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ment of western civilization; to develop an appreciation of the power
and beauty possessed by mathematics, due, mainly, to its demands for
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the recognition of outstanding achievements in the study of mathe-
matics at the undergraduate level, The official journal, THE PENTA-~
GON, is designed to assist in achieving these objectives as well as to
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An Alternative Method for Obtaining
the Equation of the Line
at Infinity in the Areal System

R. S. LurHar
Student, University of lllinois

Since the system of areal coordinates for locating points in
the plane is not as well known as other coordinate systems we begin
with a brief discussion of this type of coordinates.

1. Areal coordinates. Areal ccordinates, which are only a
particular case of a more general class of homogeneous coordinates,
are defined as follows: Let ABC be a triangle, hereinafter called
the triangle of reference, and P any point in its plane (see Fig. 1).
Joining the point P to the vertices we have three triangles and the

D
Pig. 1

B

ratios of the areas

A PBC _ APCA , _ APAB
A ABC’ A ABC’ A ABC

are called the areal coordinates of P which are denoted as (X, Y, Z).

The areal coordinates possess sign as well as magnitude based
on the fact that the area of a triangle has a sign, being positive
when the perimeter is described in the counterclockwise direction
and negative when the perimeter is described in the clockwise direc-
tion. Thus, wherever the point P may be, inside, outside, or on the
triangle, the algebraic sum of the areas will be given by

A PBC + A PCA + APAB = A ABC

X = Y
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and consequently
X+Y+Z=1.

Applying the above definition, it may easily be verified that
the areal coordinates of

i) the vertices A, B, and C of the triangle of reference are
(1, 0, 0), €0, 1, 0), and (0, 0, 1) respectively.

ii) the midpoints D, E, and F of the sides BC, CA, and AB
are (0, ¥, ), (¥, 0, 1), and (¥, ¥, 0) respec-
tively.

iii) the centroid of the triangle of reference are (14, ¥3, 13).

2. Relationship between areal and cartesian coordinates.
Let (%1, 31), (%2, ¥2), and (x5, ¥s) be the cartesian coordinates of
the vertices of the triangle ABC referred to any axes and (x, y) be
the cartesian coordinates of any point P in the plane. Let (X, Y, Z)
be the areal coordinates of P with respect to the triangle ABC.

Then

PBC x y 1 xnl
X = ﬁABC = 15 X2 Y2 1 = 1 X2 ¥2 1
Xs Vs 1 X3 ¥s 1

Therefore
(1) xCy: — y3) + y(xs — x3) + (X33 — %532) = DX
where

x 9l

D= |%1y1

X3 9 1
Similarly, we obtain
(2)  x(ys — 3) + y(x — %) + Xy — ;mys) = DY
(3)  x(y — y2) + y(xz2 — x) + (x1y2 — %) = DZ

Equations (1), (2), and (3) permit us to find the areal
coordinates of P when the rectangular coordinates of P and of the
vertices of the triangle of reference are known. To convert areal
coordinates of P to rectangular coordinates we solve these equations
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for x and y by multiplying (1), (2), and (3) by x;, x., and x;
respectively and adding to obtain

xD = D(x, X + x.Y + x,Z)

4) x=xX + %Y + xZ
Similarly,
¢)) y = 9nX + yY + yZ

3. Area of a triangle. Let P(X,, Y,, Z,), Q(X,, Y,, Z,), and
R(X,, Y;, Z,) be the areal coordinates of a triangle whose area we
are interested in. Let A(x, y,), B(xs, 7,), and C(xs, y;) be the
cartesian coordinates of the reference triangle. We know that the
area of A PQR is given by

ay bl l
Area (APQR) = V2 |a, b, 1
as bz 1 |

where (a,, b,), (a., b)), and (a,, b,) are the rectangular coordinates
of P, Q, and R. Using equations (4) and (5) we obtain

Area (A POR) =
Xy +xY, +xZ, yXi+yY,+yZ, X,+Y,+2Z
Va lxXe + %Y. + %2, yXe 4 y:Y, +9:2. Xo+ Y.+ Z,
0 Xy + %Y + xZ, yXs+ y.Ys +yZs Xs+ Y + Z

From the property that the determinant of the product of two
square matrices is the product of the determinants of the matrices,
this can be written as

X Y. Z, % 3 1
Arﬁﬂ (A PQR) = % Xg Yz z: * X2 Y2 1
X, Y, Z; X3 ya 1

X Y, Z, |

= {X. Y. Z,| *Area (A ABC)
X, Y, Z,
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The above result shows that the condition for the collinearity
of three points whose areal coordinates are (X,, Y1, Z,), (X., Y2, Z.),
and (X, Ys, Z;) is given by the equation

1% Y, Z,
Xz Yz Zz = Q.
XaYs Zy

4. Equation of a line. To find the equation of the line join-
ing two points whose areal coordinates are (X,, Y, Z,) and
(X, Ys, Z,), we let (X, Y, Z) be the areal coordinates of any point
on the line joining the two given points. Since the three points are
collinear,

XY Z
X, Y.2,|=0
X. Y. Z,

which is the required equation.

We now show that the equation AX + BY + CZ = 0 repre-
sents a straight line. Suppose (X,, Y, Z,), (X;, Y2, Z,), and

(Xs, Y5, Z3) are any three points on the locus of the given equation.
Then

AXx + BY1 + CZ1 =0
AX, + BY, + CZ.= 0
AX3+BY3+CZS=O
This is a system of homogeneous linear equations in A, B, and C,
and in order to have a non-trivial solution we must have
X\ Y Z,
Xz Yz 22 = 0.
Xs Ya 23
Thus the area of the triangle formed by any three points taken on

the locus of AX + BY + CZ = 0 is zero, Clearly then the locus of
this equation represents a straight line.

5. Polar of a peint with respect o the triungle of reference.
Let ABC be the triangle and P(f, g, k) be any point in the plane
(see Fig. 2). Let AP, BP, and CP meet BC, CA, and AB at D, E,
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and F respectively. Let FE, FD, and ED meet BC, AC, and AB at
L, M, and N respectively. We shall show that L, M, and N are
collinear. The straight LMN is called the polar of the point P with
respect to the triangle ABC.

The equation of BC is given by
XYz
010 =20,0or X = 0.
oo01!

Similarly, the equations of CA and AB are Y = 0 and Z = 0
respectively. The equation of BP is given by

XY 2
010|=0,
fegh
hX — fZ = o.

Solving hX — fZ = 0 and Y = 0 simultancously, we get the coordi-
nates of E which are (f, 0, It). Similarly the coordinates of F and D
will be found to be (f, g, 0) and (0, g, k) respectively.
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The equation of EF is given by

XYZ
fOhR| =0,
fego

X Y, Z

-S4+ -+ 2 =0

f g R .

Clearly the intersection of this line with X = 0 is the same as its
intersection with the line

X Y, z_
(6 et h 0.
Hence L lies on (6). The symmetry of this equation shows that the
line passes through M and N also. Thus L, M, and N lie on the
straight line whose equation is given by (6).

6. The line at infinity. If P is the centroid of the triangle
ABC, then FE, FD, and ED become parallel to BC, AC, and AB
respectively with the result that the points L, M, and N recede to
infinity and we call the line LMN the line at infinity, Thus the
polar of the centroid of the triangle of reference is called the line at

infinity. Since the coordinates of the centroid are (%, —1,3;, —;—) , the

equation of the line at infinity is given by
X+Y+Z=0

The above is a usual way of getting the equation of the line at
infinity. We now give an alternative method for the same result
using a simple property from elementary geometry.

Let ABC be the triangle of reference. X + Y = 0 is a line
through C such that the X-coordinate of every point on it is equal
in magnitude, but opposite in sign to the Y-coordinate of the point.
Let CD represent X + Y = 0 (see Fig. 3). Since D is a point on
this line we have

ADBC _ ADCA _

~ABC T Aasc - *
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4(1,0,0)

B(0,1,0) €(0,0,1)
Pig. 3
Thus
Area (A DBC) = — Area (A DCA)
= Area (A DAC).

Since triangles DBC and DAC have equal areas, CD as a common
base, and both of them lie on the same side of this base, CD must
be parallel to BA. Evidently the point of intersection of CD and BA,
which is a point at infinity, is (1, —1, 0). Let us call it L. Sim-
ilarly, the point of intersection of X + Z = 0 and Y = 0, which is
another point at infinity, is given by (1, 0, —1). Let us call it M.
Then LM is the line at infinity and its equation will be given by

XY 2
1-10|=0
1 0 -1

or
X+Y+Z=0o.

®

. .. .we cannot get more out of the mathematical mill than we
put into it, though we may get it in a form infinitely more useful
for our purpose.

—Joan HoPRINSON



The Golden Section

MarviN H. HorLT
Faculty, Wayzata Public Scheols, Minnesota

“Geometry has two great treasures: one is the Theorem
of Pythagorus; the other, the division of a line into ex-
treme and mean ratio, The first we may compare to a
measure of gold, the second we may name a precious
jewel.”

—J. KepLEr (1571-1630)

As part of my teaching, I am always looking for interesting
topics in mathematics that I can use in the classroom as a device
to point out some of the truly interesting aspects of mathematics
and how they affect our everyday lives. One such intriguing topic as
this opens up under various names such as “The Golden Section”,
“The Divine Proportion”, “The Section”, “The Golden Ratio”, and
“The Golden Proportion”, and branches off into areas such as
“Phyllotaxis”, “The Fibonacci Sequence”, art, architecture, game
theory, and some interesting puzzles.

I became interested in this topic during my first year of teach-
ing, but until now I have not pursued this interest very far. I am
sure that you will be as amazed as I was when I began to find out
just how far this topic can lead one on.

It is my intent in this paper to acquaint you with some of the
far reaching applications of the golden section. I will not give any
proofs of the materials unless the proof is reasonably short in length.
If you wish to find out more about a particular proof than is given
in this paper, the list of references in the bibliography will be helpful.

The golden section refers to a simple construction in Euclidean
geometry. Given any line segment AB, there exists a unique point C
such that the following proportion is correct:

AB _ AC
AC ~ BC

A C, B

80
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In other words, the length of the original line segment AB is to the
length of the segment AC as the length of the segment AC is to the
length of the segment BC. When the point C has been located, the
segment AB is said to be divided into a mean and extreme ratio.

The construction given below is the construction Euclid gives
to locate the point C:

j
|
I
el _____p

Construct square ABDE

Bisect side EA in F

Construct FG = FB

Construct AC = AG

5. Point C is the required point.

W N -

The proof of Euclid’s construction can be shown by using the
Pythagorean Theorem. This construction has been attributed to the
Pythagoreans for two reasons: (1) Euclid has included this con-
struction with other theorems and constructions that the Pythagore-
ans are responsible for, and (2) The fact that the Pythagoreans
adopted the pentagram as a symbol of their organization. As you will
see later, the pentagram contains a wealth of material related to the
extreme and mean ratio.

As with many other statements and theorems in mathematics
that are attributed to the Pythagoreans, we really don’t know for sure
that Pythagorus was responsible for the discovery of the division of
a line into extreme and mean ratio. Nevertheless, it was not until the
time of Euclid that this problem gained in popularity. In Euclid’s
time, the division of a line in this manner was referred to simply

Y%

as “rop’y”, meaning “the section.”
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After the fall of Greek mathematics, the section was left un-
noticed for many years until it was rediscovered again during the
Renaissance pericd. At this time, there was quite a to do about the
value of this ratio as applied to nature, and the section was referred
to as the divine proportion. This will be discussed later in the paper.

In 1509, Pacioda di Borgo wrote a treatise “De Divina Pro-
portione” (Of the Divine Proportion) in which he describes, in
thirteen chapters, the thirteen effects of the divine proportion. He
refers to these effects in colorful language such as “The Seventh
Most Excellent Effect” or “The Thirteenth Most Distinguished
Effect.” After his thirteenth chapter, Borgo states that the list most
surely come to an end for the sake of salvation, since there were only
thirteen persons present at the table of the Last Suppr. During this
time, the divine proportion was used extensively in architecturc and
in great artist’s works. Leonardo da Vinci referred to it as the golden
section, and this seems to be the name used most often today. Kepler
referred to it as the divine section.

There are several possible constructions to obtain the point C.
Two of them are included here. The first one is the one that I found
most often in present day texts on geometry, and the second method
locates the point C by using only a compass. The second construction
is one of the so-called Mascheroni constructions.

CONSTRUCTION 1.

4

s

i

//"\ ]

- AN i

i VN |

// l \\_l

Iy [ [) ?
1. Construct O so that AO = OB,

2. Construct BD perpendicular
to AB so that BD = BO.

3. Construct DF = DB.
4. Construct AC = AF.
5. Point C is the required point.
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CONSTRUCTION 1I.

The symbol, ACAB), means a circle with center at A, and a
radius = AB.

1. Construct ACAB) and B(AB) meeting in points ] and K.
Construct J(JK) and ACAB) meeting in points K and L.
Construct B(JK) and ACAB) meeting in points M and N.
Construct L(JK) and B(JK) mecting in points O and P.

Construct M(AO) and N(AO) mecting in points C and
some other point,

6. Point C is the required point.

Because this division of a line has the habit of appearing in
some of the most unexpected places, the value of the ratio has
been calculated and given a special name. Actually there is a little
bit of confusion at this point, there are two names in use today and,
depending on your way of thinking, there are two values associated
with each name. You will find the golden section referred to as
“s” (tau) and “p” (phi). According to H.S.M. Coxeter, the name
“s” comes from the fact that - is the first Greek letter of the word
“rop’5,” meaning “the section.” According to Martin Gardner, the
name “p” was given to the golden section about fifty years ago by a
man named Mark Barr because p is the first Greek lctter in the name
of the great Phildias who was believed to have used the golden
section frequently in his art work. The two values associated with

nHrwn
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cach name depend on how you evaluate the ratio. If 7, or p, is taken
as the ratio of AB to AC, one value is obtained; if the ratio of AC to
AB is evaluated, the other value is obtained. Throughout the rest of
this paper we will refer to the value of the golden section as r and
will consider its value to be the ratio of AB to AC.

Now, the question is, what is the value of =2 If we let the
distance AB be unity, then 7 can be evaluated as follows:

=~ AB _ 1
T AC~ AC

ii. AC=1/r=BC=1—Q/)=(—1)/~
1/+

1

am T Gk

iv, r=1/G-1)=2—7—1=0
v. r=KBGHS5+1)

By looking at equation (iv) one of the unique properties of =
becomes evident. Since,

we can say that

1o,
T

In other words, to find the reciprocal of = simply subtract one from 7.
This fact can also be demonstrated as follows:

/s = 2 2v5-1) _2y/5 -2
TTVSHT T (VSHDWS-D O 4
= V5—-1
T2
_V5+1-=-2
B 2

V5 +1 1
i
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If you haven’t already thought of this yourself, note that = is the
only positive real number that has this property.

I think that most people who are familiar with the golden
section usually picture it in the form of the so-called golden rec-
tangle. This is a rectangle in which the ratio of the length of the
rectangle to the width is equal to r. In the figure, X/Y = =.

A golden rectangle has many interesting properties. One of the
most widely known properties is the fact that if a square (Y?) is
removed from the original rectangle, the newly formed rectangle
with sides Y and X — Y is still a golden rectangle. In other words,

This fact can be proved as follows; (using basic rules for propor-
tions)
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. Y _
T X-Y
It is also true that if a square (X?) is added to the original

golden rectangle, the newly formed rectangle with length X + Y and
width X is also a golden rectangle. This can be shown as follows:

T

§=7$§=.}.=7—1
.'.x-'X-Y=f—l+l=‘r

By adding or subtracting squares, the golden rectangle regen-
crates itself over and over again. The “whirling squares” form a spiral
arrangement, and if a quadrant of a circle is drawn in each square
as shown below, the resulting curve is a very good approximation
of a logarithmic spiral. This spiral, like the logarithmic spiral,
has the property that its shape does not alter in any way as it
spirals in or out. In other words, if you were to look at a very highly
magnified picture of the spiral as it gets smaller and smaller, the
picture would look the same as what you would see if you could
stand somewhere out in space and look at a very large spiral.

—
/><\ / J

As this spiral winds inward, it keeps getting closer to the point
formed by the intersection of the diagonals of two, shall we say,
adjacent golden rectangles. Interestingly enough, these two diagonals
are perpendicular to each other and divide each other into the
golden section.

Since the golden rectangle has the property that adding or
subtracting a square on one side yields another golden rectangle, a
square is said to be a “gnomon” to the golden rectangle. A gnomon
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is that figure which added to or subtracted from a given figure
makes another figure which is similar to the original figure,

The golden rectangle is also referred to as a “perfect squared
rectangle of order infinity.” A perfect squared rectangle of order » is
one which can be divided up into » squares, no two of which have
the same length side. As you can see, in the golden rectangle it is
possible to keep on cutting off squares no matter how small the
rectangle is. I think that the golden rectangle is the only perfect
rectangle of order infinity, but I didn’t find any material to back up
my conjecture,

Novw, the fun really starts. As mentioned earlier, the pentagram
was the symbol of the Pythagorean society. The reason for this may
be the fact that if you pick any segment on the pentagram and then
take the next longer one or the next shorter one, these two segments
will form a golden rectangle. In fact, triangle BCF (see the figure)
is called the golden triangle since by moving sides BF to the position
of BH and CF to CI such that BH and CI are perpendicular to BC
and then connecting points I and H, you will always get a golden
rectangle.

The proof of the statements concerning the above figure can be
worked out by using the fact that = = 2 cos 36°.

Going further, consider triangle ADE (next page). This is an
isosceles triangle with base angles of 72°. The ratio of the equal sides
to the base is cqual to 7. The line segment D] will bisect the angle
EDA, and starting from this the following facts can be proved:
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1. angle JED = angle DJE
2. angle JAD = angle JDA
3. In each triangle formed by cutting triangle ADE by D],

the base and one of the equal sides will form a golden
rectangle.

This triangle is called the “thrice-isosceles” triangle. You will also
notice, that triangle ADE is similar to triangle JDE. Therefore,
starting with triangle JDE, we can repeat the above procedure to get
triangle JEF and so on. Also, we can construct triangle AEK such
that the new triangle, triangle AKD is similar to triangle ADE. From
this basis we can once again draw a spiral curve that closely approxi-
mates a logarithmic curve and has the same properties as the curve
obtained from the whirling squares. The pole of the spiral formed

e — a

Y
} 4 B2 ]
\\_//

from the thrice-isosceles triangle is formed by the intersection of the
two medians, DL and EM. Incidentally, these two medians cut each
other into the golden section.

Starting with a pentagram inscribed in a pentagon, consider
the shaded area in the figure on page 89. Let's call this area A. If
you study the figure, you will see that this area is formed by five
overlapping triangles. The shaded area in the second figure is
formed by five more triangles, the next smaller size compared to the
triangles in the first figure. This sequence is continued until you get
to the fifth figure where you are back to a similar situation as in the
first figure. The areas thus formed are related to each other by a
constant multiplier, namely +!. As you can see this process could
be continued indefinitely in or out and the arcas would form a
geometric series with the ratio .
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Let’s consider more of the properties of r as a real number.
Since » = ¥5(3/S + 1) and V/5 is an irrational number, this means
that ¢ is irrational, which means that r can be expressed as some

continued fraction. As I have shown before, % = ¢ — 1. This can

be changed around so that r = 1 + 7. Therefore,

r=rlone oo 2
7 14 = 1+ I
T 14+ =
T
=1+ ll
*17 1

1+

This is the simplest continued fraction possible.

It is also possible to express = very simply in another fashion.
Since »* — r — 1 = 0, we can show that r = V1 + r. From this,
the relation below follows quite readily.

= VIT =it ViFsr

=JI+JI+{1+W\/IT_:

Because of the fact that r = 1 + % , the powers of r can be
simplified very nicely, as follows:
reltl=p =1t
P=p2er=(r+Dr=24+r=+2+1+1+r
=2r+1
= =QRr+1)r=2tr=2r+2 + 1+
=3r+2
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Since

=1l = (= 1)2 =92 — 27 +1
=r+1—2r+1=2—+

et =R =) —1)

=—=2—124+3r=2;—-3

In the table below, I have given the values of +* for # = =+10.
There is a definite pattern here that will allow you to find any
power of r that you wish. I will discuss this pattern a little later.
Can you find it?

I

? =1

™ =1 o= =1

? =7+ 1 =2 -7

? =2r + 1 3 =2 — 3
™ = 3r 4+ 2 4 =5 — 3r
™ =5+ 3 ™ = 5 — 8
® =8+ 5 ™ =13 — 8~
7 = 13r + 8 7 = 13; — 21
® = 21 + 13 P = 34 - 21r
™ = 347 + 21 ™ = 34r — 55
™ = 55r + 34 1 = 89 — 55-

As we continue to study 7, we must mention its connection
with another fascinating topic in mathematics — the Fibonacci Se-
quence. The Fibonacci Sequence is an additive series of numbers
where each number in the sequence is found by taking the sum of
the two previous numbers. This sequence is named after its
founder, Leonardo of Pisa, who carried the nickname of Fibonacci.
The Fibonacci Sequence, as given below, has a definite connection
with 7.

0’ lv 172;3:5’8s13)21"0-:fm~-'

where f, = fu2 + fa-:. In the general term, n represents the num-



92 The Pentagon

ber of the term and # takes on integer values greater than or equal
to 0. For example, fo = 0, fs = 1, and fo = 5. If we consider the

fraction f ;" for values of n greater than zero, as # goes to infinity,
"

an interesting pattern developes,

1 _

=1

2 _

2=1+1

3 1 1

2= 1 +t3=1+ 93

S o1+ 21+ =14 1

3 3 3 Ty 1
2 1 + 1

5 5 5 1
2 1+
3 1+ 1

1 +1

As n gets larger and larger, you will notice that the fraction
becomes closer and closer to the continued fraction of r. Therefore,
we can say that the value of fn../fs converges to =.

Well, this is very nice, but we don’t have to go to so much
trouble to remember the Fibonacci Sequence. The fact is, if we
build an additive sequence starting with any two real numbers, say
a and b, this sequence will also produce fractions, ga..1/ga, like those
of the Fibonacci Sequence in the sense that ga../g. will also con-
verge to 7 as n goes to infinity.
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A neat illustration of the property discussed above can be
worked out as follows. Let A and B (sce figure on page 92) be
any two squares you choose. Construct squares C, D, E, F, . . . . as
shown. As the size of the composite rectangle increases it will come
closer to becoming a golden rectangle.

If we refer back to the table of powers of r, we can see another
pattern involving the Fibonacci Sequence. The table has been re-
peated below with some added guide lines to help you see the pattern.

7 =1
1 = 7 o= 'r>'—<l
P = 1|' + 1 T =2 — 7
3 l + \l 3 ZX?;
T = ar 7" = T —
I I >
™ = 3r + 2 ¢ = 5 — 3¢
| >
= ?r + 3| = SS'<8
P = 8 4+ 5 % = 13 — 8¢
\ \ >
o= 1lsf + 8 o= 135—(21
= le-r + l|3 8 = 35—<211'
® = 34r + 21 ™ = 34r>—(55
71 = 55 4 34 1 = 89 — 55;

Another property of the Fibonacci Sequence serves as a basis
of an intriguing puzzle. This property is given in the equation:

(a1 )(fner) — fu2 = (—1D"

In other words, a square of area f,* is always one unit more or less
in area than a rectangle with the dimensions f,-, by faa. If a
square is cut up into four pieces as shown on the next page, there
appears to be a change in area of one unit when the pieces are
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put together into a “rectangle” as shown, even though the same
pieces are involved.

*o-1 o2 ‘a fon
fﬂ-l . A
B-1
foez [ o » -

Some of you may have seen this same puzzle where the four
pieces were put together to form a “triangle” instead of a rectangle.
The answer to the problem of gaining or losing a unit of area, as you
probably already know, is the fact that the pieces A and B do not
fit together so that the line CDE is a straight line. Actually, there
is one unit overlap along this line, or one unit is deleted along this
line. As n becomes larger, it is very difficult to detect this difference
along this line, If someone should comment about the fact that
the pieces do not fit exactly, you can always toss that off by saying
that it is due to crooked cutting.

Again, there is the interesting generality that almost any
additive sequence starting with any real numbers 4 and b can be used
as a basis for developing this puzzle in the same manner as the
Fibonacci Sequence was used. In fact, every sequence that you can
dream up except one will produce this puzzle. The question is,
Which sequence will not yield this puzzle. In other words, under
what circumstances will the square and the rectangle have exactly
the same area? The answer can be seen by considering the follow-
ing sequence in which the first number is 1 and the second number
1S 7.

I,n,1+72r+1L3r+2,5r+3,8r+5,...%0...

If you pick out any three consecutive numbers from this sequence,
you will see that (ta-)(tw;) — ta* = 0. The reason for this
depends on the fact that the sequence given above can be trans-
formed into the sequence shown below by the use of the table
giving the powers of r.

1,774 ... ..

Now, when you pick any three consecutive numbers from this
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sequence, the numbers are represented by +*!, +», "', From this,
it is obvious that the following equation is true.

(.rn—l)(.‘.nn) = 20
Interestingly enough, the additive sequence described above is the

only additive sequence where the ratio between any two consecutive
terms is constant. Gardner refers to it as the “golden series” that
all additive series strive to become.

If a square is inscribed in a semicircle such that one side of
the square is on the diameter, the similar right triangles formed
will be such that the ratio of their legs will be +. We have

/// ~

~

/ // ~d \
~

l :

The problem of the square in the semicircle could also be interpreted
as an equilateral cylinder inscribed in a hemisphere, if you would
like an application for the solid geometry class.

In the figure below, HGIF, is a square, Al = AF, and the

]
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circle with center O is tangent to AF at E. From this the equations

AE _ AD _
AB ~ AE T
can be shown to be correct. This problem could also be interpreted

for the solid geometry class as a sphere inside a right circular cone
inside an equilateral cylinder.

If you take any right triangle where the sides are terms of some
geometric series, the following relations will hold. Let the sides be
given by a, ax, and ax?, where x is the common ratio.

X ax
X<t X>)

Ifx < 1. Thenax* < ax < a.
a® = a*x* + a*x*
1=2x+xt
x’.’ — 1,-1
If x > 1. Then a< ax < ax®.
a® + a*x* = a*x*
1+x2=x«
X2=17
In the area of solid geometry, the icosahedron and the dodeca-
hedron are both involved with r. In the icosahedron, there are 12
vertices. If the twelve vertices are connected as in the drawing on
page 97, the result will be three golden rectangles, each of which is
perpendicular to the other two, and all three intersect at their mid-
points. The fact that the rectangles are actually golden rectangles

can be shown by a careful study of the figure. Consider the penta-
gonal pyramid GIECD] formed by five of the faces of the icosahe-
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dron meeting at one vertex. Since GIECD is a pentagon, we know
that the ratio GE/GI = r. But GI = GH. Therefore GE/GH = «
and GEFH is a golden rectangle. Considering the point O to be
the origin, and the planes to be the xy, yz and the xz planes, the
coordinates of the vertices of an icosahedron of side length two
turns out to be (0, =1, =), (=1, 0, +=1), and (1, =1, 0).
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The same type of situation will arise if you connect the mid-
points of the faces of a dodecahedron as shown in the figure
above. In this case, the coordinates given will locate these mid-
points in three space. The golden rectangles of the icosahedron
will fit here since an icosahedron can be inscribed in a dodecahe-
dron. This can also be shown to be true since the rotational groups
of the two solids are isomorphic to each other.

Referring back to the golden rectangle, we don’t have to think
of this as a single special kind of rectangle but as a special case of a
set of rectangles with a common property. The common property
involves the ratio y/x of the sides of a rectangle where y is the
length and x is the width. We might ask what is the value of y/x
such that if we remove n squares of dimension x by y from the
original rectangle, the rectangle remaining will be similar to the
original rectangle. In other words, the remaining rectangle with
the dimensions y - #nx by x will be such that y/x = x/(y-nx).
If we let x be one unit, and solve for y, the result is that
y = Va(n + VVn* + 4). Note, if n = 1, then y = r. We might
also calculate the rceiprocal of y, which is:
e nG+VvETD -
y = a2+ vm = n \/ i n.
Again,ifn =1,1/y =+ — 1.
If we consider the sequence given below, where the general
term x; = x;-» + nx;., this sequence will converge to y.
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0, 1L,n,n2+ 1, +2n, 0" + 302+ 1,n° + 4n® + 3n, 0"

If » =1, this sequence becomes the Fibonacci Sequence, The gen-
eral sequence given above allows us to make an interesting observa-
tion concerning Pascal’s triangle. If we take the numbers of Pascal’s
triangle by following the guide lines shown below, we will get
the coefficients to the general sequence given above. If n = 1,
you will notice that the sums of the numbers along the guide lines
gives the Fibonacci Sequence.

1

-
A
Attt
151" 10 5 1
/1/6/15 20 15 6 1
(/7 21 35 3% 22 7 1

{8285670562881

For use in a demonstration, it would be nice to have a quick
method of dividing a line into the golden section. The golden sec-
tion sector compass can do the job very nicely and it is not very
difficult to build. To use the compass, simply place the end
points A and B on the ends of the line segment you wish to divide
and the point C locates the golden section point. The illustration
(next page) gives a picture of what the compass looks like and how
they work along with a proof that the point C does actually divide the
line into the golden section. The size of the model that you con-
struct will limit its use in regards to the size of the line segments
involved. The compass is constructed with

AD _ BD _
DF ~ BE 7
FC = AF and EC = BE.
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Now AD/DF = r implies that DF/AF = r. Hence
DF/FC = 7. Since DF = EC = EB, then EB/FC = r and
CB/AC = ~.

The golden section can also be the source of some interesting
mathematical recreations. One such recreation is known as “Wyth-
offs game.” This game is very similar to the game of Nim. To play
this game, you need two sets of objects in two separate piles. The
winner of the game is the player who can manuever in such a way
so that he gets to pick up the last object or objects. Like Nim, there
are so-called “safe” and “un-safe” conditions. A safe condition is
one in which no matter what the other player does, you can win
the game. For example (2,1) is a safe condition. No matter what
your opponent does when he is faced with this situation, you can
still win,

Obviously, if you can always fix it up so that your opponent
is always faced with somc safe condition, you will win the game.
A series of safe conditions is given below.

(1,2), (3,5),(4,7),6,10), .....

Whatever your opponent does when he is faced with one of these
safe conditions, it is always possible for you to either win the game
on one move or get back to a safe condition on one move.

The question is, how do we know when we have a safe con-
dition. The key is that the nth safe condition can be described by
the number pair ([n+],(n7"]) where the brackets, [x], mean the
largest integer less than x. For example, [3.7] = 3.
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Suppose, after your opponent has moved, there are (p,q)
counters left, and suppose that p < ¢. If p = ¢ vour move is to
take all the counters and you win. If p is less than g, you must try
to get back to a safe condition. A property of the sequence of
number pairs described by ([nr],[#2"]) is that cvery positive
integer appears once in this series and the difference between the
numbers of each pair is an integer that also appears only once
in this series. Thercfore, the number p will appear in some num-
ber pair representing a safe condition. Let this safe pair be (p,p”).
If p” is less than ¢ your next move is to remove x counters from g so
that ¢ — x = p’. If, however, p’ is greater than q you must find
the safe condition (a,b) such that b — a = g — p. When you find
(a,b) then take away y counters from both p and 4 so that
p—y =aand ¢ —y = b. Now, your opponent is faced with
another safe condition and the game continues in your favor. I
think vou will agree, the casiest way to play this game is to mem-
orize a few safe conditions and use them as much as possible. If
the two beginning piles are in an unsafe condition and you are
first, you can always win. If the beginning piles are in a safe
condition and you are first, you will have to wait for your opponent
to make a mistake so that you can get control of the game,

Before leaving the mathematical applications of the golden
scction, 1 would like to give you one last puzzle involving, naturally,
the golden section. Consider the two beamed cross pictured below.
The problem is to draw a straight line through A so that the area
of the cross on onc side of the line equals the area on the other side.
(Hint: find a point C somewhere on the line segment BD and
draw line CA. Solution on page 103.)
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By this time you may be impressed with the wide range of
applications of r in mathematics. But, there is still more. In a
non-mathematical sense, the golden rectangle has often been re-
ferred to as the most pleasing or the most beautiful rectangle. For
this reason, many great artists have used this and other properties
of the golden rectangle in their work. Such paintings as “Holy
Family" by Michelangelo, “Magnificat” by Bottacellis, “Corpus
Hipercubus” and “The Sacrament of the Last Supper” by Salvador
Dali involve intricate use of the golden section and the properties
of the golden rectangle,

The use of the golden rectangle in architecture goes back to
the Parthenon in Rome. This building is a kind of monument to
the golden rectangle. This fact is shown very nicely in Walt Dis-
ney’s cartoon “Donald Duck in Mathemagicland.” The golden sec-
tion is also used extensively in the Cathedral Chartres and the Tower
of Saint Jacques in Paris.

There have also been many claims made about the golden
section as the “number of our physical body.” These claims involve
such things as “Lonc’s Relativity Constant.” Lonc’s constant is
equal to r and his claim is that the distance from the ground
to your navel, multiplied by = will give you your height. Of course,
there is no way to prove this. Also, certain bones in our bodies
are thought to be related by r. The illustration given below gives
this relationship as it is related to your hand and forearm.

bT — b
1 v 1)

Finally, + indirectly serves as an organizer of nature. The
Fibonacci numbers have an application in a branch of botany called
Phyllotaxis. Phyllotaxis refers to the arrangement of leaves on a
branch. Starting with some leaf, follow a spiral as you move from
leaf to leaf until you come to another leaf directly above the leat
you started with. If you count the number of times the branch has
been circled and divide this by the number of leaves needed to get
from the first leaf to the one directly above it, this fraction seems to
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always work out to be a fraction obtained by taking two consecutive
numbers from the Fibonacci Sequence. Coxeter points out that not
all plants can be depicted as fitting into the Fibonacci sequence by
giving two other sequences,

(l) 3,1,4’5,9,Dn0
2) 5,2,7,9,16,...

which are needed to describe the arrangement of the leaves of some
plants. I would like to point out, that the sequence (1) could be
written as:

3(1,1,2,3,5,8,...)—2(0,1,1,2,3,5,8,...).
Likewise, sequence (2) can be expressed as
5(1,1,2,3,5,8,...)—3(0,1,1,2,3,5,8,...).

So, you could say that these plants can still be described by the use
of the Fibonacci Sequence.

The Fibonacci Sequence can be used in a similar manner to
code the spiral arrangement of plants such as the florets of a sun-
flower, the scales of a fir cone, the whorles of a pineapple and many
more. If you look at a pineapple, you will notice that the hexagon
shaped cells are arranged in rows in various directions: five parallel
rows sloping gently up to the right, eight parallel rows sloping more
steeply up to the left and thirteen rows sloping very steeply up to
the right. Sometimes the slopes will be in the opposite direction.

Remember the spiral generated by the golden rectangle? This
appears in nature also. The shell of the Chambered Nautilus is in
the shape of a logaritmic spiral such as that of the whirling squares.
One property of this type of spiral is that its shape is never altered,
for this reason, as the animal grows and builds a new chamber
in his shell, he always moves into an identical home.

We close this article with one more interesting fact about the
golden rectangle. If the points A, B, C, and D (figure next page)
are located so that they divide their respective sides of the square
MNOP into the golden section, then the rectangle formed by con-
necting these points is a golden rectangle.

(Solution to problem on page 101: Locate C so that BD/BC = =.)
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Linear Expression of the Greatest
Common Divisor

ANN M. PeEnTON
Student, State University College at Oswego, N. Y.

There is a theorem in most Modern Algebra texts fundamen-
tally stating: If positive integer d is the greatest common divisor of
two non-zero integers a and b, there exist integers ¥’ and y’ such that
d = X’ a + y b, d being the smallest positive integer which is ex-
pressible in this form. This study is an elaboration on this concept
of linear expression and a characterization of the integers ¥’ and y’.

In order to discuss this, we must first understand the basic
Euclidean Algorithm method of computing the greatest common
divisor (g.c.d.). Given non-zero integers @ and b (Let us consider
a and b positive for ease of discussion since g.c.d is always positive
regardless of signs, and the use of negative integers will change only
signs not numerical values.) with b > a:

Divide b by a, yielding remainder r,

b= gqua+r a>r >0,
then divide a by r,, yielding remainder r,

a=qr, +r re>n >0,
then divide r, by r, yielding remainder r,

To = oty + T2 rn>r.>0,

All r; obtained by dividing the preceding divisor by remainder
are non-negative integers, decreasing step by step, so that ultimately
as we continue some r; = 0;

rE = gute T 1y Tm > 1y > 0,
Tm = Qpl'a + 0 re > 1, = 0.

The last positive remainder, r,, can readily be proven to be the
g.c.d of @ and b and is written r, = (a, b).

The general process for finding an 2’ and y*, and thus a linear
expression of d in terms of a and b, is based on these divisions of the
Euclidean Algorithm. Taking the cquations for the Algorithm
divisions, starting with the first, express each remainder in terms of
aand b:

105
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o = b — e = Cl)b + (—‘Io)a
n=a—ryq=a—(b— aqo)% = ("‘h)b + 1+ 4041)‘1

Ya = ¥o — g2, = Eb + (—qo)a] - g2 [C_QI)b + 1 + qoqx)a]
= (1 + q42)b + (—qo — g2 — Gog:g2)a.

(In actual practice the numbers which these letters represent can be
combined into much simpler form.) Ultimately we get down to r,
which we find equal to x’a + y’b, x* and y’ being sums and products
of integers and thus integers themselves, as prescribed by the
theorem.

An illustrative example of finding the g.c.d and a linear ex-
pression of it is shown here:

(ah) = d
(24,110) = 4
To find the g.c.d.:
110 = 4(24) + (14D
24 = 1(14) + (10)
14 =1010) + ( 4
10=2C 4)+(C 2)
4=2(2)+C0)
Therefore 2 = (24,110).
d=ax'+ by
2 =24x + 110y
To find the linear expression:
14 =110 — 4(24) = b — 4a
10=24—14=a—14=a—(b—4a) =5Sa—b
4=14—-10=(b—4a) — (Sa—b) = —9a+ 2b
2=10—2(4) = (5a — b) — 2(—9a + 2b) = 23a — 5b
Therefore 2 = 23a — 5b.
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Now we should be able to compute the g.c.d of any two given non-
zero integers and obtain a linear expression of it in terms of the given
integers.

Looking at a simpler example, we know (6,9) = 3. The
theorem says the g.c.d can be expressed in a certain linear form,
which, by the method above, we find to be 3 = (—1)6 + (+1)9.
The theorem says there is always one such linear expression in
a and b of their g.c.d. and we have written the one their method
indicates. But it is also true that 3 = (8)6 + (—5)9 and
3 = (17)6 + (—11)9 and more. It would be reasonable to won-
der, as I did when I noticed this, whether this were an unusual
example or if g.c.d.’s could always be expressed in more than one
way. I then sought to find out if all g.c.d.’s could be expressed in
more than the one acknowledged way and to find a formula char-
acterizing every possible way.

Looking at the problem algebraically, we have d = (a,b) and
d = xX’a + y'b, and we wish to find more equations, if they exist,
always in the d = xa 4 yb form. Given integers a and b, integer d
is determined, and x and y are left variable. Having one equation in
two unknowns, we should realize any value for x determines a
unique value for y, so there are many solutions to the equation.
However, the difficulty here is that x and y must simultaneously be
integers, and this makes the solution unusual.

Our equations must have the form of 4 on one side and only
integral multiples of a and of b on the other. We take the equation
d = x'a + y'b to work from. In order to keep only d as the left
member, we could only multiply the equation by one or add zero,
and it would seem at first that neither of these processes would make
any change in the equation. Multiplication by the number one seems
unproductive any way that one looks at it. Addition of zero itself
would not be beneficial; no addition of a term will be beneficial
unless the term is like (#)a or (m)b, so that the coefficient of
a or of b is changed. We can add (n)a though only if we subtract
(n)a simultaneously, so the coefficient of a is still 2, and we have
made no progress. The quantity (nab — nab) could be added also,
but if we consider it (nb)a — (nbda or (nad)b — (nadb, the co-
efficient of a or of b is still x’ or y'. However, if we consider this
quantity as (nb)a — (nadb and add it, we get d = (¥’ + nb)a
+ (¥’ — nadb. In order that we keep the coefficients of @ and b as
integers, (#a) and (nb) must always be integers. We can always be
sure of this if » is one of the integers (Z), so for now we shall stipu-
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late # = z. Now the equation is d = (x* + zb)a + (¥’ — zadb.
When integer z is zero, we still have our original equation. For every
other integer z, however, we get new coefficients of 2 and b and a
completely new linear expression. Thus in every case of two integers,
their g.c.d. can be expressed linearly, according to a particular form,
in as many ways as there are integers. This is a far step from the
one linear expression the Euclidean Algorithm procedure and the
theorem guarantee.

Our next question could well be: Does this cover all possibili-
ties? or Are there any coefficients in between those in the series we
have already designated? If there are any coefficients of 2 and b
between those in d = (¥’ + zb)a + (3 — zadb and adjacent
d =[x+ (z + 1)bla + [/ — (z + 1)a]b, they must be a frac-
tion of the difference between the present coefficients. In effect
there we have added b to the coefficient of a and subtracted a from
the coefficient of b. Fractions of these differences would appear as
b/c and a/c if ¢ > 1. Is it possible that we could add to a’s coeffi-
cient such a quantity less than b and subtract from b’s coefficient
one less than a to get still more coefficients of correct form? We
could if these two quantities, b/c and a/c are both integers, but
they are only if division of ¢ into both 4 and b yields integers. This
would not be so if ¢ were irrational, so we can restrict ¢ to the ra-
tional numbers. A rational number ¢ does not always have to be an
integer to fulfill the condition that a/c and b/c be integers, but the
largest c is integer d, the g.c.d. of a and b, with all other satisfactory
¢'s being of the form d/z for every z. The larger the ¢ (and d is the
largest), the smaller the numbers a/c and b/c will be. Therefore
a/d and b/d are the smallest amounts (integers) by which we can
vary the coefficients. Consequently the formula d = (¥ + zb/d)a
+ (¥ — za/d)b, will yield every single possible linear combination
of satisfactory form.

Looking at one example, we find the basic, or Euclidean
Algorithm, equation for 6 = (12,18) to be 6 = (—1)12
+ (+1)18. Here ais 12, b is 18, dis 6, ¥ is —1, and ' is + 1.
Substituting in the formula, we get 6 = (—1 + 32)12
+ (41 — 22)18. Any z then will give us an expression which
holds, and z + 1 will give the adjacent expressions. Below we have
z = —1 through z = -3 to illustrate five consecutive expressions
in the series:

—4)12 + (+3)18

6=(
6 = (—1D12 + (+1)18
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6 = (+2)12 + (=118
6 = (+5)12 + (—3)18
6= (+8)12 + (—5)18.

Any random z (e.g. 100) will give an equally valid expression:
6 = (299)12 + (—199)18.

It could here be pointed out, parenthetically, that in practice
if the g.c.d. is obvious without going through the divisions
of the Algorithm and if one can see any linear combination,
d = x*a + y*b, that satisfies all conditions prescribed, then
d = (x* + zb/d)a + (y* — za/d)b will give all other equations
without the necessity for going through the work of finding x” and y’.

There certainly do “exist integers x’ and y such that
d = X’a-+ y'b" as the original theorem stated. As a matter of fact
there exists an infinite number of pairs of integers (x,y) in every
case. The pairs, as characterized above as coefficients, are
(' + zb/d, ¥y — za/d).

Graphic representations illustrate and add interest to these and
other concepts. Taking an equation with which we have been work-
ing: d = xa + yb, and taking a specific a and b, and thus d, we are
left with an equation in x and y. The equation is satisfied with the
coordinates anywhere along the line 4 = xa + yb. Working with
our thecorem in mind, however, we are concerned with points where
x and y are simultaneously integers. (See Figure 1). If we search

b4

— (X+zbMd, y-zald)
by

atsb
S| (X"+(z+Dbd, y'- (z+Dald)

L4 » X

FIGURE 1
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along the line we find them to be appearing at seemingly regular
intervals and, checking, find them to be agreeing numerically with
our characteristic coefficients (¥ + zb/d, y — za/d),
[¥ + (z + Db/d, ¥ — (z + 1)a/d], etc. It is because of the
fact that we continuously change the coefficients by constant values
(+b/d and Fa/d respectively) that the points of interest are dis-
tributed evenly along the line. The distance between adjacent points
is (Va* + b*)/d.

Looking at a typical example of this (see Figure 2.), we have
3 = 6x + 9y with the satisfactory values for x and y being specified
as coordinates. By the formula for distance between two adjacent
points, given above, we can see that the distance in this case is

(/62 + 92)/3, which is approximately 3.6.

1
3= 6X+9y
(2] > X
&3
&2 N\8-5
FIGURE 2 €3

The graph in Figure 2 also calls attention to something else
interesting. If we add the abscissa to the ordinate at every point and
make a note of these values, we see that these sums, designated X
(sigma), form an arithmetic progression as we move along the line.
Two adjacent points have coordinates as shown in Figure 1. Taking
the sum of the coordinates at each of the two adjacent points, we get
¥ +y + (zb—2a)/d]and [’ + y’ + (zb + b — za — a)/d].
The difference between these sums, AX (delta sigma), is
(b — a)/d, the common difference in the arithmetic progression.
The existence of such a progression could supply a method of check-
ing against omission or incorrect identification of coordinates, as an
omitted or extraneous term in the progression would indicate error.
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The graphs we have just considered were graphs in variables
x and y. Let us turn to graphs in @ and b. This means that instead of
putting into d = xa + yb specific values for 2 and b and d, we shall
put in d and the sets of x’s and y's we found in a particular case.
Looking at the equation d = x;a + y;b, one of the many we found
for some two numbers, a and b, we see that the b-intercept will be
d/y;. If we take another equation, d = x3a + yib, this will have
b-intercept d/y:. The two lines graphed of these equations will
intersect at a point, (a,b), the particular @ and b from which d and
the x’s and y’s were derived. This intersection shows that this a and
b are the only two integers with g.c.d., 4, with these coefficients in
their linear combinations! All the other lines graphed in @ and b for
the chosen series will pass through this same point.

We might expect, with the infinite number of lines we have
in any series, that all the lines would radiate all around this point,
but it turns out that all the lines lie in a very restricted area. (See
Figure 3.). If y; is the smallest positive coefficient of b, all other

b

N

d: )?al-x' b ﬂ.b
d=x asy.b

(Qd/”)

ps
7R
a7 fody)

positive coefficients of b (y,) will be larger, d/y, will always be less
than d/y, and the lines with these coefficients will intersect nearer
the origin. Similarly if y.. is the largest negative coefficient (smallest
in absolute value) of b, all the other lines with smaller negative
coefficients (y,) will intersect nearer the origin. Summarizing,
¥: and y,, are the two coefficients of b nearest zero, one on each side
of it. The b-intercepts of the lines with these coefficients, d/y; and

FIGURE 3
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d/¥m, form the outer limits of all b-intercepts, as every line in the

series intercepts the b-axis in the small segment they determine.
Let’s clarify this with an example (See Figure 4.). The g.c.d.

of 6 and 9 is 3, and the two equations with b-coefficients nearest

b
T
3= (-Na+(+)b 69
32(2)a+(~1b
(0.3
/ / e
/ (0-3)
FIGURE 4

zeroare 3 = —la + 1band 3 = 2a — 1b. Thusd/y,is3/+1 or
3, and d/y. is 3/—1 or —3. These two lines and all others from this
set will intersect at (6,9), and all b-intercepts lie in the interval
from +3 to —3. It should be noted that one of the “boundary” lines
is the graph of the basic equation, 3 = —1la + 1b. This will happen
every time that 0 < |y’| < |a/d|. We must be cautious of one case
when we consider both the basic equation and the outer limiting
b-intercepts; when a = (a,b), the long process for finding the basic
equation is inapplicable, but the logical basic equation is
d = la + Ob. Thus, with y’ = 0, there is no finite b-intercept, and
the graph is a line parallel to the b-axis. The boundaries for b-inter-
cepts, however, are still d/y; and d/ym.

Through graphic and algebraic presentations, we have scen
that the greatest common divisor of two non-zero integers can always
be expressed appropriately in infinitely more ways than just one and
that, with the orderly distribution of these expressions, this subject
proves a fascinating one to explore.



Differences Between Certain Properties of
Sets and Sequences’

CLintoN L. Woop
Student, Colorado State University

In the modern classroom set theory has become a platform
upon which many of the concepts of mathematics may be introduced.
This paper will explore the differences between the concepts of
dense point and cluster point of sets and the concepts of limit and
limit point of sequences, and will show how sequences can be intro-
duced in terms of sets with the use of a particular class of mappings.
We will assume throughout the paper that sets are infinite unless
otherwise indicated.

In the general framework of sets we have the following defi-
nitions:

DEFINITION 1. Let X be a set. L is a dense point of X <=> X
is infinite and every neighborhood of the point L contains all but a
finite number of points of X.

DEFINITION 2. Let Xbe aset. Pisa cluster point of
X <= Xis infinite and every neighborhcod of the point P contains
an infinite number of points of X [2, p. 179].

With these definitions the following theorems can be proved:

THEOREM 1. In a Hausdorff space a dense point of a set is
unique.

Proof: Assume we have a Hausdorff space X with two dense
points L and L’. Since L is a dense point, every neighborhood of it
contains all but a finite number of points of X. And, similarly, every
neighborhood of L’ contains all but a finite number of points of X.
Since X is Hausdorff, there exist neighborhcods M of L and N of L’
such that M N N = o. But this is a contradiction and L = L’.

THEOREM 2. In a Hausdorff space, if a set has more than
one cluster point, then it has no dense point.

Proof: Assume we have a Hausdorff space X with two cluster
points P and P’, P = P’. Since both P and P’ are cluster points,
every neighborhood M of P and every neighborhood N of P’ contains
an infinite number of points of X. And since X is Hausdorff there

1 Prepared in a National Science Foundation Undergraduate Education Program at
Colorado State University under the direction of Professor E. R. Daal.
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exist neighborhoods M’ of P and N’ of P’ such that M’ N N’ = o.
Then neither P nor P’ can be dense points of X since there exists
an infinite number of points outside of M’ and an infinite number
of points outside of N’. Similarly, no other point of X can be a dense
point.

Observe that the proofs of these theorems rest quite strongly
upon the assumption of a Hausdorff space. The following example
and next two theorems show that this assumption is not only impor-
tant but also essential in the above proofs.

EXAMPLE 1. Let X = {(x,y) [xe Rand y ¢ R (R = reals)}.
Define the neighborhoods of X in the following way [3, p. 30]. A
neighborhood of a point (ao,bo) is any set of points (x,y) which
satisfies the following conditions:

1. foranye > 0, |x — a] < ¢, and
2. ye R

With neighborhoods defined in this way, all the points (xo,y) with
x coordinate the same lie in the same system of neighborhoods and
for any neighborhood M of (xo,y) and any neighborhood N of
(x0,y’), M N N £ 0.

THEOREM 3. In a non-Hausdorff space a dense point of a
set is not necessarily unique.

Proof: Let X = {(x,y) | x = 1/n, for n an integer > 1, and
y = b (b fixed))} and let neighborhoods be defined as in Example 1.
The point (0,b) is a dense point of X since every neighborhood of it
contains all but a finite number of points of X. But the point
(0, b + 1) is also a dense point of X for the same reason.

THEOREM 4. In a non-Hausdorff space, if a set has more
than one cluster point, then it may have a dense point.

Proof: Let X and neighborhoods be defined as in Theorem 3.
Then X has both (0,b) and (0, b + 1) as cluster points. But these
points are also dense points since every neighberhood of each point
contains all but a finite number of points of X.

Now the concepts of limit and limit point of a sequence can be
introduced as analogous to the concepts of dense point and cluster
point of a set. We do this by introducing a particular class of
mappings of the type f: I — A (we shall refer to this class as type )
where [ is the sct of all positive integers and A is any set. [1,p.16]
If for each element n of I we asseciate the unique point f(#) ¢ A and
agree to call the associated point u,, then we say that the mapping
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has determined an indexing operation between the points of A and
the set of all positive integers. The set of all points {u,} of A which
have been indexed by elements of I we will call the sequence asso-
ciated with the set A by the particular mapping f: I — A. Since we
do not require the mappings of type S to be one-to-one (although we
do require them to be onto), each point in A may be associated with
more than one positive integer. This allows us to define a sequence
on any finite as well as an infinite set. And since we may make use
of an infinite number of mappings of type S to define a sequence on
a set A, there are an infinite number of sequences that can be asso-
ciated with any given set. Consider the following finite set.

EXAMPLE 2. Let A = {a,b}. Let f(#) = a for n odd and
f(n) = b for n even, This particular mapping of type S gives rise
to the following sequence:

a,bab,ab, *¢-
On the same set A we might define a different mapping of type S.
Let f(n) = afor 1 < n < 4 and f(n) = b for n > 4. This
mapping of type S gives rise to the following sequence:

a,aa,abb, ¢
Thus by using the infinite possibilities of mappings of type S, an
infinite number of sequences can be associated with any set.

By using a mapping of type S we can associate a sequence with
a set and define the limit and limit point of the sequence as follows:

DEFINITION 3. Let X be a Hausdorff space, A C X, and
let f: 1 > A be a mapping of type S giving rise to a sequence
(u,,}f. The sequence {u,.}:° has a limit L <<> every neighborhood

of the point L contains all the u, except for a finite number of values
of 1. (Note: this definition becomes the usual one for the limit of a
sequence if the Hausdorff space is the real line.)

DEFINITION 4. Let X be a Hausdorff space, A C X, and let

f: I = A be a mapping of type S giving rise to a sequence {u,,):),

The sequence {u,}, has a limit point P <=> every neighborhood
of the point P contains u, for an infinite number of values of ».
(Note: this definition becomes the usual one for the limit point of
a sequence if the Hausdorff space is the real line.)

With these definitions, theorems analogous to Theorems 1
through 4 can be proved:
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THEOREM 5. In a Hausdorff space, the limit of a sequence
of points is unique.

Proof: Let X be a Hausdorff space, A C X, and let a sequence
{#.)" be defined on A by a mapping f: I — A such that both L and

L’ are limits of {u,.}'f. Since L is a limit of {u.},, every . neighbor-
hood M of L contains all the u, except for a finite number. of values
of n. And since L’ is a limit of {,)}, every neighborhood N of L’

~ contains all the u, except for a finite number of values of ». But
+ since X is Hausdorff, there exist neighborhoods M’ of L and N’ of L’
such that M” N N’ = o. But then it is impossible for both L and L’

to be limits of {u,.}f for there would have to be a finite number of
the u, outside both M’ and N’. This is a contradiction and L = L',

THEOREM 6. In a Hausdorff space, if a sequence of points
has more than one limit point, then it has no limit.

Proof: Let X be a Hausdorff space, A C X, and let a sequence
{#n,}, be defined on A by a mapping f: I — A such that P and P’

are both limit points, P 5= P’. Since P is a limit point, every neigh-
borhood M of P contains u, for an infinite number of values of ».
And, similarly, for P’. But since X is Hausdorff, there exist neigh-
borhoods M’ of P and N’ of P’ such that M’ N N’ = o. Then, P is

not a limit of {u,,)?, since there are an infinite number of points
outside M’. Similarly, P’ is not a limit. And no other point can be
a limit for the same reason.

THEOREM 7. In a non-Hausdorff space, the limit of a se-
quence of points is not necessarily unique.

Proof: Let neighborhoods be defined as in Example 1. Let A
be the set {1 — 1/u| n is a positive integer}, and let a sequence

{“"},: be defined on A by a mapping of type S, f(n) =1 — 1/n
for n a positive integer. Then both (1,0) and (1,1) are limits of
{,), since every neighborhood of each point contains all the u,
except for a finite number of values of 2.

THEOREM 8. In a non-Hausdorff space, if a sequence of
points has more than one limit point, then it may have a limit.

Proof: Let neighborhoods, A, and {u,.}‘:° be defined as in
Theorem 7. Then both (1,0) and (1,1) are limit points since
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every neighborhood of each point contains #, for an infinite number
of values of n. But by Theorem 7, (1,0) and -(1,1) are both limits.

Due to the obvious analogy of Theorems 1 through 4 with
Theorems 5 through 8 and the obvious analogy of the underlying
definitions, one might believe that the distinctions between the con-
cepts of dense point and cluster point of a set and the concepts of
limit and limit point of a sequence associated with a set is not an
important one. However, a set can have a certain property without
every sequence defined on it having the same property. Consider the
following examples.

EXAMPLE 3. Let X = {x | x = nor x = 1/n, for n a positive
integer}. X is Hausdorff and has 0 as a unique cluster point (note
that 0 is not a dense point), But define a mapping of type S in the
following way:

f(n) =1 ifn=3k—2
fo) = 2 J; 1 ifn=3k—1
fn) = —>— if n = 3k

n

for k = 1,2, «**, and the limit points of this sequence are 1 and 0.
Thus, if a set has a unique cluster point, not all sequences defined
on it have a unique limit point.

EXAMPLE 4. Let X = {(x,0) | x = 1/n for n a positive
integer} U {(0,1)}. For x ¢ [0,1] define neighborhoods as
N, = (x,1] for 0 < x, < x < 1, N, = [0,1] and
N = {(%,3) |0 < x< e < 1andyeR}. Then X has 0 and
0,1) as dense points. Define the following sequence on the set X:

(Opl)y l: %: l’ l/z’ 1/3’ l; %, 1/3’ %,.'.

Then this sequence has a unique limit 0 since No = [0,1] contains
every point except (0,1). The point (0,1) is not a limit of the
sequence since there are an infinite number of points of the sequence
outside every neighborhood of it. Thus, a set can have two dense
points, and a sequence can be defined on it having a unique limit.
EXAMPLE 5. Let X = {a,b}. X has neither dense points nor
cluster points since these concepts are defined only on infinite sets.
But define f(#) = a if n is odd and f(n) = b if n is even and this
sequence has both a and b as limit points. And define f(n) = a for
1 < n < 2and f(u) = b for n > 2 and this sequence has point b
as a limit. Thus, a set may have neither dense points nor cluster
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points and a sequence can be defined on it with either a pair of limit
points or a unique limit.

These three examples show the differences between the prop-
erties of sets and sequences discussed in this paper. A sequence is
more than just a set of points, it is a set of points indexed in a certain
way by a mapping of type S. As a further difference, note that in the
proof of Theorem 7 we were able to consider the set A as-a sequence.
The following theorem presents conditions under which a set may be
considered as a sequence.

THEOREM 9. If a set X is T,, and satisfies the first axiom of
countability, then every infinite subset that has a dense point is a
sequence.

Proof: Let A be an infinite subset of X with a dense point L.
A is a sequence if there can be assigned a point in A to every positive
integral value of u. Since X satisfies the first axiom of countability,
there is a countable basis for the complete system of neighborhcods
at L. Let this system be designated by U, D U, D U; D ++ -, Since
L is a dense point, U, contains all but a finite number of points of A.
These points can be assigned to the positive integers 1, 2, ¢, n,.
Similarly, U, contains all but a finite number of points of A. The
points not already assigned to the positive integers 1, 2, +++, u, can
be assigned to the positive integers #, + 1, #, + 2,***, #,. Con-
tinuing this process, all the points of A will be assigned to a positive
integer. For assume there exists an x ¢ A which was not assigned
to a positive integer. Then x e U; fori = 1,2, ¢+, Given a neigh-
borhood N of L, there exists a neighborhood Uy of L such that
Ur C N. Hence x ¢ N, but then no neighborhood of L exists which
does not contain x, and this contradicts the fact that X is T,. There-
fore, A is a sequence.

To sum up, this paper has discussed the differences between
the concepts of dense point and cluster point of sets and limit and
limit point of sequences. And while there are obvious analogies
there are some basic differences.
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What Is Mathematics?

Danier B. LrLoyp
Faculty, District of Columbia Teachers College

That field of study which is commonly spoken of as mathe-
matics has been variously defined. Mathematicians themselves are
far from being agreed as to its nature, its definition, or its specific
purpose. Some of them like to define it vaguely as that subject
matter which is of interest to mathematicians.

Numerous interesting and fanciful definitions have proceeded
from the pen of laymen, poets and essayists. For instance, we find
the following: “Mathematics is the grammar of size and order”
(L. Hogben); “Mathematics is the science that uses easy words for
hard ideas” (E. Kasner and ]J. Newman); “Mathematics is the
language of definiteness, the necessary vocabulary of those who
know” (White); “Mathematics is the science of how not to compute”
(H. Maschke); “Mathematics is the science of drawing necessary
conclusions” (B. Pierce); “Mathematics is the subject in which we
never know what we are talking about, nor whether what we are
saying is true” (Bertrand Russell); “Mathematics is the handmaiden
of the sciences” (Eric T. Bell); “Mathematics is the queen of the
sciences” (Karl Friedrich Gauss). It appears from the last two
definitions that her sex is agreed upon, although her social position
is still in doubt.

One of the most delightful elementary modern books concern-
ing the nature of mathematics is that of Courant and Robbins en-
titled, What is Mathematics? Nowhere therein do the authors at-
tempt to tell us what mathematics is; they are content to let us see
what it is. Their only remark on this is the following succinct com-
ment appearing in the preface: For scholars and laymen alike, it
is not philosophy, but active experience in mathematics itself, that
alone can answer the question: “What is mathematics?”

Throughout its history mathematics has defied any established
definition. By its very nature it has been subject to diverse inter-
pretations by investigators. A particular definition reflects the pre-
dilections of its proponent, Perhaps no final definition of mathe-
matics will ever be given, as long as it continues to expand in scope,
direction and empbhasis.

Historically and classically mathematics was conceived as the
basic integrating factor of all learning. “Mathesis” as the Greeks used
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the word, meant “all learning.” The same word, “Mathesis” with the
same spelling, was used by the Romans. Other words used were
“litterae” (letters) and “scientia” (meaning all knowledge),—our
word “science.”

The modern inflated curriculum separates mathematics from
the natural sciences, and all exact sciences from an enlarged list of
the humanities and social studies.

Just where on the spectrum of knowledge mathematics really
belongs is still an open question. All along this wide spectral band
from physical, sensory, or vicarious experience, through the semi-
abstract, or' abstract symbol, and on into the ultra-abstract notion,
or idea, we find it allocated by various thinkers, But its placement at
any definite point encounters difficulty. Having now tracked mathe-
matics to its nesting place from different directions, it might be of
ultimate interest to ascertain whether it really exists at all. Maybe
the nest is empty. However, we shall leave this to other inquisitors!

Installation of New Chapters

EpiTEp BY S1sTER HELEN SULLIVAN

The Illinois Epsilon Chapter of Kappa Mu Epsilon was in-
stalled on May 22, 1963, at North Park College, Chicago, Illinois.
Professor J. M. Sachs, Dean of Chicago Teachers College, North,
was the installing officer. An initiation banquet was held at which

Dr. Sachs gave a lecture on “Analytic Projective Geometry”.

The charter members include the following students: Dan
Akerlund, Richard Becker, Thomas Formeller, Peter Frisk, James
Martins, Albert Morris, Peter Olson, David Schlichting, Virginia
Sundberg, David Swanson, James Swanson, Jean Zobus. Three fac-
ulty members, John Bramsen, C. A. Jacokes, and Alice Iverson were
also initiated.

New officers of Ilinois Epsilon are:

President Peter Olson
Vice President Albert Morris
Secretary Jean Zobus
Treasurer Tom Formeller

Corr. Secretary  Alice lverson



The Problem Corner

Eprrep By F. Max STEIN

The Problem Corner invites questions of interest to undergradu-
ate students. As a rule the solution should not demand any tools be-
yond calculus. Although new problems are preferred, old ones of
particular interest or charm are welcome provided the source is given.
Solutions of the following problems should be submitted on seperate
sheets before October 1, 1964. The best solutions submitted by students
will be published in the Fall 1964 issue of The Pentagon, with credit
being given for other solutions received. To obtain credit, a solver
should affirm that he is a student and give the name of his school.
Address all communications to Professor F. Max Stein, Colorado State
University, Fort Collins, Colorado.

PROPOSED PROBLEMS

171. Proposed by Robert A. Bruce, Colorado State University, Fort
Collins, Colorado.

Find x such that x* = 2. Similarly solve the equation x* = 4
for x compare the results. (A problem of this nature is found in
Knopp, K., Theory and Application of Infinite Series, 2nd Eng. ed.,
Hafner Publishing Co., New York, 1947.)

172. Proposed by James F. Rasmussen, Wayne State College,
Wayne, Nebraska.
Determine the radius of the circle shown below. (From
Analytic Geometry by John W. Cell, 1950, Third Edition, John
Wiley and Sons, Inc., New York.)

173. Proposed by ]. Frederick Leetch, Asst. Professor of Mathe-
matics, Bowling Green State University, Bowling Green, Ohio.

If G is a finite cyclic group of order », generated by 4, then the
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product of the n distinct elements is either a* (if n is odd), or a"/2
(if n is even).

174, Proposed by George Tzelepis, Ulster County Coinmunity Col-
lege, Kingston, New York.:
Consider the equations

(A x4+ 3mx+2k=0
(B) 4+ 2mx+ k=0
Suppose that k = 0.

a, Find a relation between m and k, such that equations
(A) and (B) have a common root,

b. Express k as a function of m.

c. Find the least positive, even, integer m, such that k is
rational.

d. Solve equation (A) for x and solve equation (B) for x
completely, using the values that you found for m and k.

175. Proposed by the Editor.

It is known that integers O through 112 can be expressed by
using exactly four 4's and the opperation of addition, subtraction,
multiplication, division, extracting the square root, factorial, decimal
and powers. Show how to write integers O through 20 in this man-
ner.

SOLUTIONS

166. Proposed by Phil Huncke, Pomona College, Claremont, Cali-
fornia.

Find all integers m and » which satisfy:
I. m=qx"
2. n>m

Solution by James F. Rasmussen, Wayne State College, Wayne,
Nebraska.

Solution 1: 2¢ = 42
Solution 2: (—4)% = (—2)*



The Pentagon 123
Proof:

Assume for the present that # > m > 0; then m In »
= n In m. Hence n = m 1n n/1n m. Now there exists no integer
such that m/1n m is an integer, hence 1n n/1n m is an integer and
therefore » is some integral power of m. If we let x = m, then
n =.xP, where p is some integer and p > 0. Therefore, x 1n x*
= x? In x or p = x*'. The following table gives x and p for the
first few p’s.

Y4 X
1 —m < x< w
2 2
3 V3
4 V4

We note that for p = 1, we may assign any value to x; but
then m = n, contrary to the original proposition. Hence m = x = 2
is the only permissible value—this corresponding to # = 4, and
20 = 42,

Now we note that only if m and » are both even or both odd
will (—m)" = (—#n)-". In this case, both are even and therefore
m = —4 and n = —2 represents second and final solution.

Also solved by Delia Hope Zelenko, Hofstra University, Hemp-
stead, New York; Yeuk-Laan Chui, Anderson College, Anderson,
Indiana; and the proposer.

167. Proposed by Fred W. Lott, Jr., State College of lowa, Cedar
Falls.

Identify the fallacy in the following “proof” that you are as
old as Methuselah.

Let Y be your age, M be Methuselah’s age, and A
= 1 (Y + M), be the average of the two ages. Then:
1. 2A=Y+M
2. 2AY =Y+ MY
3. 2AM = MY + M?
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4. Y2 —2AY = M* — 2AM
5. Y2 —24Y + A2 = M* — 2AM + A?
6. (Y—-AX=(M-—A)»
7. Y-A=M-A
8. Y=M
Solution by James French, Anderson College, Anderson, Indi-

ana.
From 6, (Y — A) = = (M - A).
For the (+) case, Y = M = A, the fallacy. To arrive at the
second case, start with

A=1VM+Y)
then 2A =Y+ M,or
Y—-A=—-(M-—A),

which is the (—) case.

Also solved by Phil Huneke, Pomona College, Claremont, Cali-
fornia and Yuek-Laan Chui, Anderson College, Anderson, Indiana.

168. Proposed by Leigh R. Janes, State University of New York,

Albany.

Find all integers, greater than one, which are equal to the sum
of the factorials of their digits.

Solution by Phil Huencke, Pomona College, Claremont, Cali-

fornia.

Solution: The integer 145.

Proof: 145 = 1! + 4! + 5! = 1 + 24 + 120 = 145.

Editor's Note: By considering various properties which limit
the number of possible solutions and checking the remaining num-
bers, Mr. Hueneke thought the above solution was unique. However,
the proposer has given the additional solutions of 2! = 2 and
40585 = 4! + 0! + 5! + 8! + 5), the latter discovered by the
use of a computer. Can any reader either find more solutions or
prove these three are the only ones possible?

169. Proposed by Joseph Dence, Bowling Green State University,
Bowling Green, Ohio.

In the diagram below the length of sides AC and BC of triangle
ABC are both equal to 5 units, and AB = 5v/2 units. Circles O and
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O’ are escribed. Find the distance between the two points of tan-
gency D and E,

Solution by Thomas L. Swmith, Florence College, Florence,
Alabama.

Solution: DE = § units.
Proof: Construct lines and letter intersections as in the figure

below.

Since AC = BC = 5 units and AB = 52 units, then
A ABC is a right isosceles triangle.




126 The Pentagon

If a line CF bisects Z ACB, then AF = BF = 2.5\/2 units
and a right isosceles triangle, A BFC, is formed.

BF = CF = 2.5V/2 units.

A line drawn between O and O’ passes through C. Since per-
pendicular lines between two parallel lines are equal,

O'L = CF = OG = 2.5V/2 units.
Also
OG = OE = 2.5V/2 units.

By the rule previously stated, HC = OE = 2.5v/2 units.

HK is parallel to AB (OO’KH is an isosceles trapezoid).
Therefore A HKC is a right isosceles triangle with CH = CK.
Hence HK = 5 units. But DE = HK. Thus DE = 5 units.

Also solved by Yeuk-Laan Chui, Anderson College, Anderson,
Indiana; Thomas Dence, Bowling Green State University, Bowling
Green, Ohio; Joe Dreisbach, North Texas State University, Denton,
Texas; James French, Anderson College, Anderson, Indiana; Phil
Hueneke, Pomona College, Claremont, California; Ann M. Penton,
State University of New York, Oswego, New York; James Rasmus-
sen, Wayne State College, Wayne, Nebraska; W. Carroll Reed, East
Tennessee State University, Johnson City, Tennessee; Thomas A.
Selby, Central Michigan University, Mt. Pleasant, Michigan and
Michael Symons, Bowling Green State University, Bowling Green,
Ohio.

170. Proposed by the Editor.

Square the rectangle ABCD. That is, construct a square with
area equal that of the rectangle ABCD.

A [}

] c

Solution by Yeuk-Laan Chui, Anderson College, Anderson,
Indiana.

To construct the figure (on the next page):
(1) Extend DC to E and CE = CB.
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(2) Draw a half circle with DE the diameter,

(3) Extend CB to G where CB intercepts the half circle.
(4) Use CG as one side to form a square, GCH].

(5) Then CG* = DC -+ CE or CG* = DC - BC.

(6) Thus Area ABCD = Area GCH].

Also solved by James French, Anderson College, Anderson,
Indiana; Phil Huneke, Pomona College, Claremont, California;
James F. Rasmussen, Wayne State College, Wayne Nebraska; and
W. Carroll Reed, East Tennessee State University, Johnson City,
Tennessee.

Mathematics Teachers Needed Overseas

The Peace Corps estimates that during 1964 more than 5,000
teachers will be required to meet the requests coming to it from 48
countries throughout Latin America, Africa and Asia. These teachers
will instruct on the elementary, secondary and college levels. More
than 1,000 of these teachers have been requested to teach on the
secondary and college levels in the fields of science and mathe-
matics—650 in general science, physics, biology, chemistry, botany
and zoology, and 350 in mathematics. The major requests have
come from Bolivia, Ethiopia, Ghana, India, Liberia, Malaysia, Ni-
geria, Philippines, Sierra Leone and Turkey.

Teachers who can qualify and desire to secure one of these
interesting overseas posts at the end of the current school year should
file an application at an early date. Full details and an application
form may be secured by writing the Division of Recruiting, Peace
Corps, Washington, D.C., 20525.



The Mathematical Scrapbook

EprTep BY J. M. SAcHs

Your editor has been rereading some of the Herbert Ellsworth
Slaught Memorial Papers of the American Mathematical Monthly,
particularly those devoted to geometry and topology. He recommends
these publications not only as the source of more detailed discussions
of some of the following items but as excellent orientation reading
for undergraduate students.

If we examine an axiomatic approach to a Riemannian Type
Geometry we can accept the following axioms due to David Gans
(No. 4 of the H. E. Slaught Memorial Papers, Vol. 62, Number 7,
American Mathematical Monthly):

1. A straight line is a closed line (of finite length) not inter-
secting itself.

2. Each pair of straight lines meet in exactly two points.

3. Among the lines joining two points there is one (or more)
whose length is least. (This least length line is called a
segment and its length is called the distance between the
two points.)

4. A straight line is divided into two lines by each two of its
points, and at least one of these lines is a segment.

5. Any given segment joining two points is contained in some
straight line through the points.

What is the simplest model you can visualize for these axioms? Can
you visualize other models as well? In what essentials do they
differ? Can you prove the following theorems from these axioms
alone?

1. If the two lines into which a straight line is divided by
two of its points are unequal, the lesser is a segment
joining the points; if equal, both are segments,

II. There is a straight line through each two points.
III. A unique straight line goes through two points if there
is a unique segment joining them.
If we add an additional axiom we can examine a few more theorems.

6. A straight line through two points is the only straight line
through them if, and only if, the points are non-antipodal
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on that line. (Two points that divide a straight line into
equal segments are called antipodal points of the line.)

IV. There is a unique segment joining two points if there
is a unique straight line through them.

V. Two points cannot be antipodal on one straight line and
non-antipodal on another.

VI. All straight lines bisect each other and have the same
length.

How do these theorems fit your models? What other theorems can
you develop?

=A=

The tremendous outpourings of geometrical knowledge in the
19th century ... has not affected our basic approach to classical
geometry. The new subjects form a sort of historical addition to the
edifice—it has not been rebuilt in light of them, Higher geometry
is not an outgrowth of basic geometry, but a more or less related
subject studied primarily by analytic methods ... Surely by the
middle of the 20th century, a serious attempt should be made to
rethink basic geometry in the light of the great 19th century ad-
vances, in order to achieve at least a minimum of conceptual attrac-
tiveness. If we default or fail in this attempt, geometry may disap-
pear as an autonomous branch of mathematics and be reduced to a
graphical way of describing certain results in the algebra of » vari-
ables.

—W. PreNowiITZ

=A=

If the preceding quotation is upsetting to those who love geom-
etry for its own sake, consider the following fragment from the writ-
ing of G. Birkhoff. In this he admits to, “. . . the disturbing secret
fear that geometry may ultimately turn out to be no more than the
glittering intuitional trappings of analysis.” What are your feelings?
How does geometry appear to you?

=A=

In this same geometrical vein we can examine Number 8 in the
H. E. Slaught Papers. This geometrical approach to topology by
R. H. Bing has a great deal of stimulating material in a brief presen-
tation. In reading the following definition, “A neighborhood in the
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Euclidean plane E? is the interior of a circle. If a point lies on the
interior of a circle, this interior is called the neighborhood of the
point,” a number of questions occurred to me.

1. Under what conditions is the intersection of two neighbor-
hoods of a point again a neighborhood of this point?

2. What would be the consequences of using interiors cf
triangles or squares as neighborhoods?

3. If you used triangles, what would the intersection of two
neighborhoads be?

4. If you used squares, what would the intersection of two
neighborhoods be?

5. Would the intersection of two neighborhoods, in any one
of the three cases, ever be a finite collection of non-inter-
secting neighborhoods? Would the original point always
have to be interior to one of them?

=A=
The anxious precision of modern mathematics is necessary for
accuracy, ... it is necessary for research. It makes for clearness

of thought and for fertility in trying new combinations of ideas.
When the initial statements are vague and slipshod, at every subse-
quent stage of thought, common sense has to step in to limit applica-
tions and to explain meanings. Now in creative thought common
sense is a bad master. Its sole criterion for judgment is that the new
ideas shall look like the old ones, in other words it can act only by
suppressing originality.

—A. N. WHITEHEAD

=A=

Any triangle can be inscribed in a circle. Suppose a given set
of three points, non collinear, are used to determine a triangle and
then this triangle is inscribed in a circle. If we choose a fourth point
to make the configuration a quadrilateral, under what conditions
will the quadrilateral be inscribed in the circumcircle of the tri-
angle? There are a number of ways of expressing this condition. Can
you express it in terms of the angle formed at the fourth point and
the relationship of this angle to the angles of the triangle? How many
other ways can you express this condition? Does a coordinate system
help in any of these ways?
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=A=

. . . when such a history (of mathematics in the United States)
is attempted, . .. the historian will doubtless be impressed by the
- tremendous influence of one man, E. H. Moore. In the late 1890’s
and early 1900’s, the history of mathematics in this country is
largely an echo of Moore’s successive enthusiasms at the University
of Chicago. Directly through his own work, and indirectly through
that of the men he trained, Moore put new life into the theory of
groups, the foundations of geometry and of mathematics in general,
finite algebra, and certain branches of analysis as they were culti-
vated in America. Moore’s interests frequently changed, and with
each change, mathematics in this country advanced. His policy (as
he related it shortly before his death) in those early years of his
great career, was to start some thoroughly competent man well off in
a particular field, and then, himself, get out of it. All his work,
however, had one constant direction: he strove unceasingly toward
the utmost abstractness and generality obtainable.

—E. T. BELL
=A=

Consider the problem of finding the dimensions of right tri-
angles whose sides have lengths measured by consecutive integral
numbers of units. The obvious first example is (3, 4, 5). Another
solution is (20, 21, 29). How many solutions can you find, i.e.,
how many Pythagorean triples have the form (a, a + 1, ¢)? Fermat
approached this problem as a special case of Pythagorean triples of
the form (a, @ + d, ¢). What can you discover if d = 2? Is it true
that if (a, a + 1, ¢) is a triple of integers in a Pythagorean relation
that (2a, 2a + 2, 2c¢) is also a Pythagorean triple? What about the
converse?

=A=

This must conclude my survey of the splendid accomplishments
of American mathematics . . . I have felt as a traveler in a beautiful
and unexplored country might feel who had taken his companions
to some vantage points familiar to him so that they might enjoy the
prospects which he happened to know, all the while realizing that
on the morrow they would journey together towards more grandiose
mountain peaks glittering along the horizon.

—G. D. BIRKHOFF



The Book Shelf

Epitep By H. E. TINNAPPEL

From time to time there are published books of common interest
to all students of mathematics. It is the object of this department to
bring these books to the attention of readers of The Pentagon. In
general, textbooks will not be reviewed and preference will be given
to books written in English. When space permits, older books of
proven value and interest will be described. Please send books for
review to Professor Harold E. Tinnappel, Bowling Green State Uni-
versity, Bowling Green, Ohio,

Mathematical Discourses: The Heart of Mathematical Science, Car-
roll V. Newsom, Prentice-Hall, Inc., Englewocod Cliffs, New
Jersey, 1964, 121 pages, $5.00.

This is a treatise written for the non-mathematician. Its five
parts contain material which the author believes is essential to
literacy regarding modern mathematics.

Part One discusses the earliest mathematical ideas. Included
here are such topics as counting, bases for numeration systems, meas-
urement, fractions and roots. The role of the Babylonian, Egyptian,
and Chinese cultures in these developments is presented.

Part Two describes the contributions of the ancient Greeks
(800 B.C. - 600 A.D.). A major portion is devoted to Euclid, in-
cluding some details of his writings and comments on his imper-
fections. It is in Euclid's work that we see the first illustration of a
mathematical discourse (system) i.e., the statement of axioms and
the proving of theorems,

Mathematical discourse in the development of mathematics
from the fall of Alexandria to the present is the subject of Part
Three. First the Arabs, then the Italians and other Europeans work
on the ideas initiated by the Greeks. The development of non-
Euclidean geometries is presented in some detail. The evolution of
discourses in the area we know as “modern algebra” is considered
briefly.

Brief samples of discourses which should be familiar to college
mathematics students comprise Part Four. The subtitles are Simple
Order, The Group, Plane Projective Geometry, Boolean Algebra,
and A Complete Ordered Field. In each of these a set of primary
propositions is stated and a number of secondary propositions are
stated and proved.

The final part includes three examples of how mathematical
discourse may be applied to a specific situation. These are followed
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by a discussion of applying a mathematical theory (discourse plus
interpretation) to Nature. The author suggests that man'’s attempt
to explain his own mental processes is possibly the most important
effort in this area,

The reviewer is pleased to see a work of this size and content
available. KME members of all categories should find enjoyment and
profit in reading it, despite the author’s intended audience.

—J. FreDpERICK LEETCH
Bowling Green State University

The Gentle Art of Mathematics, by Dan Pedoe, The MacMillian Co.,
New York, 1959, 143 pages, $3.95.

“This book is intended for the many people who would like to
know what mathematics is about, especially modern mathematics”.
This is an ambitious project for any book, especially one of this size.
However, within the limitations of a reasonable well prepared
reader who is not a “Niddy-Nocodle”, the author dees touch on many
amusing and instructive examples.

Chapter one discusses number representations, including the
game of Nim and a familiar coin weighing problem. Chapter two
is concerned with eclementary probability, and has an historically
interesting exchange of letters between Isaac Newton and Samuel
Pepys on a dice problem. Chapter three introduces the concept of
finite sets and their seeming paradoxes with the rationals and the
real numbers as examples. Elementary set theory and logic of prop-
ositions are introduced in chapter four, and chapter five has a good
discussion of popular combinatorial topology with some simple
models to construct.

Rules of play (chapter six) is concerned with algebraic sys-
tems, and has a good discussion of symmetry to illustrate the group
concept. Infinite series and some classical problems and paradoxes
related to them are presented with amusing anecdotes in chapter
seven. Chapter eight devotes only eight pages to logical paradoxes and
the foundations of mathematics, but does touch on the leading
questions. The book concludes with a brief discussion of “What is
Mathematics” and what is mathematical discovery.

The author does a fine job of presenting many of the facets of
modern mathematics in an informal, often whimsical way, and per-
haps his only fault is that he makes it seem too much a game.

—R. N. TownseND
Bowling Green State University
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New Directions in Mathematics, edited by Robert D. Ritchie, Pren-
tice-Hall, Inc., Englewood Cliffs, New Jersey, 1963, 124 pp.,
$4.95.

A conference having the same title as this volume was held
at Dartmouth College in November, 1961. The proceedings were
recorded and transcribed with very little editing to form the con-
tents of the book.

The principal speakers were Messrs. R. C. Buck, S. Eilenberg,
L. Henkin, M. Kac, 1. Kaplansky, P. Lax, E. E. Moise, H. O. Pollak,
W. E. Slesnick, J. L. Snell, and A. W. Tucker. Each was encouraged
to be visionary and incautious in his predictions. The program con-
sisted of four panels which dealt with new directions in secondary
school, college, applied, and pure mathematics.

Some of the topics presented and discussed were the completion
of present second year graduate work by eighteen years of age,
general college mathematics requirements if such predictions become
a reality, a computer appreciation course, the desirability of breadth
in mathematical interest, the role of physics courses in mathematics
education, and the use of abstract and concrete approaches in
teaching.

The informal nature of the proceedings, the lack of editing,
and the candid photographs of the speakers give the reader an oppor-
tunity to become better acquainted with some of the leaders of today's
mathematics.

—J. FREDERICK LEETCH
Bowling Green State University

BOOKS RECEIVED

A Survey of Basic Mathematics, Fred W. Sparks, McGraw-Hill Book
Company, Inc., New York, 1960, 257 pp., $3.95.

Introduction to Differentiable Manifolds, Serge Lang, John Wiley &
Sons, Inc., New York 16, 1962, 126 pp., $7.00.

Boundary and Eigenvalue Problems in Mathematical Physics, Hans
Sagan, John Wiley & Sons, Inc., New York 16, 1961, 381 pp.,
$9.50.

Perturbation Theory and the Nuclear Many Body Problem, Kailash
Kumar, John Wiley & Sons, Inc., New York 16, 1962, 235
pp., $9.75.

Stochastic Service Systems, John Riordan, John Wiley & Sons., Inc.,
New York 16, 1962, 132 pp., $6.75.
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An Introduction to the Theory of Stationary Random Functions,
A. M. Yaglom, Prentice-Hall, Englewood Cliffs, New Jersey,
1962, 229 pp., $7.95.

The Mathematical Theory of Optimal Processes, L. S. Pontryagin,
V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko,
Interscience Publishers, John Wiley & Sons, Inc.,, New York
16, 1962, 360 pp., $$11.95.

The Theory of Storage, P. A. P. Moran, Methuen’s Monographs on
Applied Probability and Statistics, John Wiley & Sons, Inc.,
New York 16, 1961, 163 pp., $3.00.

Error-Correcting Codes, W. Wesley Peterson, The Massachusetts
Institute of Technology Press and John Wiley & Sons, Inc.,
New York 16, 1961, 285 pp., $7.75.

Dynamic Programming and Markov Processes, Ronald A. Howard,
The Massachusetts Institute of Technology Press and John

- Wiley & Sons, Inc., New York 16, 1960, 136 pp., $5.75.

Readings in Mathematical Psychology, Vol. 1, edited by R. Duncan
Luce, Robert R. Bush, Eugene Galanter, John Wiley & Sons,
Inc., New York 16, 1963, 535 pp., $8.95.

Handbook of Mathematical Psychology, Vol 1, edited by R. Duncan
Luce, Robert R. Bush, Eugene Galanter, John Wiley & Sons,
Inc., New York 16, 1963, 491 pp., $10.50,

Handbook of Mathematical Psychology, Vol. I1, edited by R. Duncan
Luce, Robert R. Bush, Eugene Galanter, John Wiley & Sons,
Inc., New York 16, 1963, 606 pp., $11.95.

Fifteenth Biennial Convention
April 25-27, 1965

According to an announcement from National President Loyal "
F. Olimann, the fifteenth biennial convention of Kappa Mu Epsilon

will be held on the campus of Colorado State University, Ft. Collins,
Colorado on April 25-27, 1965. Students are urged to prepare papers
to be considered for presentation at the convention. Papers should
be submitted to Professor Harold E. Tinnappel, National Vice-Presi-
dent, Bowling Green State University, Bowling Green, Ohio, before
February 1, 1965. See pages 114-115 of the Spring 1962 issue of
The Pentagon for directions with respect to the preparation of
such papers.




Kappa Mu Epsilon News

Epitep BY ]J. D. Hacearp, HisTORIAN

Alabama Beta, Florence State College, Florence.

Sixty members and guests from eighteen different years, includ-
ing five charter members, attended a coffee hour sponsored by the
chapter during homecoming.

Five members attended the fourteenth national biennial con-
vention.

Programs this year have featured such student papers as: “Our
Research Program is Korea”, and “Job opportunities in Mathematics”,
and a film “Modern Mathematics.” Social activities included a
Christmas party and an annual picnic.

James Weatherbee, a 1963 graduate, is a graduate assistant in
mathematics at the University of Kentucky.

Alabama Delta, Howard College, Birmingham.

Dr. R. D. Anderson of Louisiana State University gave the
principal address at an initiation held on February 25,

The chapter has conducted a number of programs for the
Mathematics Club this year.

California Gamma, California State Polytechnic College, San
Louis Obispo.

We are conducting monthly meetings and have student, faculty,
and guest speakers. Together with the Mathematics Club, we are
sponsoring a series of programs on “New Math” for the parents of
school children in the county. We will again be helping our mathe-
matics faculty to conduct an annual mathematics contest for high
school seniors in the state of California.

Illincis Alpha, Hlinois State University, Normal.

The activities of the chapter have proven quite successful so
far this year. In September we initiated ten pledges into active mem-
bership and accepted twenty-five new students as pledges. In October
we were very fortunate to have Dr. Paul Weichcel from the Univer-
sity of Illinois speak to us on “Comma Free Codes: Nature's Dic-
tionary”. Also, in October, KME participated in homecoming ac-
tivities by building a float in conjunction with the mathematics
club, which received a sixth-place prize, and by having a home- -
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coming breakfast. Over sixty persons attended the breakfast which
featured Dr. Drew as the main speaker. In November two pledge
papers were presented, and found to be stimulating. Throughout the
semester there was considerable discussion concerning the academic
standards of the Illinois Alpha Chapter of KME but we decided not
to change them. In December the annual Christmas party was held
and in January a book sale was conducted. We are looking forward
to continued success throughout the year.

Illinois Delta, College of St. Francis. Joliet.

We have devoted our meetings this year to discussions concern-
ing the teaching of mathematics, organizing mathematics clubs, and
the “New Modern Mathematics Program.” Our chapter consists of
all future mathematics teachers.

Illinois Epsilon, North Park College, Chicago.

Our programs this year have included the following: “The
Mathematics of Fretted Instruments” by Carl Geis, student; “Strict
Implication and Multivalued Logic” by Peter Frisk, student;
“Fibonacci Numbers” by C. A. Jacokes, faculty; “On the Geneology
of Families of Lines” by a guest speaker, Dr. A. Seybold, Chairman
of the Department of Mathematics, North Central College, Naper-
ville, Illinois; “An Introduction to Linear Programming” by Peter
Olson, student.

We are anticipating the visit to our campus on April 27, 28,
1964, of Dr. Arno Jacger, lecturer for the Mathematical Association
of America. Dr. Jaeger will give three lectures and be honored at
two coffee hours during his visit to our campus. The initiation
banquet for new members will be held during this time.

Several members are planning to attend the regional conference
at Bowling Green, Ohio.

Indiana Gamma, Anderson College. Anderson.

Two of last years graduates have received graduate appoint-
ments. John Howland is an Assistant Instructor of Mathematics at
Ohio State University and Owen Kardatzke has an Atomic Energy
Commission Fellowship at the University of Maryland.

Kansas Alpha, Kansas State College of Pitisburg, Pittsburg.

Joe Jenkins and William Livingston were the recipients of the
Robert Miller Mendenhall award as the oustanding senior mathe-
matics major for 1962-63 and were presented a KME pin each. Both
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of these students are continuing their studies at the University of
Illinois where they have graduate assistantships.

Robert Lohman and Clark Engel, graduate assistants at KSC,
have received graduate assistantships for 1964-65 at the University
of Iowa and the University of Kansas, respectively.

Representatives from Phillip Petroleum Co., Bartlesville, Okla-
homa, presented a panel discussion on their work in linear program-
ming at the December meeting. Three of the participants were
KSC alumni, including KME member Eddie Grigsby.

Kansas Delta, Washburn University, Topeka.

Ceremonies were conducted on December 11, at which time
twenty-nine new members were initiated, including the following
faculty: Lewis Huff, Leroy Moffitt, and Dr. Harold Sponberg. Dr.
Harold Sponberg, Washburn president, was the principal speaker,

Kansas Gamma, Mount St. Scholastica College, Atchison.

Major papers presented this semester have been: “An Applica-
tion of Groups to the Theory of Equations” by Miss Martha Heidlage
(a product of her Summer Undergraduate Research at the University
of Oklahoma); “Linear Programming” by Misses Jeanne Beyer and
Virginia Voigt (a product of summer work experience at A. T. & T.);
“Infinite Sets” by Miss Ann Daly; “Factorial Analysis” by Miss Sheila
Catrambone. i

Dr. George Springer was guest lecturer in December, when he
presented three major lectures.

Kansas Gamma Chapter also took a trip early in November to
the United States Government Storage Caves located on the outskirts
of Atchison, Kansas.

Maryland Alpha, College of Notre Dame of Maryland, Balti-
more.

During the year 1963-64, the members of Maryland Alpha
visited the Computer Center of Bendix Radio Corporation in Balti-
more. At the monthly meetings the following topics were discussed
by the members: “Mathematics in Art,” “Mathematics in Music,”
“Quaternions as Matrices,” “Set Theory in Plane Euclidean Geom-
etry,” and “The History of Early Chinese and Japanese Mathe-
matics.” Dr. John P. LaSalle, co-director of the Mathematics Division
of RIAS spoke in February. In April, Mr. William Gerardi, Mathe-
matics Supervisor for Baltimore City schools will speak on the
“Human Values of Mathematics.”
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Michigan Alpha, Albion College, Albion.

Some of the programs presented during this year include:
“Spherical Trigonometry and Applications,” by Miss Aurora Reyes,
visiting teacher from the Philippines; “Analog Computers,” a film
and talk by Robert Parritt, a senior student, doing independent study
on our analog computer; “Measure Theory and Lesbegue Integration”
by Miss Lynn Marshall; “Some Fundamental Theorems of the
Theory of Games,” by Miss Dorothy Cooper.

Initiation was held in February at which time a number of
pledge papers were presented in partial fulfillment of the require-
ments for membership.

Michigan Beta, Central Michigan University, Mt. Pleasant.

During this school year the chapter is sending out teams of
members to meet with interested high school students in their local
schools.

Mississippi Gamma, Mississippi Southern College, Hattiesburg.

New members initiated during the Fall Quarter of 1963 in-
clude: Katie L. Duncan, Andrea F. Ford, Mary F, Hicks, John R.
Hicks, Bill Owen, Linda C. Smith, Ronald C. White, Gert Winter.

Missouri Alpha, Southwest Misgouri State College, Springfield.

We initiated the largest group this fall in the history of the
chapter.

Our eligibility requirements have been raised; new members
must now have a “B” in the first calculus course, or must have
completed 8 hours beyond this course. In either case an overall “B”
average must be maintained in all mathematics courses.

The featured speaker this semester was Dr. Carl V, Frona-
barger, past national president of Kappa Mu Epsilon, whose topic
was “Isoparametric Equations.”

Missouri Beta, Central Missouri State College, Warrensburg.

Dr. Claude H. Brown gave an address at the October meeting
on “The Nature of Proof.” Dr. Hemphill discussed graduate pro-
grams in several adjoining states at the November meeting. Initiation
ceremonies were held January 21. A program will be presented later
in the semester by the Computer Department.

Nebraska Beta, Kearney State College, Kearney.
Miss Ann Christensen was awarded the annual KME scholar-
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ship. Sixteen new members were initiated into the Nebraska Beta
Chapter on November 21, 1963. In April, Dr. Drury W. Wall of
Iowa University will give several lectures on some new topics in

modern algebra. The annual spring banquet will also be held in
April.

New Mexico Alpha, University of New Mexico, Albuquerque.

Beginning this semester all new initiates will be required to
present a solution to a problem from a list compiled by KME mem-
bers prior to initiation,

We are sponsoring a contest for the best paper in mathematics.
The only requirement to enter is to be enrolled at the University of
New Mexico. Only previously unpublished work (of the quality
published in the Pentagon) may be entered, and on any subject
pertaining to mathematics. There is a $25 first prize, and a $15
prize for sccond.

New York Alpha, Hofstra University. Hempstead.

The New York Alpha Chapter is honored by the election of
Prof. Loyal F. Ollmann to National President of Kappa Mu Epsilon.
Prof. Ollmann is Chairman of the Mathematics Department at
Hofstra University and has been very active in the Alpha Chapter
since its inception at Hofstra.

New York Epsilon, Ladycliff College, Highland Falls.

The first important KME event of the year at Ladycliff College
was a mathematics symposium on the numeration systems. The
speakers, Edith O'Connor and Patricia Maher, discussed the struc-
ture of the base ten system as well as the structure of other systems
of numeration, and then demonstrated the fundamental operations
in these other systems. Kathleen Fabish, Joanne Ranft, and Mary-
anne Pascale will conduct the symposium in Advanced Euclidean
Geometry. They will discuss the theory and applications of Ceva’s
Theorem, The final symposium of the year will be concerned with
Computer Systems. In addition to furthering the growth of mathe-
matics, the symposiums are designed to arouse interest and en-
thusiasm in the annual MATHEMATICS FAIR held here on the
Ladycliff College Campus. Invitations to participate are extended
to secondary and elementary schools in the surrounding area.

The New York Epsilon Chapter of KME will formally initiate
ten new members on April 13, 1964. The present members of the
Chapter are planning to invite the graduate members of the Chapter
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back for the Ceremony of Initiation as well as for the banquet which
follows.

New York Gamma, State University College, Oswego.

The New York Gamma Chapter of Kappa Mu Epsilon has
revised the initiation procedure. Formerly, the pledges on the night
of their initiation presented a solution to a problem they had been
given. This year the society voted that a paper concerning some phase
of mathematics be handed in prior to the initiation. It was also
decided that these papers be at least three pages long and such that
they could later be presented in a meeting of the society. Some of the
topics that were developed into papers are as follows:

Mathematics in Chemical Bonding

Theory of GOPS (Games of Personal Strategy)
Fibonacci Numbers

Intelligent Machines

All who are interested, from the student body and the faculty,
have been invited to attend these meetings at which the papers are
being presented. The programs have brought about a decided increase
in interest among the members.

Ohio Gamma, Baldwin-Wallace College, Berea.

Ohio Gamma accepted thirteen new candidates into member-
ship in October, bringing its total of collegiate actives to 31. (Grand
total: 240 since induction in 1947).

At each of our monthly meetings, student papers are presented.
Recent speakers and their topics include: Susan Mueller, “History
of Notation,” Kenneth Planisek, “Bolzano’s Theorem,” Richard
Early, “Mathematics of Sonic Beoms,” Thomas Burnett, “Digital
Computers,” John Skurek, “Probability and Gambling,” and William
Sigworth, “Modern Math.”

Oklahoma Alpha, Northeastern State College, Tahlequah.

Mr. Mike Reagan joined the mathematics faculty at North-
eastern State College in September, 1963, and immediately assumed
the duties of sponsor of Kappa Mu Epsilon. Mr. Reagan became a
member of Kappa Mu Epsilon in 1950 and served as president
during the school year 1951-52. He attended the Eighth Biennial
Convention in Springfield, Missouri, in 1951 as a representative of
the Oklahoma Alpha Chapter. He obtained a M.Ed. degree from
Oklahoma University in 1953, and has since done graduate work
in mathematics and physics at the University of Vermont.
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Pennsylvania Beta, La Salle College, Philadelphia.

Some of the papers presented at meetings this year include:
“Eigenvalue and Eigenvectors” by John Palitowski, “Ideal Theory”
by Richard Glascow, “Tensor Products” by Donald Savekinas,
“Affine Geometry” by Nicholas Tavani, “Determinant Theory” by
John Brophy.

Frank Testa and William Mayer, 1963 graduates of the chap-
ter, have assistantships at Purdue University where they are con-
tinuing their study of mathematics. Peter Lang, of the same class,
has a Danforth Scholarship to study at the University of Chicago.

Tennessee Bota, East Tennessee State University, Johnson City.

On January 8, 1964, the following six people were initiated
into Kappa Mu Epsilon: Bill Buckles, Fredrick Denney, Mary R.
Hurst, Barbara J. Leonard, Schery Lodter, and Ronald C., Marcum.
This brings the total membership (active and alumni) in the
Tennessee Beta Chapter to 145.

At the regular meeting, January 16, Prof. Stanford Johnson,
Director of E.T.S.U. Computing Center, gave an interesting talk.
Two KME members, Clarence Green and Tommy Martin, gave a
demonstration of prablem solving on the computer.

Virginia Beta, Radford College, Radford.

Election of officers to serve during the spring quarter and to
continue next year has been held. Initiation of new members has
been conducted. It was conducted in March.

Wisaconsin Alpha, Mount Mary College, Milwaukee.

Some of the programs this year include: October 30, Initiation
of 12 new members into Kappa Mu Epsilon; November 13, PSSC
Physics by Mr. Peacock from Wauwatosa East; December 11, “The
Story of John Glenn,” a movie loaned to the chapter by NASA. A
mathematics contest was sponsored on March 21.



