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Kappa Mu Epsilon, national honorary mathematics society, was
founded in 1931. The object of the fraternity is fourfold: to further
the interests of mathematics in those schools which place their primary
emphasis on the undergraduate program; to help the undergraduate
realize the important role that mathematics has played in the develop
ment of western civilization; to develop an appreciation of the power
and beauty possessed by mathematics, due, mainly, to its demands for
logical and rigorous modes of thought; and to provide a society for
the recognition of outstanding achievements in the study of mathe
matics at the undergraduate level The official journal, THE PENTA
GON, is designed to assist in achieving these objectives as well as to
aid in establishing fraternal ties between the chapters.



Conformed Mapping *
Eugene C. Pringle

Student, Butler University

Before we develop a definition of conformal mapping, let us
first consider the general conceptof mapping. A definite association
between those points of the complex plane representing the values of
z and those representing the values of w is established by the relation
w = /(z). For convenience it is customary to represent the z-points
in one plane, called the Z-plane, and the w-points in anotherplane,
called the W-plane. A relationship exists between these two planes
which is somewhat similar to that possessed by the two co-ordinate
axes in the consideration of functions of a real variable. As the point
P traces any curve C in the Z-plane, the corresponding point Q will
trace a curve S in the W-plane. The relation between die two curves
C and S is expressed by saying that the curve C in the Z-plane is
mapped upon the W-plane, thus providing us with the curve S in the
W-plane. Usually it is convenient in discussing the general proper
ties of mapping to speak of the mapping of the one plane upon the
other rather than of the mapping of some particular configuration
from the one plane upon the other.

Now that we have established the broad concept of a mapping
let us narrow this concept to that of mapping which is conformal.
Let Ci and C2 by any two smooth arcs through a point Zo of the Z-
plane having as images under the mapping w = /(z) two smooth
arcs Si and S2 in the W-plane which pass through the point w0, the
image of Zo. If the angle y at z0 from Ci to C2 is the same, both in
magnitude and sense, as the angle at w0 from Si to S2, the mapping
w = f(z) is said to be conformal at the point z0.

Now that we have an understanding of what constitutes a con
formal mapping I shall state the following useful theorem and indi
cate a proof.

THEOREM: The mapping of the Z-plane upon the W-plane by
meansof a function w = f(z) is conformal at each point where f(z)
is analytic and the derivative f(z) is not zero.

Let /(z) be a function which is analytic at a point Zo of the
Z-plane. Because / is analytic at z0 the derivative of / at Zo exists.

A paper presented at a Regional Convention of KME at St. Mary's Lake, Michigan
on April 28, 1962.
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Moreover, if we assume that f (z0) =£ 0, the argument 0O (0 ^
0„ < 2 w) of f (zo) in the polar representation

fCzo) = Roc'̂ o

has a unique value. If C is any curve through Zo, it can be shown
that the directed tangent to C at Zo is rotated through the angle 0o
by the transformation w = /(z). Because the angle 0O is determined
only by the function f(z) and the point Zo, it is the same for all
curves through Zo; thus it follows that the mapping w = /(z) is
conformal at z,>.

I shall now utilize the above theorem by choosing two analytic
functions to serve as examples of conformal mappings. Let us first
consider the transformation

w = cz,

where z and w are complex variables and c is a complex constant.
Writing w = pe'*, z = re1*, and c = riC*'i the above equation be
comes

pe1* = rte'^re*' = nre119'-* ".

This leads to p = nr and 0 = 0X + 8. As a result, the origin maps
into the origin, all distances from the origin are multiplied by the
constant n, and all straight lines which pass through the origin are
turned through the constant angle 9X. The following diagram serves
to illustrate these points.
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As a final example let us consider the mapping

w = z".

If we rewrite z and w so that z = r(cos 6 + i sin 0) and w =
p(cos 0 + i sin 0), the preceding equation becomes

p(cos0 + i sin 0) = [>(cos 6 + i sin 0)3"
= rB(cos n$ + i sin h0),

from which we obtain the relationships p = rn and 0 = »07"Thus a
circle about the origin in the Z-plane maps into a circle in the W-
plane and a straight line through the origin in the Z-plane trans
forms into a straight line through the origin of the W-plane. The
relation between 0 and 0 tells us that (l/«)th of the circle in the
Z-plane maps into the whole of the circle in the W-plane; as a re
sult, any sector bounded by two half-rays from the origin which
make an angle of 2tt/m radians with each other is transformed by
the mapping w = z" into the entire W-plane. The values of 0 cor
responding to the chief amplitude of w lie in die interval
— IT < 0 < IT.

As an illustration of this let us consider the sector bounded by
OR.! and OJR2, making the angles w/» and —ir/n respectively with
the positive x-axis. This mapsin a continuous, single-valued manner
upon the entire W-plane.

UJnykLATBi*-

The lower bank of the line ORj maps into the upper bank of the
negative axis of reals in the W-plane. Similarly, the upper bank of
ORs maps into the lower bank of the negative axis of reals of the
W-plane.

As the above discussion and illustration point out, the mapping
is not conformal at the origin of the Z-plane. But this does not con-
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tradict the theorem introduced earlier, since the derivative of the
function f(z) = z" is zero at this point, provided that it is greater
than 1. As is apparent, the mapping is conformal everywhere else.

This ends my discussion on conformal mapping. For further
information as to the properties and applications of this interesting
and useful concept I refer you to the references listed in the bibliog
raphy which follows. In concluding I wish to acknowledge the in
valuable aid of Dr. Kaj L. Nielsen of the Mathematics Department
of Buder University, who acted as my adviser on this project.
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Mathematical reasoning is deductive in the sense that it is
based upon definitions which, as far as the validity of the reasoning
is concerned (apart from any existential import), needs only the test
of self-consistency. Thus no external verification of definitions is re
quired in mathematics, as long as it is considered merely as mathe
matics.

—A. N. Whitehead



The Rotation Group of a Tetrahedron
Janet Dorman

Student, State College of Iowa

"The rigid motions of a three-dimensional euclidean space
constitute a group" [6, p. 41]*. Such a group is formed when a
regular polyhedron is rotated so that symmetries result. "A symmetry
of a geometrical object is any movement of that object which brings
it into coincidence widi itself [3, p. 1], These symmetries are the
one-one transformations which preserve distances on the polyhedra,
and "they are known as 'isometries' . . ." [2, p. 124]. In this paper
I shall be particularly concerned widi the isometries of a tetrahe
dron. It will be shown that rotations of this geometrical object con
stitute a group.

"A uniform triangular pyramid is a regular tetrahedron" [4, p.
102]. Having four faces, the figure has three sides per face with
three faces meeting at each of the four vertices. There are six edges.
By rotating the tetrahedron about each axis formed by connecting
each vertex to the center of the opposite face, nine different sym
metries may be formed with successive rotations of 120 degrees.
Three more symmetries are obtained by rotating the tetrahedron 180
degrees on each of the three axes formed by joining the midpoints of
the opposite edges, thus resulting in a total of twelve different sym
metries. The resulting positions of the various faces of the tetra
hedron under each of the rotations are shown in the figure on page
72. All rotations are positive, i.e., counterclockwise.

To show that the isometries of a tetrahedron constitute a group,
we must show that the definition of a group is satisfied. A group is
a non-empty setof elements, G = {g„ g2, g3, ♦ • •, gfl), with a single
valued binary operation, • , defined on it such the the following
conditions are satisfied: 1) Closure: (gi • g2) is contained in G for
every g, and g2 contained in G; 2) Associative Law: (gt • g2) • g3 =
gi' Cg2 *&); 3) Existence of an Identity: there is an element, I, con
tained in G such that J • g = g, for all g contained in G; and 4)
Existence of an Inverse: for every g contained in G there exists an
element, g'1, contained in G such that g"1 • g = g • g-1 = I [5, p.
4]. If the group G satisfies the commutative law, i.e., gi • g2 =
g2 *gi for every gx and g2 contained in G, then the group is said to

* The first numbor in tho brackoto refers to the reforoncos at the end of this articlo;
tho second number donotoa the page in that referenco.
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be abelian. Not all groups are abelian, so it will be considered later
in this article whether the rotation group of a tetrahedron is abelian
or not.

We will now define the set T as the set of twelve isometries of
a tetrahedron shown in the diagram, i.e., T = {A,B,C,D,E,F,G,Z,
HJ,K,L). The single valued binary operation, • , for the set T we
will define to be a combination of successive rotations of the tetrahe
dron. For example, A • B is the single isometry that has the same
effect on the tetrahedron as first doing A then following this with B,
A table showing the results of the operation * on any two elements
of the set of isometries of a tetrahedron follows:

• A B C D E F G H I J K L

A B I G L J D K E A H C F

B I A K F H L C 7 B E G D

C E L D 1 K G 7 B C F A H

D K H I C A J F L D G E B

E L C ; H F I A K E B D G

F G J B K I E L D F C H A

G 7 F I A C K H I G D B E

H D K E 7 L B I G H A F C

I A B C D E F G H I 7 K L

J F G H E D A B C J I L K

K H D F B G C E A K X I 7

L C E A G B H D F L K 7 I

Now we must show that each of the conditions for a group is
satisfied. First let us consider whether the operation * is closed for
the set T. An examination of the table above quickly shows that this
operation is closed for T, i.e., that (any element of T) • (any ele
ment of T) = (an element of T). This would be obvious without
the table, as well, since the results of all possible rotations of a tetra
hedron are elements of T.

Secondly we must show that the associative law holds for the
operation • on set T. For example, A • CE ' K") = (A • E) • K if
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the associative law holds. E • K = D and A • E = J, according to
the table; therefore, A*D = J*Kifthe associative law holds. A
glance at the table shows that A'D = L, and J • K = L, sowe have
shown that the associative law does hold in this case. Similarly by
examining all other cases in this manner, it can be shown that the
associative law holds in every case. This, however, would be quite a
task, since there are 123 = 1728 possible cases. The number of
cases to be examined could be reduced to 11s = 1331 by noting
that the associative law must be true for any one of them involving
the identity element, but this still leaves a sizeable number of cases.
Fortunately, the associative law may be proved to hold for any set of
transformations, so we may apply this theorem without checking all
the cases, and conclude that the associative law does hold for the
operation • on T.

The third condition which must be satisfied is that an identity
element exists for the set and the operation •. The identity element
for the set T is 1.1 is the result of a rotation of zero degrees. Since
it is clear that any element of T combined with a rotation of zero de
grees is unchanged, we mayconclude that I • (any elementof T) =
(any element of T) • I = (that element of T), i.e., I is the identity
element for the operation • performed on the set T. Although this is
evident without the use of the table by the argument presented
above, an examinations of the tenth vertical and horizontal columns
of the table verifies that I is truly the identity rotation.

Lastly, each element of T has an inverse, i.e., (any element of
T) • (that element's inverse) = I. The truth of this statement may
be established by remembering that each element of T may be ob
tained by starting with the tetrahedron in the initial position and
performing some single rotation upon it (see the figure). We can
also produce I with a rotation of 360°. If any element of T is used
to transform the tetrahedron, its inverse will be the additional rota
tion about that axis needed to make a total rotation of 360°. Thus
the combination of the two rotations has the same effect on the
tetrahedron as I. An examination of the table shows that the fol
lowing are the actual inverses for each element of T:

A-1 = B E-1 = F l-i = j

B-1 = A F-i = £ J-x = /

C-1 = D G1 = H K-1 = K

D-* = C H-1 = G L-1 = L
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It has been verified from this discussion that the twelve sym
metries of a tetrahedron constitute a group, since all the conditions
of the definition of a group have been shown to be satisfied. Be
cause B • C does not equal C • B, the first equaling K and the second
equaling L, the rotation group of a tetrahedron is not abelian. It may
also be noted that this group is finite, consisting of only twelve
elements.

For any group, a number of subgroups exist. "A subgroup of a
group G is a set of elements of G which, by themselves, form a group
with respect to the operation defined on G. Every group G contains
the subgroup which contains the identity element alone, and also
the subgroup which consistsof the entire group G. The group G may
or may not contain other subgroups called proper subgroups" [1., p.
91]. The rotation group of a tetrahedron does have several proper
subgroups. Some of these are shown below. It may also be noted
that this entire group is a subset of the Symmetric Group in the
permutation of n objects.

• I 7

I

7

l 7

7 I

• 1 K

I 1 K

K K I

• I L

I 1 L

L L I

• A B I

A B 1 A

B I B A

I A B 1

• G H 1

G H 1 G

H I G H

I G H I

• C D 1

C D I C

D I C D

I C D I

• E F 1

E F 1 E

F I E F

I E F 1

• I 7 K L

I I 7 K L

7 7 I L K

K K L I 7

L L K 7 I
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Mathematics is the gate and key of the sciences. . . . Neglect
of mathematics works injury to all knowledge, since he who is ig
norant of it cannot know the other sciences or the things of this
world. And what is worse, men who are thus ignorant are unable to
perceive their own ignorance and so do not seek a remedy.

—Roger Bacon



Solutions of Cubics and Quarries #

Sally Littleton

Student, Albion College

Before ever attacking an equation to solve for its roots, it is
good to know something about the nature of the roots and approxi
mately where they he. One means of doing this is to find the boun
daries of the roots. The upper boundary or limit is the positive num
ber M which gives all positive (+) signs when x — M is divided
synthetically into f(x) = 0. The equation 3e3-7*2+49*-96 has
an upper limit of +8, because when the factor (at— 8) is removed
from the equation by synthetic division, all the coefficients are posi
tive.

1 -7 44 -96 J 8
8 8 416

1 1 52 320

The lower limit for positive roots would naturally be zero. For lower
limits of negative roots, one can find the upper limit of the positive
roots of /(—*) = 0 and then change the sign of the number found
C5]1. The lower limit is the number Mx which results in alternating
signs when (ac—Mi) is removed from /(*).

After finding the limits of the roots, it is next advisable to nar
row down the interval in which the roots lie. One method for accom
plishing this is given by Descartes's rule of signs. The number of
positive roots of /(*) = 0 can not exceed the number of variations
in sign of /(*) and differs from the numberof variations by an even
integer [5]. The number of negative roots equals the number of
variations of sign of f(— *) or differs from it by an even integer.
Thus

3*»-2±»+*+l = 0

may have either two positive roots or no positive roots, for there are
two variations in sign in the equation. It has one negative root, for
f( —*) has one variation in sign.

By Rolle's Theorem, more aboutthe roots can be discovered. If
/(*) = 0 is an algebraic equation with real coefficients, between

* A paper presented at a Regional Convention of KME at St. Mary's Lake, Michigan
on April 28, 1962.

l Tho numbers In brackets refer to tho Biblloaraphy at the end of this article.
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the consecutive real roots a and b of this equation, there is an odd
number of roots to f(.x~) = 0. In counting the roots here, a root of
multiplicity in is counted as m roots [7]. Similarly, between any two
consecutive real roots a and )8 of f (x) = 0, there occurs at most
one real root of f(x) = 0. If f(a) and f(j8) have opposite signs,
then there is one real root between a and /?, but there are no roots if
fCa) and f(/?) have like signs. Another thing to remember is that at
most, one real root of /(%) = 0 is greater than the greatest real root
of fix) = 0, and at most one real root of f(.x~) = 0 is less than the
least real roof of f (x) = 0 [2]. By yet another theorem, if the co
efficients of an algebraic equation f(x) = 0 are real, and if a and b
are real numbers such that /(a) and f(&) have opposite signs, then
the equation has at least one real root between a and b £7].

Thus an equation can be discussed and the nature of its roots
and their approximate location can be found before the roots are ever
actually solved for. For example

f (x) = x3 - 6*2 + 3x + 7 = 0

has two changes of sign, so there are either zero or two positive real
roots.

f(0) = + f(l) = + f(5) = -
K-l) = - f(2) = - f(6) = +

Therefore, there are roots between 0 and —1,1 and 2, and 5 and 6.
An extension of the theorems concerning the intervals around

roots is given by Sturm's Theorem. It enables one to locate exacdy
how many real roots are between two given numbers for equations
without multiple roots. It states that the number of real roots be
tween a and b of /(*) = 0, an algebraic equation with real coeffici-
cients and without multiple roots, and with a and b real numbers,
a < b and neither a root of the equation, equals Va — V0, where V»
denotes the number of variations in sign at * = h of a certain set of
functions. Sturm's functions are denoted by /GO, fi(*)> fa(.x~),
** *» fnGO, where /i(ac) is the first derivative of f(x), f2(x) equals
the negative remainder (—R) of f(.x~)/fx(x), f3(x) equals —R of
fi(x)/fz(x), and so on until a constant remainder is obtained or
until the —R equals p(,x—/t)% where h and p are real constants and
h is not a multiple root of the equation. Then the next function can
be designated by +1 if p is positive and —1 if p is negative. Since
only the sign of the fi(.x~) is of importance, any one of the functions
can be modifiedby removing a positive factor.
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For the equation f(x) = x3 — 7x + 7,

f,(x) = 3x! - 7
f2(x) = 2x - 3

f,00 = +1

Since f3 will be a positive constant, it is merely designated by a 1. By
setting up a table of values for x, the variations in sign may be
counted.

Yi
0

2

2

2

2

2

3

From the chart, it is easy to see that there are 2 roots between 1 and
2 and one root between —3 and —4. Since the interval (1,2) has
two roots, onemight try to pick some numbers between 1 and 2 and
see whether or not there was a change of sign.

X f h n u
2 + + + +

1 + — — +

0 + — — +

-1 + — — +

-2 + + — +

-3 + + — +

-4 — + — +

X f u u u v,

2 + + + + 0

1.5 — — 0 + 1

1 + — — + 2

This shows that there is one root in the interval (1,1.5) and one in
the interval (1.5,2) [7].

Budan's theorem is easier to apply than Sturm's, but it also
gives less information about the roots. Budan's functions are /(*)
plus all its derivatives, f (se) to f<n>(a:). He denoted the variations in
sign of the sequence fix), f (x), f"(x), • • •, f B>(x) by Ve (where
x has the value c and c is any real number). Then he said that the
numberof real roots of /(x) = aoXn + axxn-x + ••• + «„ = 0 be
tween a and b (a and b both real numbers, a < b, neither a root of
the equation) is either equalto V„ —Vb or is less than that quantity
by a positive even integer [2]. By this theorem, an interval can be
located in which there may be some roots. If there were three varia-
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tions in sign for f(0) and five variations for f(l), then there would
be either two real roots or no real roots in the interval. To determine
the exact number, some other method must be used.

Other properties concerning roots of equations are also known.
If a rational integral equation with rational coefficients has a root of
a + y/T>, where a and b are rational numbers and b is not a perfect
square, then the equation has a —yfB as a second root. Very similar
to this is the theorem that if an algebraic equation with real coeffici
ents has a root of a + bi (« and b being real and b =£ 0), then
a — Mis also a root of die equation [1]. In other words, complex
numbers always occur in pairs.

If a rational integral equation has all positive coefficients, then
it can have no positive roots. Also, a rational integral equation with
no missing powers and with its coefficients alternating in sign can
have no negative roots. But is some power of x is missing, the situa
tion is different. If an even number of terms, say 2m, is lacking
between two other terms, then the function hasat least two imagin
ary roots. If the function has an odd number of terms missing, say
2m + 1, between two other terms, then f(x) has at least either 2m
or 2m + 2 imaginary roots, depending on the sign of the two terms.
If they are alike, there are only 2m roots, but if they are opposite,
there are 2m + 2 roots [6].

By the factor theorem, if the value of /(x), when x is replaced
by r, is 0, then x — r is a factor of f(x) and r is a root of the func
tion [7].

After finding out something about the roots of the equation,
the next step is to solve for the roots themselves. One of the simplest
ways of doing this is by graphing the equation. To graph

x3- 12x+ 3 = 0

plot some points, find out about symmetry, intercepts, etc. The graph
of y = x3 — 12x + 3 is shown on page 81. Thus the roots are seen
to be approximately —3.6, .3, 3.3 [5].

If (x — r)fc is the highest power of (x — r) and if r is real,
then the graph of f(x) crosses the axis at x = r if h is odd. If h is an
oddinteger > 1, the graph on each side of x = r is tangent to the X
axis at x = r. But if h is an even integer, then the graph of /(x) is
entirely on one side of the X axis, near x = r, and tangent to the X
axis at x = r.

Another method for finding roots of an equation involves the
derivative of the function. If r is a root of f(x) = 0, then a neces-
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sary and sufficient condition that r be a fe-fold root of this equation
is that it be a (fe-1) fold root of f(x) = 0. One must find the
highest common factor between f(x) and f (x) and remove it from
f(x) = 0 [4]. Thus the resultingequation is one of low enough de
gree that it can be handled without trouble. The equation

Xs- 7x2+ 15 x- 9 = 0

has the roots 3, 3, 1. In order to find these roots, first take the first
derivative of f(x), which is

3x2 - 14x + 15

and apply the Euclidean algorithm. If nocommon factor canbe found
between f(x) and f (x), the equations aresaid to be relatively prime
and /(x) has no ft-fold real root. The highest common factor ob
tained upon equatingto zero the highest common factor of f(x) and
f(x) is (x-3) = 0. Thus, x = 3 is a double root of /(x) = 0.
The equation remaining after removing the factor (x — 3)2 is
x — 1 =0. Therefore, the third root is +1.

The above method works for finding roots of multiplicity but
does not applyif there are n distinct roots. For this, other procedures
must be followed. Anytime a rational rootr of the equation is known,
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the factor (x — r) should be removed by synthetic division. The
resulting depressed equation contains the remaining roots.

If the coefficients in

fl0xn + axxn-x + a2xn-2 + • • • + an = 0

are integral and real, then every rational root of the equation is of
the form c/d. An extension of this is the following method. If a ra
tional integral equation with integral coefficients has a rational root
c/d, where c and d are relatively prime integers, then c is a divisor
of an and d is a divisor of a0 [6]. Another way to narrow down the
candidates for roots is to find /(l), for c — d must divide /(l).

An example of this in the equation

10x* - 13x* + 17x2 - 26x - 6 = 0.

By the above theorem, c must divide —6,d must divide 10, and
c — d must divide —18. The candidates for x can be seen below.

c: 1,2,3,6
d: 1, 2, 5, 10

c/d: -1, ±2, 3, 4, -5, ±%, - %, y10, %, %, %, %

At this point, it is a question of trial and error. The possible roots
must be tried (the easiest way is by synthetic division) until a root
is found. One root is —1/5, a second 3/2. Upon removing the fac
tors (x + 1/5) and (x — 3/2) from the original equation,
x2 + 2 = 0 is the remaining equation. Solving this, the last two
roots are found to be ± \/2i.

Another method for solution involves the relationship between
the coefficients of the equation «0x" + axxn~1 + a2x"-2 4- • • • +
aB_!X + a„ = 0. The sum of the rootsequals —ax/a0; the sum of the
products of the roots taken two in a set, equals aja0; the sum of the
products of the roots taken 3 in a set equals —aa/a0, and so on. The
product of all the roots equals —«»/«o when n is odd and a„/a0
when n is even. These relationship may be written

«l/«o = —0i + r2 + • • • + rn)
a2/oo = Cnn + nr3 + • • • + rn-iu")

aja0 = (—l)nr,r2r3 • • • r„

The solution of a problem shows better how these relationships are
used. Let f(x), ==xs + 4x2 — 9x + fe = 0 and a = —p where
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a and /? are two of the roots. Using y for the third root, we have

aja0 = —4 = p-p + y
a2/a0 = -9 = -jff2 - )8y + fiy
ajaa = —h = —j82y

With three equations and three unknowns, the roots may be solved
for and h thereby determined [5].

Newton's method for integral roots is a method for testing roots
of equations of any degree and would be appropriate for solving
cubics and quarries. Let

/(x) = fl„xn + axX"-1 + • • • + a» = 0

be an equation with integral coefficients. In order for r to be a root
of fix), 1/r must be a root of x"/( 1/x). Let

fix) =x* - 7x2 + 15x - 9 = 0.
Then

c

d

c/d

1, 3, 9
1

±1, ±3, ±9.

To test the roots by Newton's method, the coefficients of f(x) are
written in the order a0, ax, a2, ' • •, a„. In the synthetic division of
1/r, start from the right and work left.

1 -7 15 -9 \J/i_
-1 4 -3

0 -3 12 -9

Thus the synthetic division shows that 1/r is a root of x"/(l/x),
and, therefore, r must be a root of fix) Q2].

Another method for integral roots is especially useful for equa
tions whose constant term has a great many divisors. Let d be a
divisor of the constant term and s be any integer whatsoever. If d is
an integral root of f(x) = 0, fCs) is divisible by s — d. Therefore,
all candidates for roots must divide the constant and s — d must
divide f(.s). Let

fix) =r» - 35x2 - x - 1260 = 0.

Also let s = 2, then

f(s) = -1394 = -2-17«41.
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When a divisor of 1260 is found which when subtracted from s is
also a divisor of —1394, then d may be tested by synthetic division
to determine whether or not it is a root. If s — d = ±c, where c is
a positive divisor of /(s), then d = s ± c.

1260 = 22.32.5.7 s = 2 Ks) = -2«17«41

c 1 2 17 34 41 82 697 1394

s+c 13
s—c 1

4 19

0 -15

36 43

-32 -39

84

-80

699 1396

-695 -1392

By the above test, nine divisors are eliminated (those in italics)
leaving only seven possible divisors. Upon testing those remaining,
one finds that x = 36 is one root and that the other two are imagin-
ary [2].

A special kind of equations, reciprocal equations, have an in
teresting method of solution. Although this method is used more for
quintics and higher powered equations, it is still very useful for
cubics and quartics. Let f(x) = aoX" + aiX""1 + • • • + a„ = 0,
and let the coefficients be such that

a0 = a„, ax = a„.x, a- = a„-2, etc.

An equation of this form is called a reciprocal equation of the first
class. A reciprocal equation of the second class has its coefficients
related thusly:

«o = —an, «i = — On-u o2 = —a„-2, • • •

In solvingreciprocal equations, one should first reduce them to even
degree and first class. To do this, one can use the fact that —1 is a
root of a reciprocal equation of odd degreeand first class, that +1 is
a root of a reciprocal equation of odd degree and second class, and
that 1 and —1 are both roots of a reciprocal equation of even degree
and second class. To solve a reciprocalequation, use

aoX2m + ajx21"-1 + • • • + a2m = 0

as the standard form. By dividing by xm, grouping terms, and using

«2m = «o» «2m-l = <Jl» «2m-2 = «2> * * *

the equation can be written

aQ(xm + l/xm) + a^x*""1 + l/x"*-1) + • • • + am = 0.
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Letting y = x + 1/x, each of the parenthetical expressions can be
written

x2 + 1/x2 = (x + 1/x)}- - 2 = y2 - 2
x3 -f- 1/x3 = (x2 + 1/x2)? - (x + 1/x) =y*~3y

The general relation is seen to be

Xs + 1/x* = (x*-1 + l/x*-l);y - (x*-2 + 1/x*-2)

The original equation will be of degree m when written in terms of
y. Thus, a reciprocal equation in standard form and of degree 2m
can be reduced to an equation of degree m. By solving this equation
and then substituting

y = x + 1/x

roots of the equation in y can be obtained and thus related back to
the original equation byx + 1/x = y. Let

fix) as Xs - 5x* -r 9X3 - 9x2 + 5x - 1=0.

Since it is ofodd degree and second class, +1 is one root. Upon re
moving the factor (x - 1) from fix), the resulting equation is

x4 - 4x3 + 5x2 - 4x + 1 = 0.

Dividing through by x2, one gets

x2 - 4x + 5 - 4/x + 1/x2 = 0

which, when regrouped, equals

(x2 + 1/x2) - 4(x + 1/x) + 5=0.

Substituting y = x + 1/x, the equation becomes

f - 4y + 3 = 0.

Solving for y, one gets y = 3,y = 1. Putting them back in y = x +
1/x, x is found to equal [2]

. 3 ± V5, 1 ± V3I
* 2 2

A method stricdy for cubics is given by Cardan's formulas. In
order to use them, die cubic

ax3 - bx* + ex - d = 0



86 The Pentagon

must be reduced to an equation without the x2 term (a reduced
cubic). To do this, use the relationship x = y + b/3a, thus getting
the transformed equation y3 + py —q = 0.
The roots of the reduced cubic are then

where

- -1 '
2 " ~ 2

yx = ?A +

y2 = »VA + <«! ^B
y3 = e>* ^A~ + <»

-1 + V3i, , _ -1 - V3»
<a — = a) —

a - I + J £ + 1L r - l - Jt +A_2 + \4+27' B ~ 2 \4 +
Pi
27

If the discriminant, 4p3 + 27a2, is positive, then there is one real
root and there are two imaginaries. If it is negative, another method
of solution should be used, for the roots would be imaginary. If
4p3 + 27q2 is zero, all three roots are real [7].
Let

f(x) = x3 + 63x - 316 = 0.

*=flpTT^pTTIp +$¥-VIIF7ipi
=7-3=4

y, =(Zl +Jfll) (-3) +(=1^&) 7=-2 -3VTI

ri =(=1±^L) 7+(^^) C-» =-2 +»VTI
Cardan's solution may be used when the discriminant is nega

tive, but when it is positive, it involves extracting cube roots of im
aginary numbers. An easier method to use in this case is the trigon
ometric solution. The roots of an equation of the form

x3 + 3Hx + G = 0

with a positive discriminant, equal
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2= 2V^tf cosg+2fe,r, fe = 0,1,2

where

cos 0 = —G/ly/^P.

An example of a problem solved by the trigonometric method is [4]

x3 - 36x - 72 =0.

The discriminant D = 4(3H)3 + 27G2 < 0 since H = -12 and
G = -72.

cos B = 72/2 VH4'12 = W2
0 = 30°

x» = 4V3 cos (30° + 0°)/3 = 6.8227

x2 = 4V3 cos (30° + 360°)/3 = -4.4533

x, = 4V3 cos (30° + 7200)/3 = -2.3695

Descartes's solution of the quartic

x4 + ixs + cx2 + a*x4-e=0

is a way to find the roots when the x3 term of a quartic is missing.
To get this reduced quartic, use the relationship x = z — p/4. This
leaves

z* + az2 + rz + s = 0. (1)

The left member of (1) canbe written as the product of two quad
ratic factors. To determine the factors, equate the coefficients of like
powersof z in (1) with the right side of the identity

(z2 + 2kz + j) (z2 - 2hz + m) = z« -I- (; 4- m - 4&2)z2 +
2kim — ;')z + ;m.

Thus

; + m — 4fe2 + q, 2fe(m — ;) = r, jm = s.

If k ^ 0, the first two give

2) = a 4- 4&2 - r/2fe, 2m = a + 4fc2 4- r/2fe (2)

Inserting these valuesin 2;*2m = 4s, one gets

64fes + 32afe« + 4(a2 - 4s)fe2 - r2 = 0. (3)
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By solving this as a cubic in fe2, values can be found for ; and m by
substitution in (2). Then (1) becomes

z2 ± 2hz + Vzq 4- 2fe2 qz r/4fe = 0.

It is not necessary to find all the roots of (3), for any one of them
will do. Let

fiz) = z4 - 2z2 4- 8z - 3 = 0.

Then by solving using the method suggested by Descaretes,

z4 - 2z2 4- 8z - 3 ss (z2 4- 2fez 4- j) (z2 - 2fez + m)
= z4 + i) 4- m - 4fe2)z2 4- 2fe(m - ;)z 4- jm

-2 = / 4-m - 4fe2, 8 = 2fe(m-/), -3 = ;m
2; =-2 4- 4fc2 - 8/2fe (4)

2»« = -2 4- 47c2 4- 8/2fe (5)

(-2 + 4fe2)2 - 64/4fe2 = -12
4 - 16fe2 4- 16fe4 - 64/4fe2 = -12

64fe6 - 64fe4 4- 64fe2 - 64 = 0 fe = 1

By substituting fe = 1 in (4) and (5), m —3 and; = —1. The
equationcan then be written

(z2 + 2z - 1) (z2 - 2z 4- 3) = 0

and the roots can be found by [4]

z2 4- 2z - 1 = 0 z2 - 2z 4- 3 = 0

z=-l±V2 z=l±V2i

A second method for solving quarries was given by Ferrari.
The equation

x4 4- bx3 4- ex2 4- dx + e = 0 (6)

must be written

x4 4- bx3 = —ex2 — dx — e.

The left member contains two terms of the square of (x2 4- lAbx)
Completing the square, one gets

(x2 4- Vibxy = Ytb'x2 - ex2 — dx - e
= (fc2/4 - c)xs - dx- e.

2
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Adding (x2 4- Vibx)y 4- Vty2 to each member, one gets
(x2 4- Vtbx + Yiy)2 = iVib2 - c + y)x2 4- Qfiby - d)x

4- V*y2 - e. (7)

The second member is a perfect square of a linear function of x if
and only if its discriminant equals zero.

QAby - d)2 - 4iV*b2 - c 4- y) QAf - e) = 0

may be written as

y3 - cy2 4- ibd - 4e)y - b3e + 4ce - d2 = 0. (8)

Choose any root of this resolvent cubic equation. Then the right
member of (7) is the perfect square of a linear function, say
mx 4- n. Thus

(x2 4- Vibx 4- Viy) = mx 4- «, (x2 4- Vibx + Viy) = —mx - »

Roots of these are the four roots of (7) and hence roots of (6). An
example will be worked to demonstrate how the method unfolds
under actual conditions. Let

fix) eb x4 4- 2x3 - 12x2 - lOx 4- 3 = 0.
b = 2, c=-12, d=-10, e=3

Hence, (8) becomes

y3 + 12f - 32y - 256 = 0.

The second, third, and fourth coefficients are divisible by 4, 42, and
43 respectively. Hence any integral root of y must be divisible by 4.
Let y = 4z, where z is an integer, in the above equation. By remov
ing 43 from the equation in z, one gets

z3 4- 3z2 - 2z - 4 = 0.

The integral root must divide the constant 4.

z: ± 1, ± 2, ± 4 — candidates for roots
z= -1

Therefore, z2 4- 2z - 4 = 0

z= -1 ± V5

Hencey = 4z = —4 is the only integral root.
The quartic can be written

(x2 4- x)2 = 13X2 4- lOx - 3
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Adding (x2 4- x) (—4) 4- (4) to each member[4]

(x2 4- x - 2)2 = 9x2 4- 6x 4- 1 = (3x 4- I)2
x2 + x- 2 = ±(3x4- 1)

x= 3, -1, -2± V5

A third way to solve a quartic has also been found. Let

x4 4- 40X3 + 6bx2 4- 4cx 4- d = 1

be the general equation of any quartic. Then let

g = a2 - b, h = b2 4- c2 - 2«&c 4- dg, R = 4ac/3 - b2 - d/3

j = Vi(fc 4- y/WTT3)* 4- Viih - y/hs 4- fe3)*
« = g + /> v = 2g - /, w = 4m2 4- 3fe - 12g;

and then the four roots of the quartic are [6]

Xi = —a 4- V" + Vv 4- V'", x2 = —a 4- V" - Vv +Vw

Yv- V«\ x4 = -a - V" ~ Vv_x3 = -a - \/m 4- "V v - y/w , x, = -a - y/u - \ v - y/w

The signs are said to be as written unless 2a3 — 3afe 4- c is positive.
If this is the case, then all radicals change in sign except y/w.

Not all roots are real, so it is necessary to have ways of finding
imaginary roots of the form x 4- yi of /(z) = 0. To do this, first
expand fix + yi) by Taylor's theorem

/(*) 4- fix)yi - f'ix)y2/\'2 - f"ix)?i/1-2-3 4- • • • = 0.

Since x and y are to be real and y=£0

ifix) ~ fix)y2/2\ 4- f4'(x)y4/4! = 0
\fO) - fmCx)f/3l + f5)(x)y4/5! - ... = 0 W

If fix) = 0 is of degree four or less, the second equation of (9) is
linear in y2. By substituting the resulting value of y2 in the first
equation, E(x) = 0, real roots can be found by one of the preceding
methods.

To illustrate this method, let

fiz) = z* - z 4- 1 = 0.
x4 - x 4- 1 - 6x2y2 4- y* = 0, 4X3 - 1 - 4xy2 = 0
y2 = x2 - l/4x, -4x° 4- x2 4- 1/16 = 0
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A cubic iin x2has a single real root [6]

x2 = .528727

x = ± .72714

Theny2 = .18492 or .87254

z = x 4- yi = .72714 ± .4301.

= - .72714 ± .93409i

91

Newton's method of approximating irrational roots requires a
good deal of figuring, but it is useful. Given an approximate value,
a, or a real root, one can find a closer approximation of (a 4- h) to
the rootby neglecting the h2 and h3 of a small number h in Taylor's
formula.

fia 4- fe) = fia) + fia)h 4- f'ia)h2/2 4- • • •

and hence by taking

fia) 4- fia)h = 0, h = -fia)/fia).

Repeat this process with at = a 4- h in place of a. Thus, when

/(x) = x3-2x-5 = 0 (10)

the root is between 2 and 3 [f(3) = 4-, f(2) = -]. Replace x by
(2 4- p) and

p3 4- 6p2 4- lOp- 1 = 0. (II)

Since p is a decimal, p2 and p3 can be disregarded.
For a = 2

fe = -/(2)/f(2) =1/10
aj = a 4- fe = 2.1

Replace p by (. 1 4- a) in (11) and get

a3 4-6.3a2 4- 11.23a 4-.061 = 0.

Divide —.061 by 11.23. Get —.0054 as approximate value of q.

fe, = -/(2.1)/f(2.1) = -.061/11.23 = -.0054

Neglect the a3 and replacea by (—.0054 4- r)

6.3r2 4- 11.16196r 4- .000541708 = 0

Drop 6.3r2, and solve for r. Hence £6]
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x = 2 4- .1 - .0054 - .00004853 = 2.09455147.

The value of x in any algebraic equation may be expressed by
an infinite series. Let the equation by of any degree. By dividing by
the coefficient of the term containing the first power of x, let it be
placed in the form

a = x4-fex24-cx34-dx44-ex54-^ca.--

Assume that x can be expanded in a positiveseries.

x = a 4- ma2 4- no3 + pa* 4- • • •

By inserting this value of x in the equation and by equating the co
efficients of like powers of a, the values of m, n, etc., are found.
Then

x = a - ha2 + (2fe2 - c)a* - (5tV - 5bc 4- d)a* 4- (14fe4 -
21fe2c 4- 6bd 4- 3c2 - e)a* 4- • • •

is an expression of one of the rootsof the equation. So that the series
will converge, a must be a small fraction.

Example: x3 — 3x 4- .6 = 0.

Reduced to the given form, diis is

.2 = x - xV3.

a= .2, b = 0, c = -1/3
x = .2 4- l/3(.2)3 4- l/3(.2)s 4- • •» = .20277

which is its value correct to the fourth decimal place. This equation
has three real roots, but the series gives only one. Others can be
found if their approximate values are known. Thus, one root is
about 4- 1.6. By placing x = y 4- 1.6, there results an equation in
y whose root by the seriesis found to be .0218, and hence 4- 1.6218
is another root of Xs — 3x 4- .6 = 0 £6].

A logarithmic method of solving equations involves the forma
tion of an equation whose roots are higher powers of the roots of the
given equation. To do this, an equation is first derived whose roots
are the squares of the given equation, then one whose roots are the
squares of the second equation or the fourth powers of those of the
given equation, and so on. Logarithms help with a great part of the
work. This method is especially useful when all the roots of a given
equation arereal and not equal to zero.

Let p, a, r, s denote the roots, each of which is to be a real
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negative number. Let [p] denote p 4- q 4- r 4- • • • , Q>a] denote
pa 4- ar 4- rs 4- • • • Then the general algebraic equation is

x° - [p]xn-x 4- [p«]x"-2 - [pgr]x»-s 4- {jpqrs^x11-* - • • • (12)

and the equationwhose roots equal p2, a2, r2, • • • is

yn - [p2]?"-1 4- [pY>n-2 4- [p2a2r2];yn-3 4- [p292r2s2>"-4 - «• •

in which [p2] denotes p2 + a2 4- r2 4- s2 4- • • • , |>V] denotes
p2^2 4- q'r2 4- • • • , etc. From this equation, another one may be
derived having roots p4, a4, r4, and then another p8, q*, r8, • • • This
process can be continued until an equation is derived whose roots
are pm, qm, r™, • • • where m is a power of two sufficiendy high for
the subsequent operations.

The equation is

2» —[p^z"-1 4- [pmam]z"-2 - [pmamrm]z"-s 4- • • •

Now, let p be the root of (12) which is the largest in numerical
value, q the next, r the next, etc. Then, as m increases, the value of
[pm] approaches pm, that of [pmqml approaches pmqm, that of
[_pmqmr"'~\ approaches pmqmft, etc. Hence, when m is large,
[p™] is an approximation to the value of pm and £pmqm/pm] is an
approximation to qm. Accordingly, by making m sufficiendy large,
the values of pm, am, rm, • • • , and hence those of p, a, r, • ** , may
be obtained to any required degree of accuracy. When two roots are
nearly equal numerically, it will be necessary to make m very large;
when equal roots exist, they should be removed by the usual method.

The example of this method is a quintic, but the principle
wouldapplyfor cubicsand quartics. Let

fix) six5 4- 13x4 - 81X3 - 34X2 4- 464x - 181 = 0.

The general equation is
xn - ax11"1 4- bx"-2 - ex"-3 4- dx"-* - • •» = 0

soa= -13, b= -81, c = 4-34, d = 464, e = 4-181.

The equation whose roots are squares of the given quintic is now
found from

y« _ AyM -)- Byn-2 _ Qy»-3 + £ty»-4 _ . . . = 0

A = a2 - 2b = 331, B = b2 - 2ac 4- 2d = 8373,
C = c2 - 2bd + 2ae = 71618, D = d2 - 2ce = 202988,

E = e2 = 32761
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y* - 331/ 4- 8373y3 - 71618)-2 4- 202988? - 32761 = 0.

Take logs of the coefficients. The equation is then written

y»- (2.51983) y*+ (3.92288)y»- (4.85502) j/*4- (5.30747)y- (4.51536)=0

in which the coefficients are expressed by their logs in parentheses.
The logs of the coefficients for the equation whose roots are fourth,
eighth, and sixteenth powers of the roots of the given quintic are

z»- (4.96762)z«4- (7.36364)z3- (9.24342)z24- (10.56243)z- (9.03072)=0

w»— (9.93290)io«4- (14.31934)to3- (18.14025) 1024- (21.12363)to- (18.06144)=0

«*- (19.86580)v*4- (28.29778)i>»— (36.13131) »* 4- (42.24726)w- (36.12288)=0.

The coefficients of the second, fourth, and fifth terms in the equa
tion for v are the squares of those of the similar terms in the equa
tion for w. Hence, two roots are determined.

logp8 = 9.93290 logp = 1.24161 p = 17.443

log*8 = 18.06144 - 21.12363 log* = -.38277 t = .4142

These are the values of the largest and the smallest roots of the quin
tic, but the method doesn't show whether they are positive or nega
tive. By Descartes and by trial and error, p = —17.443 and
t= 4-.4142.

To obtain the other roots, the process continues until two
successive equations are found for which the coefficients in the
second are die squares of the coefficients of the first. Since in this
case two roots lie near together, the process does not end, with five
place logs, until the 512th powers are reached. The three remaining
roots are Q6]

q = 3.230, r= 3.213, s = -1.4142.
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Letter to the Editor
Dear Editor:

I noticed the article by Andrew Robert Gale on "A Relationship
Between Determinants and Progressions" on p. 25 of the Fall 1962
PENTAGON.

It seems to me that the more general results are: (1) If the first
three elements of each row of a determinant of order n (n ^ 3) form
an arithmetic progression the determinant is zero, and (2) If two rows
of a determinant of order n (n jS 2) form geometric progressions
with a common ratio the determinant is zero.

A more general statement than (2) is that if each row of a de
terminant is a geometric progression the determinant is the product
of the elements in the first column and the Vandermonde determinant

1 Ti ri2 * * * Tin"1
1 r2 r.! • •• r-j"-1

IfjT,'..' r3»-i

If r 2 • • • r n-i
m 'n 'n

= <r» - ri> <r» ->»>••• (»"» - r»-i> <r»-i - r,) • • • (r, - r,)

Marion T. Brno

San Jose State College
San Jose, California



A Note on Modular Systems in the Plane
Harold C. Trimble

Faculty, State College of Iowa

In recent years students of the curriculum in mathematics
have made frequent use of modular number systems. From the
"clock arithmetic" of the elementary school to the "finite fields" of
modern algebra, sets of remainders from divisions of the integers by
a fixed positive integer m have provided neat examples to illustrate
severalimportant mathematical structures.

In the light of this successful experience with modular systems
in one dimension, it is surprising that nothing seems to have been
said about the possibilities of modular systems in two dimensions.
This note is written in the hope of stimulating interest in the exten
sionof modularsystems to two ormore dimensions.

Think of a set G of ordered number pairs (a,fe), 0 2s a < 6,
0 _? 2? < 5. These are the lattice points on or inside the rectangle of
Figure 1.

(5,J+)

Pig. l

Now apply the operation of vector addition to the elements of
this set. Geometrically this amounts to using the parallelogram law
to add two vectors. Figure 2 provides a reminder of the way to add
(2,3) and (5,1). Physically the vector (7,4) is the "resultant" of
the vectors (2,3) and (5,1). Algebraically the equation

(2,3) + (5,1) = (7,4)

is an application of the definition

ia,b) + ic,d) = (a 4- c,d + d)

96
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(7,k)

Pig. 2

of addition of vectors. The symbol 4-, a bold face plus sign, was
chosen to avoid confusion with ordinary addition in a number sys
tem, yet preserve the idea that this is a generalization of ordinary
addition.

To achieve closure under addition for the set G we now reduce
each number pair by reducing the first component mod 6 and the
second component mod 5. Thus (7,4) becomes (1,4) since
1=7 mod 6 and 4 = 4 mod 5. Geometrically this amounts to
counting horizontally in multiples of 6 and vertically in multiples of
5 until a point on or inside the rectangle of Figure 1 is reached. Al
gebraically it amounts to defining equality of pairs as follows:

(a.fe) = ic,d) if and only if c = a 4- 6m and d = b + 5n
where m and « are integers.

With these agreements it is easy to show that the system
(G,+) is anAbelian group. In fact, there is no difficulty in general
izing to moduli r and s to avoid the restriction to the moduli 6 and 5.

The reader should first check to be sure that vector addition is
well defined relative to the given definition of equality of pairs. The
proof is outlined below for those who are not well acquainted with
this question of the uniqueness of an operation:

Suppose

ia,b) = ic,d) and (e,f) = (g,fe)

This means, by definition,

c = a 4- rmu d = b 4- snx, g = e + rm«, h = f +. sns
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Hence

ic,d~) + (g,fe) = (c 4- g,d 4- fe)
= [fl + «+ rimx 4- m2), b + f 4- s(«! 4- «2]
= («4-e,fe4-f)
= ia,b) 4- (e,f)

In the previous steps liberal use was made of the familiar properties
of addition and multiphcation in the modular systems with the
moduli r and s. The definitions of equality of pairs and of addition
of pairs were also used. The conclusion is that "equals added to
equals yields equal results," that is, that "addition of these pairs is
well defined."

The reader should now verify the statements that follows:
(1) Closure is a consequence of the definition of equality of

pairs, and the division algorithm.
(2) The associative property is a consequence of the associa

tivity of systems of integers modulo r and s under addi
tion.

(3) The identity elementis (0,0).
(4) The inverse of (a,fe) is (r — a,s —b), since (a,fe) 4-

(r - a,s -b) = ir,s) = (0,0).
(5) The commutative property is a consequence of commuta-

tivity of systems of integers modulo r and s under addi
tion.

The fact that (G,+) is an abelian group is interesting but
rather trivial. What is more exciting is to introduce a form of scalar
multiphcation of these vectors and to investigate the resemblance of
the resulting system to a vector space.

First consider the set of 1 of integers, positive negative and
zero, and, for u e I, the product « • (a,fe) defined as follows:

w • ia,b) = iua,ub)

This is the operation of scalar multiplication, denoted by the bold
face symbol • tomaintain the connection with the ordinary product,
often symbolized by a raised dot. When the first and second com
ponents of the "product" vector are reduced modulo r and s, closure
under scalar multiphcation is obvious. That is,

ua = qxr + vx 0 _? Vi < r

ub = q2s 4- v2 0 _? v2 < s
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yield
iua,ub) = ivx,v2)

where (v„v2) belongs to G.
The reader is now invited to check the following properties of

a vector space to see whether or not they hold for the system
{G, +;I, 4-,-;-}:

Scalar multiplication is well defined.
(6) The set G is closed under scalar multiphcation by ele

ments of I.

(7) Two distributive laws hold, namely,
m• [(a,fe) 4- (c,d)] = a • ia,b) + u • (c,a*)
(«t 4- «2) • (a.fe) = ux • ia,b) + u2 • (a,fe)

(8) There is an associative law for scalar multiphcation,
namely,
(«i • m2) • ia,b) = «i • [k2 • (a,b)]

(9) There is an identity for scalar multiphcation, namely,
the integer 1, that is,

I • ia,b) = (a.fe)
Once he assures himself that all of the nine properties hold in the
system, he may conclude that it is a close relative of a vector space.
It fails only in the fact that the set I is not a field. I does not contain
the inverse for multiplication of each of its elements. For example,
given the integer 3, there is no integer x such that 3x = 1.

The maneuver of constructing a finite field from the set I by
replacing equality of integers by congruence of integers modulo a
prime integer p is well known. That is, the system

F = {0, 1, 2, • • •, p — 1} with addition and multiphcation
modulo p is a finite field. This raises the question as to whether the
system {G, 4-; F, 4-, •; •} is a vector space.

An investigation of Property (8), above, yields an intriguing
result. This associative law does not hold in general for the system
under study. For example, if r = 6, s = 5, and p = 7:

(3«6) • (2,3) = 4 • (2,3) (since 18 = mod 7)
= (2,2) (since 8 = 2 mod 6, and

12s2 mod 5)
3 • [6 • (2,3)] = 3 • (0,3) (since 12 = 0 mod 6, and

18 = 3 mod 5)

= (0,4) (since 0 = 0 mod 6, and
9 = 4 mod 5)
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The fact that (2,2) =56 (0,4) contradicts Property (8).
Now what if r = s = p? For example, what if r, s, and p are

all replaced by the prime 5? A careful check will reveal that the
system {G, +; F, +, •; •} is a vector space when both r and s are
equal to the primep.

The systems in which the restriction r = s = p is not made
lack some of the other characteristics of the more famihar vector
spaces. One might anticipate that there would be atleast two hnearly
independent vectors in such a system. That is, that there would exist
two elements (a,fe) and (c,d) of the system such that

"1 • ia,b) 4- «2 • ic,d) = (0,0)

would require «, = u2 = 0. Not so! Consider, for example,
r = s = 5andp = 7. Then

5 • ia,b) + 5 • ic,d) = (0,0)

for every choice of a, b, c, and d. Ifr = s = 7and p = 5,
2 • ia,b) 4- 2 • ic,d) = 7 • (a,fe) + 7 • (c,d)

= (0,0)

forevery choice ofa, b, c, andd.
If, however, r = s = p, then the vectors (1,0) and (0,1)

are hnearly independent. For example, if r = s = p = 5,
«* • (1,0) + Us • (0,1) = inx,u2) =£ (0,0)

unless «i = «2 = 0 mod 5.

The extension of these ideas to spaces of 3or more dimensions,
and the search for further modular systems in the plane is left to
the reader. It remains only to repeat the purpose of this note, "to
stimulate interest in the extension of modular systems to two or
more dimensions."

€
There has not been any science so much esteemed and honored

as this of mathematics, nor with so much industry and vigilance be
come the care of great men, and labored in by the potentates of the
world, viz. emperors, kings, princes, etc.

—Benjamin Franklin



The Problem Corner

Edited by J. D. Haggard

The Problem Corner invites questions of interest to under
graduate students. As a rule the solution should not demand any
tools beyond calculus. Although new problems are preferred, old ones
of particular interest or charm are welcome provided the source is
given. Solutions of the following problems should be submitted on
separate sheets before October 1, 1963. The best solutions submitted
by students will be published in the Fall, 1963, issue of THE PENTA
GON, with credit being given for other solutions received. To obtain
credit, a solver should affirm that he is a student and give the name
of his school. Address all communications to J. D. Haggard, Depart
ment of Mathematics, Kansas State College, Pittsburg, Kansas.

PROPOSED PROBLEMS

161. Proposed by Ann Penton, State University of New York,
Oswego.
Express the difference between the squares of two positive in

tegers, x and y, as a sum of |x — y\ odd integers.

162. Proposed by J. F. Leetch, Bowling Green State University,
Bowling Green, Ohio.
In the June 1962 Popular Science appears the following con

struction for a segment approximating the length of the circumfer
ence of a given circle:

Construct XY of length r, PY parallel to OX, and RQ parallel
to OX and of length 6r. PQ is then "within a hair" of the circum
ference.

If a "hair" is assumed to be .001 in. wide, find the circles for
which this approximation is correct.

163. Proposed by V. E. Hoggatt, San Jose College, San Jose, Cali
fornia.

If x < y < z solve

101
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sin x 4- sin y 4- sin z = 0
cos x + cos y 4- cos z = 0

164. Proposed by Phil Huneke, Pomona College, Claremont, Cali
fornia.
Find the positive integers, greater than one, for which the in

tegeris equal to the sum of the cubes of its digits.
165. Proposed by Fred W. Lott, Jr., State College of Iowa, Cedar

Falls.

Without using tables, determine which is larger, es or w«.

SOLUTIONS

156. Proposed byV. E. Hoggatt, San Jose State College, San Jose,
California.

Let Q= (l 1\, and Q- = (a h\ , then show that for
all natural numbers «, that a + b + c + d is one of the Fibonacci
numbers 1, 1, 2, 3, 5, ••• where F, = 1, F2 = 1, and Fm =
Fm.x 4- Fm-2form =t 3.

Also show that a2 4- fe2 4- c2 4- d2 is one of the Lucas numbers
1, 3, 4, 7, • • • where U = 1, L2 = 3, Lm = Lm.x 4- Lm-2 for
m ^ 3.

Solution by Norman Nielsen, Pomona College, Claremont,
California.

Let J„ = a 4- b + c + dwhere Q" = (a b\ .

Then since Ql = fl JV Jx = 3= F4.

Similarly since Q2 = f2 1V/2 = 5= F5.

*•*"(: i)'cVcr T).
Jntl = (a4-b4-c4-a*) 4- (a4-fc), and Q»« = f1 1V/'fl+c i+d>\

_ /(a4-c)4-a ib+d) + b\
~ \ a+c b+d ) *
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7«2 = (a4-c)4-a 4- Q>+d)+b 4- (a4-c) 4- ib+d) = J„„ 4- Jn.

Then if Jm = F, and /m+x = FM, then Jm+2 = F*+2. But for

Q\ Ji = F4 and for Q2, J2 = FB; therefore by finite induction
J» = Fn+S for all natural numbers w, and thus J„ is a Fibonacci
number.

Let K„ = a2 4- fe2 4- c2 4- d2, then K, = l2 4- l2 4- l2 4-
02 = 3 = L2 and K2 = 22 4- l2 + l2 4- l2 = 7 = L4.

Now KB+1 = ia+c)2 + ib+d)2 + a2 + b2 and Kn+2 =
(a-t-c)2 4- 2a(a4-c) 4- a2 4- ib+d)2 + 2bib+d) + b2 +
ia+c)2 + ib+d)2 = 3K„+1 - K„.

From the definition of Lucas numbers, Lm = L„-x + L„.2 or
•km-l == Lo, Lfl,-2 and Lm*i = Lm + Lm.j, Lat*2 = Lm*X 4* Lm.
Thus JUn*2 = 3Lm — Lm.2. Then if K„ = Lm-2 and Kn+1 = Lm, then
K„+2 = L„,t2. But for Q», K, = L2 and for Q2, K2 = L„ thereforeby
induction K„ = L2„ for any natural number «, thus Kn is a Lucas
number.

Also solved by Phil Huneke, Pomona College, Claremont,
California; Roger Richards, Westminster College, New Wilmington,
Pennsylvania; John W. Torbett, Southern Methodist University, Dal
las, Texas.
157. Proposed by C. W. Trigg, Los Angeles City College.

Four regular hexagons and four equilateral triangles constitute
the faces of an octahedron. Find its volume in terms of an edge e.

Solution by Norman Nielsen, Pomona College, Claremont,
California.
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The figure is the large equilateral tetrahedron of edge 3e,
minus the four smaller equilateral tetrahedrons of edge e. Therefore
the volume is

(3.)' Vl-4C'^ =|ie3V2.
12 12 12

Also solved by Phil Huneke, Pomona College, Claremont,
California; Ann Penton, State University of New York, Oswego;
Roger Richards, Westminster College, New Wilmington, Pennsyl
vania.

158. Proposed by Clinton L. Wood, Colorado State University, Ft.
Collins.

Solve the following cryptogram by finding the appropriate re
placements for the x's.

x x x x x

xxx\xxxxxxxx
xxx

x x x x

xxx

X X X X

X X X X

Solution by Karen L. Smith, State University of New York,
Albany.
We will make reference to the following diagram.

0 0

J 1 0 0
9 9

1 0

"99

There are O's in the second and fourth place of the quotient,
since there are no multiphcations shown for those places. The first
digit in the dividend and in the remainder of the first subtraction is
I, because there is no remainder in the hundred's place after the
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subtraction of the 3-digit numbers from the 4-digit numbers. In the
first subtraction only 100-99 would give 1. In the second subtrac
tion only 10-9 gives 0 provided 100 is borrowed in the minuend.
Then the second digit in the second subtraction must be 9 as in the
first subtraction.

The divisor must be greater than 111, because 111 will not
multiply by any digit and produce a four digit product as appears
in the third multiphcation.

Let d be the last digit of the first product, making it 99d,
where d may be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Then we get the follow
ing ten possibilities for 99d: 990, 991, 992, 993, 994, 995,
996, 997, 998, 999. These 10 possibilities factor as indicated:

1 X (990, 9 91, 992, 993, 994, 995, 996,

2 X (495, 496, 497, 498,

3 X (330, 331, 332,

4 X ( 248, 249

5 X (198, 199

6 X (165, 166

7 X ( 142

499 )

333)

)

)

)

)
8 X ( 124 )
9 X ( 111)

The 3 digit numbers shown are possible divisors, except 111,
and the single digit is the first and third digit in the quotient. The
last digitin the quotient can be any digit which when multiplied by
the divisor yields a 4-digit number. There are 166 possible answers.

Also solved by S. F. Cooney, St. Meinrod College, St Meinrod,
Indiana; Phil Huneke, Pomona College, Claremont, California; Nor
man Nielsen, Pomona College, Claremont, California; Dale Oldham,
Washburn University, Topeka, Kansas; Ann Penton, State Univer
sity of New York, Oswego; Roger Richards, Westminster College,
New Wilmington, Pennsylvania.

159. Proposed by the Editor.
Given a circle O of radius r and a point P outside the circle.

With compasses construct the inverse of P. That is, find P* so that
OP'OP' = r2.

Solution by Phil Huneke, Pomona College, Claremont, Cali
fornia.
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Construction: With P as center and OP as radius draw an arc
cutting the given circle in points D and C. Using D as center draw
a circle with radius r. Using C as center draw a circle with radius r.
These arcs intersect in O and in a second point P', which is the de
sired point.

Proof:

OP = DP, OD = OC = r

OD2 =J)P2 4- DP2 - 20P«DP cos(ZDPO), by the cosine law.
r2 = 20P2 - 20P2 cos(ZDPO)

or

cos(ZDPO) = 20*L- r~~
20P2

Segment DC will be perpendicular to OP at a point E. Then

cos(zdpo) = EL = QP-Qg
DP OP

Therefore

20P2 - r2 0P 20P OP - OE
20P2 OP OP

Thus

m = OE = Vl Or and OP' • OP = r2.20P
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Also solved by Joseph B. Dence, Bowling Green State Univer
sity, Bowling Green, Ohio; Robert Eldi, Hofstra College, Hemp
stead, New York; Roger Richards, Westminster College, New Wil
mington, Pennsylvania.

Editors note: No one of the four solutions proved that points
O, P* and P are on a line.

160. Proposed by Perry Smitk, Albion College, Albion, Michigan.
State a rule by means of which any repeating decimal can be

written as the sum of two rational numbers.
Solution by Phil Huneke, Pomona College, Claremont, Cali
fornia.
Let x be a repeating decimal, fe be the number of digits in the

series which repeats, and p be the number of digits in * to the right
of the decimal point and left of the first digit of the repeating series.

Then

a = 10p(10*x — x) in an integer.

* ~ 10"(10* - 1) ~ 2 • 10'(10* - 1) ' 2 • 10"(10fc - 1)
Since p is an integer and p =S 0; also fe is an integer and fe = 1,

thusfe = 2• 10"(10* —1) is an integer. Thus x = ^ + ^.
Also solved joindy by Wellington Engel and Robert Lohman,

Kansas State College of Pittsburg; Norman Nielsen, Pomona College,
Claremont, California; Andrea West, James Lick High School, San
Jose, California.

©

4-

Do not imagine that mathematics is hard and crabbed, and
repulsive to common sense. It is merely the etherealization of com
mon sense.

—W. Thomson



The Mathematical Scrapbook
Edited by J. M. Sachs

I hope that posterity will judge me kindly, not only as to the
things which I have explained, but also as to those which I have
intentionally omitted so as to leave to others the pleasure of dis
covery. (This is the concluding sentence in La Geometric)

—Rene Descartes

= A=

If p = 1 4- 2 4- 22 4- • • • 4- 2" is a prime then 2"pis perfect,
that is 2np is equal to the sum of all of its proper divisors. Let us
examine a few cases.

V — 14-2 = 3; 3 is a prime; 2 • 3 = 6 is perfect.
p = 1 4- 2 4- 22 = 7; 7 is a prime; 22 • 7 = 28 is perfect.
p = 1 4- 2 4- 22 4- 23 = 15; 15 is not a prime.

p = 1 4- 2 4- 22 4-23 + 24 = 31;31isaprime;24'31 =
496 is perfect.

Can you make a general proof? Begin by asking for all proper
divisors of 2" • p if p is a prime. Apply knowledge of geometrical
progressions to sum of all divisors.

Cardan (1501-1576) suggested that all perfect numbers con
structed as above must end in 6 or 8 and that there must be one such
between any two successive powers of 10. What do you think about
the truth of these suggestions? Can you prove them? (This method
of constructing perfect numbers is called EucUd's Rule since it was
included in his elements.)

= A =

Amathematician like a painter or a poet, is a maker of patterns.
If hispatterns are more permanent than theirs, it is because they are
made with ideas.

—G. H. Hardy

= A=

Form any six digit integer by a repetition of a three digit pat
tern. This integer will always be divisible by 7, 11, and 13.

108
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Examples:

531,531 = 7-75933, 531,531 = 11*48321, 531,531 = 13.40887.
174,174 = 7.24882, 174,174 = 11-15834, 174,174=13-13398.

Can you make a proof that any such six digit integer must be
divisible by 7, 11, and 13?

= A =

It should be noted that a mathematical system as just described
becomes merely an abstract form, and, as already implied, the same
system may occur frequendy as the underlying pattern in many di
verse real and ideal situations. Thus there is validity in the assertion
that the mathematician is less concerned with the solution of specific
problems than he is with the development of general patterns that
have widespread applicability in the study of particular situations.

—C. V. Newsom

= A =

Consider two digit integers with three digit squares. How many
can you find such that the square when the digits are interchanged
consists of the digits in the original square in reverse order? How
could we attack such a problem? One clue hes in the fact that both
squares are three digit integers. What limitations does this place on
the two original digits? Is it also true the sum of the digits in either
square is equal to the square of the sum of the digits in the original
two digit number? If so, can you prove this must be so under our
conditions?

= A=

The great notion of Group, . . . though it had barely merged
into consciousness a hundred years ago, has meanwhile become a
concept of fundamental importance and prodigous fertility, not only
forming the basis of an imposing doctrine—the Theory of Groups—
but therewith serving also as a bond of union, a kind of cerebro
spinal system, uniting together a large number of widely dissimilar
doctrines as organsof a single body.*

—C. J. Keyser

In caoo Iho reader doubts tho arithmetic, let me hasten to add tho date of this
quotation is 1908.
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=A=

A chain consists of heavy hnks. You wish to separate the chain
into componenthnks by cutting links, bending them at the cut, and
thus sliding an uncut link free from a cut one. What is the minimum
number of cuts needed for a chain of five hnks, the ends not fas
tened? How about six links? Does it change the problem any if the
links form a loop with the formerly free ends fastened together?
Suppose instead of single cuts we have a metal cutter which cuts
both links where two are hnked together. How does this change the
picture?

=A =

It is clearly and unmistakably understood that in official inter
rogations, a spy always lies and a non-spy always tells the truth.
You overhear a very deaf judge asking A,B,C, and D questions as
follows:

J
A

J
B

J
C

1
D

(to A) Are you a spy?

isoftly) No.

(to B) What did A say?

A said, "No."

(to C) What did B say?

isoftly) B said that A said "Yes."

(to D) What did C say?

C said that B said that A said, "Yes."

On the basis of this much information can you identify each
man as a spy or non-spy? Can you tell how many can be spies?

=A =

In some way or other, openly or hidden, even under the most
uncompromising formalistic, logical, or postulational aspect, con
structive intuition always remains the vital element in mathematics.

—R. Courant

=A=

In reading about Diophantus, your editor's attention was drawn
to problemsof die following type:

To find an integerwhich when added to 23 and 31 makes both
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x + 23 = n2

x + 31 = m2

Subtracting we get

8 = m2—n2 or (m4-»0 im—n) = 8.

We can find a solution by picking factors for 8. For instance we
might choose (m4-«) = 8 and m—n = 1 which would yield
m = 4.5 and n = 3.5 and giveus x = —10.75. On the other hand,
we might choose m4-« = 4, m—n = 2 since the only condition is
that the product be 8. In this case we will get m = 3 and « = 1
which leads to the solution x = —22.

Under what conditions on the original integers will there be an
integral solution for ac? The reader might consider the possibility
that m2—n2 is a prime or that it is a composite odd or a composite
even. Under what conditions will x be positive? What would x = 0
mean?

= A =

To seek for proof of geometrical propositions by an appeal to
observation proves nothing in reality except that the person who has
recourse to such grounds has no due apprehension of the nature of
geometrical demonstration. We have heard of persons who convince
themselves by measurement that the geometrical rule respecting the
squares on the sides of right-angle triangle was true; but these were
persons whose minds have been engrossed by practical habits, and
in whom speculative development of the idea of space had been
stifled by other employments.

—W. Wheweix

= A =

The advancement and perfection of mathematics are intimately
connected with the prosperityof the State.

—Napoleon I.

= A =

Many arts there are which beautify the mind of man; of all
other none do more garnish and beautify it than those arts which
are called mathematical.

—H. Biixingsley



The Book Shelf
Edited by H. E. Tinnappel

From time to time there are published books of common interest
to all students of mathematics. It is the object of this department to
bring these books to the attention of readers of THE PENTAGON. In
general, textbooks will not be reviewed and preference will be given
to books written in English. When space permits, older books of
proven value and interest will be described. Please send books for re
view to Professor Harold E. Tinnappel, Bowling Green State Univer
sity, Bowling Green, Ohio.

Elementary Technical Mathematics, F. L. Juszli and C. A. Rodgers,
Prentice-Hall, New Jersey, 1962, 522 pp., $10.60.
Elementary Technical Mathematics is designed as a "careful,

nonrigorous, practical, and graphic approach" to the mathematical
needs of a first-year, post-secondary technical program. The teacher
looking for a rigorous approach will be displeased with this text.
However, from the viewpoint of a user of mathematics, at the level
for which this book is intended, the authors have admirably suc
ceeded.

As intended, this text is for technical programs. The authors
introduce the idea of standard notation, i.e., scientific notation, for
numerals in the first chapter and make use of the notation through
out. The ideas of significant digits and the use of the slide rule are
well presented.

The numerous illustrations and solved examples will be quite
effective in teaching the operations with "signed numbers". Appli
cations are freely drawn from the various technical fields and will
make the text more appealing to the student desiring a technical
training. He will be able to see the answer to his inevitable questions,
"What can this be used for?"

Chapter three on Dimensional Analysis should make life easier
and more meaningful to the student who is asked to express his re
sults in some recognizable unit. This chapter seems to be exception
ally well prepared and many beginning students of physics would do
well to study it.

Since the equations of a line are presented before the work on
trigonometry, the slope of a line is defined in terms of change in
ordinate divided by change in abscissa, thus as rise/run; rather than
as the tangent of the angle of inclination.

This reviewer was pleasantly surprised to find the answers to

112
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many of the problems printed with the problems, rather than in an
answer section in the back. It is realized that many teachers may ob
ject to this feature, as it is rarely done in a beginning text

The section on approximation of roots of an equation is well
handled and is supported by a number of problems taken from en
gineering. Logarithms are introduced as an outgrowth of the work
with exponents, thoroughly illustrated by diagrams and examples.
Interpolation is illustrated by graphicmeans to show the linear inter
polation as used and its relation to the true values of the function.

The authors have selected, from the many forms which might
be used for the solution of oblique triangles, die sine law and the
cosine law. However, these are introduced only after a careful pre
sentation of many solutions using the right triangle. The right tri
angle has been used in resolution and composition to obtain results
which might otherwise have been left to special formulas.

Graphs are used as needed. They are especially well presented
in the section on periodic functions, so a student should understand
the distinction between the amplitude and the period.

The authors show the engineering influence in the use of the
letter j for V-!• The section concerning this operator, ;', and its
usefulness in vector applications, is well handled.

There are adequate tables, and the appendix contains a number
of convenient illustrations for areas and volumes.

Any review of this bookwould be incomplete without reference
to the extensive and well selected examples and exercises.

—John M. Burger
Kansas State Teachers College

Foundations of Analysis, Edward J. Cogan, Prentice-Hall Inc., En-
glewood Cliffs, New Jersey, 1962, 221 pp., $7.95.

As described in the preface, this book serves as an introduction
to modern mathematics. It is designed for study by the teachers of
secondary schools and others who wish to leam about the new ap
proach to advanced mathematics.

The book contains three chapters which divide its subject mat
ter into three parts. The first chapter discusses the use of logic and
applies the notions here developed to sets and functions. The second
chapter develops the real number system by the use of logic from
Peano's axioms. The third chapter is concerned with real functions
of one argument and introduces the reader to the ideas of continuity,
derivative, and integral.
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The second chapter is more formally organized than the others.
The first chapter depends upon intuition for the introduction of new
and perhaps unfamiliar concepts. By the time the reader has studied
to the third chapter, he should be able, if desired, to supply the
formalism which is omitted.

Numerous and extensive exercises are scattered throughout the
text. These exercises serve to fix the concepts in the mind of the
reader and to prepare the way for advanced material. In this way,
the subject matter is well unified. The teachability of the book could
be judged only after actual classroom experience, perhaps as the
publishers suggest, in a National Science Foundation summer insti
tute.

The reader of this text, however, should be aware of some
seeming deficiencies. First, there are no answers at present to the
shorter problems so that the reader who is attempting self-study is
handicapped in finding how well he understands the material cov
ered. Second, the notation, especially in the third chapter, is prob
ably unfamiliar; hence the book would need to be studied in proper
sequence; it would not serve as a ready reference book.

Third, the text, being a brief 200-odd pages, plunges into
fundamental concepts very rapidly. This would require close atten
tion and a certain mathematical maturity on the part of the student.
It might even require supplemental study in more elementary texts.

Fourth, there are some minor errors such as wrong reference
numbers. A more careful proofreading would have prevented the
omission of letters from die middle of words. There is a wrong for
mula for the number of the n-ary connectives appearing on page 22
and in problem 12 on page 25.

The fifth point is most important and hence requires some ex
tended discussion. The author follows the present trend in present
ing his discussion of addition and multiphcation of the natural num
bers. This, the reviewer bcheves, is more fashionable than logical as
will now be explained.

Every deductive system is composed of four discrete sets of ele
ments. The first set is composed of the undefined terms; the second
set is composed of those terms whose meaning is given by definitions
involving the undefined terms and terms previously defined. The
third set is composed of the assumptions, also labeled as axioms or
postulates; these assumptions express relations between the defined
and undefined terms and are taken without proof. The fourth set is
composed of the theorems which express additional relations be-
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tween these terms derived by the rulesof deductive logic. The author
is also following the modern trend when he labels all elements of the
last two sets as theorems (p. 36), or true statements, and then dis
tinguishes between the two types by whether they are accepted with
out proof or after proof.

Of the four sets above, only the set of definitions is not logi
cally necessary. This set could be disposed with completely, yet all
theorems stated in terms of the undefined terms alone would still
hold true. This is the acid test for a definition. However, definitions
area great convenience in expression andan almost indispensible aid
to thinking. Thus the need for definitions is human, not logical.

Now in common with most other writers, the author purports
to define "addition" (p. 93) by two equations. This use of the word
"define" is not consistent with its use as when we say that a triangle
is defined as a polygon with three sides. Furthermore, if these equa
tions are suppressed, then none of the theorems on addition can be
derived. These facts should demonstrate beyond any doubt that these
two equations are actually two assumptions about the properties of
addition on the basis of which the other properties can be derived.

Pairs of statements similar to these are generally called induc
tive definitions. An accurate logical designation would label these
statements as assumptions to which the deductive axiom could be
applied. Similar so-called definitions appear throughout the modem
treatment of the number system. Since modern mathematics places
somuch emphasis upon the logical development of a topic, is it ask
ing too much that the names attached to all statements also be logi
cally correct?

—Cecil G. Phipps
Tennessee Polytechnic Institute

A Primer of Real Functions, ed. by Ralph P. Boas Jr., The Mathe
matical Association of America, Quinn and Boden Company
Inc., Rahway, New Jersey, 1960, 189 pp., $4.00.
This book is number 13 in a series of Cams Mathematical

Monographs publishedby The Mathematical Association of America.
The text is divided into two chapters. The first chapter covers sets
and discusses such topics as countable and uncountable sets, metric
spaces, compactness, convergence, and completeness to mention only
a few. The exposition in the first chapter exceeds that of the second
chapter, but in general it is good throughout the book.

The second chapter deals with functions. Partial contents in-
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elude: continuous functions, sequences of functions, uniform con
vergence, derivatives, monotonic functions, and convex functions.
The authortakes time to construct examples, such as the Cantor Set
or acontinuous curve that passes through every pointin a plane area,
which are often mentioned by other sources but seldom discussed.

Throughout the book a different size type is used to indicate a
more difficult proof or construction, or a feature not direcdy related
to discussion. Definitions, theorems, and new terms are presented in
italicswhen they are first statedin the text.

The list of exercises is a very good feature of this book. The
exercises appear in the text as the occasion arises and vary from
statementsof theorems to requests for examples to illustrate the ma
terial justdiscussed. The answer to each exercise is provided in a hst
appearing in the back of the book for whatever useit maybe needed.

The author states in the preface that die reader should have
had at least a course in calculus. While this would seem adequate
those with a much stronger background would still find it interest
ing. This book would beavaluable addition to the hbrary of anyone
interested in mathematics.

—James S. Biddle
Bowling Green State University

Lie Algebras, Nathan Jacobson, Interscience Publishers, a division
of John Wiley and Sons, New York, 1962, ix 4- 331 pp.,
$10.50.

In this extremely well-written book, Professor Jacobson has
presented an interesting and significant body of material on Lie
algebras, much of which was either unavailable before or was ob
tainable only to those with access to the many scholarly mathematics
journals in whichresults have beenpublished.

To the undergraduate reader of The Pentagon, a httle back
ground information on the subject of this book may be worth while.
The term "Lie algebra" (pronounced like lee') was first introduced
about thirty years ago by Herman Weyl at the Institute for Advanced
Study, Princeton. The name honors the Norwegian mathematician,
Marius Sophus Lie (1842-1899), who contributed much to the de
velopment of group theory. Although a handful of mathematicians
began the study of Lie algebras before the turnof the century, much
of the research in this area has been done within the last ten to fif
teen years. Of the over 160 research papers listed in the excellent
bibliography, at least three-fourths of diem have been published
since 1950.



The Pentagon 117

What is a Lie algebra? The student will recall that to be a
linear algebra or a non-associative algebra, the following rather ex
tensive hst of conditions must hold: There exists a set A of elements
(%, y, z, - ** ), called vectors, on which operations of addition and
multiphcation are defined such that A is an abelian groupunder ad
dition, A is closed under multiphcation, and such that die distribu
tive laws hold. Further, there exists a field F whose elements
(a, b, c, • • • ) arecalled scalars. The scalars and vectors are brought
together by means of an operation, called scalar multiphcation,
which is such that if a e F and x e A, then ax e A. Finally, for all
a,b e F and x, y e A, the following properties must be satisfied:
lx = x (where 1 is the unity of F), iab)x = aibx), aixy) =
iax)y = xiay), a(* + y) = ax + ay, and (« 4- b)x = ax + bx.
If all the preceding conditions hold, then A is said to be a non-as
sociative algebra over F. A Lie algebra is a non-associative algebra A
for which the two additional properties hold: x3 = 0, and ixy)z +
iyz)x + izx)y = 0, for all x,y,z e A. From the fact that
(* 4- y)2 = 0, it immediately follows that xy = —yx, and hence
that a Lie algebra is necessarily non-commutative.

A graduate student who uses Lie Algebras as a textbook should
have previously had at least two or three semester courses in abstract
algebra, including a course in linear algebra, all of the "unwatered-
down" variety. Most undergraduates lack the mathematical prepara
tion and maturity necessary to cope with a book of this caliber, but
the exceptional senior could gain a general understanding of the sub
ject and increase bis vocabulary considerably by studying the first
chapter, pp. 1-30, on basic concepts.

The concepts introduced in Chapter I are necessary for the
structure theory presented in Chapters II-IV, these chapters being
concerned with solvable and nilpotent Lie algebras, Cartan's criterion
and its consequences, and split semi-simple Lie algebras. Chapter V,
on universal enveloping algebras, introduces the concepts necessary
for an understanding of the representation theory developed in
Chapters VI-VIII. These latter chapters present the theorem of Ado-
Iwasawa, classification of irreducible modules, and characters of the
irreducible modules. The material of Chapter LX, on automorphisms
of semi-simple Lie algebras over an algebraically closed field of
characteristic zero, is apphed in Chapter X to the problem of classi
fying the simple lie algebras over an arbitrary field of characteristic
zero. Each of the ten chapters concludes with a set of challenging
exercises.
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The richness of results and the clarity of presentation found in
Lie Algebras will, no doubt, encourage many mathematics depart
ments to introduce a graduate course in Lie algebras. The book is
certainly a welcome addition to the hbrary of any advanced mathe
matics student who is seriously interested in abstract algebra.

—Violet Hachmeister Larney

State University of New York
at Albany

Transmission of Information, Robert M. Fano, The Massachusetts
Institute of Technology Press and John Wiley and Sons, Inc.
(440 Park Avenue South) New York 16, 1961, 389 pp.,
$7.50.

This book is written for graduate students and engineers who
are interested in electrical communications and who are well versed
on probabihty theory. There is an emphasis upon the points of view
and methods of analysis which are likely to prove useful to these
people in their future work.

The book is concerned with the branch of communication
theory that is based upon the work of Claude Shannon and is some
times called "Information Theory". The scope of the book is indi
cated by its chapter headings: the transmission of information, a
measure of information, simple message ensembles (an ensemble is a
space to which a probability distribution is assigned), discrete
stochastic sources (ergodic, Markov), transmission channels (dis
crete, constant, time-continuous, Gaussian), channel encoding and
decoding, encoding for binary symmetric channels, multinomial dis
tributions, and encoding for discrete, constant channels.

The dependence upon a previous knowledge of probabihty
theory is extensive and provides the basis for the development of
special mathematical techniques in Chapter 8. The dependence upon
the reader's knowledge of physics is minimal and should not deter
anyone who has mastered the extensive mathematical prerequisites.
Basically the book is concerned with a statistical theoryof communi
cations and is so subtided. The primary emphasis is upon the use of
statistical theories. Many theorems are developed relative to the
theory of communications. At the end of the book there are a total of
eighty suggested problems for the various chapters. This is a scholar
ly book developing a very interesting application of statistics and in-
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telligible only to those who have previously done extensive work in
statistics.

—Bruce E. Meserve
Montclair State College

Mathematical Discovery, Vol. I, George Polya, John Wiley & Sons,
Inc. (440 Park Avenue South), New York 16, 1962, 216 pp.,
$4.75.

In the preface to this text the author states: "The preparation
of high school mathematics teachers is insufficient." He goes on to
assert that the "foremost duty of the high school in teaching mathe
matics is to emphasize methodical work in problem solving." The
teacher must impart "know-how" to his students; he must show them
how to solveproblems.

This text, the first of two volumes, is an attempt to develop
problem solvers and to improve the preparation of high school math
ematics teachers. To this end, part of the book deals with a variety
of patterns which may be effectively used as models that can be
imitated in solvingsimilar problems.

The book is divided into two parts. In Part One the reader is
exposed to a variety of these patterns. Thus we find patterns dealing
with loci, equations, the concept of recursion, etc. This first part
also contains an excellent set of interesting problems which are dif
ficult but which require very htde knowledge beyond that of high
school mathematics. For many of these the solution is given in de
tail, with emphasis on patterns useful forothersituations. Forothers,
the reader is given direction or hints and allowed to proceed to
discover a solution on his own.

Part Two contains two chapters and is to be completed in
Volume II of this series. The two chapters included are part of a
section entitled "Toward a General Method" and represent the be
ginning of a search for a general method of solution apphcable to all
sorts of problems, an aim which the author recognizes as ambitious
but "quite natural: although the variety of problems we may face is
infinite, each of us has just one head to solve them, and so we natur
ally desire just one method to solve them." The reader will have to
await the publication of Volume II to see this phase of problem
solving completed.

Those who are famihar with Polya's earlier works, How to
Solve It and Mathematics and Plausible Reasoning, will welcome
this latest contribution. These various texts complement one another
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and provide rich insights into the whole area of mathematical dis
covery.

Although the book is designed primarily for current and pros
pective high school mathematicsteachers, it is worth while reading
for all serious college students of mathematics as an excellent aid to
the study of the solution of problems.

—Max A. Sobel
Montclair State College

So You're Going to be a Teacher, RobertL. Filbin and Stefan Vogel,
Barron's Educational Series, Inc. (343 Great Neck Road),
Great Neck, New York, 1962, 138 pp., $1.25.

Mr. Filbin is a principal in a non-graded elementary school and
Mr. Vogel, at the time of writing, had just finished his first year of
teaching in the same school. As a team, they are able to appreciate
the problems of the beginning teacher from the view-points of the
new teacher and the administrator.

This book gives practical suggestions to the student in teacher-
training in regard to checking on certification requirements for the
state in which he wishes to teach. General principles for smoothly
conducting sessions the first day, for attaining good home-school re
lations, and for working with supervisors and coUeagues should prove
worth-while for the beginning teacher. Wisely enough, the bookdoes
not pretend to give all the answers. Young teachers are assured that
supervisors arehappily available for consultation and assistance when
problems arise.

—Esther D. Krabill
Bowling Green State University

Classics in Logic, ed. by Dagobert D. Runes, Philosophical Library,
Inc., New York, 1962, 818 pp., $10.00.
This is a big book, exceeding eight hundred pages and there is

something for everybody. As in any anthology, die careful reader
will miss some of his favorites, either favorite authors or favorite
passages from authors who are represented. This, however, cannot
be accounted a fault, since any editor has the responsibility of exer
cising judgement. Runes' choices indicate both breadth and depth in
his knowledge of the literature of logic and of epistemology.

In the opinion of this reviewer, a chronological sequence rather
than an alphabeticalone would have enhanced the usefulness of the
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book. Such an organization would make it easier to trace the influ
ence of each philosopher on his successors. It would also help us to
understand the relations to philosophy of the external events con
temporary with the writers studied and to consider mutual interac
tion. An expansion of the short notes prefacing each selection also
would be helpful if more information as to the relations among the
writers were supplied, especially where they take antagonistic posi
tions. A treatment of the role played by Aristode's Law of the Ex
cluded Third would be of value, particularly with regard to sorting
out modern writers as to their Aristotelean or non-Aristotelean pos
ture. Mathematicians might like to see something from the neo-in-
tuitionist school of Brouwer. The mutual impact of the computer
and computer-related devices with symbolic logic seems to be
neglected.

On the whole, this book will be of value to the student of logic
and epistemology, furnishing a lead to more concentrated study of
those authors who are found to be of interest to a particular indivi
dual.

—F. C. Ogg
Bowling Green State University

Treasury of World Science, ed. by Dagobert D. Runes, Philosophical
Library, Inc., (15 East 40th Street) New York 16, New York,
1962, xxii + 978 pp., $15.00.

Emphasis in this volume, a philosophically oriented anthology
of classic papers, is on the scientists and pioneers who forged new
paths in their particular fields. The importance of the classics—even
in science—is stressed by Dr. Wernher von Braun in his all too brief
three page introduction when he says that classics "provide light in
the study of science."

The book consists of excerpts from papers of 99 renowned
scientists, covering such areas as physics, chemistry, mathematics,
geology, medicine, and others. Inspection shows that the largest
number of excerpts comes from the area of physics; papers by Am
pere, Archimedes, Einstein, Maxwell, Newton, and Schrodinger are
included. The next largest number of paperscomes from the field of
chemistry; excerpts from the works of Mendeleev, Ostwald, Lavoi
sier, Priesdey, and von Baeyer are included. Biology includes such
pioneers as Beaumont and Vesalius; medicine such pioneers as
Lamarck and Lister.
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My greatest criticism of the book is the fact that too few papers
by pioneers in mathematics are included. The only excerpts included
in this book are a discussion of pure mathematics by Bertrand Rus
sell and portions from Euclid's The Elements, including his proof of
the Pythagorean theorem. Gauss is relegated to a discussion of the
theory of the motion of heavenly bodies, and such notables as Euler,
Cauchy and the Bernoullis are conspicuously missing.

In view of the fact that the editor's purpose is to acquaint the
reader with the philosophicalimplicationsof the selectionswhich are
included, rather than to introduce the reader to a maze of scientific
knowledge, I would recommend the book as enjoyable "armchair
reading."

—Joseph B. Dence
Bowhng Green State University

Forces and Fields, Mary B. Hesse, Philosophical Library, Inc., 15
East 40th Street., New York 16, N.Y., 1961, 318 pp.,
$10.00.

One of the attributes of an educated person is a knowledge of
die history of ideas. To be a true scholar and student of science and
mathematics one must certainly know, at least in broad outline, the
history of scientific thought which has preceded him. Even the
scientific layman of today has become so science-oriented that he
tends to accept a principle or law of science without knowing its
origin. He doesn'tquestion the thoughtprocesses which covered hun
dreds of years and eventually ledsome genius to the insightnecessary
to state an adequate description of a physical phenomenon which we
now call a law or principleof nature.

The author has sub-tided this book The Concept of Action at a
Distance in the History of Physics. This sub-tide is indeed appropri
ate, for the author has traced for us, through the history of scientific
thought, one of the most mystifying and least understood phenom
enon in science. Action at a distance formed a part of the over-all
attempt of the ancient Greek natural philosophers to describe the
world as they observed it. While these philosophers were not "scien
tists" in the 20th century meaning of the word, their thinking was
not abandoned by later scientists. Instead, it was modified, tested,
and elaborated. It led 17th century genius into the beginning of our
modem scientific thinking.

The first two chapters of the book discuss the logical status of
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physical theories and primitive analogies. The reader is thus given a
background into the approaches which physical theories might take
and an idea of how models have been used to portray these theories.
This is the attempt which one makes to describe natural phenomena
in terms of analogies drawn from other processes which are more fa
mihar and felt to be better understood.

Chapters III and IV treat at some length what, in hindsight,
could be considered the beginning of scientific thought processes.
Pre-seventeenth century natural philosophers concerned themselves
with attempts to describe how things which they observed fitted into
a system. While dieir arguments could be considered metaphysical
or even mythological, nevertheless, they were the beginning.

Chapters V, VI, VII, and VIII are devoted to a careful histori
cal account of what might truly be called the scientific method of
investigation which began during the 17th century. These chapters
specifically treat the development of the concept of action at a dis
tance and field theory as they were proposed by many of the famous
scientists and mathematicians whose names we recognize, and whose
works we study, today.

Chapter IX is concerned with the theory of relativity as it was
developed to describe the results of the Michaelson-Morley experi
ment. Chapter X is entided "Modem Physics" and leads the reader
to an appreciation of the vast amount of thinking which has pre
ceded the apparent revelations of modern science.

Chapter XI is devoted to the metaphysical framework of physics
and the book ends with two mathematical appendices and a bibliog
raphy.

Among the books which are concerned with the history of
science Forces and Fields seems to fill an extremely important posi
tion. An undergraduate student in science and mathematics usually
cannot hope to be at the same time a thorough student in the history
(and philosophy) of science and mathematics. Forces and Fields is
not an exhaustive history of the subject, but an intermediate step
which couldbe the goal of any serious student. This book is not to be
considered 'light' reading. A background of some study in physics
would be desirable if one is to appreciate the significance of the
work.

—Edgar B. Singleton
Bowling Green State University
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Alabama Beta, Florence State College, Florence.
At the Coffee sponsored by KME during Homecoming we had

representatives from fifteen years of chapter history. We initiated
19 new members in March bringing our total membership to 370.
Mr. James Hooper, a former member of our faculty, spoke on "The
Role that Calculators Can Play in Industry." Dr. W. C. Royster, of
the University of Kentucky, representing die Mathematical Associa
tion of America spoke to us on "The Modem Aspects of Mathema
tics".

Alabama Delta, Howard College, Birmingham.
Dr. Wimberly Royster, visiting lecturer for the Mathematical

Association of America, was guest speaker at our initiation banquet.
His subject was "Opportunities in Mathematics."

California Alpha, Pomona College, Claremont
We used guest lecturers for our meetings this year with the

lectures open to the pubhc.

California Gamma, California State Polytechnic College, San
Louis Obispo.

Together with our Mathematics Club we are sponsoring a se
ries of lectures on the Trachtenberg Speed System of Arithmetic.
The lectures are attended by many teachers and parents. We will
also help sponsor a statewide high school mathematics contest as a
partof the spring openhouseon the campus.

Colorado Alpha, Colorado State University, Fort Collins.
Our chapter is raising its standards for admission to member

ship. New members will be required to have completed the calculus,
to have had one mathematics course beyond the calculus, to have a
grade-point average of 3.0 out of a possible 4 in all mathematics
courses and an overall grade-point average of 3.0. We are helping
to develop a mathematics club for students not eligible for member
ship in KME. We plan to be represented at the Convention.

Florida Alpha, Stetson University, De Land.

We expectto initiatetwenty or morenew members this spring.
We are planninga field trip to CapeCanaveral.

124



The Pentagon 125

Illinois Alpha, Illinois State Normal University, NormaL
Our eighty members are looking forward to being hosts to the

Fourteenth Biennial Convention, April 8-9, 1963.

Illinois Beta, Eastern Illinois University, Charleston.
Our chapter plans to give a prize in honor of the late Professor

Lester VanDeventer to be given annually to an outstanding calculus
student.

Illinois Delta, College of St, Francis, Joliet
Our meetings this year have been coordinated with a seminar

sponsored by the Argonne National Laboratory of Lemont, Illinois.

Indiana Alpha, Manchester College, North Manchester.
For one of our programs this year we had a representative of

the Lincoln Life Insurance Company of Fort Wayne speak on the
mathematical opportunities in the insurance field.

Iowa Beta, Drake University, Des Moines.
Professor Lawrence OToole, of the College of Business Ad

ministration spoke to us on "A Comparison of Calculus of Finite
Differences with Calculus of Limits". We visited the Computing
Center of Pioneer HybridCompany of DesMoines.

Kansas Alpha, Kansas State College of Pittsburg, Pittsburg.
The Robert Miller Mendenhall memorial award for outstanding

seniors in the field of mathematics was received by Joe Jenkins and
William Livingston. Each was presented a KME pin. We initiated
36 new members this year.

Kansas Beta, Kansas State Teachers College. Emporia.

We initiated 29 new members this year. Members are learning
to use the IBM 1620. About twenty-two students and faculty mem
bers plan touse the college bus to attend the Convention at Normal.

Three of our members, Margaret Leary, Patricia Swope, and
Collette Chang are engaged in undergraduate research sponsored by
the National Science Foundation. Margaret Leary will read a paper
on 'Topological Spaces" at the Kansas Sectional Meeting of the
Mathematical Association of America. Dr. Kenneth May, of Carle-
ton College, will be our guest in April. He will speak on "Hamil
ton—His Life and Work."
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Michigan Beta. Central Michigan University, Mt. Pleasant.
We hope to have three or four cars going to the National Con

vention this year.

Mississippi Gamma, University of Southern Mississippi, Hatties-
burg.

Mr. Larry Parks, Base Mathematics Services Laboratory, Eglin
Air Force Base, was our guest this year. He spoke on "Real Time
Data Reduction."

Missouri Alpha, Southwest Missouri State College, Springfield.
Dr. Lawrence E. Pummill, beloved Professor Emeritus of

Mathematics and former Head of the Department, diedJanuary 26,
1963. Dr. Pummill was a charter member of our chapter and had
served as National Treasurer of Kappa MuEpsilon.

Missouri Beta. Central Missouri State College, Warrensburg.
We had as a guest speaker this year, Miss Blanche Longshore,

Helping Mathematics Teacher, Kansas City School System, who
spoke on 'Teaching in Kansas City." We are planning to be repre
sented at the Convention.

Missouri Zeto, Missouri School of Mines and Metallurgy. Rolla.
Dr. Henry C. Thacher, Jr., of Argonne National Laboratory,

was guest speaker at our fall initiation banquet. He spoke on the
subject, "Are Numerical Analysts Necessary?" At our spring initia
tion we expect to have Dr. John Olmsted, of Southern Illinois Uni
versity. His subject is to be "Space Filling Curves." We will be rep
resented at the Convention.

Nebraska Beta. Nebraska State Teachers College, Kearney.
We are sending five members to the National Convention.

New Jersey Beta, Montclair State College, Montclair.

Our chapter is sending all of its student officers and two other
members to the National Convention. Professor Paul C. Clifford
spoke to us on his experiences teaching the course, "Probability and
Statistics" on "Continental Classroom". His subject was "Be Pre
pared".

New York Alpha. Hofstra University, Hempstead.
The president of our chapter last year has a graduate fellow

ship in chemistry at M. I. T. this year.
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New York Beta, State University of New York at Albany.
We have initiated 45 new members this year. One member of

ourdelegation to the National Convention is submitting a paper.
New York Gamma, State University College, Oswego.

Our members are planning on traveling to the National Con
vention by car so as to take as many delegates as possible.
New York Epsflon, Ladycliff College, Highland Falls.

Our members participate in the publication of an annual, Tau
Mu Gamma, and in a newsletter, The Delta Function, which is
pubhshed three times each year. We sponsor symposia for the bene
fit of teachers and students of the surrounding area. Our Mathema
tics Fair will be extended to include junior high school students this
year. A large group of members and non-members is planning on
attending the National Convention.

Ohio Alpha, Bowling Green State University, Bowling Green.
We have initiated 44 new members in the past year. Our

chapter holds help sessions, with 2 members furnishing the help,
one night each week. These sessions have an average attendance of
15 students and seem to be quite successful.

Ohio Delta, Wittenburg University, Springfield.
Mr. E. L. Godfrey, of Wright-Patterson Air Force Base, spoke

to us on "Matrices in Statistics". We initiated 13 new members this
spring.

Ohio Gamma, Baldwin-Wallace College, Berea.
All of our programs are given by student members this year.

Oklahoma Alpha. Northeastern State College, Tahlequah.
In recognition of the founding of the society on April 18,

1931, our chapter holds a Founders Day banquet each year. Many
former members return each year for this event.

Pennsylvania Gamma, WayneBburg College, Waynesburg.
Our fall meetings were given over to student papers this year.

We initiated fourteen new members in November.

Tennessee Beta, East Tennessee State University. Johnson City.
Mr. Robert Brown, Statistician at Tennessee Eastman Com

pany, spoke to us on "Applications of Statistics to Quality Control."
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Papers by outstandingmathematics students will be presented at the
time of the initiation banquet in the spring.

Texas Epsilon, North Texas State University. Denton.

Our chapter initiated sixteen new members in November. We
had several joint meetings with the Student Section of the American
Institute of Physics and the Astronomy Club. Professor Paul D.
Minton, Director of the Department of Experimental Statistics at
Southern Methodist University described SMU's graduate program
in statistics.

Virginia Beta, Radford College, Radford.

Each of our members spends one hour one afternoon each
week giving special assistance to mathematics students. We feel that
we greatiybenefit from this service.

Wisconsin Alpha, Mount Mary College, Milwaukee.

Mr. John Bruce, Manager of Industrial Engineering and Qual
ity Control at Kearney and Trecker, Milwaukee, spoke to us on
"Mathematics in Industry." Mr. LeRoy Dalton, Past President of
Wisconsin Mathematics Council, spoke on Mu Alpha Theta, na
tional high school and junior college mathematics club. Ten of our
members are attending a series of lectures on modern mathematics
given by professors from Marquette University and the University
of Wisconsin. We expect about 150 contestants for our annual
mathematics contest for high school students in April.

t>

Mathematics, once fairly established on the foundation of a
few axioms and definitions, as upon a rock, has grown from age to
age, so as to become the most solid fabric that human reason can
boast

—Thomas Rbid


