylvania.
Take any positive integer N. Let N = 72 + s, where r is the
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largest perfect square contained in N without exceeding N.
Then: yN=r+ VN —r

i C YNt
Multiply (VN — r) by VN ¥ 7 = 1.
- VvN + 1) N —r
r+ (YN — ) ——= = —_
v r)\/N+r) r+\/N+r
Set VN + r = 2r + (VN — r) and again multiply VN — r by
vN + r
vN + r.
Doing this and setting N — r* = s we get r + 2_ri+__s
vN +r
We may set (VN + r) = 2r + YN — r again and multiply
vN — r by :;N :_ : This process can be continued as often as

the solver pleases.
Also solved by Layne Watson, Evansville College, Evansville,
Indiana.

192. Proposed by LeRoy Simmons, Washburn University, Topeka,

Kansas.

Find a positive integer X such that ax + b (x + 1) will be
equal to all integers greater than or equal to 110, but will not equal
109; where a, b . {0, 1, 2, 3, *++-}.

Solution by Patricia Robaugh, Duquesne University, Pitts-

burgh, Pennsylvania.

Observation: X = 11 is solution,

Where a + b = 9, the following occurs:
9(11) + 0 (11 + 1) = 99
8C11) + 1 (11 + 1) = 100
7C11) + 2 (11 + 1) = 101
6(11) + 3 (11 + 1) = 102
5(11) + 4 (11 + 1) = 103
4C(11) + 5 (11 + 1) = 104
3(11) + 6 (11 + 1) = 105
2(11) + 7 (11 + 1) = 106
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1IC11) + 8 (11 + 1) = 107
0C11) + 9 (11 + 1) = 108

Where a + b = 10, the following occurs:

10(11) + o0 (11 + 1) = 110
9(11) + 1 (11 + 1) = 111
8C11) + 2 (11 + 1) = 112
7C11) + 3 (11 + 1) = 113
6C(11) + 4 (11 + 1) = 114
5C11) + 5 (11 + 1) = 115
4C11) + 6 (11 + 1) = 116
3(11) + 7 Q11 + 1) = 117
2C11) + 8 (11 + 1) = 118
1(11) + 9 (11 + 1) = 119
0(11) + 10 (11 + 1) = 120
Where a + b = 11, the following occurs:
11(11) + 0 (11 + 1) = 121
10(11) + 1 (11 + 1) = 122
9(11) + 2 (11 + 1) = 122
8(11) + 3 (11 + 1) = 124
7(11) + 4 (11 + 1) = 125
6(11) + 5 (11 + 1) = 126
5(11) + 6 (11 + 1) = 127
4C11) + 7 (11 + 1) = 128
3(11) + 8 (11 + 1) = 129
2C(11) + 9 (11 + 1) = 130
1(11) + 10 (11 + 1) = 131
o(11) + 11 (11 + 1) = 132

Integers through infinity can be found in this manner but
109 cannot be represented.

Also solved by Layne Watson, Evansville College, Evansville,
Indiana.
193. Proposed by Patricia Robaugh, Duquesne University, Pitts-
burgh, Pennsylvania.

Prove that the Egyptian method of multiplication gives cor-
rect results in all cases.

Solution by Wilma Yates, Stetson University, Leland, Florida.
Multiply x ¢+ y, where x = 2% + 2! + +++ + 2" and y is also
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an integer. Multiplication is performed by defining x as above in
one column and then choosing numbers in a second column cor-
responding to each addend. When the numbers chosen from the
second column are added together, they should give the proper
preduct as follows.

[
°

21
22

BN

e o o s =
~ =

Thus the product becomes xy = 2ky + 2y + oo 4 20y
= (2]‘ + 2! + s e + 2ﬂ)y
—1 xy.

Also solved by Ivan F. Arnold, Southwest Missouri State
College, Springfield, Missouri; Thomas P. Dence, Bowling Green
State University, Bowling Green, Ohio; Philip Haverstick, William
Jewell College, Liberty, Missouri; Tom S. Johnson, Drake Univer-
sity, Des Moines, Iowa; William Mikesell, Indiana University,
Indiana, Pennsylvania; Gail E. Norfolk, California, State Poly-
technic College, San Luis Obispo, California; Don Scarpero,
University of Missouri at Rolla, Rolla, Missouri; William K. Sjo-

quist, University of California at Berkeley, Berkeley, California;
Layne Watson, Evansville College, Evansville, Indiana.

194. Proposed by E. R. Deal, Colorado State University, Fort
Collins, Colorado.

Fill in the missing digits
xx8
xxx | xxxxxx
T xxxS

xxxx

9xx

xXxx

xxx
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Solution by Larry McFarling, Anderson College, Anderson,
Indiana.
988
115113620
1035
10
9

[
(=0 &

0
0

[ S0 8

9
9

Also solved by Thomas P. Dence, Bowling Green State Uni-
versity, Bowling Green, Ohio; Charles Loeffler, State University
College, Oswego, New York; Patricia Robaugh, Duquesne Univer-
sity, Pittsburgh, Penn; Wilma L. Yates, Stetson University, DeLand,
Florida; William K. Sjoquist, University of California at Berkeley,
Berkeley, California.

195. Proposed by the Editor.

Given any A ABC, any two parallelograms DBAE on AB and
ACFG on AC. Let DE and FG meet in H and draw BL and CM
equal and parallel to AH. Prove area ABDE + area ACFG = area
BCML.

H
MG
)
A
J
K
F
D
© C
D
L M
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1.

10.

11.

12,

13.

The Pentagon

Solution by Layne Watson, Evansville College, Evansville,
Indiana.

Extend BL to meet DE at K,
AH to meet LM at N, and
CM to meet FG at J.

AH is parallel and equal to
CM and BL.

BL is parallel and equal to
CM.

BCML is a parallelogram.

BC is parallel LM, ON is
parallel and equal to BL and
CM.

OCMN and BONL are paral-
lelograms.

ACFG and ABDE are paral-
lelograms.

AC parallel FG, AH parallel
CJ, AB parallel DE, and BK
parallel AH.

ACJH and ABKH are parallel-
ograms.

Area ACFG = area ACJH
and area ABDE = area
ABKH.

ON = BL = CM = AH.

Area OCMN = area ACJH
and area BONL = area
ABKH.

Area BCML = area OCMN
+ area BONL

Through two points there can
be one, and only one, straight
line.

Given

Two lines parallel and equal
to a third line are parallel and
equal to each other.

If two sides of a quadrilateral
are equal and parallel, it is a
parallelogram.

Opposite sides of a parallelo-
gram are parallel and equal.
Given. Segments of parallels
included between parallels are
equal.

Reason 4.
Given.

Definition of a parallelogram.
Given.

Statement 8, definition of
parallelogram.

Parallelograms having equal
bases and equal altitudes are
equal in area.

Statement 5. Given. Quanti-
ties equal to the same quantity
are equal to each other.

Reason 10.

Whole is equal to the sum of
its parts.
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14. Area BCML = area ACFG A quantity may be substituted
+ area ABDE. for its equal.

Also solved by Ivan F. Arnold. Southwest Missouri State Col-
lege, Springfield, Missouri; William D. Edwards, Eastern Hlinois
University, Charleston, Illinois; Philip Haverstick, William Jewell
College, Liberty, Missouri; R. S. Luthar, Colby College, Waterville,
Maine; Gail E. Norfolk, California State Polytechnic College, San
Luis Obispo, California; Wilma L. Yates, Stetson University,
DeLand, Florida.

Note two numbers, cach containing all nine digits, and whose
sum and difference also each contain all nine digits.

371294568 371294568
+ 216397845 — 216397845

587692413 154896723




The Book Shelf

Epitep By H. E. TINNAPPEL

From time to time there are published books of common interest
to all students of mathematics. It is the object of this department to
bring these books to the attention of readers of The Pentagon. In
general, textbooks will not be reviewed and preference will be given
to books written in English. When space permits, older books of
proven value and interest will be described. Please send books for
review to Professor James P. Burling, State University College, Os-
wego, New York.

The Treasury of Mathematics. Edited by Henrietta O. Midonick.
Philosophical Library, Inc., New York, 1965, 820 pp., $15.00.

This book is truly a treasury of mathematics. It contains a
series of fifty-four articles pertaining to the development of mathe-
matics from the very early stages to the fundamental knowledge of
calculus, mathematical logic and philosophy.

These articles are translations from ancient manuscripts dating
back to the time of Appollonius, the Babylonian mathematical tab-
lets, the Bakhshali manuscripts written on leaves of birch-bark, the
works of Chu Chi-Chieh and Li Yeh — to mention just a few.

Each of the articles is preceded by a biographical or historical
essay which gives an introductory picture of the article to be dis-
cussed.

In many instances reproductions of pages from the original
manuscripts have been used to develop a more concrete conception
of the work to be discussed, for example — A Method of Division
by Rabbi Immanuel, The Geometry of Rene Descartes, Maya Num-
eration, The Whetstone of Witte.

Mathematicians and those interested in the development and
history of mathematics should have access to this “Treasury” be-
cause of its far-reaching exploration into the past which is a source
of instruction for us in the gradual development of mathematics as
found in the mathematical and scientific ideas of the present.

Sister Edmund Marie
Ladycliff College

Functions, Limits, and Continuity, Paulo Rinenboim, John Wiley &
Sons, Inc., New York, 1964, 133 pp., $5.95.

One must thoroughly understand the basic concepts of func-
tion, limit, and continuity if he is to seriously study mathematical
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analysis. To enable the mathematics student to attain such an un-
derstanding by reducing the task of studying these basic ideas to
an extent as to make it attractive and by eliminating most of the
applications usually taught in calculus courses in order to deliberately
focus attention upon these essential principles to analysis is a praise-
worthy accomplishment. The achievement of this goal is attempted
by the author of this book in a direct and compact manner. Most
of the applications usually taught in clementary calculus are elim-
inated in the book, which aids in directing attention upon the ideas
of function, limit, and continuity. However, due to the brief treat-
ment given several topics in the text the attractiveness of the task
of studying these basics of mathematical analysis may be reduced.
Chapter 1, two pages in length, presents two concepts, sets and
correspondences. The next two chapters are a concise, intuitive
construction of the real numbers via Cantor’s method. A construction
of the set of complex numbers is omitted. Chapters 4 and 5 of the
book are not as brief in development as the first three chapters and
very nicely discuss bounded sets, accumulation points, and sequences
of the set of real numbers. Cauchy convergence criterion, monotone
sequences, divergence of sequences, limit superior, limit inferior,
and the Bolzano-Weierstrass Theorem, which are treated quite
rigorously in terms of neighborhoods, are outstanding features of
these chapters. Single-valued functions of a real variable are ade-
quately presented in Chapter 6. The content of this chapter is
complete in that it includes graphs of functions, polynomial func-
tions, rational functions, composites of functions, inverse functions,
and monotone functions over intervals of the reals. Limits and
continuity of functions are the topics of Chapters 7 and 8. Epsilon-
delta definitions are finally evolved in these sections. The use of
epsilon and delta had been avoided in the preceding material. Right-
hand limit, left-hand limit, the Intermediate-value Theorem, and
the Weierstrass Maximum-Minimum Theorem are the noteworthy
items of Chapters 7 and 8. The book ends with a good, elementary
discussion of uniform continuity and applications of uniform con-
tinuity. The last chapter presents coverings for intervals of the real
line, proves the Heine-Borel Theorem for the reals, discusses com-
pactness for sets of real numbers, and then obtains the global
property of uniform continuity for real functions of a single variable.
For a book which is an elementary introduction to mathemati-
cal analysis there are some noticeable deficiencies. The ideas of
subset, intersection, union, Cartesian product sets, and relation,
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which are usually considered fundamental in the development of
the real number system and essential in a discussion concerning
neighborhoods, coverings, and functions, are omitted. Connected-
ness, the well-ordering principle, and the axiom of choice are used
but not mentioned. Zero is denoted as a positive integer. Countable
sets, uncountable sets, and cardinal number are touched upon in
Appendix B but unfortunately are not portions of the text. Various
types of proof are to be found in the book but no discussion of the
logic involved is given. The cxcrcises are stated precisely but demand
mathematical maturity; that is, considerable guidance is needed if
they are to be solved by beginning students.

On the other hand the book has some fine qualities. It has an
ample supply of exerciscs. Examples are given which illustrate the
definitions and theorems of the text. Also, some examples are pre-
sented which do not satisfy the conditions of these definitions and
theorems. The book stresses the need for an operation to be well-
defined. The climination of engineering and physical applications
that require a knowledge of science and may obstruct recognition of
mathematical principles by computations directly presents the theo-
retical aspects of function, limit, and continuity. The conciseness
with which the material is written provides a challenge for the
student. Common sense and intuition are used to guide the reader
through a logical sequence of topics designed to reveal the precision
and thoroughness required in mathematics.

In summary it should be stated that the book is not designed

for self-study but is a teachable textbook for a first course in analysis.
—Robert L. Poc

Texas Technological College

First Course in Functional Analysis, Casper Goffman and George
Pedrick, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1965, 282 pp., $12.00.

This well organized text covers the basic material in real analy-
sis and is directed toward the beginning courses of graduate study.
The content is relevant and follows the view stated in the preface,
that “analysis itself is basic and that the abstract theories to which it
leads are primarily of interest as tools which may be used in treating
problems in analysis.”

A chapter on metric space which includes the Arzeld-Ascoli
theorem, Stone-Weierstrass theorems and semi-continuity, and one
on Banach spaces which includes the Hahn-Banach theorem, the
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uniform boundedness principle, weak convergence, the Riesz repre-
sentation theorem and the closed graph theorem, precede the chapter
on measure and integration and the classical L, spaces. The develop-
ment here is fairly standard, a discussion of Lebesque measure lead-
ing to measurable functions and convergence, then summable func-
tions and the Fatou-Lebesque theorems and so to absolute continuity
and the Radon-Nikodym theorem. The Fubini theorem is covered
in the excrcises while the sections of the L, spaces include a discus-
sion of Fourier series. There follows a chapter on Hilbert space
which includes the Miintz-Szasz thcorem and reproducing kernels,
then one on topological vector spaces, covering the Tychonoff theo-
rem, FK spaces, ordered vector spaces and Kothe spaces, with a final
chapter on Banach algebras.

The presentation is very clear and concise, and the student
will appreciate the extensive collection of exercises at the end of
each chapter—they can be tackled without the usual prejudice
from a section just concluded in the text though there is a cross
reference to provide clues as required.

In contrast to many introductory books on functional analysis,
the authors do not develop the theory of linear operators nor deal
with spectral analysis. They have produced a compact text which

will provide a sound foundation in modern analysis.
—T. Robertson
Occidental College

Lectures on Modern Mathematics, vol. 1. Edited by T. L. Saaty.
John Wiley & Sons, New York, 1963, 175 pp., $5.75.

The reading of this book is highly recommended for every
serious student of mathematics, advanced undergraduate, graduate,
and postgraduate. The book consists of a series of six expository
lectures given at George Washington University by six eminent
mathematicians and sponsored jointly by the University and the
Office of Naval Research. The lectures have done a masterful job
of discussing recent results and interesting unsolved problems in
six current and productive arecas of mathematical research. The
specialist will find the work interesting, and the non-specialist will
find a source of inspiration for further study. All six lectures are
supplemented by extensive lists of references.

Paul Halmos takes “A Glimpse into Hilbert Space.” More
specifically, he discusses fundamental concepts, results, and un-
answered questions in his area of interest of linear operators on
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Hilbert Spaces. The technical aspects of a specialized subject are
made plausible to a non-specialist by good organization and good ex-
amples.

Laurent Schwartz discusses “Some Applications of the Theory
of Distributions.” He defines distributions and related properties
and applies the theory to the solutions of partial differential equa-
tions. Ideas are presented but additional reading is needed to com-
plement the lecture.

A. S. Houscholder lectures on “Numerical Analysis.” The
development of this new subject is outlined and the work and
problems of the numerical analyst are discussed. Error analysis,
the nature of the problems, and methods of attack are illustrated
with theoretical examples.

Samuel Eilenberg arouses an interest in “Algebraic Topology”
by introducing algebraic structure (category) into the study of
topological spaces and their continuous mappings, giving a number
of examples and applications to topology and other areas.

Irving Kaplansky discusses the development of “Lie Algebras,”
their classical connection with groups, and the classification and
representation of simple algebras.

“Representation of Finite Groups” is presented by Richard
Brauer. In giving a survey of the theory, he poses many unanswered
questions which might arouse interest in further study.

C. ]. Pipes
Southern Methodist University
Calculus and Analytic Geometry, Vols. I and 1I, Melcher P. Fobes
and Ruth B. Smyth, Prentice-Hall, Inc., Englewood Cliffs,

New Jersey, 1963, Vol. I - 660 pp., $8.50; Vol. II - 450 pp.,

$6.95.

The preface to Melcher P. Fobes and Ruth B. Smyth'’s two
volume text on Calculus and Analytic Geometry indicates that the
authors have given a great deal of thought to the teaching of these
subjects.

The approach used reflects the presence of the teacher as you
read the text material as homely words and phrases such as “fly-
swatter principle,” “swapped,” “fussy,” “all over” the denominator,
etc., continually infiltrate the material. While there is some virtue
in bringing the discussions down to earth it does seem to encourage



The Pentagon 59

a student to do likewise, thus tending to cause him to persist in the
imprecise manner of speaking about mathematical ideas that he has
already acquired. 1 have always found that he needs very little
encouragement in this direction.

In this connection, one should ideally expect the material of
the course and the approach to its understanding to take on greater
sophistication as things proceed. However, there is considerable in-
consistency in this in the text. In particular, one proceeds in this
manner in developing the notion of finding the area under a curve,
continually refining the student's notions right through the idea of
upper and lower Riemann sums. This is accomplished by the end of
Chapter 13, that is by page 325, Volume I.

However, the authors later lapse into such expressions as
“taking the limits as the slicing grows thinner,” found on page 589.
At this state, the student should be addressed as if he had attained
greater maturity. Until Chapter 15, Volume I, is reached, the ma-
terial is presented as though the student has virtually no trigo-
nometric concepts in spite of the fact that the preface says that
the authors presuppose “a semester’s worth of analytic trigonometry.”
Thus radian measure is not broached until page 355, Volume I.
The fundamental defect in this organization of the material is that
it cannot be tolerated when the course is taught in a modern
curriculum which is scientific or engineering oriented.

The text gives answers to the odd-numbered problems. The
index is adequate but has some gaps—I could not find differentia-
tion of functions defined implicitly indexed in any manner. The
figures are well done but one can find exceptions to this also: The
figure 23.2 on page 588, Volume I, is faulty and figure 12.2, page
276, Volume II is neither artistic nor very illuminating. 1 suppose
it would be rather precarious having the man stand on the edge of
an overhanging cliff, as the text implies. The use of the unconven-
tional symbolism 7" to represent “x radians” is hardly necessary. The
organization of the text into two volumes has its disadvantages as it
tends to dictate a division of the material in a particular way. One
is forced to wait until Volume II for polar coordinates, for example.
Problems seem gencrally to be extensive enough and well graduated.

One can never make a truly valid criticism of a text until he
has taught from it. In this sense, what I find in the text is entirely
from a reading and scanning of it with the eye of one who has taught
this material for about twenty years in an engineering and science
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oriented institution. It is inevitable that I should see it, then, in a
particular light—not without a certain prejudice. My feeling is that
it would be particularly adaptable to a liberal arts curriculum in an
institution in which majors other than in science and engineering
predominate. In this "locus operandi” 1 feel that it will work out
very satisfactorily. It seems to be very teachable, especially to a
clientele who themselves wish to become teachers.
—C..A. Johnson
University of Missouri at Rolla

Guidebook to Departments in the Mathematical Sciences in the
United States and Canada, Edited by Raoul Hailpern, Mathe-
matical Asscciation of America, State University of New York
at Buffalo, Buffalo, New York, 1965, 59 pp., Paperbound,
$0.50.

The Guidebook provides, for the prospective student, informa-
tion about departments of mathematics in four-year colleges and
universities in the United States and Canada. Data is summarized
on location, size, staff, library facilities, course offerings and num-
ber of degrees granted. Additional information concerning the num-
ber of graduate students and financial support available for the ad-
vanced student is given for departments in institutions conferring
the Ph.D. degree in a mathematical science.

)

The earliest English law defining length is said to be the law
of the year 1324 which read, “Three barley corns, round and dry,
placed end to end, make an inch.”



Kappa Mu Epsilon News
Ep1TEp By J. D. HaGGarp, HISTORIAN

ARKANSAS — IOWA — KANSAS — MISSOURI —
NEBRASKA — OKLAHOMA

RecionaL CONVENTION
April 23, 1966
Southwest Missouri State College
Springfield

Papers presented during the conference include:

“Transformations in Differential Equations” by Jerry Riden-
hour of Missouri Beta.

“Galois’ Theory for the Group of an Equation and the Crite-
rion for Solvability” by Leora Ernst of Kansas Gamma.

“On Arbitrarily Large Postulate Sets for the Propositional
Calculus” by John W. Bridges of Missouri Alpha.

“Dr. I. Q.” by Joseph Walton of Oklahoma Alpha.

“Where Is In and Where Is Out” by Paul Mugge of Arkansas
Alpha.

“Concerning Prime Numbers” by Ronald R. Brown of Missouri
Gamma.

“Mathematics of Cards” by Bernita Meyers of Kansas Gamma.

“Conic Sections with Circles as Focal Points” by Thomas M.
Potts of Kansas Alpha.

Dr. Paul E. Long of the University of Arkansas was the guest
speaker at the banquet where he discussed the topic “The Mathe-
matical Shelf: Purpose and Style.”

There were 15 chapters represented at the conference with
a total attendance of 101 members.

WISCONSIN —MICHIGAN — OHIO —
INDIANA — ILLINOIS

RecionaL CONFERENCE
March 18-19, 1966
Mount Mary College
Milwaukee, Wisconsin

Papers presented during the conference include:
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“Vector Shorthand” by Duane Larson of Wisconsin Beta.
“Theory of a Complex Variable” by Bill Hibbard.

“Infinity in Mathematics" by Sandra Mertes of Wisconsin
Alpha.

“Paul Bunyan Versus the Conveyor Belt” by Karen Johnson,
Delores Peirick, and Mary Ann Raczka of Wisconsin Alpha.

Dr. Arthur Bernhart of the University of Oklahoma was the
guest speaker at the banquet and spoke on the topic “The Five Color
Problem.”

There were four chapters represented with a total attendance
of sixty students and faculty members.

CHAPTER NEWS

Arkansas Alpha, Arkansas State College, Jonesboro

Arkansas Alpha Chapter of Kappa Mu Epsilon held a spring
initiation and installation of officers on May 6, 1966. Twenty-five
were initiated at that time, bringing the total active membership
to fifty-six. At the banquet which followed, Dean B. Ellis, Professor
Emeritus of Arkansas State College, was presented an honorary
membership. Guest speaker at the banquet was Dr. Glen Haddock,
Academic Dean of Arkansas College, Batesville, Arkansas. His topic
was, “Does the Pendulum Really Swing?”

During the school year the chapter has heard talks presented
by guests, faculty members, and students on such topics as logic,
transfinite numbers, data processing, and Gaussian integers.

The chaptzr also helped sponsor two picnics for the entire
science department. In March we assisted our science faculty in
conducting the Northeast Arkancas Science Fair, which is held on
our campus each year.

Colorado Alpha, Colorado State University, Ft. Collins

The annual initiation ceremony was conducted in November,
bringing the total number of initiates for the year to twenty-eight.
In January we elected our new officers. Throughout the year we
have enjoyed student and professor talks on such topics as the
importance of Kappa Mu Epsilon, the history of probability, prob-
ability in statistics, logic, and recreational mathematics. Marilyn
Brown was honored at the Associated Women Students Honors
Night as the most outstanding woman member of Kappa Mu Epsilon
and all other female members were also recognized. The chapter
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members also received recognition at the All School Honors Night.

California Gamma, California State Polytechnic College, San
Luis Obispo

California Gamma held monthly meetings with speakers being
students, faculty, industrial representatives, and visiting professors.
We initiated thirty-eight new members at banquets held in the fall
and spring quarters. In April we assisted our departmental faculty
in hosting its fourteenth annual mathematics contest, which at-
tracted over 500 high school students to our campus.

Hlinois Epsilon, North Park College. Chicago

Eighteen new members were initiated at the annual installa-
tion banquet on May 25, 1966. The guest speaker for the occasion
was Dr. Ralph Shively of Lake Forest College, who spoke on the
topic, “Some Unsolved Problems in Mathematics.”

Other programs for the year include: “Computers,” given by
Professor William Herrin of the physics department at North Park
College, and “Relativity,” given by Professor John Baumgart of
North Park College.

Indiana Alpha, Manchester College. North Manchester

Our programs have emphasized the history of mathematics.
Outside speakers have been Professor Lipsich, Head of the Mathe-
matics Department at the University of Cincinnati and Professor
Retzer from Illinois State University.

Indiana Beta, Butler University, Indianapolis

The Indiana Beta Chapter of Kappa Mu Epsilon at Butler
University of Indianapolis reorganized and initiated thirty-seven
new members during 1965-66. A wicner roast was held in the
spring. Officers for 1966-67 are President, Cal Jared II, Vice-
President, Melvin Piepho, Secretary, Pat Gordon, and Treasurer,
Paul Davis,

Indiana Delta, Evansville College, Evansville

Mrs. Janet K. Markham has joined the Eli Lilly Company
as an associate pharmacologist. Mrs. Markham was a mathematics
teacher at Creston Junior High School in Indianapolis, Indiana,
before joining Eli Lilly. She was active in Kappa Mu Epsilon while
a student at Evansville College.
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Louisiana Beta, University of Southwestern Louisiana, Lafayette

The freshman and senior award contost was conducted in
April, 1966. Eugene Garcia of Milton, Louisiana, won the fresh-
man award, a CRC Mathematics handbook, and John C. Peck,
Lafayette, Louisiana, won the senior award, which was a copy of
Men of Mathematics by Bell.

New York Gamma, State University College, Oswego

On April 11, the chapter initiated thirty-five new members,
by far the largest group ever.

New York Epsilon, Ladycliff College, Highland Falls

New York Epsilon conducted a symposium on March 10 and
12, 1966. The topic under discussion was “Probability and Statistics
with Regard to Elemcntary and High School Students and its Ap-
plications.”

During March, Kappa Mu Epsilon members attended lectures
by Professor Leonard Gilman and Mr. St. John of the New York
Telephone Company. On April 25, 1966, Colonel Charles P.
Nicholas, U.S.M.A. at West Point was the guest speaker. His topic
was “An Adventure in Mathematics.”

Seven new members were initiated on May 11, 1966.

Virginia Beta, Radford College, Radford

Dr. Herta Taussig Freitag, Professor of Mathematics at Hollins
College, spoke to Virginia Beta at their installation banquet for
new members on “Mathematics and Art.” Later during the year,
Mr. William R. Battle, Vice-President and Actuary of the Shenan-
doah Life Insurance Company, spoke on “The Function of An
Actuary,” and various other aspects of the profession. Other monthly
meetings have covered the topics of modern mathematics, algorithms,
concept of maps, fun in mathematics, and Pascal.



