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the interests of mathematics in those schools which place their primary
emphasis on the undergraduate program; to help the undergraduate
realize the important role that mathematics has played in the develop
ment of western civilization; to develop an appreciation of the power
and beauty possessed by mathematics, due, mainly, to its' demands for
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the recognition of outstanding achievements in the study of mathe
matics at the undergraduate level. The official journal, THE PENTA
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A Non-Archimedean Ordered Ring*
George Poole

Student, Kansas State Teachers College, Emporia

The Archimedean property is stated most often as a theorem
in reference to the real number system, but the concept is easily
extended to other systems. Those systems, such as the rational
integers and the field of rational numbers, to which this property
can be applied have a stipulation that they are ordered (as defined
below). By knowing what this definition of being ordered means,
it would tend to lead us to believe that those systems which are
ordered are necessarily Archimedean ordered. And this is true for
those that we normally think of first.

After suitable definitions we will show with an example that
this is not always the case. This will be done in a nonrigorous
manner and the reader will keep in mind that these definitions
given below are easily extended to other systems.

DEFINITION 1. A set S of elements is a simply ordered
set under a relation —- if and only if the following hold:

( i) a, b e S, a ^ b -> a ~ b or b ~ a.

( ii) a,b t S, a ~> b -> a ^b.

(in) a,b,c e S,a >~* b,b —' c -» a ~> c.

DEFINITION 2. An ordered ring R is a commutative ring
whose elements are a simply ordered set and for which the ring
operations satisfy the additional properties:

(0 a~b-*a + c~b + c; where a,b,c e R.

(ii) a>~b, 0'~c-*a*c~b»c; where 0 is the additive

identity of R.
We note that a ring ordered by ">" can be ordered by "<" and
will be considered as such.

The boldface + and • are used in Definition 2 to denote the
ring operations which may or may not be the usual operations of
multiplication and addition of numbers. In Definition 3, below,

*A paper prosonlod at the KME Regional Convolution at Kearney, Nebraska, April 4,
1964.
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68 The Pentagon

we will need the idea of a multiple of a ring element. Thus if
a e R, we use the symbol na to mean

na = a + a + a + '" + a

where » denotes the number of a's that have been combined by
the ring operation +.

DEFINITION 3. An ordered ring R with the property that
for every a,be R such that 0 «— a and a *~ b there exists a multiple,
na, of a for which b ~ na is called an Archimedean ordered
ring.

As an example, consider the set of rational integers with
the relation "less than." Is this a simply ordered set?

(i) For any two distinct elements of the rational integers,
certainly one element is less than the other by the usual definition
of "less than." (ii) Certainly if of any two rational integers one
is less than the other, then they are distinct, and (iii) the transi
tive law of "less than" for the rational integers holds.

Next, is the set of rational integers an ordered ring? Since
the set of rational integers is an integral domain, certainly it is
a commutative ring and it has been shown that the set of elements
is a simply ordered set.

(i) If a < b, then after adding an equal quantity to both
sides die sums are related in the same order; certainly true of the
rational integers, (ii) If a < b and the zero of the rational integers
is less than c (or c is positive), then the products of a and b by c
are related in the same order.

Thus the rational integers are an ordered ring and it can be
readily seen to be Archimedean ordered. For if a < b and a,b are
natural numbers (positive elements of the rational integers), then
we have

0 < a and a<fc-*l^aandO<fe

-> b ^ ba

-> b < ba + a

-+ b < Qf + l)a

and b + 1 is a natural number.

Now, here is a ring which was ordered and was easily
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recognized as being Archimedean ordered. Is it true that all
ordered rings are necessarily Archimedean ordered?

Consider the set of all polynomial functions over the rational
integers with a variable x in the real numbers as given by the set
P below.

P = { ao*° + «i*1 + • • • + anxn | A* £ I (» = 0, 1, ♦ • •, «), 0 ^ «}

lion and multiplication of polynomi

/(x) = fl„*° + UiX1 + • • • + a„xn

and

g(x) = box0 + fe,xJ + • • • + bmxm

then

K*) + gW = («o + b^x" + (a, + bOx1 + («2 + Wx2 + • • '

and

/(*) • g(x) = etobox0 + (<io&i + flifc<>)xl

+ (a0b2 + «,&! + fl2fc0)x2 + • ♦ • + a„bmx" * m.

With these definitions of addition and multiplication, it can be
verified by the reader that the set P is a comutative ring.

We will use the boldface letter O to denote the zero poly
nomial, the zero of the ring P, and the numeral 0 will of course
denote the zero of the reals. First, the set of elements of P will
be simply ordered by the relation "<" in which O < f(x) if and
only if there exists an x0 e reals such that 0 < /(*<») and for all
x0 < Xj, 0 < f(.xl'). With this we will define the relation that

/(*) < g(x) if and only if O < g(x) - f(x).

For example, is x — 1000 a "positive" element of P, that is,
does O < x — 1000? Yes, since if x„ = 1001, we have 0 < 1 and
for all 1001 < xh 0 < xt - 1000. Is 1000 - x "positive"?
No, because whatever x0 is chosen such that 0 < 1000 — x0, there
exists an Xj such that xa < x} and 0 < 1000 — Xj. Notice that
any two elements can be compared or found to be "positive" or
"negative" merely by observing the coefficient of the leading terms
or term with the highest degree.

We define addition and multiplication of polynomials in the usual
fashion. If
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Using these definitions, any two distinct elements of P can
be related. Under this relation, it can be verified that the set of
elements of P is a simply ordered set.

Now, is P an ordered ring? If f(x), g(x), c(x) e P, then,
by definition,

/GO < g(*)

implies that

O < g(x) - /(x).

But

g(x) - f(x) = [g(x) + c(x)] - [/(x) + c(x)]

and consequently

O < fg(x) + c(x)] - [/(x) + c(x)l

by substitution. Thus

f(x) + c(x) < g(x) + c(x)

satisfying (i) of Definition 2.

If /(x) < g(x) and O < c(x), then O < g(x) - /(x) and
O < c(x). By definition, then, there exists an x0, Xi e reals such
that

0 < g(x0) - f(x0), 0 < c(x.)

and for all x0 < xh x± < x» we have

0 < g(*,) - /(«>) and 0 < c(x»).

Consequently, choosing xr to be the larger of x0 or Xi, then

0 < c(xr) [g(xr) - /(xr)l

which implies that

O < c(x) • [g(x) - /(x)]

O < c(x) • g(x) - c(x) • /(x)

or

f(x) • c(x) < g(x) • c(x),

satisfying (ii) of Definition 2. Therefore P is an ordered ring.
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Is it Archimedean ordered? To be Archimedean ordered, the
Archimedean property must hold for every two "positive" elements,
f(x) and g(x), of P for which /(x) < g(x). Consider the two
elements x2 and x*. It is easily recognized that these two elements
are "positive" or that O < x2 and O < x\ and that x* < x* by
definition.

The next question is "does there exist a large enough natural
number n such that x* < mx2?" In other words, does there exist
a natural number n such that O < nxx — x4} However large an
« is chosen and an x0 e reals is chosen (notice that x0 must be less
than «) such that 0 < mx„2 - x0\ there will be an x, (namely
x, = n) such that x0 < x, and 0 < nxf - x,*, since 0 < n • w2
— n*. Therefore, P is an ordered ring which is non-Archimedean
ordered.

An interesting sidelight is that the subring or rational integers
of the ring P is an Archimedean ordered ring where P is not.

BIBLIOGRAPHY

[1] Hille, Einar, Analytic Function Theory, Ginn and Company,
New York, 1955.

[2] Spencer, G. L. and Hall, D. W., Elementary Topology, John
Wiley and Sons, New York, 1959.

€)

Do mathematical truths reside in the external world, there to
be dicovered by man, or are they man-made inventions? Does math
ematical reality have an existence and a validity independent of the
human species or is it merely a function of the human nervous sys
tem? Opinion has been and still is divided on this question.

—Leslie A, White



The Star Product*
Yeuk-Laan Chui

Student, Anderson College, Indiana

The purpose of this paper is to establish some properties for
a binary operation on sets called the "star product."' Before doing
so, we shall recall some basic definitions and operations for sets.

What is a set? A set is a well-defined collection of objects or
elements. "Well-defined" means it is possible to determine whether
or not an object is an element of the set.

For any two sets A and B, the union of A with B, denoted
by A U B, is the set containing those elements that belong to at
least one of the sets A and B while the intersection of A with B,
A n B, is the set of elements that belong to both A and B. These
are illustrated by the shaded parts in the diagrams of Figure 1.

AUB ArtB

Figure 1.

We shall let 4> represent the null (or empty) set and I repre
sent the universal set (the set of all objects under discussion). It
is convenient to speak of the difference, B — A. This is the set
of elements that are in B but not in A (see Figure 2). If B is
replaced by I, we call

Ae = 1 - A

the complementary set of A. Thus the complementary set of A is
the set of all objects under discussion that are not members of set
A.

The following laws, which follow directly from the defini-

*A paper prosonted at the KME Roalonal Convention at Bowling Green, Ohio, April
10-11, 1964.
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tions and are found in [1, pp. 447-454], will be needed for our
proofs:

1. Associative laws:

la. (A n B) n c = A n (B n C)

lb. (A U B) U C = A U (B U C)

Commutative laws:

2a. An B = B n A

Identity laws:

3a. InA = Ani = A

3c. <t> n A = A r\ $ = <f>

Complement laws:

4a. A n Ac = Ac n A = £

4c. Ie = $

2b. A U B = B U A

3b. tf.UA = AUoS = A

3d. IUA = AUI = I

4b. A U Ae = Ac U A = I

4d. ^e = I

Distributive laws:

5a. A D (B U C) = (A n B) U (A n C)

5b. A U (B n C) = (A U B) n (A U C)

6. Idempotent laws:

6a. A n A = A 6b. A U A = A
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7. De Morgan's laws:

7a. (An By = Ae U Bc 7b. (A U B)c = Ae n B<

8. Law of Involution: (Ae)c = A

9. Laws of Absorption:

9a. A n (A U B) = A 9b. A U (A D B) = A

With these properties in mind, we are ready to define the
star product of two sets.

DEFINITION 1. If A and B are sets, the star product of
A and B, denoted by A * B, is defined to be

A • B = (A U B) n (Ac U Bc).

The star product of A and B is illustrated by the shaded parts of
the diagram in Figure 3. Thus we see that, while A U B is the
set of elements from the universal set that are either in A or in B
or in both A and B, the star product, A-k B, denotes the set of ele
ments from I that are either in A or in B but not in both. (Some
writers caU this the symmetric difference.)

It is easy to show that A k A = $, $ k A = A, and
A -k B = B k A. It takes some manipulation to show that
A * (B * C) = (A * B) * C, which completes the demonstra
tion of:

THEOREM 1. The set of all subsets of a universal set I
is a commutative group under the operation *k. The identity of
the group is <}> and each element is its own inverse.
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There are other convenient representations of A * B as
shown in the following two theorems.

THEOREM 2. AkB = (A U B) - (A n B).

Proof: AkB = (A U B) D (Ac U B") Definition 1.

= (A U B) n (A n B)c by 7a.

= (A U B) - (A n B)

since C — D = C n Dc for any two set C and D.

THEOREM 3. AkB = (A n Bc) U (Ac n B).
Proof:

A*B = (AUB)n(A'U BO Definition 1.

= [(A U B) n A'] U [(A U B) n Bc] 5a.

= [(A n AO u (B n A<)] u[(A n Be) u (B n BOl
2a and 5a.

= [oi U (B n Ac)] U [(A n Bc) U £] 4a.

= (Ac n B) U (A n BO 3b and 2a.

= (An BO U (Ac n B) 2b.

The principal theorem of this paper is that the complement of
the star product of n sets is equal to the star product of these sets
with any odd number of the sets being replaced by their com
plements. In order to state this concisely, we define recursively

DEFINITION 2. • At = <f>
i = 1

"• Ai = ( • A,) • A„ ♦ „ for n = 0, 1, 2, •••
i = 1 i =1

In this symbolism our principal theorem can be stated as

THEOREM 4. (Theorem of complements for *).

n 2fc - l n

( • A4)c = ( • AiO • ( • A/), for 2fe - 1 g ».
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In order to prove this theorem we will need the following lemmas.

LEMMA 1. (A • By = Ae k B = A • Bc.

Proof:

(A*By = [(A U B) n (Ac U BO]c
Definition 1.

= (A U B)c U (Ac U BOc 7a.

= (Ac n BO U (A n B) 7b and 8.

= (A" n BO U [(A0C n B] 8.

= A'kB. Theorem 3.

Finally, due to the commutivaty of the star operation,

(AkBy = (BkAy = B°kA = AkBe.

LEMMA 2. AkB = AekB°.

Proof: We use property 8 and two applications of Lemma 1.

AkB = [(A • ByY

= [AckBY

= AekBe.

The third lemma is a special case of Theorem 4 and a generaliza
tion of Lemma 1 which we will state and prove as

LEMMA 3. ( • Ai)c = A,c • At k • • • • A„
i = i

= A, • A,c • • • • • A„

= A, • A* • • • • • A„c.

In order to establish this lemma by finite induction we shall show
that it is true for « = 1 and that it is true for the integer « + 1
whenever it is true for the positive integer n. We first note that
the lemma is trivially true when » = 1. If we assume that it is
true for the positive integer n, we have
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( nk Aty = f( • Ai)*A„ +1lc Definition 2.
j =1 |_ • => J

= ( * AiykAn +1 Lemma 1.
i = l

= ( • A,)*Acn +1 Lemma 1.

and the proof of this lemma is completed.
Theorem 4 now follows from an application of the first form

of Lemma 3 then It — 1 applications of Lemma 2 to A2 and A3,
A4 and A5, • • •, A2k - 2 and As* -1.

An immediate consequence of Theorem 4 and the Law of
Involution (8) is

COROLLARY. • A, = ( • A,0 * C * ^),
i - i i = i i =2k + 1

for 2k ^ ». This could also be proved using k applications of
Lemma 2.

The following two theorems illustrate applications of Theorem
4.

THEOREM 5. A • Ac = J.

Proof: Ak Ac = (A • A)c Theorem 4.
= <f>c Theorem 1.
= I 4d.

THEOREM 6. I • A = Ac.

Proof: I • A = <£c • A 4d.
= (fkAy Theorem 4.
= Ac Theorem 1.

Theorems 7, 8, and 9 show some other interesting relation
ships among A k B, A U B, and A n B.

THEOREM 7. (Ak B) U (A n B~) = A U B.
Proof:

(A*B) U (A n B) =
[(A u B) n (A n B)<] u (A n B)

Def. 1 and 7a.
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= [(A u B) u (A n B)] n [(A n B)« u (A n B)]
2b, 5b.

= {A U IB u (A n B)]} n I lb, 4b.

= A U B 3a, 9b.

THEOREM 8. (A • B) n (A U B) = A • B.

Proof:

(A • B) n (A U B) = [(A UB)n (Ac U B01 n (A U B)

Definition 1.

= (A U B) n (Ac U BO

la, 2a, and 6.

= AkB Definition 1.

THEOREM 9. (A U B) • (A n B) = A • B.

Proof:

(A U B) • (A n B) =
[(A u B) U (A n B)] - [(A U B) n (A n B)l

Theorem 2.

= {A U [B U (A n B)]} - {[(A U B) n A] n B}
lb, la.

= (A U B) - (A n B) 9b, 9a.

= A-kB Theorem 2.

We close with some special cases of the relationship betweeen
A and B. They are stated as Theorems 10, 11, and 12. The
proofs will be left to the reader.

THEOREM 10. (AnB=^)<~>(A*B = AU B).

THEOREM 11. (A U B = I) <—* (AkB = A« U BO-

THEOREM 12. (A n B = A) <—> (A • B = B n A0-

BIBLIOGRAPHY

II] Allendoerfer, Carl B. and Oakley, Cletus O., Principles of
Mathematics, McGraw-Hill Book Co., 1963.



The Second Order Linear Differential Equation
With Constant Coefficients

And The Corresponding Riccati Equations
Janet Dorman

State College of Iowa
and

F. Max Stein
Colorado State University

1. Introduction. It is well known that the second order linear
differential equation with constant coefficients,

(1) /' + 2by' + ay = 0, a and b real,
has solutions in one of the three forms given below, depending on
the coefficients, a and b, see 13, 4, 61 It is also well known that
(1) can be transformed into the corresponding Riccati equation,

(2) u' = a - 2bu + w2,

by the substitution y = exp[-/t«*x] in (1), see [2, 3, 51 The
Riccati equation (2) is a first order, nonlinear differential equa
tion which also has constant coefficients with the coefficient of m2
being 1.

In this paper we propose to compare the forms of the cor
responding solutions of (1) and (2) and to examine a second
transformation given by Sugai in [7] that also leads to a Riccati
equation.

2. The Second Order Linear Differential Equation. We use
the usual method to solve (1). Assume a solution of the form
y = emi, m to be determined, and obtain the auxiliary algebraic
equation,

(3) m2 + 2bm + a = 0.

Upon solving (3) for m, we find that m = —b + y/H, where
d = b* —a. This suggests the consideration of three cases, d > 0,
d = 0, and d < 0.

•Prepared in a National Science Foundation Undergraduate Scionce Education Pro
gram in Mathematics at Colorado Stato Univorsity by Miss Dorman undor tho direc
tion at Professor Stein.
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Case 1. d > 0. If a # 0 and b # 0, the solution of (1) is

(4) y = Cle(-» +v3>* + Cte<-b - v3".

Both a and b cannot equal zero at the same time since d > 0 by
assumption. The following special cases result if a = 0 or b = 0.
If a = 0 we obtain y = c, + cse _rt*, while if b = 0 (with a < 0,
since d > 0) we obtain y = c^v3* + c2e _v&, where d = —a.

Case 2. d = 0. If d = 0 with a ^ 0 and b ^ 0, the gen
eral solution for (1) is

(5) y = c,e-*x 4- c2xe-tt,

the case of repeated roots.

Now if a = 0, then b = 0 as well, and vice versa; hence
(1) reduces to y" = 0, having the solution y = d + c2x. This
is the only special case of (5).

Case 3. d < 0. To avoid confusion we shall define A = —d
in this case. Then the resulting general solution of (1) when
a =*£ 0 and b =£ 0 is

(6) y = e-*x(c1sinVrA* 4- c2cos\/Ax)

The only possible subcase occurs when b = 0 and a > 0;
this yields the solution

(7) y = Cisiny/ax 4- c2cos\/«x.

3. The Riccati Equation. Associated with the linear equation
(1) is the Riccati equation with constant coefficients (2), obtained
by making the substitution y = expt— fudxl Each Riccati equa
tion may be solved either directly (notice that the variables are
separable) or by using the solutions obtained from the related
linear equations. The resulting solutions in the three cases are
summarized in Table I.

4. Transformations. In order to obtain the Riccati equation
corresponding to (1) we used the transformation, y — exp[—/wdx],
the standard transformation. However, there is another transforma

tion, y = exp[J"-<fx], discussed by Sugai in [7], which may be

used, provided a # 0. Using the Sugai transformation we obtain
the Riccati equation,
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(8) = 1 + 2bv + av\

associated with (1) in which the constant term is 1 rather than a.

The solutions for (8) given in Table 2 appear to be very
closely related to those obtained for (2) given in Table 1. Indeed
they are, for (2) and its solutions may be transformed to (8) and

its solutions if we let « = — - .
v

An examination of Table 2 shows why it is necessary to re
strict the use of the second transformation to linear equations in
which a ^ 0. Otherwise, the solutions obtained would be un
defined. Also (8) would not be a Riccati equation if a = 0, a most
unhappy state of affairs for us.

5. Observations. Upon examination of the solutions given in
Tables 1 and 2, we observe that the solution to the second order
linear differential equation contains two constants, while the

Table 2

Second Riccati Equation

General

Form
v' = 1 4- 2bv 4- av2

Case 1

d > 0

-b 4- Vd + (b 4- V3><2v3* *c)
V~ a- ae{*** *ct

Case 2

d = 0

. _ - (bx 4- bc 4- 1)
ax 4- ac

Case 3

-A = d< 0

. _ VA tai> n/Ax 4- c) —b
a
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solutions to the Riccati equations contain only one. The student
may wonder, how is this possible, have we made an error? To
answer this equation let us consider again Case 1, d >0.

Since we used the transformation y = exp[— fudx] to obtain
(2) from (1), we can use the inverse transformation u = —/fy,
to obtain the solution for (2). We proceed as follows:

_ -y -(-b + \fd)cte(b *^' -(-!>- y/d~)c2e<-» - ^'
11 ~ y ~ c1eib ♦ ^" 4- c.ei-b - ^)x

gib * -fi\
Multiplying through by — yields

_ (b - yftyc^i** + (b 4- \/5)c2
~~ ce2**7' + c.
= (b + V3) 4- (b - V3) (c./cQ e***

1 4- (c/c.) e-J~*z
_ b + \/d + (-b 4- y/pe-^f

] _ t,2\^ ♦ C

where cc = - cx/c2. This is precisely the solution which resulted
when we solved for u directly, see Table 1.

Now the student may wonder if the constant c which appears
in the solutions of the Riccati equations can always be expressed
in terms of a ratio of the constants c, and cs, which appear in the
linear equation. Indeed, this is the case, see Table 3. These results
may be verified by the student if a procedure similar to that used
in the example is followed. Notice that the inverse transformation
for (8) is v = y/y.

Another way of looking at this situation may help to remove
some of the mystery concerning the number of arbitrary constants.
The given linear equation (1) is of order two and one expects its
general solution to contain two arbitrary constants. Both of the
associated Riccati equations (2) and (8) are of order one hence
their solutions should involve one arbitrary constant. However, as
far as the original variable y is concerned, the relation u — 4>(x~),
the general solution for (2), still involves a derivative of order one
in y since u = —y'/y. Thus a solution for y requires one more
integration which results in the second arbitrary constant Similar
remarks can be made concerning the solution of (8) and its rela
tion to the solution of (1). Thus the number of arbitrary con
stants is consistent with the general rule.
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Table 3

Constants For Riccati

Equation (2)

Constants For Riccati

Equation (8)

Case 1

d> 0
-* = £!

c2

e°(y/2 4- b) c,
(V3 -fc) c2

Case 2

d = 0 c2
c + i = *

1? c2

Case 3

-A = <*< 0
— tan c = —

c2

fc 4- (c.AO \/A
tan c = ———'—£-1—

VA —b Ci/c2
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An Elementary Problem On Numbers*
Hsin Chu and P. A. Lucas

Research Institute, University of Alabama

1. Introduction.

In this note we consider the following problem: "Let T0 be
an unknown number of objects such that no object can be divided
into a fractional part. If p/r parts of T0 plus s/r of one object are
removed from T0, where 0 < s < r and 0 < p < r, the remainder,
T,, is an integral number. If the process is continued n times so
that p/r parts of Tk, plus s/r of one object are removed from T*,
leaving a remainder, T* +, (k = 0, 1, 2, ♦ • •, « — 1), which has
no fractional parts, the last remainder, T„, will be zero. Can one
determine how many objects there were in the beginning?" The
answer is quite elegant and simple, namely:

(a) If sr* is not divisible by (r —p)1+1for all i = 0,1,2, • • •,
n — 1, the problem has no solution.

(b) If sr' is divisible by (r - p)'*1 for all i = 0,l,«-«,
« — 1, then

T«.
r - p

2.

(^)- 1

r - p

Lemmas.

It is necessary to establish the following notation in order to
clarify later formulas.

Notation: We denote T{j,n) as the remainder after ; divisions
(; = 0,1,2,3, •••,«) where n is the total number of divisions to be
performed.

As immediate consequence, we have the following lemmas:
LEMMA 1: T(o,„) = the total number of objects before any

divisions.

LEMMA 2: p/r [T()-,,„,] 4- - = the number of objects

discarded on the / division.

- 1

"This research work was partially supported by Contract NsG-381 with the National
Aeronautics and Spaco Administration.
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LEMMA 3: Tt,„> = ~^- [T(i.un)l - i.

LEMMA 4: T(B,n) = 0 since no objects remain after n
divisions.

LEMMA 5: T,,.,,,,.,, = T,,,,,, where; = 1,2, •••,«.
(1)

Lemmas 1 through 4 are immediately obvious from the condi
tions of the problem and the definition of T(itni. We now give
a proof for Lemma 5.

(a) Consider the case where; = n. By Lemma 4, T(n,n) = 0.

Thus,

1 <n-l(H-J) = I (n>n>-

(b) Consider the general case where ) = k. Assume
Ttft-t,B-i> = T(fc,n). Show that Ti*-2„,-i) = T(k-U„).

By Lemma 3,

' (*-lin-l) = [T(k-2,„_i)] — —
r r

and

Therefore,

T(i,-,a) — [T(ft-i,n)] — -
r r

t - V it i _ s - r ~ P rr i s
r r r r

Thus we have Tn-j,,.,) = T(*.i„,> (by induction the lemma
is proved).

3. Proof of the Theorem.

In deriving the formula for determining T<0,n) (« = 1»2,3,
• • Oi we consider the following cases:

Case 1. First we consider the case where no objects remain
after one division.
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T,„i, = 0

From Lemma 4,

and from Lemma 3,

T„„)
r- V T _ s

* (0>1) -

Thus

—-— i (0,1) 7

and

' (0>1)
r- p

(2)

From Case I we establish the necessity srl being divisible by
(r — p) i+1 when i = 0. Since s must always be divisible by
(r - p), we shall denote s by (r - pW, i.e., s = (r —p)s' where
s' is a positive integer. Thus (2) becomes

T(o,u — s. (2.1)

Case II: No objects remain after two divisions. From (1)
and (2.1) we have that T(1,2> = T(0,i) and T(i,2) = s'.

UsingLemma 3, T(,,2) = [T(0,s) —$']

S — Ll (o,2) sT

T(0>2) —

r

s'r
+ s' =

sr

r - p (r - py r-p
_ (3)

This shows that sr* must be divisible by (r —p) 4+1 when i —0,1.
Notice that formulas (2.1) and (3) can be rewritten in the

following manner:

T<o,D — s Krb)' - 1

(2.2)
- 1

I r - p
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= «' [(^y - -I
r -i

. r- p

(3.1)

Case III: No objects remain after « divisions. From (2.2)
and (3.1) we may conjecture that

1 10>n) — S i-hY-
r- p

- 1 (4)

and that srl must be divisible by (r — p)<+1 for all i = 0,1, • • •,
n — 1. We now show that this formula is true for n equal to any
positive integer. The proof is by induction. For n = 1,2, the
formula has been established. We will assume the formula is
true n = k and show that it is true for « = k 4- 1. By (1),
T(0,fc) = T(„)t+1) and from the inductive assumption,

Tio.ti — S 'bhJ-
r- p

where sr' must be divisible by (r — p)<+1, for all i = 0,1,
k- 1.

Using Lemma 3,

T(1,1:41) = [i(o,k*U »]•

Thus

ro-^y- _ r- P [T|o,fc.D — s ]

r-p
- 1
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rs •fc^r-
(0»* + 1) —

r-p
- 1

4-s'

T<o,k +i) — s

T<o,ik +1) — s

r-p

/ r \»*» _L_ + _L_ _iiT^j -r-p r-p

r-p

1W-
r ~ V

- 1

- 1

89

=r^[(^y +(^)"-'+- +7^-]
sr* . sr*-1

+ -? ^r +(r-Py*> (r- vy

But, by Lemma 5,

T(0,t) = To,* +i).

4-
sr

(r - py r - v

sr
From the inductive assumption we know that •; ,; _.. , where

(r - py*1
i = 0,1,2, • • •, fe — 1, are all positive integers. Consequently,

Si( _—.ft t 1 must be a positive integer also. This completes the

proof by the induction principle.
COROLLARY: Under the same assumption of the theorem

if any one of the following statements is true:
(1) s is divisible by (r — p)"

(2) s and r are both divisible by r —p
(3) p = r- 1

then, T(o,„) always exists.
To illustrate the application of the formula in several dif

ferent cases, we consider the following examples:
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Example 1: (« = 2, r = 4, s = 18, p = 1, r —p = 3).
In this example, s is divisible by (r — p)n.

rr 181«».,) - T (!)'
I-

T,0,„ =6 fl 4- ll

T,o,2) = 14.

Example 2: Both s and r are divisible by (r — p). n = 3,
r = 12, s = 4, p = 10, r - p = 2.

T - ^J (0(5) — -^ (¥)•-
¥-•

T~'-2[(¥),+¥+']
T,0>3, = 2 [36 4- 6 + 1]

I toi3) = 86

Example 3: When p = r — 1, the formula simplifies as
follows: » = 6, r = 3, s = 10, p = 2, r — p = 1.

T,o,6) = 10 '(f)' - 1

f->

'--•[©•♦©'♦G),+(t)" ♦©'♦']
T,o,0) = 10 [243 4-814-27 4-9 4-3 4-1]

T(0,o) = 3,640
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Finally we consider two examples which have no solution.

Example 4: In some cases sr* is divisible by (r — p)*+ * for
some values of i = 0,1,2, •••,«— 1 but not for all values of
i = 0,1,«",» - 1.

(a) i = 0, n = 1, r = 3, s = 2, p = 1, r — p = 2.

Men = 1
I-'
!-

T(o,n — 1. The formula holds.

(b) But if i = 1, n = 2, r = 3, s = 2, p = 1,
r — p = 2, we have

T(o,2) — 1 ay -1

!-•
T - 3 4- 2

T - 3•» (0,2) — -7T

Example 5: If sr' is not divisible by (r — p) *+ a for any
value of » = 0,1,2, •••, n - 1, the formula fails at the first
division, i = 0, n = 1, r = 4, s = 1, p = 2, r - p = 2.

T(0,1) — -T-

[4 ™

— |
2

4
— |

U

T<o»i> — -^-.



Mathematics Teachers and The Library
Carolyn Kacena

Student, State College of Iowa

The combination of library science and mathematics has al
ways struck others as strange, but I never thought much about it
until I read the National Education Association report "The Sec
ondary School Teacher and Library Services."

According to this 1958 publication, there are three groups of
teachers when classified according to library use: the major users,
the minor users, and the potential users. Mathematics teachers are
prime examples of grade A non-users. Most of them feel libraries are
nice, but there is no place for library use in mathematics courses. A
specific breakdown of the figures given in the NEA survey shows
mathematics teachers giving the following responses: Library use is

Of limited
Essential Important importance Unimportant Don't know

4.1 15.7 63.6 13.8 2.81

In many cases, they complained about inadequate materials
while at the same time the librarian might receive one title a year
for suggested acquisition from the whole mathematics department.
Most of the mathematics teachers didn't feel they knew the librarian
well enough to judge her general competency or her knowledge of
mathematics materials.

A surprising reversal occurs when questioned about the use
of professional materials. Minor users as a whole use the profes
sional collections just as frequently as the major users. Unfortun
ately, no figures on mathematicss teachers in specific are given. The
assumption must be that they follow the general trend.

The crux of the problem seems to be the view that teaching
mathematics is one and the same as assigning problems from the
textbook and proving the answer in the key to be right. A very self-
contained classroom results and one must admit that there is really
no justification for library use in such a situation.

It is only when the teacher goes beyond the textbook and

1E.S. Bianchi, "Study on the Secondary School Library and the Classroom Toachor,"
National Auociation ol Socondary School Principal, Bulletin. 43:124 (Novombor I9S9).
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inspires his students to go deeper into the subject that libraries
become necessary—even essential. Albert E. Meder, Jr., in discuss
ing library use in mathematics says, "The goals should be nothing
less than the development of mathematical insight, power, and
understanding to the fullest extent possible . . . The only way to
live in the mathematical world of today is to gain insight, power,
and understanding as well as problem solving." 2 The minimum
along this line is the teacher's use of the library as a resource for
models to be used in class and for renewal of his background.

A second problem is developing .lines of communication be
tween the two departments once the need for supplementary ma
terial is felt. While it is the librarian's responsibility to set up the
basic collection for each department, she cannot be an expert in all
fields. Any development beyond the essentials must have some
initiation from the experts in the field—the teachers who assign the
work and who know what their students need and want. No librar
ian will build up a mathematics collection without having some
indication of future use. When the North Central Association set
up library standards they listed approximate percentages of collec
tions according to use and needs. Mathematics shares 10% of the
collection with science, a department classified as a major user in
the NEA report. These suggested norms are often rigidly followed.
Unless mathematics teachers express their needs they will get the
small end of the 10%. Those who complain about inadequate col
lections should look first at their teaching requirements and the
requests for new materials they have made, and then complain if
they have not been given the aid they requested.

A third facet of the problem involves the materials themselves.
There are a few bibliographies available in mathematics but many
times they prove to be rearrangements of previous lists. What is
judged as good by one compiler is likely to be judged the same by
the next one because of lack of competition. This may actually be
an extension of the supply-and-demand situation of problem two.
An endless cycle can be set up: No library materials because of no
need shown in requests, no requests because nothing especially
suitable has shown up in new publications, no new publications
because of lack of demand, and so on ad infinitum. The place to
break this chain must be in the mathematics departments. It might

2A. E. Modor, Jr., "Uoing the Library in High School Mathematics," School Libraries,
8:10 (March 1959).
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take quite a revolution in the mathematics departments across the
country to have a publisher risk the expense of a mathematics book,
but it could be done.

Although the necessity to do more in teaching than solve prob
lems has been proclaimed by the Dean of Rutgers University, how
and why the library can and must be used can be shown more con
cretely. Returning to Mr. Meder, we find seven needs for libraries
in mathematics.

(1) The teacher needs the library to bring his own un
derstanding of mathematics up-to-date.

(2) The teacher needs the library to enable him to find
supplemental materials with which to adapt his instruction
to individual needs.

(3) The teacher needs the library to assign supplemental
material to the bright student who wants to know more.

(4) The teacher needs the library for reading material to
assign to students to secure coverage of topics that for lack
of time, or some other reason, cannot be covered in class.

(5) The teacher needs the library to enable him to kindle
mathematical interests of able students by suggesting inde
pendent reading for their own enjoyment.

(6) The teacher needs the library to enable him to teach
mathematics as part of the cultural heritage of mankind, not
merely as a tool or a language.

(7) The teacher needs the library to stimulate original
thinking, the research attitude, and the solving of problems.3

Complementary suggestions come from Jack N. Sparks, Re
search Fellow at the University of Iowa and Kenneth L. Taylor,
Librarian at West Leyden High School in Franklin Park, Illinois.
They suggest using the mathematics library for:

(1) creating interest in mathematics through recreational
activities such as mathematics clubs and/or daily problems
boards; (2) selecting projects for mathematics students in
class and out which would lead into independent research;
(3) using library materials to supplement texts for students in
all classes to interest them in greater depth and to aid them
in gaining the necessary insights; (4) providing materials for
the gifted so that they might either go ahead of the class or
enrich the regular assignments; (5) providing for professional
growth and (6) providing helpful procedures for the im
provement of instruction.'

sibid, 10-13.
iSparko and Taylor, "The Secondary School Mathematics Library: Its Collection and

Use," National Association oi Secondary "School Principals Bulletin, 43:138-152 (No
vember 19S9).
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Many other similar suggestions have been made for the en
richment of programs for the gifted students. The need for such
programs and the usefulness of the library have been seen by many
teachers. A little consideration for the interested average student
who might even need the extra readings to fully comprehend what
was given in the textbook, and the slightly below average student
who should use his training right away in some project to show its
practical use should be given. In the latter case, practical outside
models would be especially helpful, especially in the trade or craft
for which the student is training.

The tradition of problem solving is very strong, and I am as
familiar as anyone with the problems of limited time and maximum
number of new concepts to present. In fact, as a mathematics stu
dent, I'd probably groan loudly at the thought of doing a mathe
matics project or extra study on my own on top of the assigned
problems. After all, I've been taught by the problem solving method
and 'what was good enough for me, is good enough for my stu
dents'. I am also aware of the few choices of good materials from
the librarian's point of view. But if a cry was raised for more and
better mathematics libraries for the total range of student abilities, a
step would be taken in the right direction toward the more creative
mathematics the modern age requires.
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Inverse Functions
W. M. Pebel

Faculty, Charlotte College, North Carolina

In modernizing our teaching of mathematics, too much em
phasis has been placed on the ordered pair definition of function
and sight has been lost of the fact that the older rule or correspond
ence definition is still needed and is sometimes more illuminating.
In particular, look at the problem of finding or even defining the
inverse of a given function.

It is quite easy to find the inverse of some functions from the
ordered pair definition. For example if / is defined by

/ ={(1,7), (2,9), (3,8), (4,10), (5,6)},

then we have

f"1 = {(6,5), (7,1), (8,3), (9,2), (10,4)}.

Reversing the pairs as is required in the ordered pair definition is
easily done.

However, most useful functions are not of this type. Let us
examine so simple a function as the function / defined by
/(*) = 3x 4- 5. We find in many books which have defined a
function as a set of ordered pairs, the following instructions:
"Set y = f(x~). Solve for x in terms of y. Replace all the y's by x's.
The result is fKx)" Somehow, this set of instructions does not
seem very modern, nor does it have anything at all to do with a
function asa set of ordered pairs.

Suppose we think of a function as a machine which takes
a number, which we might call the "input" and performs certain
transformations on this number and so produces another number
which we might call the "output." Then, we may define the inverse
function as the machine which reverses the roles of the input and
output numbers.

2x 4- 5
For example, let / be defined by f(x) = =—-. Thus f is

a machine which takes an imput number, multiplies it by 3, adds
5 and divides this result by 3. The inverse function should, there
fore, take an input number, multiply it by 3, subtract 5 and divide
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this result by 2. Thus f'(x) = 3* ~ 5.

As another example, let / be defined by

fix) = 5 log°* + 5) + 7.

In this case, f is a machine which takes a number, multiplies it by
3, adds 5, takes the log of this result, multiplies it by 5, then adds
7 and finally divides by 4. The inverse function ought to take a
number x, multiply it by 4, giving 4x, subtract 7, giving 4x — 7,

divide this result by 5, giving -— , take the exponential of this

4x — 7result, giving exp -— . The next steps arc to subtract 5 and

divide by 3. The result is

/-'(*) = y[cxp-^-g— ~ 53-
I claim that with a little practice, a student can write the inverse
of such a function as fast as he can write. Of course, he needs to
know that exp is the inverse of log before beginning.

It is not contended that the above method finds inverses for
all functions which have inverses, nor that the method is particu
larly useful in showing that a particular function fails to have an
inverse. However, it is superior to the method of "setting equal to
y and solving for x" in that it is quicker and more meaningful.

Consider a slightly more general case. Let F be an affine func
tion from R" to R" defined by

FX = A£cX 4- K] 4- H,

where A is a real « by n matrix, K and H are w-dimensional column
vectors, and X is input column vector. The real number c is a non
zero scalar. Let us assume that the student knows that F will not
have an inverse unless A is non-singular and also that he knows
how to find the inverse of a non-singular matrix.

Now F is a machine which multiplies the vector X by the
scalarc, adds the vector K, multiplies the matrix A times this result,
and adds the vector H. To find the inverse function, we seek a ma-
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chine to "undo" this result. In other words we expect the function
F"1 to take a vector X, subtract the vector H, and multiply this re
sult by the matrix A"1, producing A"'[X - H]. Then we want to
subtract the vector K and multiply the result by 1/c. Thus we have

F-.X = ^(A-'LX - H] - K).
c

The method described above has been used in teaching in
verse functions at various levels with considerable success.

€
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As long as algebra and geometry proceeded along separate
paths, their advance was slow and their applications limited. But
when these sciences joined company, they drew from each other
fresh vitality and thenceforward marched on at a rapid pace toward
perfection.

—Joseph Louis LaGrange



The Problem Corner
Edited by F. Max Stein

The Problem Corner invites questions of interest to undergradu
ate students. As a rule the solution should not demand any tools be
yond calculus. Although new problems are preferred, old ones of
particular interest or charm are welcome provided the source is given.
Solutions of the following problems should be submitted on separate
sheets before October 1, 1965. The best solutions submitted by students
will be published in the Fall 1965 issue of The Pentagon, with credit
being given for other solutions received. To obtain credit, a solver
should affirm that he is a student and give the name of his school.
Address all communications to Professor F. Max Stein, Colorado State
University, Fort Collins, Colorada.

PROPOSED PROBLEMS

181. Proposed by George W. Norton, III, Marietta College, Mari
etta, Ohio.

Suppose a shack, 10 feet by 10 feet, stands next to a tree 100
feet tall. If the treebreaks at B, the top A falls down (rotating about
the point B) and meets the ground at C. This fallen part BC just
touches the shack at D. How high from the ground is point B?

182. Proposed by J. Frederick Lcetch, Bowling Green State Uni
versity, Bowling Green, Ohio.
If x is irrational, what is the nature of x 4- h and x — «?

183. Proposed by the Editor.

Sammy Sophomore couldn't perform the integration | —, so

he multiplied the numerator and denominator of the integrand by
X. He then integrated by parts as follows:

Cdx t'xdxt'dx = I xdx _x Cdx
J x J x- X J X'

He then concluded that — 1=0. Find the fallacy in his reason
ing (if there is one).

184. Proposed by Joseph D. E. Konhattser, HRB-Singcr, Inc., State
College, Pennsylvania.
Let P be any point on an ellipse with semi-major axis a and

semi-minor axis b. The circle with center P and radius b intersects
the line containing the major axis in two points. Let A denote the
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point of intersection which is farthest from the center of the ellipse.
The circle with center P and radius a intersects the line containing
the minor axis in two points. Let B denote the point of intersection
which is farthest from the center of the ellipse. Prove that the
points P, A, and B are collinear.

185. Proposed by Howard Frisinger, Colorado State University,
Fort Collins, Colorado.

Show that —
V5- 1 in the figure below.

SOLUTIONS

176. Proposed by Joseph D. E. Konhauser, HRB-Singcr, Inc., State
College, Pennsylvania.

Discuss the sequence of integers [« 4- yfn 4- -?], n = 1,

2, • • •, where [x] is the greatest integer not exceeding x.
Solution by John L. Lebbert, Washburn University, Topeka,
Kansas.

For any integer n, let us denote the above sequence by w„. From
the table below we can clearly see that the sequence yields all of
the positive integers with a few exceptions. What I propose to do is
find these exceptions (a close look at the integers not appearing
under #„, suggests what these exceptions may be).
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n «» n «n

1 2 17 21

2 3 18 22

3 5 19 23

4 6 20 24

5 7 21 26

6 8 22 27

7 10 23 28

8 11 24 29

9 12 25 30

10 13 26 31

11 14 27 32

12 15 28 33

13 17 29 34

14 18 30 35

15 19 31 37

16 20 32 38

101

Consider the two consecutive perfect squares n's and (n + l)2.

The integers «'• 4- 1, n- 4- 2, • • • are such that «ns»o = «n2 + «

up to some number ri1 4- x for which wc have «„=., = »«= 4- x 4- 1.

This occurs when V"2 + x =s » 4- -. This inequality simplifies

to x > n 4- —. Since x must be an integer, the jumps in the above

table occur for the numbers n2 4- n 4- 1, where n may assume
the value of any positive integer. We now have:

ujtn = w„2 4- n = (n2 4- n) 4- n = m2 4- 2«.

«»=«»., = ji„2 4- (« 4- 2) = (w2 4- m) 4- (ii 4- 2)

= h2 4- 2h 4- 2.

Thus numbers on the form n2 + 2n + 1 = (ii 4- l)2 do not ap
pear for m„ where »i may be any positive integer. Since the integer
1 docs not appear for u„ we have the following result: u„ con
sists of all positive integers which are not perfect squares.
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Also solved by Thomas P. Dence, Bowling Green State Uni
versity, Bowling Green, Ohio.

177. Proposed by Howard Frisinger, Colorado State University,
Fort Collins, Colorado.

Given a rectangle of length dt and width d2, di > d2. If a
square of side d2 is removed from the rectangle, the remaining rec
tangle has length d2 and width d3, d2 > d3. If this process is con
tinued, find the number r where r = dj,, / dt, i = 1, 2, 3, • • \

Solution by Thomas P. Dence, Bowling Green State Univer
sity, Bowling Green, Ohio.

(1)

(2)

(3)

(4)

Substituting in (1) the values from (2), (3), and (4) we get:

d2 dx

T~d[~ d~>
BC EB

r AB BC
Let AB have length x; thus

r = _ fJC = xr

EB == AB - AE = AB

EB = x — xr.

- BC
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xr _ x — xr

x xr '

r2 4- r - 1 = 0,

<-^
Also solved by John L. Lebbert, Washburn University, Topeka,

Kansas, and George W. Norton, III, Marietta College, Marietta,
Ohio.

178. Proposed by Douglas A. Engel, Hays, Kansas.
Prove that the following formula is true:

m! = (ii - l)(n - 1)! 4- (n - 2)(" - 2)! 4- ••• 4- 2(2!)

4- 1(1!) + 1(0!).

Solution by Paul M. Flynn, Kansas State College of Pitts
burg, Pittsburg, Kansas.
The proof is by finite induction. For n — 1

1(0!) =1 = 1!

Assume the proposition true for n — k.

1(0!) + (1)(1!) 4- 2(2!) + ••• 4- (k - 2)(fe - 2)!

+ (fe- 1) (fe - 1)! = fc!

Then we have for n = fe + 1

1(0!) 4- (1) (1!) 4- ♦•• 4- (fe - 1) (fe - 1)!

4- Kfe+ 1) - l][(fe 4- 1) - 1]!

= fe! 4- [(fe 4- 1) - l][(fe + 1) - 1]!

= fe! 4- fe(fe!) = (fe 4- l)fe! = (fe 4- 1)1

Since the proposition is true for « = 1 and is true for n = fe 4- 1
when it is true for « = fe, the proposition is true for all positive
integers.

Also solved by Harold Darby, Florence State College, Flor
ence, Alabama, John L. Lebbert, Washburn University, Topeka,
Kansas, LeRoy Simmons, Washburn University, Topeka, Kansas,
and the proposer.
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179. Proposed by Leigh R. Janes, Houston, Texas.

Using the base eight or nine, determine mappings from digits
into letters that will make the following addition correct:

WRONG

WRONG

RIGHT

Solutions by John L. Lebbert and LeRoy Simmons, Wash
burn University, Topeka, Kansas.

Base eight

12634 25706

12634 25706

25470 53614

They also gave solutions if the base nine is used.

24173 12746 37541

24173 12746 37541

48356 25603 76182

Also solved by Thomas P. Dence, Bowling Green State Uni
versity, Bowling Green, Ohio (one solution to base 8 and two to
base 9), Barbara McLaughlin, Immaculata College, Immaculata,
Pennsylvania (one solution to base 8), and the proposer (one
solution to base 8 and two to base 9).

180. Proposed by Fred W. Lott, Jr., State College of Iowa, Cedar
Falls, Iowa.

My house is on a road where the numbers run 1, 2, 3, • • •
consecutively. My number is a three digit one, and, by a curious
coincidence, the sum of all house numbers less than mine is the
same as the sum of all house numbers greater than mine. What
is my number, and how many houses are there on my road?

Solution by Thomas P. Dence, Bowling Green State Uni
versity, Bowling Green, Ohio.

Letting n equal the number of houses on the road, and letting
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fe 4- 1 equal the unknown house number, we can set up the equa
tion:

£x = £x.

This yields

Vzk (fe 4- 1) = Vzn (n 4- I) - Vz (k 4- 1) (fe 4- 2)

or

(k+ 1)2= Mn in + 1).

With the restriction 100 < fe 4- 1 < 999, this means that

141 < m < 1412.

Since fe 4- 1 is an integer, then —1^-z must be a perfect

square. Since we have a product of two consecutive integers, it

can be proved that either of the two factors n • -—»—- or

w
— ♦ (« 4- 1) must be a product of two perfect squares. In other

words, either ii and —«— or —and n + 1 must each be a perfect

square. Setting both it and n 4- 1 equal to the squares of 12
through 37 (122, 132, • • •, 37-') we test to see if the other factor,

—-— or y, turns out to bc a perfect square. Thus when « 4- 1 =

17J, — = 12s. Therefore there are 228 houses on the road, and

the unknown number is 204.

Also solved by Leigh R. Janes, Houston, Texas, John L. Leb
bert, Washburn University, Topeka, Kansas, and Richard M. Park
er, University of Tulsa, Tulsa, Oklahoma.



The Mathematical Scrapbook
Edited by J. M. Sachs

Mathematics is a science. It is the most exact, the most ele
gant, and the most advanced of the sciences and therefore it has
been called the Queen of Sciences. Nothing, not even the modern
miracles of applied science and technology, gives a better idea of
the apparently unlimited capacity of the human mind than higher
mathematics.

—H. M. Dadouiuan

= A =

The beginnings of the modern theory of probability were di
rectly related to the cult of games of chance and the rise of insur
ance^ . . . Card games became a fashion in European courts in the
fourteenth century A.D. The manufacture of cards was probably
one of the first commercial uses found for printing from wood
blocks, before books were produced from moveable type. The first
serious contribution to the mathematical theory of probability is
contained in a correspondence between two French mathematicians,
Fermat and Pascal, about wagers in a game of chance. . . . Today
it may seem a far cry from the card table to the insurance corpora
tion. It is still more surprising to see the astrologer in the back
ground of the picture. . . . The astrologer Kurz, who used the horo
scope to prophesy the prices of pepper, ginger, and saffron a fort
night in advance, was "surrounded with work as a man in the ocean
with water". (Kurz-15th Century)

L. HOGBEN

= A =
We could express a lot of our dialogue in mathematical form.

Thus: —

"How is your grandmother's health?"
"Oh, it depends a good deal on the weather and her digestion, but
I am afraid she always fusses about herself: today she's about fifty-
fifty".

Mathematically this is a function of two variables and a con
stant, and reads: —

f(W.D. + fuss) = Vz.

The preceding is an excerpt from Funny Pieces by Stephen Lcacock.
It is included in the hopes that some readers unfamiliar with Lca-
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cock will read this chapter on the invasion of human thought by
mathematical symbols. It is both serious and comic and well worth
reading. The editor also recommends highly Leacock's version of
Lord Ullin's Daughter as a problem in trigonometry from Moon
beams from the Larger Lunacy.

= A =

. . . but when the calculation is one of no constant and sev
eral capricious variables, guesswork, personal bias, and pecuniary
interests, come in so strongly that those who began by ignorantly
imagining that statistics cannot lie end by imagining, equally ignor
antly, that they never do anything else.

—G. B. Shaw

= A =

The tcsscract or four-dimensional cube can be illustrated by
using a cube within a cube in three-space. This is the result of try
ing to assemble the six cubes one can build on the six faces of the
three-dimensional cube. Consider the construction of a cube from
a sheet of cardboard. The cube can be assembled by bending along

/\ y/\>7

y

the dotted lines and taping edges together. Instead of doing this,
consider building a cube on each of the squares first. If we agree
that we arc willing to distort distance and angle within reasonable
limits and if the material we are using is sufficiently flexible, we
can assemble these six "cubes" into a three-space model of the four
dimensional cube. What happens if we try to do this with the other
regular solids or with any solid which can be assembled from a
plane model by bending and taping? The tetrahedron seems fairly
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simple. Can you visualize the result? Can you draw it or make it as
a model? What ideas do you have for visualizing or drawing the
octahedron? What about the dodecahedron and the icosahcdron?
The editor of the Scrapbook would welcome drawings and models.

= A =

He (the teacher) must bridge the intellectual chasm which
lies between the developing mind of the pupil and the crystallized
thoughts of the writer as expressed in the text. Also the teacher
must ever keep in mind that, at the commencement of a pupil's
career in any new field of thought, a principle or demonstration is
not rereived and understood by the pupil as quickly as it is ex
plained by himself; again that a pupil docs not, and cannot of him
self, generalize at all — he must betaught todo so; and furthermore,
that to the average pupil a general demonstration often affords no
conviction whatever. It is too abstract, and not having learned how
to reason, he cannot institute comparisons and declare deductions.
DeMorgan wisely said, "It is as necessary to learn to reason before
we can expect to be able to reason, as it is to learn to swim or fence,
in order to obtain either of these arts".

—E. S. Loomis

(Your editor is in general agreement with the advice given
above, but there are some parts which make him uneasy. Do you
agree wholeheartedly, in part or not at all? If you disagree in part
what is the source of your disagreement?)

= A =

Let (a, b, c) be a primitive Pythagorean Triple of positive in
tegers. The word primitive indicates that the greatest common
divisor of a, b, and c is unity. The hypotenuse of the triple is c, i.e.,
c* = a2 + b2. Obviously a, b, and c cannot all be even. Why not?
Could two of the three be even? Can you argue that if any two of
these were even all three would have to be even? Could all three bc
odd? Can you argue that this is impossible? If you can make these
arguments, what cases are left? Do you agree that the only primi
tive triples must have two odds and one even? Is it possible for c to
be the even? Can you make the argument that the even must be
a or fe? If b is the even then (c 4- b) and (c — b) must have great
est common divisor unity. This follows from the fact that (c 4- b)
and (c — fe) must be odd and a common divisor d must divide their
sum and difference, 2c and 2b. If d is greater than unity it will be
an odd divisor of c and b, as well as of (c 4- b) and (c — fe). This
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d will also divide a since a2 = (c 4- fe)(c — fe). This approach to
Pythagorean Triples can be found in the writings of Leonardo of
Pisa, also known as Fibonacci.

= A =

. . . the real function of art is to increase our self-conscious
ness; to make us more aware of what we are, and therefore of what
the universe in which we live really is. And since mathematics, in
its own way, also performs this function, it is not only aesthetically
charming but profoundly significant. It is an art, and a great art.
It is on this besides its usefulness in practical life that its claim to
esteem must be based.

—J. W. N. Sullivan

= A =

Thales of Miletus armed intuition with a brain, and out of the
nebulous mist emerged mathematics. But neither Thales nor his
followers armed the thinker with an organ of speech which would
fittingly express his thoughts, subtle yet precise, or describe the
countless forms which his imagination could conjure up. Greek
mathematics had to depend upon common speech, a medium re
plete with ambiguities yet inflexible; open to inconsistencies which
it could not detect; where an interchange of words could jeopardize
meaning, and where emphasis could be attained only through in
tonation. These were the handicaps under which Greek mathematics
laboured throughout the thousands of years of its existence.

And then, as though by magic, mathematics was freed from
the vagaries of human speech and presented with a language all
its own. I use the word magic advisedly, for, the most striking fea
ture of the event was the spontaneity and rapidity of this transition
from the old mathematics to the new. It began at the threshold of
the century (17th), and, by 1650 the new medium had already
infiltrated into every field of mathematics, pure or applied.

—T. Dantzig

= A =

I have no controversy about your conclusions, but only about
your logic and method; how you demonstrate? what objects you are
conversant with, and whether you conceive them clearly? what prin
ciples you proceed upon; how sound they may be; and how you
apply them?

—Bishop Berkeley



The Book Shelf
Edited by H. E. Tinnappel

From time to time there are published books of common interest
to all students of mathematics. It is the object of this department to
bring these books to the attention of readers of The Pentagon. In
general, textbooks will not be reviewed and preference will be given
to books written in English. When space permits, older books of
proven value and interest will be described. Please send books for re
view to Professor Harold E. Tinnappel, Bowling Green State Univer
sity, Bowling Green, Ohio.

Random Essays on Mathematics, Education and Computers, John
G. Kemeny, Prentice-Hall, Inc., 1964, 163 pp., $4.95.
This book contains sixteen essays grouped into three parts as

indicated in the title. If one wishes to avoid some of the randomness
of this organization he may regroup many of the author's ideas
into the following sets: suggestions for the improvement of our
colleges and secondary schools, some convictions about a liberal
education, and future uses of computers. This triple of sets is not
pairwise disjoint.

Suggestions for improvements in our schools arc addressed to
administrators, teachers, and curriculum planners. "The Secondary
School Curriculum" proposes a pattern for grades seven through
twelve which contains a maximum number of core courses for
those who might go to college. "The 3X3 System" describes
Dartmouth's program of three courses in each of three terms of a
school year. Four of the essays would probably be related to the
notion of "modern mathematics" if this notion can ever be satis
factorily defined.

Teachers will find some suggestions for encouraging creativity
in "Rigor vs. Intuition in Mathematics." College deans may be
interested in two novel proposals for foundation supported teacher
training and post-doctoral teaching and research programs.

"A Library for 2000 A.D." is the longest essay and provides
the most unusual suggestion of the book. Proponents of special
sectioning for special students will find support in two essays.
Even the college admissions office is accorded due consideration in
"The Well-rounded Man vs. the Egghead."

Several essays present specific ideas related to the concept
of a liberal education. One of these would include knowledge of
computers as part of this concept. A detailed outline of a practical

110
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means to achieving a liberal education in an undergraduate college
is contained in "Education of the Well-rounded Man."

Non-numerical uses of computers comprise the suggestions
for future use of these machines. The two essays specifically
dealing with this subject could well provide enrichment material
for secondary schools.

Professor Kemeny's style is straightforward and may provoke
a contrary response in some readers. His sometimes inconsistent
interchange of "mathematics" and the colloquial "math" and his
coining of the verb form "inputted" support his criticism of the
difficulties of the English language.

—J. F. Leetch
Bowling Green State University

Combinatorial Mathematics, Carus Monograph No. 14, Herbert
John Ryser, The Mathematical Association of America, 1963,
154 pp., $4.00.

This book in a brief 141 pages of exposition presents more
than an introduction to combinatorial mathematics. Proceeding
from elementary theorems the reader is led in the final chapters to
the limits of known results in some areas of mathematics. Suitable
for the undergraduate or graduate student, as a source of reference
for workers in this area, or as an introduction to combinations, the
information, examples, and selected references found here mark
this as a book welcome to this area of mathematics.

The first chapter discusses basic selection problems. It should
be noted that the emphasis in the book is on questions of existence
of mathematical phenomena although there are counting discus
sions. In Chapter Two the importance of combinatorial theorems
in other areas is strongly emphasized by several illustrations in
number theory of the inclusion and exclusion formula. Additional
applications arc presented from the classical derangements question
and a discussion of pcrmancnts follows based on this theorem. A
discussion of the "problems of menages" begun in Chapter Two is
continued in Chapter Three. The historical interest of and also
problems in which this theory is important are discussed.

Chapter Four gives a proof of Ramsey's Theorem and illus
trates its importance in geometry (convex polygons) and in the
theory of (0, l)-matriccs, i.e. matrices whose entries are either
zero or one. The latter matrices arc important in questions of inci
dence in geometry and intersection in set theory and algebra.

Latin rectangles and squares arc introduced in Chapters Four
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and Five, of great importance in statistics, they are also in algebra.
Orthogonal Latin squares are discussed and it is shown that some
questions in finite geometries are directly related to and solvable
from corresponding properties of orthogonal Latin squares. Combi
natorial designs as generalizations of the theory of finite projective
planes and their importance to the design of experiments in statis
tics, to questions in algebra (linear), to deeper questions in finite
geometry and number theory (perfect difference sets) are discussed
in the final chapters.

Each chapter is followed by suggested references with exten
sive references in the later chapters for the interested reader desir
ing to go deeper into the field.

The above resume of the book shows the importance of this
subject to a wide number of diverse fields in mathematics. Profes
sor Ryser has added to the distinguished Carus series an outstand
ing work in Combinatorial Mathematics, noteworthy for its fine
exposition and coverage, and sure to introduce many to the study
of combinatorial mathematics.

—Archie K. Lytle, III
Central Michigan University

Mathematical Logic and the Foundations of Matliematics, G. T.
Kneebone, D. Van Nostrand Company Ltd., London, 1963,
435 pp., $12.50.
The author addresses his work to two main classes of readers.

The first comprises honors undergraduates in mathematics, high
school mathematics teachers and postgraduates whose special in
terest is some other branch of mathematics. "All these require a
book which covers the whole field, is informative, seriously written
and substantial but not overloaded with technicalities". The second
group includes postgraduate students who want some introduction
to mathematical logic. They desire a philosophy of mathematics that
will orient them correctly, give them a survey of the entire subject
and its literature and will enable them to work from primary
sources.

The contents of the book fall into three major sections. The
first two cover the whole field of mathematical logic and the founda
tions of mathematics; the third deals with the philosophy of mathe
matics and attempts to establish the epistemological status of mathe
matics.

The opening chapters treat of mathematical logic. After a
brief review of traditional logic the author discusses three distinct
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types of mathematical logic. These increase in complexity as the
discussion develops. The first type is the familiar "propositional
calculus" where p, </,... represent propositions and the five logical
operators [— (negation), v (or), A (and), -» (implication),
<—> (equivalence)] arc used to combine propositions. The initial
treatment of this subject is fairly intuitive after which the author
reduces this calculus to an axiomatic form and then discusses its
metalogical characteristics.

The second type of mathematical logic is called "The Restricted
Calculus of Predicates". It is a much wider system than the preced
ing, and, in addition to the concepts introduced there, it makes use
of propositions of two or more arguments; it employs universal and
existential quantifiers ("all" and "some"); it determines the universe
of discourse as well as the domain of individuals. It is a rather com
plete and easy-to-follow treatment. Besides the elements previously
listed we find a definition for a "well-formed formula"; seven rules
of derivation; rules for substitution, inference, quantifiers, and the
re-labeling of bound variables. The remainder of this section proves
certain theorems notably Skolem's, Godcl's, and the Deduction
Theorem.

"The Extended Calculus of Predicated" is the name given to
the third type of mathematical logic. It includes, in addition to the
matter discussed in the preceding type, the relation of identity,
methods for formalizing definite and indefinite description, the char
acteristic function of a formula, and the notion of a class or set. The
most essential difference between this type and its immediate pre
decessor, is the fact that predicate variables can bc handled with the
same freedom as individual variables. To complete the axiomatiza-
tion in this section the author introduces the axiom of choice and
that of extcnsionality.

The second major section of the book is concerned chiefly with
the foundations of mathematics. In opening his discussion of "the
critical movement in mathematics in the nineteenth century" the
author states that "this modern logic owes much more to mathema
ticians than it docs to pure logicians for it originated largely as a
by-product of investigations into the logic ofmathematics" (p. 133).
Heretofore, mathematics had been regarded as a set of absolute and
immutable truths, exempt from all criticism and dispute once these
have been proved. Today "mathematics must be looked upon as an
activity of thinking, not'as a totality of facts of some special kind"
(p. 134). The critical movement of examining and strengthening
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the foundations of mathematics was initiated by Descartes. Other
innovators who carried on this work were Newton, Leibniz, Frege,
Legendre, Gauss, Cauchy, and Weierstrass. It is said that Frege
"devoted his life's work to the task of making arithmetic so rigorous
that it would surpass even Euclid's geometry in this respect" (p.
138). The prevalent mode of thought was one of critical examina
tion and "the work of tightening up concepts and proofs went on all
through the nineteenth century" (p. 139). Besides the efforts of
mathematicians to rigorizc the subject matter itself, there were those
who concerned themselves with the purely logical side of mathe
matics (its form) and here the names of Dedekind and Peano come
readily to mind. The axiomatic approach to mathematics as we know
it today found its origins in the work of these two men. Both Dede
kind and Peano rejected common sense as an adequate basis for
mathematics and so the stage was set for the appearance of Russell.
According to Russell "The only primitive concepts that were neces
sary belonged alreadv to logic and all mathematical concepts were
definable and all mathematical theorems provable within the logical
system" (p. 157). The remainder of this section is given over to a
very complete and detailed discussion of Russell's logistic theory,
Cantor's work in classes, and Fregc's logical analysis.

The other portions of this second major section are devoted to
Hilbert's formalistic approach to the foundations of mathematics as
set forth in his famous Grundlagen der Geometric; Godel's meta-
mathematical method; Brouwer's intuitionism; Heyting's intuitionist
logical calculus. Each of these topics is so extensive and so detailed
as to defy adequate treatment here.

A briefword should be made regarding recursive arithmetic as
a formal system. The names of Church and Kleene are associated
with this type of investigation. In the final chapter of this second
major section the author discusses the axiomatic theory of sets. Pure
mathematics is regarded as an extension of the theory of sets and
mention is made of the work of Bourbaki, Zermelo, von Neumann,
and Bernays in this area.

The third major section is called "Philosophy of Mathematics".
In this the author evaluates the theories proposed in the threeschools
of thought. Likewise he explores the application of mathematics to
the natural world as we know it today.

The book is well written and easy to follow. In the opinion
of the reviewer one of its chief merits is the inclusion of supple
mentary notes for each chapter. These are quite extensive and con-
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tain much very valuable material. A case in point is those appended
to Chapter IV in which a collection of the vicious-circle paradoxes
is presented. Many readers will find the bibliography a tremendous
asset.

Dr. G. T. Kneebone is Lecturer in Mathematics at Bedford
College in the University of London.

—Sister Helen Sullivan, O.S.B.
Mount St. Scholastica College

The Elements of Real Analysis, Robert G. Bartle, John Wiley &
Sons, Inc., New York, 1964. 447 pp.
In his preface, the author states, "Most of the topics generally

associated with courses in 'advanced calculus' arc treated here in a
reasonably sophisticated way." Together with the title, we have the
clue to the book — a text in "advanced calculus" for the teacher who
feels such a course should be more than an extension of the first
course in calculus.

The book starts with chapters on set theory, an axiomatic
treatment of complete ordered fields, and topology in Euclidean
p-space, at a level which should be well within the grasp of Junior-
Senior students. Then follow chapters on sequences, continuous
functions, differentiation, integration, and series. The table of con
tents for these chapters reads much like many other advanced calcu
lus books — one finds the Mean Value Theorem, interchange of
order of differentiation, Lagrange's Method, First and Second Mean
Value Theorems for Integrals, tests for convergence of improper in
tegrals, Root Test, Ratio Test, Raabe's Test, and so on. But there
are also discussions of the Arzela-Ascoli Theorem, the Riesz Repre
sentation Theorem, Tauber's Theorem, etc., which one might have
expected to be delayed to a later course.

The main difference between this text and one entitled "Ad
vanced Calculus" is the spirit of the material. The author has in
corporated topological and functional analytic ideas with the spirit
of a real variable course and the topics and level-of-difficulty of an
advanced calculus course. A course from this book would be an
excellent transition from elementary calculus to graduate courses in
analysis.

There are exercises at the end of the twenty-eight main sec
tions, and often there are also "projects" which are sequences of
problems leading the student through the development of some
result. The author has combined definitions, theorems, proofs, ex
amples, and discussion in an easily read, continuous discourse. At
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the same time, these things are all clearly labeled, so that the student
knows when a theorem is being stated, when proved, and when
discussed. This book should become a very popular text.

—E. R. Deal
Colorado State University

A Survey of Numerical Analysis, Edited by John Todd, McGraw-
Hill Book Company (330 West 42nd Street) New York 36:
1962, 584 pp., $12.50.
This book consists of seventeen chapters written by fourteen

well-known mathematicians surveying the field of numerical analy
sis. As the title indicates, the coverage is quite broad; but in most
cases it is also of considerable depth. As in most books of this type
there is a small amount of overlap in the material. However, each
author's approach to the subject is sufficiently distinct that it only
tends to clarify certain topics.

Nearly all of the material presented in the seventeen chapters
was presented in the form of lectures or mimeographed notes to
the participants in National Science Foundation training programs
in numerical analysis for senior university staff members at the
National Bureau of Standards, Washington, D.C. This reviewer was
fortunate enough to be a participant in one of these programs in
1959.

The references at the end of each chapter are extensive and
provide the reader with sources where he may dig deeper into the
subject. There are problems only at the end of Chapters Two and
Three, which limit its possibility as a textbook in numerical analy
sis especially as a first course.

Everyone with a sincere interest in the field of numerical
analysis will want to have this book, edited by John Todd, available
for reference.

—Ralph E. Lee
The University of Missouri at Rolla

Statistical Management of Inventory Systems, Harvey M. Wagner,
John Wiley & Sons, Inc. (440 Park Avenue South) New
York 16, 1962, 230 pp., $8.95.
Inventory theory, involving mathematical methods including

probability and statistics, is a growing state of development and
use. A frequently-used policy is the (s, S) rule by which, when in
ventory falls below a quantity s, and order is placed to bring the total
quantity uptoSunits. Demand isoften assumed to follow some prob-



The Pentagon 117

ability distribution, and this distribution determines to a large meas
ure the characteristics in practice of the ordering rule. There will be
probabilities rclatetl to quantities in inventory and on order, average
amount of purchases, amounts of shortages, etc.

In this book, the author investigates the effects of various con
trol policies on inventory. By this is meant that, top management
having determined an inventory policy, an (s, S) policy in this case,
what methods are effective in insuring that the policy is followed
by lower management? Such control policies as quota schemes and
barometer schemes, based on aggregate indices, are studied for con
sistency and other properties. A quota policy applies penalties if an
aggregate index quota is exceeded; a barometer scheme penalizes
lower management according to the amount by which targets are
missed as measured by the aggregate index. A consistent scheme is
one that encourages lower management to adhere to recommended
policies.

The book considers various situations, such as knowledge, or
lack of knowledge, of demand functions, demand generated by per
sonnel, the determination of demand distributions generated by
known stockagc policies, and lack of knowledge of the (s, S) pol
icy being followed or of the demand distribution, and asks in each
case whether consistent controls can be devised.

Mathematically, the exposition makes use of standard statis
tical theory of probability distributions, sufficient statistics, etc., and
of Markov chain theory for the stationary or steady-state situation.
Some use is made of Monte Carlo calculations.

—Paul D. Minton

Southern Methodist University

Studies in Modem Algebra, Studies in Mathematics, Vol. 2, A. A.
Albert, Editor, The Mathematical Association of America,
1963, 190 pp., $4.00.
This book consists of six articles covering various aspects of

algebra. The first two articles, by Saunders MacLane, are survey
articles. These articles are concerned primarily with associative
algebras and among the topics discussed are valuations, finite groups,
local rings, homological algebra, and modules and tensor products,
to name only a few. Of the many topics treated none are covered
in great detail.

The third article, by R. H. Bruck, relates loops to elementary
algebraic topics. This paper begins with groupoids and discusses
latin squares, geometric nets, Steiner triple systems and Room's de-
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signs. There is also a section devoted to nonassociativc integers. An
appendix to this paper gives a proof of the existence of a Steiner
triple system of order n for each integer n =\ 3 such that n = 1
or 3 modulo 6. The author also provides the reader with a few
exercises.

The fourth article is by Charles W. Curtis and discusses non-
associative algebras and division algebras. The main result in this
paper is to give a solution to Hurwitz's problem, that is, to prove
that the only normed algebras over the real field are the complex
numbers, the quaternions, and the Cayley numbers. The author
also states that the same result holds for any field with characteristic
different from 2.

The fifth article is a characterization of the Cayley numbers
by Erwin KIcinfield. This paper gives some elementary properties
of division rings related to the concepts of the nucleus and the
center. The main result is a constructive proof that alternative
division rings of characteristic not two are either Cayley-Dickson
division algebras or associative division rings.

The final article is by Lowell J. Paige and is a development of
of theory of Jordan Algebras. The concepts of radical, semi-
simplicity and simplicity of algebras are discussed as well as the
derivation of Jordan and Lie Algebras from associative algebras.

Each of the six articles is followed by a bibliography listing
many sources where the interested reader will find more extensive
treatments of the discussed topics. The reader should find that
a generous background in algebra is convenient but not necessary
for profitable reading.

—James S. Biddlu
Ohio State University

Statistics, an Intuitive Approach, George H. Weinberg and John
A. Schumaker, Wadsworth Publishing Company, Inc., Bel
mont, California, 1962, xii 4-. 338 pp., $6.50.

As the title implies, Statistics, an Intuitive Approach offers
the reader an understanding of the basic aspects of symbols and
notation. It is designed primarily for students in the fields of psy
chology, education, and the social sciences who have little knowl
edge of mathematics. There is no question but that there are many
college students who fit this description today. Hence, assuming the
need for an "intuitive" approach which minimizes mathematical
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symbolism, this book probably comes as near as is possible to bridging
the gap between background and understanding.

In Chapters 2, 3, and 4 properties of the mean, variance, and
percentiles are effectively developed by making graphic use of the
physical analogy to a weighted plank and the position of the fulcrum
balancing it. The numerical examples are clear and very simple. Ad
hering to their stated philosophy, the authors emphasize the verbal
statements of definitions and properties, and only after discussing
applications in each chapter is any mention made of notation. As
with the remainder of the book, there are few formulas and virtu
ally no mathematical derivations. Extensive exercises end each
chapter. While none is especially difficult, few have the simplicity
of the examples and some are rather time consuming. Frequent
reference is made in the exercises to data from past chapters. To the
student who wants a good supply of exercises for developing compu
tational skills, he will be well satisfied.

Chapters 5, 6, and 7 treat grouped data. The discussion of
discrete and continuous variables and the graphs and illustrations
are well presented. Two informal but particularly good chapters
on the theoretical normal distribution and the central limit theo
rem follow. The authors make excellent use of numerous and much
needed illustrations at this point. It is surprising how many text
books written on this subject and at this level fail to take full ad
vantage of illustrations to convey properties and concepts.

The treatment of probability is sparse. Only one chapter deals
with probability directly, and there rather exclusively as it applies
to the normal distribution. The stronger the student's feeling for
probability, the greater will be his understanding of the ideas and
interpretations of the next three chapters on decision making and
risk, hypothesis testing, and estimation. These chapters read well
and lay an adequate groundwork for statistical inference. The
chapter on hypothesis testing handles key questions simply yet thor
oughly.

A shorter course in elementary statistics would probably end
at this point in the book. For a longer course, additional chapters
are included on the t-distribution, the chi-squarc distribution, cer
tain nonparametric tests, and regression and correlation. This last
topic, covered in a three chapter sequence, is well organized, clearly
written, and especially well illustrated making it one of the high
lights of the book.

—Evan M. Maletsky
Montclair State College
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Fifty Mathematical Puzzles and Oddities, Nicholas E. Scripture,
D. Van Nostrand Company, Inc., Princeton, New Jersey,
1963, 83 pp., $2.50.

From Great Britain comes this small book providing a collec
tion of "oddments" selected from the fields of arithmetic, algebra,
and geometry. Although of possible interest to the layman, the
topics selected are quite traditional and likely to be quite familiar
to any student of mathematics.

Examples of the items included are magic squares, repeating
decimals, the standard "proof that 2 = 1, patterns for construction
of the Platonic solids, binary notation, and the Mobius Strip. The
oddities and puzzles that are included are neither new nor pre
sented in any unusual manner which would merit consideration by
any but the layman or possibly by junior high school students.
(Answers to all puzzles are included in the text.)

A Book of Mathematical Reasoning Problems, Fifty Brain-Twisters,
D. St. P. Barnard, D. Van Nostrand Company, Inc., Prince
ton, New Jersey, 1963. 109 pp., $2.50.

This collection of puzzles is taken from the author's weekly
column "Brain-Twister" which appears in Great Britain's "Observ
er." The puzzles are interesting and not the usual run-of-the-mill
variety found in many other such collections.

One feature of this text that students of mathematics will
find of interest is a section inserted between the problems and
their solutions entitled "Leads." The reader is referred to this sec
tion for clues to the solution of problems if he experiences difficulty
in getting started. Here, as the author states, the reader "will find
a suggestion or two which, while not divulging the answer, may
enable him to mount a renewed attack on the question."

Finally, the author writes: "If that should fail there remains
the full solution at the back of the book as an insurance against
insomnia."

The text has value as an aid to the development of skills at
problem-solving, enhanced by the section on clues. As such it
merits the attention of students of mathematics and laymen alike.

—Max A. Sobel

Montclair State College
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BOOKS RECEIVED

Models for Production and Operations Management, Elwood S.
Buffa, John Wiley & Sons, Inc., New York, 1963, 632 pp.,
$9.25.

The Discrete Maximum Principle, Liang-Tseng Fan and Chiu-Sen
Wang, John Wilev & Sons, Inc., New York, 1964, 158 pp.,
$5.75.

The Paradox of Pleasure and Relativity, D. G. Garan, Philosophi
cal Library, Inc., New York, 1963, 499 pp., $6.00.

Diophantine Geometry, Serge Lang, John Wiley & Sons, Inc., In-
terscience Division, New York, 1962, 170 pp., $7.45.

Readings in Mathematical Psychology, Volume II, Edited by R.
Duncan Luce, Robert R. Bush, and Eugene Galanter, John
Wiley & Sons, Inc., New York, 1965, 568 pp., $8.95.

Thrce-Dimensional Problems in the Theory of Elasticity, A. I. Lur'e,
John Wiley & Sons, Inc., Interscience Division, New York,
1964,493 pp., $16.00.

Local Rings, Masayoshi Nagata, John Wiley & Sons, Interscience
Division, New York, 1962, 234 pp., $$11.00.

Diophantine Approximations, Ivan Niven, John Wiley & Sons, In
terscience Division, New York, 1963, 68 pp., $5.00.

Problems in the Sense of Riemann and Klein, Josip Plemelj, John
Wiley & Sons, Interscience Division, New York, 1964, 173
pp., $8.00.

Contributions to Order Statistics, edited by Ahmed E. Sarhan and
Bernard G. Grecnberg, John Wiley & Sons, Inc., New York,
1962, 467 pp., $11.25.

Theory of Relationships, Sanford L. Silverman and Martin G. Sil
verman, Philosophical Library, Inc., New York, 1963, 111
pp., $6.00.

Concise Dictionary of Atomics, Alfred Del Vecchio, Philosophical
Library, Inc., New York, 1964, 262 pp., $10.00.

CORRECTION

The description of the book reviewed on page 53-54 of the
Fall, 1964 issue of The Pentagon, XXIV, No. 1, was incorrectly
given. It should have read: Tables of Scries, Products, and Integrals,
I. M. Ryshik and I. S. Gradstein, New York: Plenum Press, 1963,
x4- 438 pp., $15.00.



Installation of New Chapters
Edited by Sister Helen Sullivan

OKLAHOMA BETA CHAPTER

University of Tulsa, Tulsa, Oklahoma

Oklahoma Beta Chapter was installed on May 3, 1964 by Dr.
Carl V. Fronabarger, Past President of Kappa Mu Epsilon. The
installation was held in Sharp Chapel on the University of Tulsa
campus at 3:00 p.m.

Following the installation ceremony Dr. Fronabarger gave a
brief history of Kappa Mu Epsilon. A tea for the initiates and their
guests followed the formal ceremonies. Oklahoma Alpha, the first
chapter of Kappa Mu Epsilon, sent a beautiful floral arrangement
which was used in connection with the tea. Mr. Carpenter and other
representatives from Oklahoma Alpha were present for the installa
tion ceremony.

Charter members are: Steve Atiyah, Carolyn Axton, Pamclla
Bedford, George W. Bright, Thomas W. Cairns, James H. Chafin,
William R. Chichester, Fred J. Clare, John W. Conwell Jr., K.
Wiley Cox, Patricia Sue Curby, Michael Del Casino, Michael C.
Ellis, John Finck, Warren B. Garrison, Said H. Ghachem, Ann
Gibbons, Margaret L. Gibson, James W. Gresham IV, Raymond B.
Heath, Kenneth W. Hennigan, Bill D. Johnson, Dianne Krumme,
John Lafferty, David Lawson, Margaret P. Leach, Randal H. Lefler,
J. Larry Martin, Charles G. McConnell, James C. McGill, Ricardo
A. Morales, Necmittin Mungan, William J. Osher, Richard Parker,
Joe N. Pelton, Veril L. Phillips, Ralph C. Raynolds, Janet Ries,
Martha Roberts, Jerry L. Roger, James W. Schccr, Karen Spradling,
Stephen E. Szasz, David E. C. Teagarden, Lindon Thomas, John
F. Vaughn, Ralph W. Veatch, Tommy D. Wcathened, John Welge,
Robert D. Wright, Charles C. Wu, and Ann L. Ziemer.

The new chapter's officers are:

President Veril Phillips
Vice President Joe Pelton
Secretary Martha Roberts
Treasurer Pam Bedford
Faculty Sponsor Warren B. Garrison
Corresponding Secretary Ralph W. Veatch
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Kappa Mu Epsilon News
Edited by J. D. Haggard, Historian

Florida Alpha, Stetson University, DeLand.

Some of the activities of the chapter during this school year
have been: Initiated ten new members on January 11, sponsored
distinguished visiting lecturers, visited the Radio Corporation of
America installation in Cocoa Beach, Florida, held a second initia
tion banquet for new members in March.

Illinois Alpha, Illinois State University. Normal.

Professor Francis Florey, who received his B.A. degree from
Augustana in 1958 and an M.A. from the University of Illinois in
1962, is the new sponsor of the chapter. Professor Downing, the
former sponsor of the chapter, is spending a year at the University
of Illinois on a National Science Foundation Fellowship. Another
faculty member and a supporter of Kappa Mu Epsilon, Professor
Rowe, has been awarded a National Science Foundation Fellowship
and will do work on his doctorate degree at Florida State University.

Illinois Beta. Eastern Illinois University, Charleston.

Our chapter meets each month with the Math Club in addition
to several separate business meetings. We are conducting an exam
ination in elementary calculus and awarding the Kappa Mu Epsilon
Calculus prize to the winner in honor of Dr. Lester Van Deventer.
The high-light of the year is the initiation ceremony and banquet
for the new members to which an outstanding guest speaker is in
vited.

Indiana Gamma, Anderson College, Anderson.
Joseph Heffelfinger, who was president of the local chapter of

Kappa Mu Epsilon last year, is now a graduate assistant at Michgan
State University.

Eleven new members were initiated this year, bringing the
active total membership to seventy-six.

Professor Mahlon M. Day, lecturer for the Mathematical Asso
ciation of America spoke on "Smoothness and Rotundity" and was
guest of honor at a Kappa Mu Epsilon Tea.

Illinois Delta, College of St Francis, Joliet

At our monthly meeting this year we have centered our atten
tion on professional opportunities for women in mathematics. We
have had guest lecturers from nearby industries and corporations
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such as Illinois Bell Telephone and John Hancock Insurance. At our
March meeting, five candidates presented short mathematical papers
of their own choice and were subsequently initiated into the chapter.

Kansas Alpha, Kansas State College, Pittsburg.
The activities of the year began with a picnic in October. In

November we initiated twenty-one new members and at the meet
ing Richard Thompson spoke on "Exponential Order". Professor
H. D. Brunk of the University of Missouri spoke to the chapter on
December 10 on the topic, "Geometric Approach to Probability". On
February 25, the new chapter sponsor, Mr. Bryan Sperry, spoke on
"Ruled Surfaces". On March 25 we held a second initiation and on
April 19, Dr. L. M. Blumethal, of the University of Missouri, spoke
on "The Golden Age of Mathematics — Today".

Kansas Beta, Kansas State Teachers College. Emporia.
Regular monthly meeting with guest speakers were held

throughout the year. We initiated a total of seventeen new members
at ceremonies which included banquets.

Our chapter donated $100 to the Second Century Club at
Kansas State Teachers College. Social Activities included a spring
picnic and a Christmas Party.

Our chapter had a delegation in attendance at the National
Kappa Mu Epsilon Convention held this April in Fort Collins, Colo
rado.

Kansas Gamma. Mount St. Scholastica College, Atchison.
Kansas Gamma initiated fourteen new members on September

20, 1964 and inducted eighteen pledges on October 5, 1964. The
twenty fifth anniversary of the installation of Kansas Gamma will
be observed on May 8 with a banquet and program at which charter
members and past presidents will be honored.

Social events have included the chili supper given by actives
for pledges, the Wassail Bowl Christmas party, the pledge party and
program for actives.

Papers at the regularmeetings have included topics in statistics,
topology, lattice theory, number theory, non-Euclidean geometry,
projective geometry, quarternions, and curriculum change in ele
mentary and secondary schools. Professor William Scott of the Uni
versity of Kansas was the visiting lecturer on February 2.

Ten members were in attendance at the National Convention
in Fort Collins, Colorado, in April.
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Louisiana Beta, University of Southwest Louisiana, Lafayette.
The local chapter of Kappa Mu Epsilon assisted with the an

nual convention of Mu Alpha Theta held on the University campus.
Duane Blumberg, a former member of the chapter, is now in gradu
ate school at the University of Wisconsin and Willis Bourque, also
a former member, is in graduate school at Louisiana State University.

Dr. Merlin M. Ohmer, Faculty sponsor, has just written a
book Elementary Contemporary Mathematics to be published by
Blaisdcll Publishing Company Another book entitled, Elementary
Contemporary Algebra, is just now ready for distribution by the same
publishers. Dr. Ohmer is also a visiting lecturer for the Mathemati
cal Association of America.

Mr. Henry Pellerin, chapter president, will speak at the Judice
High School, Mu Alpha Theta Chapter, next month; John Peck
spoke to the same group in February.

Maryland Alpha, College of Notre Dame of Maryland, Baltimore.
Nine students were initiated into membership in the chapter

in the spring of 1964. The programs this year have included such
topics as the following: "The Curious Helix" by Sr. Marie Augus
tine; a career panel consisting of a systems analyst, a statistician, an
actuary, and a teacher; "A Study of Intuitionism" by Sue Albert;
"Linear Programming" by Jacqueline Prucha; "The Theory of Net
works" by Mary Teresa Flippen, "The Loxodromic Subgroup of the
Group of Mobius Transformations" by Sylvia Smardo.

At the May meeting we plan to initiate eight new members.
After the invited address on "Bourbaki" by Professor Dagamar Hen-
ney of the University of Maryland, a buffet dinner will follow.

Michigan Alpha. Albion College, Albion.
Our program for the year has included such activities as: a

Mathematical Mixer; "The Coordinatization of a Finite Geometry"
by Professor Ronald Fryxell; "Computer Application to Automobile
Design" by Mr. Robert B. McLean, Methods Department of Ford
Motor Company; pledge papers followed by an initiation; field trip
to Consumer's Power Company; presentation of papers by Senior
Honors Students; picnic and election of officers for 1965-66.

Michigan Beta, Central Michigan University, Mount Pleasant.
The primary project this year is to acquaint the high school

seniors in this area of the state with the mathematics program at
Central Michigan University.
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Missouri Beta, Central Missouri State College, Warrensburg.
The Chapter meets on the third Tuesday of each month. On

October 20, 1964, we had twelve initiates. Each meeting since then
has been given over to the reading of papers by the initiates. Pres
ently we are planning for the presentation of a paper at the National
Meeting at Fort Collins and one at the meeting of Missouri Academy
of Science in St. Louis.

Missouri Gamma, William Jewell College, Liberty.
This past semester our local Kappa Mu Epsilon chapter ranked

third of all campus organizations in grade point average with a 3.4
out of a possible 4.0

We initiated sixteen new members at a banquet meeting in
March at which Father Doyle from Rockhurst College spoke on
"Topics in Non-Euclidean Geometry".

During the school year we enjoyed a guest speaker from Park
College who spoke on "Cardinal Numbers". Student papers pre
sented during the year include: "Pursuit Curves", "Three Point
Method of Iteration of Finding Roots of Function", and "The Cafe
teria Diet Problems". This last problem was a cooperative effort of
the group and can be formulated somewhat as follows: Determine
the daily diet which satisfies all nine nutrient requirements and is
at the same time least expensive. The simplex method of linear pro
gramming was used with very interesting and surprising results.
Using one approach the basic foods were potatoes, spinach, and
soybeans at a cost of $137.74 a year per person.

Nebraska Beta, Kearney State College, Kearney.
We are conducting free help sessions for students in pre-calcu-

lus mathematics courses.

Eleven new students were initiated into the chapter on Jan
uary 7. They were as follows: Constance Daniels, Richard L. Ender,
Donald E. Gardner, Ervin K. Huffman, DuWayne Johnson, Caroll
Kinnaman, Gary Maas, Dennis R. McGraw, Thomas E. Martin,
Karen Peterson, and Elmer Wall.

We gave two $25 scholarships this year. Peggy Miller re
ceived one first semester and Gary Maas received one second se
mester.

Nebraska Gamma. Chadron State College, Chadron.
We initiated two students and two faculty during the first se

mester and ten students during the second semester.
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Our chapter entered a skit in the annual Blue Key Revue on
March 12. This is the first year we have entered the Revue.

Some of the program topics given at meeting this year in
clude: "Finite Geometry" by Milt Eloe; "Magic Squares and Num
ber Bases" by Pat Barry; and "Computer Programming" by Karen
Kruse.

We have recently revised and updated our constitution, adding
what amendments we felt were needed and revising some of the
out-of-date articles. One item was changing the institution's name
to Chadron State College.

The chapter acted as coordinator at the recent Inter-High
School Scholastic Contest held March 19.

New York Epsilon. Ladycliff College, Highland Falls.

On March 1, 1965, a symposium was held in the Ladycliff
College auditorium. The conference was divided into three parts
namely "Modern Mathematics", "Careers in Mathematics", and dis
plays on the various careers. Members of Kappa Mu Epsilon and the
Mathematics Club were available to answer questions. Students
and faculty members of the high schools in the surrounding area
were guests of the Mathematics Department of Ladycliff.

Ohio Gamma, Baldwin-Wallace College, Berea.

Since the last Ohio Gamma news item, we have had the fol
lowing program topics: "History of Calculus" by Terry Hull; "Finite
Differences and Integration by Austin Miller; "Mathematics and
Music" by Sue Hubbard; "Number Systems" by Joe Freeman; "To
pology" by Robert Vicck; "Educational Systems in England" by Mr.
Colin Turner, an English exchange teacher; "New Teaching Pro
grams and the Revolution in Mathematics" by Donna Phelps; "Infi-
inite Primes" by George Trever; "Trachtenberg System of Rapid
Calculation" by Marie Haushalter; "Mathematics of Warfare" by
Richard Bohrer.

On October 14, 1964, we initiated fifteen new members,
bringing our active total to thirty-eight and the all time list of mem
bers to two hundred and fifty-five.

Oklahoma Alpha, Northeastern State College, Tahlequah.

Two highlights of the school year for the Oklahoma Alpha
Chapter were the formal initiations held during the Fall and Spring
semesters. At the Fall initiation, held for 22 initiates, the sponsors
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and their wives served refreshments for the members, mathematics
faculty and their wives. During the Spring, we held our initiation
in conjunction with our annual Kappa Mu Epsilon Founders Day
Banquet. Guest speaker, Dr. Emmit Wheat, Professor of Mathe
matics at Northeastern, spoke on the subject, "The Relation Between
Music and Mathematics".

Pennsylvania Beta, La Salle College, Philadelphia.

Professor Robert Z. Norman, Dartmouth College, gave a Math
ematical Association of America lecture on "Representable Num
bers" and met informally with the students and faculty of the math
ematics department. Other papers given during the year include:
"Game Theory" by Henry Potoczny, "Probability" by James Filliben,
"Topology"by Thomas Devlin.

Mr. James Filliben has a graduate fellowship at Princeton
University and Mr. Henry Potoczny has an assistantship at Villa-
nova University for 1965-66.

Tennessee Beta. East Tennessee State University, Johnson City.

The chapter met in January for a dinner meeting at the home
of Mrs. Lora McCormick. The president, Linda Green, presided
over a short business session at which time the chapter voted to give
$50 to the T. C. Carson Loan Fund at East Tennessee State Uni
versity. Dean Ella Ross showed pictures of her trip to Russia last
summer.

Virginia Beta, Radford College. Radford.

Mr. Whitney Johnson of Virginia Polytechnic Institute's com
puting center lectured at our regular meeting and conducted a tour
of the computing facilities

Wisconsin Alpha, Mount Mary College, Milwaukee.

On January 13, the chapter enjoyed a panel discussion on
"Experiences During Student Teaching in the Milwaukee Public
Schools." Panelists were: Phyllis Bruni, Mary Alice Inzeo, Karen
Kindel, Karen Pfersch, Marsha Schmitt, and Barbara Stengal. On
February 10, a program on "Data Processing" was jointly given by
Miss Carol Zaffrann and Mr. Gutterman from Northwestern Mutual

Life Insurance Company.


