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The Tree of Mathematics in the

Light of Group Theory*
Patricia Nash

Student, Mount St. Scholastica College

A leading University mathematician of the midwest area re
cently stated that the half century just passed is most properly
termed "the golden era of mathematical research." The peculiar
charm of this period lies in the fact that it does not invalidate the
major theories that have been developed and accumulated during the
2000 years preceding it. Through some unexplainable aegis, this
period abounds in brilliant and fresh ideas that cause the older dis
coveriesto take on an irridescant glow.

One of the most versatile abstractions of modern mathematics
is the algebraic concept of a "group." Through this group-notion one
is able to see the whole skeleton of mathematics in a new light. One
might say that it serves as a sort of X-ray to bring out the basic struc
ture of mathematics.

The comparison frequently employed wherein mathematics is
likened to a tree is a familiar one. In fact, a book just recently re
leased from the press carries the title, The Tree of Mathematics. In
this paper the writer aims to point out the ways the group concept
unifies the many branches of mathematics. It is able to do so, be
cause it reveals the basic structure that is common to all mathematical
objectswhether they be spaces, formulas, motions, functions, or pure
numbers.

Many mathematicians contributed to the long and rich history
that attaches to the theory of groups. Names that stand out promi
nently in the record are Gauss, Cauchy, Hamilton, and Cayley. It
needed the peculiar genius of Evariste Galois, a young French math
ematician, to detect in the group idea a new device for solving equa
tions. However, the discovery of Galois lay unproductive and barren
until almost a century later when modern mathematicians saw in the
group concept a fertile means for delineating the intricate structure
common to mathematical ideas.

•A paper presented at the 19S9 National Convontlon of KME and awarded flrat place
by the Awards Committee.
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With these preliminary remarks disposed of, a close examina
tion of the mathematical entity known as a "group" would seem to be
appropriate. A group is one of the simplest of all mathematical sys
tems, since it need have only one operation. What then constitutes a
group? It consists of a set of mathematical objects and a way of com
bining them. Invoking the time-honored prerogative of mathema
ticians, each member of the set of mathematical entities is represented
by a letter; and in order to maintain a desirable abstractness, the
combining process is designated by the symbol *. The postulates or
rules of operation which control manipulation with these elements
are four:

I. Closure: All combinations of elements must produce one
of the elements.

II. Associativity: Stated symbolically, it is A*(B*C)
= CA^B^C. This merely states that priority of combina
tion is not the privilege of any one pair exclusive of
another pair.

III. Identity: As the term indicates, it means that among the
mathematical objects there must be one which when com
bined with each of the others, leaves each unchanged.
Thus, 0+1 = 1+0=1, or zero added to unity leaves
unity unchanged. Hence, zero is an identity element for
addition.

IV. Inverse: Each element of the group must have an inverse
or mate, also an element in the system; the uniting of
which pair produces the identity element of the group.
Thus, when the integers 1 and —1 are combined under
addition, the identity element zero is obtained.

To demonstrate these group postulates, the integers under addi
tion (mod 5) will be examined. What is meant by mod 5? In the
table (see page 7) all multiples of 5 have been omitted: e.g.,
4 + 3 = 7, but if the multiple of 5 is neglected, only the remainder
of 2 appears in the chart.

One next inquires if the group postulates are satisfied. It is
clearly manifest that closure is preserved, since no element other
than 0, 1,2, 3, or 4 appears in the chart. The postulate of associa
tivity is satisfied. For example,

(2 + 4) + 3 = 2 + (4 + 3)
1+3=2+2

4 = 4
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The table also exhibits the fact that zero is the identity element, for
it is seen that zero added to eachof the elementsleaves the individual
elements unchanged. Next, one looks for the inverse of each element.
This becomes easy when the group is set up in tabular form. It is
necessary merely to look for the zero element in each column and
determine which two elements in combination produced the zero.
Hence, 1 is observed to be the mate of 4; 4 is the mate, or inverse
of 1. Therefore, since all four of the postulates are satisfied, the inte
gers underaddition (mod 5) form a group.

[f

w-e

TREE Or MATHtMATIC5

Now that a group and its postulates have been defined, the
remainder of this paper will be devoted to a discussion of the tree
of mathematics and to showing how the group concept is the unifying
factor which holds all the branches to die trunk of the tree. In the
diagram of the tree one notes that the group concept is designated
by the central line passing up the trunk and into each of the
branches; thisis the "vascular system" which brings nourishment and
life toall parts of the tree. The following examples which were taken
from each of the branches are used to demonstrate how the group
concept acts as the unifying factor in the tree of mathematics.
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EXAMPLES OF ALGEBRAIC GROUPS

Abstract Algebra: The Klein Four Group

Postulates:

¥ E A B C

E E A B C

A A E C B

B B C E A

C C B A E

1. Closure is satisfied, since no ele
ment other than E, A, B, and C
appears in the chart

2. Associativity is satisfied.
Example

(B * A) * C = B * (A * C)
C»C=B'B

E = E

3. Identity element is E.
4. Inverse pairs are E & E, A & A,

B & B, C & C.

Neither the elements nor the operation is defined.

Specific Algebra: The Four Fourth Roots of Unity

X 1 i -1 —i

1 1 i -1 -i

i i -1 —i 1

-1 -1 —i 1 i

—i —i 1 t -1

Postulates:

1. Closure is satisfied, since
no element other than 1,
i, —1, and —i appears in
the chart

2. Associativity is satisfied.
Example

(l'l)«i= 1-(1«0
1 •*= 1 •*
i = i

3. Identity element is I.
4. Inverse pairs are 1 & 1,

i & -*, -1 & —1, and
-i & -i.
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EXAMPLES OF GROUPS UNDER NUMBER THEORY

A Finite Group: The Integers Under Addition (Mod 5)

Postulates:

1. Closure is satisfied, since only
0, 1, 2, 3, and 4 appear in
the table.

2. Associativity holds.
Example
(2 + 3) + 1 = 2 + (3 + 1)

0+1=2+4

1 = 1

3. Identity element is 0.
4. Inverse pairs are 0 & 0, 1 &

4, 2 & 3, 3 & 2, 4 & 1.

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 ?

Examples of Infinite Groups:

1. The integers are a commutative group with respect to the
operation of addition.

2. The rational numbers, with zero excluded, from a group
under the operation of multiplication.

3. The real numbers form a commutative group with respect
to addition.

EXAMPLES OF GROUPS UNDER ANALYSIS

Group of Functions: (Z, —Z, 1/Z, —1/Z)

* z -z 1/Z -i/z

z z -z 1/Z -1/Z

-z -z z -1/Z 1/Z

1/Z 1/Z -i/z z -Z

-1/Z -1/Z 1/Z -z z

The operation is a substitution of the horizontal ele
ment in place of the letter Z in the vertical element.
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Postulates:

1. Closure is satisfied, since only Z, —Z, 1/Z, and —1/Z appear
in the chart.

2. Associativity holds.
Example:

(-Z * 1/Z) * -1/Z = -Z * (1/Z * -1/Z)
-1/Z • -1/Z = -Z'-Z

z = z

3. Identity element is Z.
4. Inverse pairs are Z &Z, -Z & -Z, 1/Z & 1/Z,

- 1/Z & -1/Z.

Groupof Trigonometric Functions

¥
a b c d e f

a a b c d e f
b b a d c f e

c c f e b a d

d d e f a b c

e e d a f c b

f f c b e d a

Postulates:

1. Closure is satisfied since
only the six given elements
appear in the chart.

2. Associativity holds.
Example
(c*b)*e = c*(b*e)

f*e = c* f
d = d

3. Identity element is a.
4. Inverse pairs are a & a,

b&b,c&e,d8cd,e8cc,
f&f.

Key:

= a = cin2 'a = a = snv x

b = \/a = esc2*
c = 1 — \/a = —cta'x

d = a/(fl — 1) = —tan' *

e= 1/(1 — a) = seca*
f = 1 — a = cos2 x

The operation is a substitution of the horizontal element in place of
the a in the vertical element
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Permutation Group of Four Numbers:

Postulates:

Key:

* abed

a abed

b b c d a

c c d a b

d d a b c

1. Closure is preserved.
2. Associativity holds. Example

(b * c) * d = b * (c » d)
d*d = b*b

= c

3. Identity element is a.
4. Inverse pairs are a & a, b & d,

c&c,d&b.

/12 3 4N . /12 3 4N „_ /l 2 34\ . = (\ 2 34\
a= (l234J *=(234l) C-(3412J *"U 123j
The operation is one permutation followed by another permutation.

EXAMPLES OF GEOMETRIC GROUPS

Euclidean Geometry: The Rotations of aWheel Postulates:
1. Closure is satisfied,

since only the given
elements appear in
the chart

2. Associativity holds.
Example
(Roo Riso) "HO

— Raeo

Reo («i8o Riso)
= Rs«o

3. Identity element is
Raeo

An element is the number of degrees that ' n ver!f JPm „ „
a wheel is rotated in a counter-clockwise J380 V* n
direction. The operation is one rotation "s00'„""° „"***
followed by another. *™ %Riao> $uo *

» i\360 Reo R120 jRiso B.I40 Rsoo

Rseo Rseo Roo R120 Riso R240 Rsoo

Rao Reo Riao Rise Rtto Rsoo Rsoo

Rl20 R120 R18O R240 Rsoo Rsoo Roo

Riso RlBO R24O X1300 Rsoo Reo R»so

Rj40 i>240 Rsoo Rseo Roo R120 R180

Rsoo Rsoo R300 Reo R120 Riao R240
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Analytic Geometry: The set of translations of a point form a com
mutative group. But since these translations
do not readily lend themselves to graphical
representation, a chart has not been included.

Projective Geometry: The Cross Ratio of Four Points on a Line

Postulates:

1. Closure is satisfied, since no
element other than t, v, w, x,
y, and z appears in the table.

2. Associativity holds.
Example

(z » x) * y = z * (* * y)
y * y = z* v

w = w

3. Identity element is t.
4. Inverse pairs are t & t, v & v,

w & y, x & x, y & w, z & z.

¥ t V w X y z

t t V w X y z

V V t X w z y

w w z y V t X

x X y z t V w

y y X t z W V

z z w V y X t

v= \/t wKey: t = t 1 - l/t=(t- l)/t
* = */(*-l) y= 1 -t/Ct- 1) = 1/1 -t z=l-t

The operation is a substitution of the horizontal element in place of
the letter t in the vertical element.

In this paper it has been shown how the group concept acts as
the unifying factor in the tree of mathematics. Granted that the
group concept may be elemental—the space age we are entering
demands proof of some formerly accepted truths. Perhaps proofs
established today may serve as tools to probe the unknowns of to
morrow.



Business "Discovers" Probability*
Julian H. Toulouse

Consultant in Operations Research, Toledo, Ohio

Flight 916 had landed and had discharged its passengers. An
attendant was removing the remains of the dinner trays and then-
waste, for this had been a meal flight. With the waste were five un
touched dinners, representing meals for passengers who had not
claimed their reservations. The total value of about eight dollars was
not much in itself, but it had been repeated over and over again on
this flight and on others, until the airline was losing nearly $250,000
each year in its catering service.

Exactly a year later, when flight 916 landed, the loss had
dropped to an average of less than two meals per flight, and the an
nual loss was less than $100,000. What had happened was that a
simple, but nevertheless original, application had been made of
some of the laws of probability.

A compilation had been made, over a period of months, of the
number and the per cent of passengerswho failed to 'show' each trip.
The number varied, of course, both by the day of the week, and
seasonably. When plotted in what statisticians call a histogram or
distribution, the pattern was of a form closely resembling that known
as a Poisson or binomial distribution. What was important was that
this curve can be expressed mathematically, and that the form of the
distribution was regularly reproduced for successive sets of data.

The rest was simple to plan, even if it took much verification
and trial to finally establish. It was decided to underestimate the
number of meals by a fraction which could be represented by a point
on the curve of the distribution. Suitable safeguards against people
going hungry were made in the form of frozen meals even more
expensive and attractive than the regular meals, such as shrimp or
crabmeat salads, and these were held in reserve in the airport cater
ing office. The planned number of regular meals were placed on
board, and just before the flight left, any necessary number of the
special meals were added. The stewardess would offer the first pas
sengers a choice (and this was of particular interest to dieters for she
could often pick them out) until the extra meals were disposed of,

'Prosontod at a meeting oi the Ohio Alpha Chapter, Bowling Groon, Ohio, February
25, 1959.

11
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then serve the rest Except when an unusual number failed to 'show,'
there were never any leftover meals, to be thrown away at the end
of the flight

The airline catering business had discovered probability in a
practical way that showed up on the profit and loss statement.

In another field, a buyer and a seller were in the process of
agreeing on a sampling plan for the examination of shipments. The
material, as supplied, was known to average rather closely to two
per cent out of specification and since the cost of closer adherence
would materially increase the price, and since the buyer knew that
he could use up to four per cent off specifications, the latter figure
was fixed upon for the limiting quality. It was agreed that from
each shipment a sample of fifty items would be taken, and if no
more than two items were out of the specification, the shipment
would be accepted. The seller's experience that he averaged two per
cent gave him assurance that there would be no difficulty.

Almost immediately the seller was in trouble. Nearly ten per
cent of all shipments were returned, yet closer examination of every
item in the shipment found only two per cent objectionable. The
answer was in a law of probability, and the sample was not only too
small, but the acceptance number was incorrectly chosen. Again we
turn to the Poisson distribution, and it would have predicted the
difficulty in advance. The appropriate distribution for a sample of
fifty and an acceptance number of two would have found:

no defects 36.8% of the time.

one or less defects 73.6% of the time, (adding 36.8% )
two or less defects 92.0% of the time, (adding 18.4 % )

or 92.0% acceptance under the plan,
three defects 6.1 % of the time,

four defects 1.5% of the time,

five defects .3 % of the time,

six or more defects . 1 % of the time.

These businessmen, particularly the seller, learned probability the
hard way.

Another business made an item which was an assembly of five
parts. The manufacturing division found that it could make the parts
at a reasonable cost to a tolerance of .004 inches. Engineering said
that the assembly must be held to .015 inches, or .003 inches per
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part. Manufacturing retorted that it had been meeting the .004
figure for years without trouble, and 'that was that' It was up to the
generalmanager to make a decision.

A statistician told him that the answer was that tolerances are
not added arithmetically, but statistically. He squared the five tol
erances, which were then measures on the order of what we call
variance, added them, and took the square root The answer was
.00894 inches, or well within the .015 inch requirement from Engi
neering. The chances of interference, using Engineering's assump
tion that five pieces, each at the same extreme of tolerance, could
be the largest in 1,000 such pieces, and would by chance be as
sembled together, was one in one thousand million million.

Then Manufacturing took the statistician to one side and asked,
"What tolerance could we use—greater than .004 inches?" He set
up the formula: t equals the square root of Sx2, set t to .015 and
solved for x, which was .0067 inches. It was more than Manufac
turing needed, so things were left as they were, with everybody
satisfied.

Thus business had discovered that probability settles argu
ments.

As a final preliminary example, another manufacturer was hav
ing trouble with variability of the product from a filling operation
where several filhng mechanisms working in parallel filled separate
packages. This was in spite of the fact that the operator continually
took a package from the line, weighed it, and made adjustments
according to the weight found.

The trouble, was in over-correcting, and in correcting when not
needed. The filling heads could not be adjusted precisely alike, and
even if so, did not measure precisely the same amount into the pack
age each time. There were statistical variations, not only between
heads, but also in the products coming from one head. There was
considerable variation from time to time. He was over-correcting
because each time he happened to get a low fill from a head set low,
he adjusted the whole line upward, or if he found a high fill from
ahigh head, headjusted thewhole line downward.

The answer was in the statistical control chart procedure. A
chart was set up on which the average weight could be plotted. The
operator took, at such intervals as seemed necessary, one package
from each of the filling heads and weighed them separately. On one
portion of the chart he plotted the average weight of the packages,
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and on another the difference between the heaviest and the lightest
package. After a few such weighings certain calculations were made,
which resulted in lines being drawn horizontally on the chart One
was in an area generally above the individual plots of the average
and one was below. One was above the general area of the plotted
differences between high and low weights from a single sample.
These became the control point lines.

Now a procedure could be set up. Whenever a new point was
plotted between the lines bracketing the averages, nothing of any
nature was to be done in the way of adjustment. If it was above the
upper hne or below the lower hne, something very definitely was to
be done. This adjustment was made to the filling process as a whole.
The two areas of decision were the statistical decisions that the
process was either 'in control,' and needed no adjustment, or that
it was 'out of control,' and therefore needed attention.

If a point was above the upper hne for differences between
high and low weights (called ranges) it indicated that another as
pect needed attention—that one or more of the heads may have
changed relative to the others. Individual correction, rather than
group correction, was needed.

Thus the control chart leads to two kinds of control, another
discovery of probability.

In these four examples, business had not literally discovered
probability. Mathematicians had known something about probability
for two or three centuries. For half as long, so had actuaries and
geneticists. But business could put a dollar sign on it, and, in doing
so, create an incentive that amountedto discovery.

To explain further, and before giving other examples, we
should develop something about the fundamentals of variation, and
the mathematical laws that they follow. It is generally known, but
not always admitted, that amongdata from a repetitive process there
are variations whose limits depend on the process itself, and which
can be measured by the data arising from the process. If no funda
mental changes occur during the period of data collecting, as would
occur if the machine were re-adjusted, or the raw material changed
in character, or the like, then the resulting data represent the varia
tions due only to chance causes. When the appropriate measure is
applied, and the frequency of occurrence of each unit of measure is
determined, the histogram or distribution (plotting number along
the Y axis, and a continuous scale of the measurement along the X
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axis) takes on, generally, a bell shaped curve which is known as the
normal probability curve of distribution. This curve can be expressed
mathematically by several parameters, one of which we will now
show.

For many years we have been accustomed to use the term
'average,'which could be obtained by adding up the individual values,
and dividing by the number of terms added. Whether we realized
it or not, the very use of the word average implied a variation, but
we had no means of expressing that variation.

The statistician does this by a term he calls the standard devia
tion, and it is the fundamental building block of most probability
calculations. Having the average, we convert each measurement,
that went into the normal distribution curve, into a difference be
tween it and the average, and call this its deviation. It does not matter
whether the deviation is positive or negative, so far as calculation is
concerned, because each is then squared, and the several squares
added up, or totalled. The total is divided by the number of items,
and the square root of the answer is obtained. The final result is
called the standard deviation. We usually give it the symbol for
sigma, and generally refer to it by that name.

The standard deviation, or sigma, is of particular importance
to the statistician working in the field of probability. For the first
time he has a measure of variation. If he marks off the point for the
average along the continuous scale, and then marks off a distance
equal to one sigmaon either side, then, in the long run, 68.26% of
all the measurements should fall between these limits. If he marks
off a two sigma distance either way from the average, these limits
should include 95.44% of all the measurements, and if he marks
off the three sigma distances they would include 99.74%. Even
when the process is slightly 'skewed' or in short runs, the agreement
is usuallyclose enough that the general lawscan be applied.

The importance of the standard deviation as a general basis of
all probability functions is very great, sinceit appears in almost every
formula. Its square is called the 'variance* and, among other uses,
enters into a system of comparingseveral variables, called the 'analy
sis of variance,' a technique which has powerful applications in the
study of causes and their effects,as in research.

Next in hne of application in probability uses is known as
'sampling' and it is the basis of studying the relation of an entire
group, often called the population, and a few from that group, on
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which some estimation of the properties of the entire group is to be
made. Quality must often be estimated by the use of samples, partic
ularly when the test of quality is destructive, or otherwise makes the
piece unusable, or for economy in decision procedure, or in speed
of decision. In sampling, the statistician must know the laws of prob
ability in sampling. This is because chance alone determines, or
should determine, which item or items appear in the sample. He
knows that unless pure chance selects the item that becomes part
of the sample, the result can be in error, or "biased,' and not be rep
resentative of the true condition of the population. In addition to
the 'normal curve of probability,' used when measurement along a
continuous scale is available, and as already discussed, there is often
used another law, a probability based on the law of small numbers.'

In any sampling, where the decision as to whether each piece
either conforms, or does not conform, to the standard must be made,
and the result is expressed as a percentage of the sample, the usual
method is to employ the expansion of the binomial, or its limiting
form, the Poisson distribution as a method of estimating sampling
results. Suppose that a sample of 100 items is used and that it is
desired that we allow no more than one per cent non-conforming
items. Do we expect that every sample of 100 items have exactlyone
non-conforming item—not by any means. We expect often to find
none,evenwhen we are sure that there are some of them in the pop
ulation. Sometimes we will find one, or two, or even three or four.
We onlyknowthat we are meeting the onepercent figure by repeated
samplings, but we can set up a procedure through which we can
make assumptions of the true condition based on one, or a very few
samples. What is the expected proportion of none, one, two, three
and the like?

We first set up a formula for the probabilities, using the bi
nomial, and express it as: Q + P = 1, where Q is the fraction of
conforming items and P is the fraction of non-conforming items.
Thus their sum must be unity. Where the proportion of non-conform
ing items is 1%, the formula becomes: .99 + .01 = 1.

What we are saying is that every time we examine one item,
there is a probability of .99 that it conforms to the standard and a
probability of .01 that it does not. We are also saying, for each indi
vidual item, that 99 to 1 it meets the standard. When we take
a second item, the probability is the same for that item, and the prob
ability is .99 X .99 or .9801 that both conform. We have learned
not to rely upononeitem, oreventwo items asa sample upon which
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tomake adecision. Experience has shown thatthe size of the sample
must be chosen with reference to the proportion of non-conformity
we expect touse as a criterion, with due respect to the cost of samp
ling and test. The size of the population from which we take the
sample has some bearing, but notas alinear function.

For this discussion we will assume that a sample of 100 has
been decided upon. Parenthetically we are introducing one of many
'decision functions,' the 'work-horse' of probability applications.

What are the probabilities of finding no non-conforming items,
or one, or two, ormore non-conforming items, when the true propor
tion is one per cent, and when a sample of 100 is taken as the basis
of decision? We simply set up the proper binomial, with the sample
sizeasthe exponent, and expand:

(Q + P)B = 1

or in this case:

(.99 + .01)100 = 1

The first term of the expansion is .99100, or .36603, and this is
the probability of finding no off-standard items in a sample of 100,
even if it were known that there were one per cent present

The second term is 100(.99)89(.01) or.36973, andthisis the
probability of finding one non-conformist. The third term is .18467,
or the probability for finding two. The expansion is continued in the
same way until the following table can be constructed:

The probability of none is .36603
one .36973
two .18467
three .06010

four .01494

five .00290

six .00046

seven .00006
eight .00001

Thusone can expect to find none about 36.6% of thetime and even
three 6% of the time from the same population, while one in one
hundred thousand times one could even find eight non-con
formists. On the basis of a sample of 100 we could expect to make
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decisions fairly well between one population of one-half per cent
quality and another of five per cent quality, while closer decisions
would require larger or repeated samplings. We know there is un
certainty, but we have a pretty good idea of what that uncertainty is.
Ourbusiness needs have discovered a better way tomake decisions.

Having made a sufficient number of such tests, we can apply
another decision mechanism called the Chi-square test of uniformity
as a check on the continuing excellence of the sampling. We first
make a frequency distribution from the data of the frequency of
none, one, two and the like, and determine the grand average of all
of the samplings. From this grand average we determine the theoreti
cal frequency of none, one, two and the like. Now by appropriate
mathematical procedures we determine whether the distribution we
actually found could have reasonably come from that calculated
average quality. The criterion of the decision comes from standard
tables of Chi-square values. The decision is valid within the ability
of the data we have accumulated, even to the extent of warning us to
continue thestudy to resolve a doubt. The chi-square test can beap
plied to any distribution which can be expressed mathematically.

Usually applied to two separate determinations, such as two
sigmas, two averages, two per cents defective, or the like, the value
of the significance test is to measure by probability means, whether
these two values represented data that could come from the same
system of causes, or from two significantly different systems. Often
these tests are used in evaluating research rather than routine con
trol. The calculations result in a value, called 't,' for which reason
some are often called 't-tests'; 't' is related to the distribution in the
same way, and in the case of a normal distribution, is in units of
standard deviation. From tables, using entries appropriate to the con
ditions of the test, one determines the values of V which represent
the 5% probability, and the 1% probability that the two values
could have come from the same system of causes. If the calculated
value of V is less than the 5% value for 't' ('t* increases with de
creasing probability) we do not take the chance of assuming that the
two values from the data are significantly different If the calculated
value is greater than the 1% level for 't' we make the opposite deci
sion. If V lies between the 5% and the 1% levels, weeither adopt
the decision based on the nearest't' value, knowing the decision is
borderline, or make further study in order to obtain more data.

Now that we must concede the fact of variation in repetitive
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processes, we must of necessity consider the important aspect of
Engineering design, called specification. If things made must be
allowed a variation, the allowable variation must be expressed by
what we call a tolerance. Tolerances must allow a reasonable range
in the items concerned, but mustbar the unusable. Between these two
extremes there often lies a gulf of guesswork, coercion and fantasy.
Statistical studies may bridge this gulfwith reason.

The control chart has a definite relationship, through logic, but
not through statistics, to specification. That is to say, specifications
arise out of the conditions that the item must meet, and are arbitrar
ily fixed. Aprocess may be statistically 'in control,' but so centered
that out-of-specification product is being made, or it may be 'out of
control,' and so centered, and with so little variation, that the product
is within specifications. There are three possible relationships be
tween specification tolerances and the spread of variation of the prod
uct: where the normal distribution of the product far exceeds the
tolerance, when they are equal, and when the distribution is smaller
than the tolerance. The latter is the only desirable condition since
allowances mustbe made for some shift in the process, asby wear of
tools, and the like. This gives an operating range for the process.

Suppose we visualize a distribution such that it lies within tol
erance, but with one three-sigma tail exactly on the tolerance limit
This, in effect, fixes the position of the center of the distribution,
or grand average, and this in turn is the center of one position of the
control hne of a control chart for measurements, with sample aver
ages allowed avariation either way. Now visualize the system moved
toward the opposite tolerance line, with a similar positioning of the
grand average. Between these two positions of the grand average is
the working range of the process. This over-simplification is usually
modified in practice by certain statistical procedures. The point is
that we had to 'discover' probability in order to adopt this logical
approach.

Specifications have a direct relationship to cost—an all impor
tant business discovery in probability. The user of a product finds
that his cost of using it is small if the product is almost unvarying,
while costs due to waste, machine down-time, and re-work increases
as the raw material he purchases becomes more variable. Careful
study can express these increases as a mathematical curve. On the
other hand the cost of procuring the raw material decreases as the
variation is permitted to increase. This naturally shows up in the
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procurement price. It also can be expressed as a mathematical curve.
The combination of these two cost lines, or more lines if other fac
tors are evaluated such as efficiency, warehousing and the like, can
be charted and added together graphically, or the functions, ex
pressed by acommon measure of the tolerance allowed, can be solved
by the calculus, resulting in aminimum or amaximum curve, gen
erally the former, where the location of zero slope is the best cost
determination. Recognition of this property in specification writing
allows apractical approach to the best cost specification.

Many specification writers fall into the trap ofmeasuring a few
items, then setting a specification based on their properties. This
trap catches both theconsumer and the producer. A more valid, and
completely statistical, procedure is called a process capability study.
Its object is to determine if the process can meet a specification by
determining the combined effect of all the variables in the process.
The procedure may logically determine whether a process or a ma
chine can beused tomake a product tospecification.

There are several kinds of variation that can affect process
capability. Consider a process where each machine has a multiple
arrangement, with each separate unit in the arrangement perform
ing the same operation simultaneously on different items of manu
facture. It may be a machine filling similar packages from several
filling heads, or a multiple stamping machine, a multiple spindle
machine, or it may have several identical dies, or molds, or other
devices. There may be two or more such machines making the same
product, and, of course, each works over aspan of time.

The basic variability is that of the product issuing from one of
the heads or spindles. Next is the variation between the heads, then
the overall variation between the machines, and finally their varia
tion from time to time during the manufacture of that particular
item. The machines may even be located in different factories. Nev
ertheless, the combined stream ofproduct must meet the same speci
fication requirement. The problem isone ofmeasuring the individual
and the collective variables.

One method of process capability study will introduce that area
ofbusiness discovery of probability known as 'design of experiment'
Recently it was desired to establish whether a machine process could
be improved. Call it acutting operation where lengths were cut from
bars in atwelve spindle machine, such as an automatic screw cutting
machine. The cut-off not only was a matter of specification, but
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excess length resulted in fewer pieces per bar of metal fed to the
machine, a matter of cost of material. It was needed to determine
what the normal variation was in each cutting spindle at any given
short interval, how much the spindles varied from each other, and
how they changed duringthe day, as from onehour to the next

It was arranged that three times during the morning, and again
threetimes during the afternoon a sampling would be made. At each
sampling four pieces would be taken consecutively from each head.
The entire group of measurements were assembled in a table for a
technique known as analysis of variance, in what would be termed
a 4 by 12 by 6 experimental design (4 being the number of replica
tions, six times during the test, from each of the 12 heads).

Since it is not the object of this discussion to go into formula
tion, all we will state are the fundamentals. Note that there are 72
sets of four measurements each, giving 72 estimations of the basic
variation from any head at any short interval of time. This becomes
the basic measure of variation. There are six sets of four measure
ments for each head, giving a measure of its change with time, which
can be compared with the basic variation. There are 12 sets of four
measurements for each short interval, which can be compared with
the basic variation to see if there is a fundamental difference be
tween heads. In each case, a question is answered: are the differ
ences significant?

The answers were that the time-to-time variation was highly
significant and that a control chart was needed. The differences be
tween heads was less significant, and indicated that Engineering
studies to control this were needed over a long-pull. Thus, two de
cisionsof fundamental importance were made.

Analysis of variance is an important tool in the field of design
of experiment. Other tools or techniques are available. Many of them
come from the field of Operations Research. In all, one basic fact is
notable. By carefully planning the experiment, in which the known
variables are controlled in precise combination, a series of tests can
be combined to yield usable information in a far more dependable
and precise manner than by separate and sometimes unrelated ex
plorations. Mathematical probability is made to function for the com
pletely practical purposes of planning in advance that the answer
obtained by the research is a usable and a dependable answer.

An entirely new approach has recently been made to the psy
chology of inspection, usingthe statistical approach called the Monte
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Carlo method of simulating a process. Inspection is a process that
can become too routine, mentally. Inspectors begin to make mental
short cuts. They begin to superimpose desire, or indecision, or local
influence, onstatistical processes. Some of these may bias theirjudge
ment or decision—in other words make for wrong decision on qual
ity or in other matters. They may be influenced by the borderline
quality by avoiding the making of decisions by saying to themselves
that they "won't count this one unless there are others like it," or not
making decision if the deciding item can be called borderline, to the
extent of passing bad items, or rejecting good items. It is the function
of management to discover these errors and to provide proper train
ing or retraining.

Many examples of applications of probability could be given.
Several hundred technical and scientific papers are published each
year in various journals, and in the proceedings of the American
Society for Quality Control, the American Statistical Association, the
Operations Research Society of America and other societies. We will
close by one reference to a practical 'break through' in the field of
accounting.

When an airline, or a railroad sells a ticket, or accepts a ship
ment which involves other transportation companies, the first line
collects theentire fare orcharge, andmust forward to thesucceeding
hne or lines their share of the combined sale. Calculating the exact
shares for each transaction is a tedious and costly procedure. Aban
doning the time honored accounting practice of 'to the penny,' sev
eral airlines studied applications of sampling. After trying both the
exact and the sampling procedures side by side for some time, it was
found that the savings in clerical cost between complete accounting
and sampling was several times the cost of the greatest error intro
duced each month by the sampling method. Furthermore, the samp
ling errors, which were both positive and negative, tended to balance
over a span of months. Therefore, it was simply good business to
adopt the sampling procedure.

In a parallel study, railroads in certain 'transfer points' began
to use the same method for the transfer of monies for freight inter
changes. Sampling was also used to decrease the cost of the annual
evaluation of transmission lines and equipment by a telephone com
pany. Thus even the field of accounting began to discover probabil
ity.

We seem to have strayed far from the simple determination of
(Continued on page 37)



A Brief Study of Finite and Infinite
Matrices from a Set-Theoretic Viewpoint*

Phillip A. Griffiths
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The first part of this paper assumes a working knowledge of
the algebra of matrices and of the concept of matrix rank. Aknowl
edge of elementary set theory helps understand the motivation. The
second part assumes a background in analysis normally obtained in
intermediate calculus, and some transfinite arithmetic. No effort
has been made for this treatment to be selfcontained. Also the proofs
of several theorems will be omitted due to lack of time.

We first consider finite matrices. Two matrices will be said to
be equivalent if one is obtainable from the other by elementary row
and column operations. Otherwise they will be said tobe disjoint.

Amatrix can be thought of as an ordered setof elements. Thus
each row and each column is a subsetof the matrix. For the present
these sets will be finite, hence countable. We now make the two
basic definitions which we shall use in matrix set theory.

Definition: Given two « by mmatrices A = (fltj) and B = (&u).
The union of A and B, denoted A U B, willbe defined to be the set
ofmatrices having either 1) an or2) bti in the »;th position. The in
tersection of A and B, A n B, willbe defined tobe the matrixhaving
1) a,j, in case a,s = bn, or2) 0, in case flu ^ blit in the i/th posi
tion. Thus the matrix union yields a set of matrices, whereas the
matrix intersection yields but a single matrix. However, all matrices
concerned have the same dimension. Given A = («u) and
B = (bij) we will investigate the rank of the matrices belonging to
set A U B and the rank of the matrixA n B. The first theorem to be
presentedis as follows:

THEOREM 1. The number of matrices in the set A U B is
2mn - qwhere q is the number ofelements common to A and B.

Proof: Each of the mn elements in the matrix C belonging to
A U B can be chosen in two ways, hence there are 2ma possible
choices. If qof the elements arecommon toboth A and B, there will
bemn —qdistinct elements tochoose from and thus 2mn _Qdistinct

•A papor presented at the 19S9 National Convention of KME and awarded second placo
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choices. Hence A U B has 2ma - •> distinct members, one for each
choice.

Considering the ranks of members of the set A U B, we know
that if A has rank p and B has rank r, then at least one member of
A U B has rank p and at least one member of A U B has rank r. For
the matrix D = A n B, we have

THEOREM 2. If A U B has 2mn - «distinct members, then the
maximum rank of D = A O B is q.

Suppose A and B are n bym and disjoint. Let therank of A be p
and the rank of B be r. Then r =£ p. We may ask if the set A U B
contains matrices of all ranks between p and r inclusive. Assume
that r <p. We will seek amatrix C belonging to A U B whose rank
is r + 1. For this purpose we consider a set <f> which will represent
«l matrices obtained from A by permuting therows of A. The follow
ing theorem results:

THEOREM 3. LetA be nbymand B ben by »t. Assume that
A isof rank p and that B isof rank r withr < p. Let oS be the set of
«! matrices obtained from A by permuting the rows of A. Then for
at least one ci, belonging to <f>, <f>x U B contains a matrix, C, of rank
r + 1.

Proof: There are r rows of B which are linearly independent.
In the operation of taking the union, carry these r rows over into C.
Now at least one of the n rows of A is independent of the n rows of
B, since r < p < n. By permuting the rows of A, this row may be
located so that it is not in a common position with any of the r inde
pendent rows of B. In the union operation carry this row into C.The
remaining « — r — 1 rows, if any, may be carried into C from B.
Hence C has r + 1 linearly independent rows and thusits row rank
is r + 1which isequal to itsrank. This theorem may be extended as
follows:

THEOREM 4. Let 4, be the set of «! matrices obtained from A
bypermuting the n rows of A. Under the assumptions ofTheorem 3,
thereexistp —r members of <f> such that

1) 4>i belongs to <j>, and

2) ?n U Bcontains atleast one matrix of rank i + r,
i= 1,2, •••,? — r.

These two theorems can be proved without permuting the rows
of A. The motivations here will become evident later.
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We now investigate the notion of space with respect to matrices
A and B. We give the following definitions:

Definition: Given two n by m matrices A and B, and the set

consisting of the w/ matrices obtained from A by permuting the rows
of A. We define the union space of A with respect to B, denoted
A * B, to be the space spanned by the n\ unions, 4>i U B.

If A has rank p and B has rank r, then A * B contains p — r
matrices of ranks of all integers between p and r inclusive. This fol
lows from Theorem 4. This definition obviously deals with a quite
unwieldly number of matrices (unless, of course, severe restrictions
are placed on A and B). However, we shall theoretically arrive at
some generalizations of common matrix properties. Also these defi
nitions will prove useful in our investigations of infinite matrices
and matrix integration.

Using this definition of union space, and by introducing scalar
multipliers, we may obtain p canonical (row reduced) forms if p is
the rank of A. We will omit this construction, because, although
simple, it is lengthy. At first glance it would seem as though we are
here constructing canonical forms using only two elementary opera
tions. This is actually an incomparablesituation due to the definition
of union space. However, this leads us to:

Definition: Given two n by m matrices A = (fltj) and
B = (itj). the extended union of A with respect to B, denoted
A U fi, will be the set of matrices each member of which obtains

each of its mn elements in one of the following three ways: The t/th
position of each of the resulting matrices is to be 1) «u, or 2) blit or
3) «ij + &ij. The new set, A JJ B, will have 3mn - «members.

We will now show that the three elementary operations on an
n by m matrix A over the field of real numbers occur as special cases
of the operations of introducing scalar multipliers and taking the
extended union of members of the set </> with respect to a certain
n by m matrix. This is done as follows.

Proof: Let us review the three elementary operations in light
of the definition of the extended union. By doing this, the theorem
will become obvious. First we are given an n by m matrix A. The
set 4> consists of the n! n by m matrices obtained by permuting the
rows of A. Thus the set oS accounts for the first of the three elemen-
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tary operations. Then either we are given an n by m matrix B, or
we must choose one as in this theorem. In this case we choose the
matrix to be A. Now since A itself belongs to #, let a be any non-zero
scalar and take the extended union (<*A) U A. If we desire a result
ing matrix whose ith row has been multiplied by «, carry all but the
tth row of the latter matrix A into the new matrix. This is equivalent
to the second elementary operation. Lastly, to obtain a matrix as in
the third elementary operation, by choosing the proper member of <j>
and applying the extended union, we obtain the desired result

From the above discussion we may readily see that if the matrix
B is restricted to be identically A, all forms obtained from introduc
ing scalar multipliers and taking the extended union are also obtain
able by successive applications of the three fundamental operations.
However, the matrices obtained in the matrix union may be thought
of as being functions of the matrices involved in the union. In this
case we have a situation similar to the Riemann-Stieltjes integral in
which we take the integrator to be the dummy variable corresponding
to the case in which the second matrix in the union is taken to be
the same as the first matrix.

Other results have been developed along these lines, however,
due to the lack of time, they will be omitted.

We now consider briefly matrices whose dimensions are « by
oo. Since the elements of matrices under consideration are indexed
by ordered pairs of integers and since there is a one-to-one corre
spondence between these pairs and a subset of the set of positive
integers, an n by oo matrix contains a countable number of ele
ments. The notion of an uncountable matrix was desirable, and the
following definition seemed to be the most reasonable.

Definition: An « by oo matrix A is said to be uncountable if
any row contains an infinite subset of an uncountable set. A matrix
which is not uncountable is countable.

As before, let A U B denote the set of matrices in the extended

union of two infinite matrices A and B. Then

THEOREM 6. A U B contains a countable number of infinite
matrices.

THEOREM 7. If either A or B is uncountable, then A U B
contains an infinite number of uncountable matrices.

Many other results along this line have been developed, but
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due to the lack of time cannot be investigated. One result on con
vergentsequences will be mentioned.

THEOREM 8. LetA and B be « by oo matrices over the set of
real numbers each of whose n rows is a convergent sequence. Then
in the set A U B there exists a countably infinite number of distinct
matrices each of which has within its n rows two convergent subse
quences.

We mention briefly matrix products interpreted as approxima
tions to integrals. If A is 1 by m (a row matrix or rowvector), and if
B m by 1 (a column matrix or column vector), then the matrix
product is a 1 by 1 matrix, C, where C is simply the inner or dot
product of two compatible vectors. Let a be a real-valued function,
defined and bounded on an interval, [a, V], and let P = {a = x0, xlt
• • •, xn = b) be a partition of [a, V\. Also let

Ak« = a (*k) — a (a*-,)

so that

« (1?) — a (a) = 2 Ak«.
* = i

Let B be the n by 1 column matrix whose elements are Aia, i.e.

B =

Ai«
A2a

An«

Also let f be a real-valued function, defined and bounded on
[a, 6], Let rk be any point belonging to [x*-u *&]. Let Fp be the
infinite set of 1 by n matrices whose tth element is f(ti) for
the partition P. Thus Fp is the set of matrices of the form
[f(*0» ***» /(*n)] where a&-, ^ tk ^ xk. If A belongs to Fp,
the matrix product AB now becomes a Riemann-Stieltjes sum
of f with respect to a for the partition P, denoted S(P,f,«).

Note also that if
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«(*0
«(**)

«(*n)

and B" =

«(*o)
«(*,)

«(*n-i)

then S(P,f,a) = A(fi' — B"). Several theorems concerning the
above concept follow.

The connection between infinite matrices and the Riemann
integral is as follows:

THEOREM 9. Let f be a function defined and bounded on
[a, V}. Let P be a partition of [a, V\ such that xt — xt.!
= Q) — a)/«. Then f is Riemann integrable on [a, b] if and only
if the following limit exists:

lim ffCfc) f(«2)« "/(to)]
00

AiX
A2x

An*

In this casethe limit will be equal to I f dx.

We close with a few brief words concerning the concept of
outer Lebesgue measure applied to matrices. We investigate measure
from a matric, set-theoretic viewpoint Let f be a real-valued func
tion, defined and boundedon an interval [a, &]. Let P be a partition
of [a, b~\, and write P in column matrix form; i.e.

P =

Ai*
A2*

An*

Then P is composed of two parts; namely, those subintervals of P
containing points of discontinuity of f, denoted here by PD, and all
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other subintervals, to be denoted by P0. In fact we may write

Pd =

Ai*
0

0

Au*
0

An*

by replacing in the matrix P those subintervals containing only
points of continuity of f by zero. Now P — PD = Po and thus
p = pD + pc. This can also be written P = PD U P0 wherewe take
the one matrix of the union having no zero elements. Considering
P, PD, and Po as vectors and letting • stand for the inner or dot
product betweentwo vectors, we have

P = PD + P0

P«P = (PD + Po) • (Pd + Po)
= PD *Pd + Po * Po since P0 • Pd = 0.

Now PD *Pd gives the sum of the squares of the lengths of the sub-
intervals containing points of discontinuity of f. In conclusion, one
may prove the following theorem:

THEOREM 10. f is Riemann integrable on [a, h], if and only
if, for every given e > 0, there exists a partition P« of [a, V) such
that if P is a refinement of P« and P = PD + Po under the above
notation, we have P • P — Pc * Po < «•



The Four-Dimensional Cube"
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Mathematics, in its trend toward abstract thinking, has, in the
last century, been leading the mind of man to a study of four-
dimensional geometry. Four-dimensional space is, of course, one
in which there exists four mutually perpendicular lines. This is in
contrast with our well-known threedimensional space in which only
three mutually perpendicular lines exist.

It is the intention of this paper to give a better understanding
of higher space geometry concepts, especially those dealing with the
four-dimensional cube. Such a study will increase the understanding
of the geometries ofplane and space. I, personally, found my interest
in four-dimensional space aroused by attempting to graph a two
dimensional equation in complex coordinates.

The method to be used in analyzing this problem is one of
comparing the geometries of figures in spaces from zero to and in
cluding three and inferring what the corresponding fourth-dimen
sional concept would be.

The two major techniques for studying four-dimensional fig
ures are (1) examining three dimensional sections of the figure, and
(2) considering projections into a three dimensional space or a
hyperplane. Both methods have their disadvantages. When observing
sections of a four-dimensional figure, one has no perception how
these may be connected, and only a small portion of the figure may
be seen at a time. In contrast with this, the projection study allows
the observer to view the complete figure with the disadvantage of
sacrificing a depth perception.

The method of revolving projections was chosen as the basis
for this study. It should be noted, at this point, that all projection
rays are perpendicular to the plane of projection. This is in contrast
with the perspective projection in which allprojection rays converge
to a point. Orthographic projections are used since these show the
exact form of the object, instead of permitting perspective distor-

•A paper prosented at tho 1959 National Convention of KME and awarded third place
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tions. Figure 1-a illustrates a sketch perspectively distorted while
Figure 1-b is an orthographic projection ofFigure 1-a.

CX b

•

1 1

.<P ,. •!?.

FIGURE I
PERSPECTIVE VERSES ORTHOGRAPHIC

Since a regular projection of a cube of three dimensions in
standard position would be a square of two dimensions, we might
compare these figures with their dimensional spaces by saying: a
square is related to two dimensional space as a cube is related to
three dimensional space. By this type of inference, the different di
mensional figures may be compared in tabular form as in Table I.

Table I

»

dimensions

figure

0 point

1 line line segment

2 plane equilateral
triangle

circle square

3 hyperplane tetrahedron sphere cube

4 pentatope hyper-
sphere

tesseract

The sequence: point, line, plane, hyperplane is obvious from
the respective definitions. Apoint has no dimension, a line has one
dimension, andsoon. In zero dimensions, there is only onegeometri-
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cal figure possible, the point There isagreat increase in complexity
of the possible geometrical figures with each increase in dimensional
representation.

The method of comparing dimensions may be illustrated with
the simplest of the straight hne figures, the two dimensional triangle
series. It is known that for straight line figures of one dimension two
points are necessary for their determination. Likewise, three points
determine atwo dimensional straight line figure, and four points de
termine the three dimensional figure. Therefore, five points should
determine the corresponding four-dimensional figure. In the special
case when the two dimensional figure is an equilateral triangle, the
corresponding three and four dimensional figures are called, respec
tively, the tetrahedron, and the pentatope. Since the equilateral tri
angle consists of three equal line segments, and the tetrahedron con
sists of four equilateral triangles, we may conclude the pentatope
should consist of five tetrahedrons. The combinations of numbers of
points, lines, surfaces, and so on, also infer adefinite sequence. Here
these figures are regarded as consisting only ofthe bounding elements
thus excludingthe interior.

For the circle-sphere-hypersphere sequence, this type of analy-

Table II

figure parts

n dimensions 0 1 2 3 4

0 point P

1 line segment 2P L

2 square 4P 4L A

3 cube 8P 12L 6A S

4 tesseract 16P 32L 24A 8S H

P represents vertex points
L represents edgeline segments
A represents face areas

S representsspacevolumes
H represents hyperspace content
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sis cannot be used since the figures in this series have no vertices.
However, each of these figures may be generated by rotation about
a bisecting element; for example, a line bisecting a circle may act as
the axis to generate a sphere. It may here be noted that a circle is
generatedby rotating a point in a given plane at a constant distance
from a fixed point. Therefore three collinear points equally spaced
may be considered as a one dimensional circle with its center. We
may also infer that a hypersphere of four dimensions is generated
by "rotating" a sphere in four-dimensional space about a plane
through its center.

TOP

UENSTH

U

S
e

•T

i

I

1.

P. ?SlpE £
HEIGHT

HEI6HT

•<VTH DIMENSIONAL VIEW

HEIGHT

a a A 3
D C ^1 s

TOP

^I s
1 1

1

rL-

z.

T1
A

Z

LENCTH DEPTH

FIGURE Z
PqiNCIRAL PROJECTIONS OF DIFFERENT DIMENSIONAL FIGURES



34 The Pentagon

A square, which has four vertices and four equal hne segments,
when extended one dimension, produces a cube of 8 vertices and 12
equal line segments together with 6 squares of surface. Table II is a
tabular form of these components ashas been previously calculated.

It is customary to speak of a projection as being a representation
of an "n" dimensional figure in "n — 1" dimensions. Thus, the prin
cipal projections of a two dimensional rectangle in one dimension
would appear as in Figure 2-a. Figures 2-b and 2-care the principal
projections for the corresponding three and four dimensional figures.
The consistency between these figures is readily noticed by labeling
the vertices in Figure 2 in a set pattern. Notice the top of the two
figures denoting each projected vertex is the closer to the actual un-
projected vertex. This is most easily seen in the top projection of

Figure 2-a. In the vertex "A", the 1 denotes the closer of the two
vertices coinciding by projection.

Notice that there are as many projections as there are dimen
sions in the original figures and these are always mutually perpen
dicular, thus the principal three dimensional projections of the four-
dimensional rectangular figure would appear, as indicated, with 16
vertices. The measurement dimensions of the original figures are
found in the projections as labeled (length, width, and so on).

In considering rotations of this four dimensional figure, the
special case when it is a hypercube or a tesseract is used for sim
plicity. First the corresponding rotated projections of a cube are con
sidered. When a cube is projected after being slightly rotated, two
figures approximating squares, very close together, are seen. Their
corresponding vertices are connected, as indicated in Figure 3-a.

FIGURE .3
TOP PROJECTION ROTATIONS



The Pentagon 35

Extending this concept by one dimension, we may say that a
tesseract, after being rotated slightly in hyperspace, would appear,
when projected on this hyperplane, as two approximate cubes closely
interconnected with their corresponding vertices connected, as in
Figure 3-b.

It may be noted that this figure of two interconnected cubes
is very similar to the popular representation of the tesseract, as illus-
rated in Figure 4-b, consisting of a cube within a cube with the cor
responding vertices connected.

FIGURE A-

An analogous projection is obtained by the shadow of a cube
produced by a light close to the center of a side. This is illustrated
in Figure 4-a. Using orthographic projections, Figure 4-a could be
considered as a top projection of a frustum of a square pyramid.
From these observations we may conclude Figure 4-b is a perspective
projection of the tesseract or an orthographic projection of a frustum
of a cubical hyperpyramid. The frustum of a square pyramid has the
same basic construction as the cube, thus it is possible to study the
parts of the tesseract with this figure.

We may note that as the cube in Figure 3-a is rotated, the two
marked vertices approach each other, if rotation is chosen about the
diagonal of the front side. This diagonal must be perpendicular to
the projectors or lines of sight. Assuming these conditions are ful
filled, the cube of Figure 3-a wouldappear as in Figure 3-c when the
two marked vertices coincide in the center of the figure. For sim
plicity, we may regard this cube as a solid thus eliminating three
lines from consideration, as illustrated in Figure 3-d. Figures 3 and
4 have vertices labeled according to Figure 2. These are all based
upon the top projections. Also it is noted that these two figures con
sist of two similar elements. For clarity one of these elements is
dashed throughout.
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It is easily seen that Figure 3-d consists of three squares, each
distorted until one diagonal equals a side. It may, therefore, be in
ferred that the corresponding special projection for the tesseract con
sists of four cubes each distorted until one diagonal equals a side.
Figure 5 is a sketch illustrating this special projection of the tes-

^
•4^-W

•-.jep

•-J I
'*

AL lV-£*1 1° I
\ i Bl 1 1
\ \

\ \

\ ( \ J
\| \|
tj \| L!l__ tf

eL

FIGURE S
SOMETRIC PROJECTION OF THE TESSERACT

seract These vertices are also labeled the same as those of the tes
seract being projected into Figure 2-c. Notice the four omitted lines
connected to the vertex D: 4D, AD, D"H and SU. The four lines
meeting in the center of the figure correspond directly with the three
lines meeting in the center of Figure 3-d. Actually there are two
pointscoinciding at this point,but these projections were drawn only
of the half of the figures closer to the planesof projection. The three
lines intersecting at the center in Figure 3-d are mutually perpendic
ular. The same may be said about the four lines intersecting in the
center of Figure 5.

Since the projection of an oblique line is shorter than the line
itself, we know that the edge of a cube is longer than its projected
edge in Figure 3-d. It is readily shown by geometry that the ratio of
the projected length in this special projection, to the original line
is V2/3. It is also easily seen that the corresponding ratio for the
projection of a square on one dimension is V^ f°r each edge is
located 40° from the line of projection.
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The corresponding ratio for Figure 5 may be determined using
the principle that the tesseract may be rotated about a diagonal of a
bounding cube until two vertices coincide, as was before discussed.
By solid geometry, the diagonal acting as the axis of rotation is found
to have a length twice that of the edge projection. Also this diagonal
length equals V3 times the edge of the tesseract, as may be seen by
again considering the principal projections in Figure 2-c. By elimi
nating the revolving diagonal length from these two conditions, it is
seen that the ratio of the projection lengths, to the tesseract edges
is yjM.

It is now seen that the tesseract edges themselves are positioned
30° from this hyperplane for this special projection. To better under
stand this statement, consider any vertex of the tesseract being pro
jected into Figure 5 as located in this hyperplane. Then any of the
lines of the tesseract, passing through this vertex, are 30° from this
hyperplane.

Using these concepts and principles, a four-dimensional geome
try may be created systematically but not exceptionally rigorously.
However, one may more readily perceive the more complex hyper-
space figures which is a greataid in such a study.

€

(Continued from page 22)

the standard deviation and binomial expansion of the exercise book,
but this is not true since they have entered into all of the methods
and examples given. Thus, we come back again and again to their
fundamental aspect in all applications of statistical probability as the
lowly building blocks in a growing structure of practical usage,
through which is centered the fact that business has not only become
aware of, but also, in its own mind, has 'discovered' probability. If
chance is a game, business has now found that to play the game, one
needs most to learn the rules of the game.



The Problem Corner
Edited by J. D. Haggard

The Problem Corner invites questions of interest to undergradu
ate students. As a rule the solution should not demand any tools be
yond the calculus. Although new problems are preferred, old ones of
particular interest or charm are welcome provided the source is
given. Solutions of the following problems should be submitted on
separate sheets before March 1, 1960. The best solutions submitted
by students will be published in the Spring, 1960, issue of THE PEN
TAGON, with credit being given for other solutions received. To ob
tain credit, a solver should affirm that he is a student and give the
name of his school. Address all communications to J. D. Haggard,
Department of Mathematics, Kansas State College of Pittsburg,
Pittsburg, Kansas.

PROPOSED PROBLEMS

126. Proposed by Mark Bridger, student, High School of Science,
Bronx, New York.

Show that the quartic equation x* — 13x3 —12*:2 — 17x
+ 37 = 0 has no negative root.

127. Proposed by the Editor (From The Foundations and Funda
mentalConcepts of Mathematics by Eves and Newsom).
A man wishes to go from his house to the bank of a straight

river for a pail of water, which he will then carry to his barn on the
same side of the river as his house. Find the. point on the riverbank
from which he should take the water in order to minimize the dis
tance he travels.

128. Proposed by Paul R. Chernoff, student, Harvard College.
The inverse F_,(t) of a real function F(t) is defined so that

F-»[F(t)] = F[F-J(*)] = t. If F(t) and its inverse function
F-1(t) are continuous functions of t on the entire interval concerned,
prove that

Jb /»F(b)

F(t) dt = b •F(fc) -a' F(<z) - I F-1 (t) dt
a JF(a)

129. Proposed by the Editor (From The Mathematical Monthly").
Find the greatest (volume) right circular cylinder coaxal with,

and inscribed in, the solid formed by rotating around the y-axis the
area bounded by the two axes, the parabola y = 9x2 — 28x + 24,
and the parabola's minimum ordinate.

38
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130. Proposed by the Editor (From The Mathematical Monthly').

Prove that 2 (" ~ ^ = i
n = i n!

SOLUTIONS

108. Proposed by the Editor.

Show that 1/2 + 1/3 + 4- l/» cannot be an integer
for any integer n.

Solution by Mark Bridger, High School of Science, Bronx,
New York.

Suppose 1/2 + 1/3 + + 1/n = I (an integer) for
some integer n. Moreover suppose n is the smallest such « for which
the sum is an integer. Let p be the largest prime smaller than than n.
There is no other multiple of p between I and p, and no other mul
tiple of p between p and n ("Bertrand's Conjecture" see Hardy and
Wright "Number Theory" for proof).

Now m! contains p as a factor only once, thus we can write
«! = Kp where K is the product of all the integers from 1 to n ex
cluding p.

Multiplying both sidesof 1/2 + 1/3 H • + 1/n = I by Kp
gives:

(1) Kp[l/2 + 1/3 + • • + l/(p - D]
+ Kp/p + Kp[l/(p -f- 1) + • • 1/n} = IKp

The left side of (1) is an integer since »! contains 1, 2, • • •, »
as factors. Now each term on the left of (1) is a multiple of p except
Kp/p.

If MQp) represents a multiple of p, we can now write (1) as
follows:

(2) M(p) + K = IKp

p therefore divides the right side of (2) but not the left because
K does not contain p as a factor. Thus a contradiction is reached and
the theorem is proved.
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115. Proposed by R. G. Smith, Kansas State College of Pittsburg.
Given two points A and B in three dimensioned Euclidean

space with distances a and b respectively from a line I, show that no
point interior to segment AB has distance to I greater than max.
(a,b).

Solution by Mark Bridger, High Schoolof Science, Bronx, New
York.

Let the line I be the x-axis and denote the two fixed points as:
A(xu yu zO and B(x2, y2, z*). Their distances from I would then
be given by the formulas:

a2 = y? + Z!s, b* = y2* + z,2

No loss of generality results from taking a = max. (,a,V). That
isa>fc>Oanda2>R

Now take any point P(Xo, y0, Zo) interior to the segment AB. It
will divide AB into AP and PB whose ratio we shall denote by m/n.
Then:

_ myx + ny2 _ mzx + «z8
y° m + n ' Z|> m + n

If d is the distance of P from the x-axis (line Z) then:

d* = y02 + Zo2

= wZ(y22 + z»') + "2Cyi2 + ZiO + 2mw(y1y2 + ztzQ
dm + n)2

_ m2b2 + ii»aa + 2wn(y1y8 + frzQ
(m + n)2

For any real a and b, (a2 + 62)/2 ^ab and since a2 > bs we
may substitute V£ (a2 + fc2) for (yiy2 + ZiZ») and a2 for b2 obtain
ing:

,, . m2a2 + n2a2 + 2mna2 ,
d < 7—T—^ = a2(m + m)2

Thus d < max. (a,&).

121. Proposedby the Editor.

If A, B, and C are the angles formed by a diagonal of a rec
tangular parallelepiped with its edges, show that:
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sin2A + sin2B + sin2C = 2.

Solution by Mary Sworske, Mount Mary College, Milwaukee,
Wisconsin.

Let d be the diagonal of the parallelepiped, anda, b, c the edges
which form the angles A, B, C respectively with d. Then:

sin A = CVd" - a2) /d

sin B = (y/d2 - ¥) /d

sin C = (Vd2 - c2) /d

d2-a2 + d2-b2 + d2
Thus sin2A 4- sin2B + sin2C

d2

_ 3d2 - (a2 + b2 + c2)
d2

= 2

since d2 = a2 + b2 + c2.

Editor's Note: Kay Dundas points out that also cos2A + cos2B
+ cos2C = 1.

Also solved by Loretta Bauer, Mount Mary College, Milwaukee,
Wisconsin; Mark Bridger, High School of Science, Bronx, New
York; Paul R. Chernoff, Harvard College, Cambridge, Massachu
setts; Marilyn Cook, Wake Forest College, Winston-Salem, North
Carolina; Kay Dundas, Fort Hays Kansas State College; Don Hayler,
Pomona College, Claremont, Cahfornia; Warren Shreve, Iowa State
Teachers College,Cedar Falls, Iowa.

122. Proposed by George Mycroft, Kansas State College of Pittsburg.

With each letter symbolizing a digit decode the following
puzzle:

FIVE
- FOUR

ONE
+ ONE

TWO
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Solution by Gilbert Orozco, California State Polytechnic Col
lege,San Luis Obispo.

There are twosolutions to the problem as follows:

3496 9516
- 3210 - 9280

286 236
+ 286 + 236

572 472

One of the two solutions was submitted by Loretta Bauer,
Mount Mary College, Milwaukee, Wisconsin; Paul Chernoff, Har
vard College, Cambridge, Massachusetts; Kay Dundas, Fort Hays
Kansas State College; William Harnish, Drake University, Des
Moines, Iowa.

123. Proposed by the Editor. (From The American Mathematical
Monthly).

Let a real positive number n be split into x equalparts in such
a manner that the product of the parts will be greatest How many
parts will there be?

Solution byMark Bridger, High School of Science, Bronx, New
York.

If n is split intox equal parts, each part must equal n/x. Their
product is therefore:

p = Cn/xy.

Since mis a positive constant, p will be a maximum when its deriva
tive with respect to x is zero. This yields ln(n/x) = 1 or x = n/e.
Now if n/e is an integer this is the solution. If not, since we were to
have equal parts, we must take x = [n/e + 1/2], i.e. greatest inte
ger in n/e + 1/2.

Also solved by Paul Chernoff, Harvard College, Cambridge,
Massachusetts; Kay Dundas, Fort Hays Kansas State College; Don
Hayler, Pomona College, Claremont, California; Dennis Hult, Ne
braska State Teachers College, Wayne, Nebraska; Ralph Milano,
Montclair State College, Upper Montclair, New Jersey; Warren
Shreve, Iowa State Teachers College, Cedar Falls, Iowa.
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124. Proposed by the Editor.

Show that the square of any odd integer is one more than an
integral multiple of eight.

Solution by Ralph Milano, Montclair State College, Upper
Montclair, New Jersey.

Let 2» + 1 be any odd integer, where n is an integer. Then:

(2n + l)2 = 4»2 + 4n + 1

= 4(m2 + n) + 1

= 8[«(m + l)/2] + 1

Since «(» + 1) is even for any integral n then the expression
in the bracket is an integer and the theorem is proved.

Also solved by Mark Bridger, High School of Science, Bronx,
New York; Paul Chernoff, Harvard College, Cambridge, Massachu
setts; Marilyn Cook, Wake Forest College, Winston-Salem, North
Carolina; Kay Dundas, Fort Hays Kansas State College; Don Hayler,
Pomona College, Claremont, Cahfornia; Warren Shreve, Iowa State
Teachers College, Cedar Falls, Iowa.

125. Proposed by the Editor. (From a Russian university entrance
examination).

Two factories each received an order for an identical number
of machines. The first factory started 20 days earlier and finished
work 5 days earlier than the second factory. At the moment when
the number of machines made by both factories taken together was
equal to one-third of the total number on order, the number of
machines made by the first factory was four times the number pro
duced by the second.

The first factory worked on the order altogether x days, pro
ducing m machines per day; the second factory worked y days pro
ducing n machines per day. Find those of the quantities x, y, m and «
and those of the ratios x/y and m/n which can be determined from
the data given in the problem.

Solution by Mark Bridger, High School of Science, Bronx, New
York.

Each factory produced the same number of machines, there
fore:
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1. xm = yn and m/n = y/x
Since the first factory started 20 days earlier than the second and
finished 5 dayssooner than the second:

2. x = y + 15 ory = x — 15
When the first factory had worked z days it had produced 4
times the number of machines of the second:

3. zm = 4(z — 20)» or z = 80n/(4n — m).
At this time, however, the machines produced by both factories
equaled one-third the total order. (l/3)(xm + yn)
= (2/3)(xw).Thus:

4. zm + (z — 20)» = 2x»i/3
Substituting into this equation from 3 we obtain:

5. zm + zjb/4 = 2xj»/3 and upon eliminating z we obtain:

6. (5nt/4)(80«)/(4n - m) = 2xm/3
Simplifying and substituting for m/n from equation 1 we get:

7. 2/5 - (l/10)(y/x) = 15/x
Eliminating y using equation 2 we get:

8. 2/5 - (x - 15)/10x = 15/x
Which yields x = 45 and by substituting into 7 we obtain
y = 30.

9. Since only three independent equations were given (1, 2, 6) we
are unable to determine m and «, however, m/n = y/x = 2/3.

Editor's Note: Late solutions by Edward Ross, High School of Sci
ence, Bronx, New York, were received for problems 121, 122, 123,
124 and 125.

€)

"And Lucy, dear child, mind your arithmetic.... What would
life be without arithmetic, but a scene of horrors?"

—Sidney Smith



The Mathematical Scrapbook
Edited by J. M. Sachs

To think logically the logically thinkable—that is the mathe
matician's aim.

—C. J. Keyser
=A =

Myth tells us that, in early times, the sage Yu, the enlightened
emperor, saw on the calamitous Yellow River a divine tortoise whose
back was decorated with the figure made up of the numbers from
1 to 9, arranged in the form of a magic square or lo-shu.

—F. Cajori
A History of Mathematics

= A =

The history of magic squares goes back many years. A simple
method of construction for magic squares of odd order can be de
scribed in the following rules:

1. Write a 1 in the centercellof the top row.
2. Continue writing the integers in increasing order, moving

up and to the right to the next diagonal cell.
3. If the motion up carries you above the square, shift to the

bottom cell in the same column. If the motion to the right
carries you out of the square, shift to the cell on the left
margin of the same row.

4. If a cell is already occupied, put the number which would
go there in the cell just below the previous number written.

Following these rules we can write the familiar 3 by 3 and 5 by 5
magic squares or, if we choose, a magic square of anyoddorder such
as 13.

17 24 1 8 15

8 1 6 23 5 7 14 16

3 5 7 4 6 13 20 22

4 9 2 10 12 19 21 3

11 18 25 2 9

45
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In puzzling over the preceding rules for the construction of
magic squares of odd order, your editor became curious about what
kind of array would result if such a series of rules were applied to a
cube in three-space. Some rather curious results were obtained from
the first attempt to generalize these construction rules. Perhaps some
of the readers would like to try modifying these to get more satisfy
ing or more symmetric patterns. Suppose we call any horizontal
triple in our cube a row, any vertical triple a column, and any one
of the vertical slabs of nine cells, a slice. In this way we can represent
our cube by showing the faces of three slices with the left one repre
senting the slice closest to the viewer, the middle one the middle slice
and the right one the slice farthest from the viewer.

Rules:

1. Write a 1 in the top middle cell of the middle slice. t
2. Continue writing the integers in increasing order, moving

back a slice, then right one column, then up one row.
3. If the motion back carries you out of the cube, shift to first

slice. If the motion to the right carries you out of the cube,
shift to left column in the same row of same slice. If the
motion up carries youout of the cube, shift to bottom cell in
same column of same slice.

4. If cell is already occupied, put the number which would
have been written there in the first unoccupied cell obtained
by reversing the motion in 2, starting at the cell in which
the previous number was written. That is instead of back,
right, up; go down, and if that cell is occupied go left, and if
that cell is occupied, go forward.

The 3 by 3 by 3 cube which can be obtained by these rules is shown
below:

24 15 6

25 16 7

10 1 19 20 11 2

8 26 17 14 5 23

3

4

21 12 18 9 27

22 13
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In each slice the columns total to 15, 69, and 42. In every slice the
diagonals each total 42. Is it true that every diagonal which can be
obtained by summing a triple of numbers which lie on a straight line
but not in a row or column is 42? Since 15 is 27 less than 42 and
69 is 27 more than 42, can cell interchanges be made to have all
columns total 42? Could you vary the construction rules somewhat
and perhaps get more startling results? Apply this to a 5 by 5 by 5
cube and see what happens.

= A =

The construction of magic squares with an even number of
cells is more difficult than construction of such squares with an odd
number of cells. A 4 by 4 square can be constructed by Uning out
the two diagonals and counting squares, writing in the number of
the square if it is not on the diagonal. Then, going back to the start
ing point in the upper left corner, we begin with the largest number
not written and go backwards filling in the numbers which were not
written in the cells on the diagonals.

2 3 16 2 3 13

5 8 5 11 10 8

9 12 9 7 6 12

14 15 4 14 15 1

There does not seem to be an analogous method for a 4 by 4 by 4
cube. Can you convince yourself that every cell in such a cube is on
some diagonal? The editor of this column would welcome letters on
the subject of magic cubes and would like to publish in future issues
accountsof results obtainedby experimentingwith these.

= A=

Suppose we try the construction we have used for odd ordered
magic squares on the construction of magic rectangles. If we con
struct a rectangle with an odd number of rows and an odd number of
columns and starting with 1 in the upper left hand corner, we follow
the up and to the right diagonal order of numbering our cells, what
will we get?The 5 by 3 rectangle will be
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1 7 13 4 10

6 12 3 9 15

11 2 8 14 5

The rows sum to 35, 45, and 40. The columns sum to 18, 21, 24,
27, and 30. Can you explain this? Or is it so obvious as to defy
explanation? Interchanging elements within a column will not affect
the column totals but will change row totals. For exampleinterchang
ing the 10 and the 15 in the fifth coumn will leave the column sums
unchanged but make all three of the row sums be 40. Interchanging
elements within a row will not affect the row totals. Can you now
re-arrange the elements within the rows so that all of the column
totals are 24? If you are unable to do this, can you prove that it is
not possible? Try to generalize and imagine this for an M and N
rectangle with M and N odd. What happens if you try this scheme
on a rectangle with either M, N, or both even? Does the diagonally
up to the right method of writing the integers in increasing order
work here?

= A =

With all the attention now being given to the exploration of
space, and to space medicine in particular, it seems appropriate to
call attention to the following remark by Ernst Mach in a lecture
delivered in 1910. "Mathematical and physiological researches have
shown that the space of experience is simply an actual case of many
conceivable cases, about whose peculiar properties experience alone
can instruct us."

= A=

A group of friends meet at a party. The discussion involves
birth months. One man notes that no two people present have the
same birth month. What is the minimum number of people needed
at a party if the probability that two shall have the same birth month
is more than one-half?

= A =

When Plato wrote over the portal of his school, "Let no one
ignorant of geometry enter here," he did not mean that questions
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relating to lines and surfaces would be discussed by his disciples.
On the contrary the topics to which he directed their attention were
some of the deepest problems—social, political, moral—on which the
mind could exercise itself. Plato and his followers tried to think out
together conclusions respecting the being, the duty, and the destiny
of man, and the relation in which he stood to the gods and to the
unseen world. What had geometry to do with these things? Simply
this: That a man whose mind has not undergone a rigorous training
in systemic thinking, and in the art of drawing legitimate inferences
from premises, was unfitted to enter on the discussion of these high
topics; and that sort of logical discipline which he needed was most
likely to be obtained from geometry.. ..

—J. C. Fitch

= A =

Pick a favorite digit from the number 15,873. Multiply the
given number by seven times the digit you have chosen. The product
will consist entirely of your chosen digit For example suppose you
pick the digit 8. The product of 15,873 and 56 is 888,888. The
same trick can be accomplished with the number 12,345,679 if
you use as multiplier nine times the chosen digit. Suppose the chosen
digit is 5. The productof 12,345,679 and 45 is 555,555,555. Can
you explain this trick which seems mystifying at first glance but is
really quite simple?

= A =

The science of pure mathematics, in its modern developments,
may claim to be the most original creation of the human spirit.

—A. N. Whitehead

=A=

Three planes travel on the same course at the same altitude,
departing from the same airport. The second leaves one hour after
the first. The third leaves one hour after the second. The second and
third planes overtake the first simultaneously. The second plane
travels 60 mph faster than the first and the third plane travels 90
mph faster than the second. Find the speed of the three planes.

=A =
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If a healthy minded person takes an interest in science, he gets
busy with his mathematics and haunts the laboratory.

—W. S. Franklin

= A =

The Pythagoreans were intrigued by triangular numbers and
also by square numbers. A triangular number is any number which
can be written in a triangular array such as 3, 6, 10, etc., as shown
below.

1

1 1 1

1 m 1 1 (6) 111
1P3J 111 1111

(10)

A square number is of course any number which can be written in a
square array such as

1 1 1

Um 111 C9)
11 W 111

The question which recently came to the attention of this editor is,
"Under what conditions is a square number also triangular?" We can
find examples so we know that there are square numbers which are
also triangular, for instance 36 and 1225. Since a triangular num
ber can be written as the sum of consecutive integers beginning with
unity, that is 1 + 2 + 3 + • • • + n, we can write it in the form
VS«(n + 1). We seek positive integral solutions for the equation
n(n + 1) = 2N2. In looking at this problem certain conjectures
come to mind. Can you verify that N cannot be a prime; that
1 4- 8N2 must be a square; that the final digit in N must be 0, 1,
4, 5, 6, or 9; that the final digit in N2 must be 0, 1, 3, 5, 6, or 8;
that the final digit in 2N2 must be 0, 1, 2, or 6? Contributions on
this topic are invited.

= A =

It may be said that the conceptions of differential quotient and
integral, which in their origins certainly go back to Archimedes,
were introduced into science by the investigations of Kepler, Des
cartes, Cavalieri, Fermat, and Wallis.. . The capital discovery that
differentiation and integration are inverse operations belongs to
Newton and Leibniz.

—Sophus Lie



The Book Shelf

Edited by R. H. Moorman

Dictionary of Astronomy and Astronautics, Armand Spitz and Frank
Gaynor, Philosophical Library, Inc., (15 East 40th Street)
New York 16, 1959, 439 pp., $6.00.

Over 2200 terms and concepts are defined and discussed in
this dictionary, compiled by Armand Spitz, Coordinator of Visual
Satellite Observations for the Smithsonian Astrophysical Observatory,
Cambridge, Massachusetts, and Frank Gaynor, author of Encyclo
pedia of Atomic Energy and Contributing Editor of the Encyclopedia
Britannica.

Astronomy is much more generously treated than is astronau
tics. Not only are there far more astronomical terms, but also these
terms tend to be defined more clearly and completely. There are also
quite a few terms from nuclear physics.

The book is highly informative and remarkably interesting.
Along with all the scientific information, it purveys many intriguing
bits of mythology and history as well as reassuring words, the last
under such entries as "collision" and "cyanogen in comets."

Unfortunately, a mumber of the definitions and discussions
are faulty. The grammar is not always above reproach, nor is the
mathematics and physics. Some of the definitions as stated are mean
ingless, illogical, circular, or simply not clear. Examples are

"matter ... The atoms are composed of smaller particles,
of three important kinds, protons, electrons and neu
trons, which bear electrical charges which are positive,
negative and neutral, respectively.
These ultimate particles, with their electric charges, are
all alike."

"seasons .. . Differences in climate during the year at dif
ferent latitudes on the earth."

"selenocentric . .. Relating to the center of the moon; re
ferring to the moon as a crater."

There are several obvious errors. Examples are

"coordinates .. . Lines drawn perpendicular to two other
lines that are usually perpendicular to each other, . . ."

51
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"hyperbola ... It is an open curve with only one focus."

"mass ratio ... The ratio of the weight of a rocket to the
weight of the fuel that it carries; it can be calculated by
dividing the weight of the rocket carrying a full load by
its weight when empty."

Although the preface mentions 'lengthy years of work on this
compilation," some of the faults seem to be due to haste and careless
ness. There are quite a few misprints. Speed was no doubt necessary
to keep a book in this rapidly moving field from becoming obsolete
while being produced. The result is a timely volume, which, although
not entirely reliable, contains much easily accessible information.

—Mabel S. Barnes
Occidental College

Principles and Techniques of Applied Mathematics, Bernard Fried
man, John Wiley and Sons, Inc. (440 Fourth Avenue) New
York 16, N.Y., 1956, 315 pp., $8.00.

The subjectmatter of this book has been used for several years
as the basis of a one year course in the Graduate School of New
York University. The student who expects to profit by reading it
should be thoroughly familiar with such concepts as matrices, dyads,
Lebesgue integration, Hilbert spaces, Green's Functions, and eigen
values. This statement is not meant as a criticism of the book but is
intended to indicate the level of the subject matter.

The author organized the book around two main themes. The
first is to show how "the abstract theory of linear operators can be
used to unify and systematize the techniques of applied mathe
matics," the second is to develop specific techniques which yield
explicit solutions of partial differential equations. These themes are
developed through theorems, examples, and problems. The organiza
tion of the material is good, the examples are well chosen, and the
problems will present a real challengeto the serious reader. The book
has considerable value because it presents a unified treatment of a
bodyof material whichhasnot been found in one place previously.

The use of "Rule" and "Method" as paragraph headings, and
the use of appendices at the end of each chapter seems unfortunate.
The use of "Rule" and "Method" reminds the reviewer of the old-
fashioned "cook-book" texts in arithmetic and the appendices appear
to be afterthoughts.
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The book contains five chapters. In the first chapter, entitled
"Linear Spaces," the author indicates two basic methods of solving
the linear equation Lx = m where L is a linear operator, m a given
vector and x an unknown vector. In Chapters Two and Three these
methods are developed in detail. Chapter Four is devoted to the
theory of spectral representation of ordinary differential operators.
In Chapter Five specific methods for solving equations of mathemati
cal physics are developed.

The typography of the book is good. Very few misprints were
found by the reviewer, and the printed material is not crowded.

—W. Toalson
Ft Hays Kansas State College

Rocket, Sir Phihp Joubert de la Fert6, Philosophical Library (15 East
40th Street) New York, 1957, 190 pp., $6.00.

The first part of this book is historical and traces the military
development of rockets and rocket propulsion from the year 1232
down to 1944 when Hitler's V-l and V-2 weapons were a threat to
Britain's security. The latter partof the book attempts to analyze the
military and political effects of long range rockets carrying atomic or
thermo-nuclear warheads.

The author, Sir Joubert de la Ferte, Air Chief Marshal of Great
Britain, is in a perfect position to draw facts and figures from official
files. A large amount of data has also been gleaned from documents,
diaries, and depositions of captured German scientists and military
leaders. Taken together, these present an interesting account of the
development of the V-l and V-2 weapons as well as the counter
measures taken against them. The story of Peenemunde is told dra
matically albeit from the Allied viewpoint.

The V-l was the flying bomb with the pulse (ram jet) motor.
It can be likened to a slow-speed pilotless aircraft. Since it could be
heard approaching, V-l was hard on the nerves of its intended vic
tims. The defense evolvedagainst it included fighter planes, AA guns
with proximity fuses, and a balloon barrage.

The V-2 was larger and a true rocket. Since its speed of flight
was supersonic, there was no warning noise of its approach. Air
Marshal Joubert admits there was no means of defense against it in
England. Therefore it was necessary to destroy the missiles at their
launching sites. The strategy and the missions that accomplished
that are told in interesting detail.
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It is stated that the V-l and V-2 missiles would have changed
the outcome of World War II had they become operational on their
originally scheduled date. Hitler was not convinced of their real
potential and delayed their development because of a dream he once
had.

The author claims that as recently as 1935 there was no
thought or research in England on the development of long range
rocket missiles. Nor did they possess any knowledge of German ac
tivity along that line." In fact, when reports of German rockets
trickled to England during the early days of World War II, they
were roundly and openly scoffed at in high places. The manner in
which this German veil of secrecy was finally penetrated and the
launching sites revealed is a story within itself. It is an account of
the unbelievable results obtained through the proper interpretation
of aerial photographs.

In conclusion, attention is drawn to the many factors that affect
the development of the defenses of the Free World in the years to
come. Modern (1957) global military rockets and the strategy that
mightbe employed in future wars are reviewed. Speculation as to the
role of NATO and the March of Communism is aired. The book
closes on a note of bewilderment that ". . .the U.S.A. which has
done so much to protect the freedom of the world should have gone
so far in becoming the biggest promoter ofRussia's interests by back
ing the aspiration of every adventurer that harbors the flag of
Nationalism."

—Ralph L. Ddnckel

Tennessee Polytechnic Institute

©

"I have often admired the mystical way of Pythagoras and the
secret magic of numbers."

—Sir Thomas Browne



Installation of New Chapters
Edited by Mabel S. Barnes

THE PENTAGON is pleased to report the installation of three
new chapters.

NEW YORK GAMMA CHAPTER

State University of New York, Teachers College, Oswego, Neiv York

New York Gamma Chapter was installed on May 21, 1959.
The installation ceremony was conducted by Dr. Frank Hawthorne,
Supervisor of Mathematics Education, New York State Education
Department, and past National Historian of Kappa Mu Epsilon. It
was held in the music room of the Union Building on the college
campus and was followed by a dinner in the Union dining room.
After the dinner Dr. Hawthorne presented a paper on "The Geom
etry of Projectiles."

Fifteen charter members were initiated. From the faculty were
Mr. Gordon D. Mock, Dr. Roland F. Smith, Mr. John W. Walcott,
and Mr. Fred W. Weiler. The students were Edith Fiske, Roger J.
Friske, Walter J. Kersch, Patricia LeCIair, Marilynn Nagy, Judith
Patrick, Janette Scott, Ronald Silfer, Janice Stoutner, Lawrence Van
Patten, and Norma Warchalaski. Dr. Emmet C. Stopher had already
been initiated as a member of Kansas Epsilon Chapter at Fort Hayes
Kansas State College.

The officers of New York Gamma are Judith Patrick, president;
Lawrence Van Patten, vice-president; Patricia LeCIair, recording sec
retary; Edith Fiske, treasurer; Dr. Roland F. Smith, corresponding
secretary; and Dr. Emmet C. Stopher, faculty sponsor.

The College at Oswego is one of the rapidly growing units of
the State University of New York. It has approximately 2200 stu
dents. For years it has trained general elementary teachers and spe
cialists in the field of industrial arts. More recently, beginning with
the fall semester of 1958-59, it was charged with the additional
responsibility of training secondary teachers of mathematics and sci
ence. This new program, accompanied by an increase in the quantity
and quality of mathematics, makesparticularly timely the installation
of the new chapter.

55
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TENNESSEE BETA CHAPTER

East Tennessee State College, Johnson City, Tennessee

Tennessee Beta Chapter was installed on May 22, 1959, by
Dr. Loyal F. Oilman, Chairman of the Division of Natural Sciences,
Mathematics and Engineering, Hofstra College, and past National
Treasurer of KappaMu Epsilon.

A banquet was held at Raymond's Restaurant Bobby Lee Mc-
Connell, president of the Mathematics Club (the organization which
had just become Tennessee Beta), served as toastmaster, and Lewis
Waddell, the new president, gave the invocation. After being intro
duced by Dr. Lester Hartsell, Chairman of the Mathematics Depart
ment and a Kappa Mu Epsilon member of longstanding, Dr. Oilman
presented an interesting address on "The History and Activities of
Kappa Mu Epsilon." Special recognition was given to Professor T. C.
Carson, Chairman of the Mathematics Department from 1928 to
1958, and to Mrs. Joe McCormick, Assistant Professor of Mathe
matics, for their assistance in organizing the Math Club in 1953,
and for sponsoring it since. Special guests representing the college
were President and Mrs. Burgin E. Dossett; Miss Ella Ross, Dean
of Women; and Dr. George Dove, Director of the School of Arts and
Sciences.

The tables were decorated with arrangements of pink roses in
silver bowls and ivy entwined about pink candles in silver holders.
The pentagonal programs had rose covers lettered in silver.

Twenty-three charter members were initiated. The students
were Charles Joe Allen, William Bowman, Callie Davis, Jane E.
Davis, Anne K. DeVault, WiUiam Dickey, Andrew Francis, Robert
Hale, Catherine HiUon, Francis Home, Bobby Lee McConneU,
Thomas AUen OTJeU, Royce E. Parman, and Lewis WaddeU. The
faculty were Miss Sally Pat Carson, Professor T. C. Carson, Miss
Vehna Cloyd, Mr. Ellison Jenkins, Mr. Stanford Johnson, Colonel
Henry Linsert, Mrs. Joe McCormick, Mr. Robert Murdock, and Miss
Vella Mae Smith.

The officers for the coming year are LewisWaddeU, president;
WiUiam Bowman, vice-president; Anne K. DeVault, recording secre
tary; Robert Hale, treasurer; Catherine HiUon, historian; Mrs. Joe
McCormick, corresponding secretary; Mr. Robert Murdock, facility
sponsor; and Professor T. C. Carson, honorary sponsor.
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PENNSYLVANIA GAMMA CHAPTER

Waynesburg College, Waynesburg, Pennsylvania

The instaUation ceremony for Pennsylvania Gamma Chapter
was held in the Fort Jackson Hotel on May 23, 1959, under the su
pervision of Professor Harry R. Mathias of Bowling Green State Uni
versity, past National Vice-President of Kappa Mu Epsilon, with the
assistance of the newly elected officers and of Dr. Lester T. Moston,
Chairman of the Mathematics Department and Dean of Waynes
burg CoUege. FoUowing the ceremony, the president receiving the
charter from Professor Mathias and the new members were photo
graphed.

The installation banquet was held in a private dining room.
Several invited guests from the faculty and administration of Waynes
burg CoUege were present along with the members and their wives
and friends. WiUiam Gardiner, as toastmaster, opened the program.
President Paul R. Stewart of Waynesburg College in his inimitable
manner reviewed the history of the Mathematics Department from
its beginning. Dr. Moston continued with the history of Delta Pi Mu,
the honorary mathematics fraternity which has just become the
Pennsylvania Gamma Chapter of Kappa Mu Epsilon. Professor Ma
thias gave a talk on "Investing in Kappa Mu Epsilon," in which he
acquainted the new members with the history, goals, and purposes
of the society and pointed out what was expected of them.

The charter members were Louis Checchi, Kenneth Coley, Bert
Craft, Wilma Franko, WiUiam Gardiner, Edmund Gwynne, Robert
Haver, George Husk, James Klingensmith, Walter Lindsay, David
Marks, Frank Matz, Thomas Munzak, Audrey Oberg, WilUam Roos,
Edward Sienicki, Paul Stewart, and Herbert Zaar; and from the fac
ulty, Dr. Lester T. Moston and Mr. Arthur E. Stafford.

The officers of the new chapter are WiUiam Gardiner, presi
dent; Robert Haver, vice-president; Audrey Oberg, secretary; Walter
Lindsay, treasurer; Dr. Lester T. Moston, faculty sponsor and cor
responding secretary.

Waynesburg CoUege is a liberal arts coUege, founded in 1849
and related to the Presbyterian Church. It is coeducational and has
an enrollment of approximately 1500.

We are particularly happy to welcome three new chapters to
our society. We wish each of them success in their activities.



Kappa Mu Epsilon News
Edited by Frank C. Gentry, Historian

The Twelfth Biennial Convention of Kappa Mu Epsilon was
held May 7, 8, 9, 1959 in the Union of Bowling Green State Univer
sity, with Ohio Alpha as host chapter.

Two hundred twenty three members and guests of Kappa Mu
EpsUon attended the convention.

NoI. of No. of No. of No. of
Chapter Students Faculty Chapter Students Faculty

Alabama Beta 4 1 Michigan Beta 7 3

California Alpha 2 Michigan Gamma 2
California Beta 1 Misouri Alpha 4 2

California Gamma 1 Missouri Beta 4 1

Colorado Alpha 1 1 Missouri Gamma 3 1

Illinois Alpha 2 Missouri Epsilon 11 2

Illinois Beta 2 2 Nebraska Alpha 12 3

Indiana Alpha 1 New Jersey Alpha 2 1

Indiana Beta 4 1 New York Alpha 2 1

Indiana Gamma 4 New York Beta 5 1

Iowa Alpha 5 1 N. Carolina Alpha 4 1

Kansas Alpha 2 3 Ohio Alpha 13 9

Kansas Beta 15 S Ohio Gamma 6 2

Kansas Gamma 9 Oklahoma Alpha 3 1

Kansas Delta 3 1 Pennsylvania Alpha 6
Kansas Epsilon 4 1 Texas Alpha 4 2

Louisiana Beta 1 1 Texas Epsilon 1
Michigan Alpha 2 1 Wisconsin Alpha 6

Guests: Bluffton College 12

FRIDAY, MAY 8, 1959

President C. C. Richtmeyer, National President opened the
first general session in the Ballroom. Kenneth H. McFaU, Provost,
Bowhng Green State University extended greetings and welcomed
the convention members to the campus. Prof. R. G. Smith, National
Vice-President, gave the response in behalf of Kappa Mu Epsilon.
Margaret E. Martinson, Acting-Secretary, caUed the roU by chapters.

The petitions for New Chapters were read. After some discus
sion, it was voted to accept the foUowing schools for chapters of
Kappa Mu Epsilon: Eastern Tennessee State CoUege, Johnson City,
Tennessee; Nebraska State Teachers CoUege, Kearney, Nebraska;

58
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State University of New York Teachers CoUege, Oswego, New York;
Radford CoUege, Radford, Virginia; Waynesburg College, Waynes
burg, Pennsylvania.

At 10:00 a.m. the following student papers were read:

1. Method of Least Squares, Carol Cummings, Texas Alpha,
Texas Technological CoUege.

2. So You're Going to Take a Chance, Nancy Bowman, Mis
souri Beta, Central Missouri State CoUege.

3. Problems Whose Solutions Lead to Cycloids, Theodore A.
MueUer, Missouri Epsilon, Central CoUege.

4. The Four Dimensional Cube, Norman SeUers, Kansas Beta,
State Teachers CoUege, Emporia.

5. Matrices from a Set-Theoretic Viewpoint, Phillip A. Grif
fiths, North Carolina Alpha, Wake Forest CoUege.

12. A Note on Pythagorean Triples, Reginauld Mazares, Lou
isiana Beta, Southwest Louisiana Institute.

At 1:15, two informal discussion groups were held on the topic,
"Let's Exchange Ideas." The student section met in the Ballroom
while the faculty section met in the Pink Dogwood Room.

Following the discussion groups, the members boarded busses
and cars in front of the Union for a trip to the Rossford Ordnance
Depot.

At 6:00 p.m. the banquet was held in the Ballroom. FoUowing
announcements and introductions the group heard Professor Earl J.
Mickle of Ohio State University speak on "Proofs in Mathematics."

SATURDAY, MAY 9, 1959

At 9:00 the foUowing student papers were read:

6. The Tree of Mathematics in the Light of Group Theory,
Patricia Nash, Kansas Gamma, Mount Saint Scholastica
CoUege.

7. A Function with Range 0, —1, 0, 1, Myron Williams,
Indiana Gamma, Anderson CoUege.

8. Mathematics in the Fertile Crescent, Molak Yunan, Ohio
Alpha, Baldwin-Wallace CoUege.

9. Newton's Discovery of the Calculus, Donna Jean Decker,
Ohio Alpha, Bowhng Green State University.
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10. On the Rank of a Matrix, W. Stephen Zimmerman, Kan
sas Alpha, State Teachers CoUege, Pittsburg.

11. Poetical Mathematics, Sarah Smith, Missouri Beta, Central
Missouri State CoUege.

At 11:00 Dr. Richtmeyer opened the second business meeting
by calling for the reports of the National Officers.

Professor Keith Moore reported that the Auditing Committee
(Profesor Keith Moore, Michigan Alpha; ProfessorSherralyn Craven,
Missouri Beta; Professor W. M. Perel, Texas Alpha) found the
Treasurer's books correct and in exceUent order. Professor Tucker
moved that the report be accepted. The motion was seconded and
carried.

Three invitations for the 1961 convention were extended by:
Donald Dittmer of Missouri Beta, Ronald Nelson of Kansas Epsilon,
and Karen Shaw of Kansas Beta.

At 1:30 the third business meeting was caUed to order by
President Richtmeyer. Professor Charles Tucker gave the report of
the Nominating Committee (Professor Charles Tucker, Kansas Beta;
Professor Harry Mathias, Ohio Alpha; Professor E. H. Matthews,
Missouri Alpha) and presented the foUowing nominations:

President: Carl Fronabarger, Missouri Alpha
LoyalF. Oilman, New York Alpha

Vice-President: Ronald Smith, KansasAlpha
Fred Sparks, Texas Alpha

Secretary: Laura Greene, Kansas Delta
Treasurer: Walter C. Butler, ColoradoAlpha

Basil GiUam, Iowa Beta
Historian: Raymond Carpenter, Oklahoma Alpha

Frank C. Gentry, New MexicoAlpha

President Richtmeyer asked for further nominations from the floor.
There were none. The slate was accepted and ballots were distributed
to the voting delegates.

Dr. Jerome Sachs gave the report of the Awards Committee
(Professor Jerome Sachs, Illinois Alpha; Professor Elizabeth Glass,
New York Beta; Professor Roland Lenz, Nebraska Alpha; Alan Franz,
Indiana Alpha; Robert Austin, New York Beta; Charles Barnett, Ne
braska Alpha). The committeepresented a copy of The Mathematics
Dictionary to each of the foUowing:
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First Place: Patricia Nash, Kansas Gamma, for The Tree of
Mathematics in the Lightof Group Theory.

Second Place: Phillip A. Griffiths, North Carolina Alpha, for
Matrices from a Set-Theoretic Viewpoint.

Third Place: Norman Sellers, Kansas Beta, for The Four-Di
mensional Cube.

Honorable Mention was given to:
Theodore MueUer, Missouri Epsilon, for Prob
lems Whose Solutions Lead to Cycloids.
Sara Smith, Missouri Beta, for Poetical Mathe
matics.

Professor Tucker reported the election of the foUowing officers
for the next biennium: President, Carl Fronabarger, Missouri Alpha;
Vice-President, Ronald G. Smith, Kansas Alpha; Secretary, Laura Z.
Greene, Kansas Delta; Treasurer, Walter C. Butler, Colorado Alpha;
Historian, Frank C. Gentry, New Mexico Alpha. Dr. Richtmeyer
installed the newly-electedofficers.

ProfessorJ. D. Haggardof Kansas Alpha representing the Reso
lutions Committee (Professor John Burger, Kansas Beta; Professor
WilburEhrich, Missouri Epsilon; Gerald Linn, Kansas Beta; Richard
Moreland, Missouri Epsilon; Patricia Nash, Kansas Gamma) pre
sented the foUowing report of the Resolutions Committee.

Whereas this, the Twelfth Biennial Convention of Kappa
Mu Epsilon assembled, finds absent from its sessions three
persons who for so many conventions past have been in the
forefront of its leadership, be it resolved that through the na
tional secretary we convey to Miss Laura Z. Greene, Miss E.
Marie Hove, and Sister Helen Sullivan our regret that they are
unable to attend this convention and our hope that the circum
stancesretaining each will soon be removed.

Whereas the activities of this convention have far sur
passed the expectation of each of us, be it resolved that we ex
press our appreciation:

1. To the host chapter, Ohio Alpha, and to Bowhng
Green State University, for their fine hospitality, for their pro
vision of exceUent facilities for our convention, for the food and
refreshments, and aU the many things that contribute to the
successof a meeting such as this.



62 The Pentagon

2. To each of the national officers whose work always in
addition to a full load of responsibilities elsewhere provides the
direction and continuity that has kept KME a growing frater
nity. EspeciaUy to retiring President C. C. Richtmeyer for his
untiring efforts over the past four years, and toCarl Fronabarger
for his outstanding editorship of THE PENTAGON for the
past six years.

3. To Professor Earl J. Mickle for an interesting, enter
taining and provocative banquet address on "Proofs in Mathe
matics."

4. To the Editor and staff of THE PENTAGON whose
work has contributed so much to our pride in KME.

5. To the many students who prepared and presented
papers which contributed so significant a part to our program.

6. To all those and to many more unnamed who have
worked in many ways to make this convention the successit has
been, the delegates to the Twelfth Biennial Convention of
Kappa Mu Epsilon say"Thank you."
After the acceptance of the committee report, the meeting ad

journed.

REPORT OF THE NATIONAL PRESIDENT

The recent explosion of coUege enrollments, and the tremen
dous increase in interest in the fields of science and mathematics
have beenreflected in the growth andactivities of our society.

Two years ago, I predicted that we would have over 1500
initiates in the 1957-59 biennium. The fact is that we have initiated
1812 into KME during this biennium as compared with 1328 in
1955-57, and 1168 in 1953-55. With the accelerating enrollments
and the addition of new chapters it wouldnot surprise me if the next
biennium showed 2500 initiates.

Since our last convention at Pittsburg, Kansas, we have installed
two new chapters, New York Beta at Albany in May, 1957, and
Cahfornia Gamma at San Luis Obispo in May, 1958. We now have
52 active chapters and the five additional chapters you have approved
wiU bring the total to 57.

With continued growth the work of your national officers be
comes correspondingly greater. At the last convention, the national
council authorized some clerical help for the national secretary and
the business manager of THE PENTAGON. It is probable that this
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clerical assistance will need to be increased for these and other na
tional officers. In the not too distant future we may need to employ
a part-time or fuU-time executive secretary to handle many of the
details of the national organization.

As the number of chapters increases, we should give increased
attention to regional meetings in the even-numbered years. One such
regionalmeeting was held last Spring at Emporia, including chapters
from Kansas, Missouri, and Nebraska. I hope that chapters in other
areas will get together for a regional convention next spring.

In 1957, Kappa Mu Epsilon and the Science Teaching Im
provement Program of the American Association for the Advance
ment of Science cooperated in sponsoring an essay contest on the
subject, "Opportunities in Teaching Mathematics in Secondary
Schools." Some of these essays have appeared in recent issues of
THE PENTAGON. We might give some thought to the possibility
of other contests and awards.

As you wiU note from the treasurer's report we are in a very
solid financial condition. I suggest that some consideration be given
to the establishment of a scholarship or a loan fund for worthy stu
dents to do graduate work in mathematics.

I should like to express my appreciation to the many people
who have made this biennium a successful one for the society. In
particular, I should like to commend Miss Greene and Mr. Madison
who have been very efficient in carrying out the duties of the impor
tant offices of National Secretary and National Treasurer. My thanks
also to Mr. Hawthorne for his work as National Historian, and to
Mr. Smith, the National Vice President, who did an exceUent job of
organizing the program of student papers. I am especiaUy grateful
to past-president Charles Tucker for his helpful counsel and advice
during my term of office. To Mr. Fronabarger, Editor of THE PEN
TAGON, and Mr. Waggoner, the business manager, my appreciation
for a job weU done.

I also wish to thank all of the corresponding secretaries and
faculty sponsors who have given so much of their time to carrying
on the work of the society at the chapter level. It is here that the
real workof the organization is done and without the cooperation and
diligent effort of these people, the society would not flourish.

To aU of you my sincere thanks for having helped make possi
ble a successful biennium for Kappa Mu Epsilon.

—Cleon C. Richtmeyer
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REPORT OF THE NATIONAL SECRETARY

Since the last convention of Kappa Mu Epsilon two new chap
ters have been instaUed. Cahfornia Gamma was instaUed at Cah
fornia Polytechnic College, San Luis Obispo, May 23, 1958. Profes
sor Dana Sudborough, past business manager of THE PENTAGON,
served as installing officer.

New YorkBeta was instaUed May 16, 1957, at New York State
CoUege for Teachers at Albany by Mr. Frank Hawthorne, National
Historian.

Kappa Mu Epsilon now has 52 active chapters and four inactive
chapters, making a total of 56 chapters in 24 states. The total mem
bership is now 14,130.

Each month we receive inquiries about the establishment of
new chapters.

I appreciate very much the cooperation of aU the corresponding
secretaries in making the initiation reports.Yourefficient work makes
the work of the secretary much easier.

—Laura Z. Greene

REPORT OF THE BUSINESS MANAGER

OF THE PENTAGON

I would like to take a few minutes to teU you some of the duties
that go with the title Business Manager of THE PENTAGON. My
most important responsibility, of course, is to see that each person
who is entitled to receive our national magazine does so. To meet
this responsibilityI have two address cards on file for each subscriber.
One card is filed alphabetically by name, the other card is filed by
states according to the expiration date of the subscription. I endeavor
to have on these address cards the correct, permanent address of each
subscriber.

While I am on the subject of address cards, I would like to
make what seems to be a biennial plea that you notify the business
manager of any change of address on your subscription. Because of
the recent raise in postal rates, it is more imperative than ever that I
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have the correct address beforemaihng a PENTAGON. It costseight
cents to maU a single PENTAGON. If the magazine is returned, it
costs another eight cents. If the Postmaster supplies me with a change
of address, it then costs still another eight cents to re-mail the PEN
TAGON. Including the cost of mailing envelopes, over one-half the
cost of a magazine is expended in maihng it. If the Postmaster cannot
supply a change of address, when the subscriber fails to do so, the
subscriber's cards are puUed from the files, and he no longer receives
the publication to which he is entitled.

In addition to the bulk mailing of each issue, as subscriptions to
THE PENTAGON are received from the National Secretary or
other sources, copies of THE PENTAGON are mailed until a reserve
of 100 copies is reached. This spring, for example, 2300 PENTA
GONS are being printed which leaves 300 magazines to be mailed
at times other than the bulk mailing. Other duties of the Business
Manager include filing sales tax returns with the State of Michigan,
paying all bills for the PENTAGON except printing the magazine
and the bulk mailing under our postal permit, which are paid by the
National Treasurer, keeping a record of aU financial transactions of
the PENTAGON, and answering letters of inquiry concerning the
magazine.

I thought perhaps that you would be interested in some data
concerning your national magazine. It is mailed to every state in the
union except Vermont, Delaware, North Dakota, Idaho, and Hawaii.
The PENTAGON goes to ten foreign countries and two territories of
the United States. More PENTAGONS are mailed to Kansas than
any other state. The other five states to which more than 100 maga
zines are mailed ranked according to number of PENTAGONS sent
to that state are Cahfornia, Illinois, Texas, New York, and Missouri.
As a Michigander, I should report that the next state in frequency
of copiesmailed is Michigan.

A word about complimentary copies. The library of every col
lege which has a chapter of Kappa Mu Epsilon receives a compli
mentary copy. Each student who presented a paper at the Twelfth
Biennial Convention wiU have his subscription extended two years.
The authors of articles printed in the PENTAGON receive five
copies of the issue in which their article is printed. Upon request of
the President of Kappa Mu Epsilon to stimulate interest in the
PENTAGON, sample copies are sent to individuals and mathematics
clubs.

—Wilbur Waggoner
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FINANCIAL REPORT OF THE NATIONAL TREASURER

April 4, 1957to April3,1959

Cash on hand April 4, 1957 §5828.64
Receipts from chapters

Initiates (1812 at $5.00) $9060.00
Miscellaneous (Supplies, installations,

etc.) _ 144.68

Total receipts from chapters $9204.68

Miscellaneous receipts
Interest on bonds and

savings account $287.65
Balfour Company (Commissions) ___ 157.50
Sale of Ritual 1.95
The Pentagon (Surplus) 226.86

Total Miscellaneous Receipts 673.96
Total Receipts 9878.64
Total receipts plus cash on hand $15707.28

Expenditures
National Convention, 1957

Paid to chapter delegates $1359.29
Officers Expenses 512.09
Miscellaneous (Prizes, host chap

ter, expenses, programs, etc.) 103.18
Total Nation Convention $1974.56

Balfour Company (membership certifi
cates, stationery, etc.) 988.11

Pentagon (Printing and mailing four is
sues) 3764.78

Placed In Savings Account 2627.25
Installation Expense 58.30
National Office Expense 496.34
Total Expenditure $9909.34
Cash Balance on Hand April 3, 1959 — 5797.94
Total Expenditure Plus Cash On Hand $15707.28
Bonds On Hand April 3, 1959 $3000.00
In Savings Account April 3, 1959 2627.25
Total $5627.25
Total Assets as of April 3. 1959 $11425.19
Total Assets 1957 8828.64
Net Gain for Period $2596.55

—M. Leslie Madison
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