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Kappa Mu Epsilon, national honorary mathematics society, was
founded in 1931. The object of the fraternity is fourfold: to further
the interests of mathematics in those schools which place their primary
emphasis on the undergraduate program; to help the undergraduate
realize the important role that mathematics has played in the develop
ment of western civilization; to develop an appreciation of the power
and beauty possessed by mathematics, due, mainly, to its demands for
logical and rigorous modes of thought; and to provide a society for
the recognition of outstanding achievements in the study of mathe
matics at the undergraduate level The official journal, THE PENTA
GON, is designed to assist in achieving these objectives as well as to
aid in establishing fraternal ties between the chapters.



The Four-Color Problem
Vernon Powers

Student, Kansas State Teachers College, Pittsburg

Many of you are familiar with the "handshake problem." The
problem is to prove that the number of people who have shaken
hands an odd number of times is even. The solution is derived from
the fact that when two persons shake hands two handshakes are in
volved, and therefore the total number of handshakes must be even.
Since die sum is an even number, it must contain an even number of
odd addends.

Situations similar to this one were presented by the mathe
matics staff of the College of the University of Chicago in order to
suggest methods of approaching a variety of problems. An example
of a problem requiring a novel approach is the four-color map prob
lem.1

This problem probably originated with British cartographers
when it appeared that four colors were sufficient to color any map.
The recognition of this as a mathematical problem is credited to
Moebius in 1840. It came to the attention of Francis Guthrie who
in turn brought it to the attention of the British logician andmathe
matician, De Morgan, in 1850. Cayley discussed the problem before
the London Mathematical Society as early as 1878.

Just what is this problem? If we say, "How many colors are
needed to color a map?" the answer might well be given, "No more
than the number of regions in the map." So we need to state the
problem in a more precise way, such as, "How many colors are both
necessary and sufficient in order to color a map?" In addition to in
serting the "necessary and sufficient" conditions, we need to define
what we mean by coloring a map.We do this by saying no countries
which have a common boundary—such as the United States and
Canada—can be given the samecolor.*

However, if the boundaries of the two countries are common in

"'Coloring Maps," Tho Matbomattea Tocehor, 50:546, (December, 1957).
» R. Courant and H. C. Bobbins, What b Mathematics? (Hew York, Oxford UnWeralty

Press, 1941), pp. 246-8, 264-7.
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one or a finite number of points only, they may be given the same
color. An example of two regions having a single common point is
seen in the states of Colorado and Arizona. Also, although any area
designated as an ocean must be considered as a separate region and
given a color different from that of countries having a coastline, that
part of a river or a lake lying within a region must receive the same
color as the region in which it belongs. One further limitation is
placed on the problem: the map must beon either a plane or spher
ical surface.'

The last limitation provides a very interesting feature of the
problem. Although the problem remains to be solved for plane or
spherical surfaces, it has been solved for some surfaces generally con
sidered more complex. For the surface of a torus, for example, it has
been proven that seven colors are both necessary and sufficient for
the coloring of any map.4

While the problem has not yet been solved for the plane or
sphere, efforts to solve it have met with some success. In 1879 a
proof for the problem was given by Kempe, but in 1890 a flaw was
found by Heawood in Kempe's proof. Heawood then proceeded to
prove that five colors were sufficient to color any plane or spherical
map. However, no one has been able to produce a plane or spherical
map for whichfive colors are necessary."

Heawood's solution was based on Euler's formula which states
that for any simple polyhedron, regular or not, the number of ver
tices minus the number of edges plus the number of faces equals
two. By a polyhedron is meant a solid figure whose surface consists
of a number of polygonal faces. A simple polyhedron is one which
contains no holes such as a doughnut does. This last limitation is
necessary due to topological properties which Euler made use of in
proving his formula. These properties are so important to the proof
for the five-color theorem that a discussion of the theorem is usually
found in a section on topology."

• The Mathematics Teacher, op. dt, p. 547.

« R. Courant and H. C Rabbins, op. dt, p. 248.

• Ibid. p. 247.

• Edward Kaunor and Jamoa Nowman, Mathematics and the Imagination, (New York,
Simon and Schuster, 1956).
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If we prove either the four-color or five-color theorem for the
sphere, we have also proven it for the plane. To show this, imagine
a sphericalmap on a beach ball. If we were to cut a small hole in one
of the regions and pull the hole in all directions at once so as to en
large it and the material did not tear, we would finally have a circu
lar plane map which would be bordered by the region in which we
cut the hole.'

The proof of the five-color theorem is dependent upon two
more theorems. The first of these is that any spherical or plane map
can be changed so that each vertex is the intersection of three edges
or boundaries and in changing the map the number which is the sum
of the number of vertices and the number of regions minus the num
ber of edges (V — E + F) remains unchanged. To show this let us
imagine the vertex as being a small circlewhich is part of one of the
regions to which the vertex belongs. Now imagine this circle en
larged. We still have the same number of regions as before since the
circular area belongs to one of the original areas. Also, we find the
number of new vertices formed is one greater than the number of
edges formed so our value of V — E + Fin Eider's formula remains
unchanged since originally we hadonlyone vertex and no edges.*

Having done this, it is possible to prove the second theorem
which states that every spherical or plane map must contain at least
one region of five sides or less. This proof is actually an algebraic re
arrangement of Euler's formula resulting from the proof that each
vertex is the intersection of three edges. If we let F equal the total
number of regions, F2 equal the number of regions with two edges,
F3 equal the number of regions with three edges, etc., then:

F = F2 + F, + Ft + • • •.

Since each edge of a region has two ends and each vertex is the
intersection of three edges, if we let E represent the total number of
edges and V represent the total number of vertices, then

2E = 3V.

Also, since a region of n sides has « vertices and since each

' R. Conrant and M. C. Robbing, op. sit., p. 247.
• Ibid., p. 264.
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vertex belongs to three regions,

3V = 2F2 + 3F, + 4F, + • • •,
or 2E = 2F2 + 3FS + 4F« + • • ••

By Euler's formula we have V —E + F = 2 or 6V —6E + 6F
= 12. If 2E = 3V, then 4E = 6V, and 4E - 6E + 6F = 12
or6F - 2E = 12 or

6(F2 + F, + F. + • • 0 - (2F2 + 3FS + 4F< + • • •) = 12,

or

(6 - 2)F2 + (6 - 3)F3 + (6 - 4)F4 + (6 - 5)F5
+ (6 - 6)F„ + (6 - 7)FT + • • • = 12.

Since the right hand member of this equation is positive, at
least one of the addends in the left member must be positive; and
therefore, someregionmust have five edges or less.9

The remainder of the proof is an inductive process showing
that if the number of regions in the map is reduced by one, and if
this resulting map can be colored with five colors, then the original
map canalso becolored with five colors. Thisprocess of reducing the
numberof regions in the map is continued until five or fewer regions
remain. Since any map containing not more than five regions can be
colored with at most five colors, then the original map can also be
colored with five colors. That the map can be reduced to not more
than five regions is possible due to the proof that the map must con
tain one region of five or less edges. The proof not only shows five
colors to be sufficient with which to color any map, but also pro
vides a method of coloring the map. This is done by giving a color to
each region in the map containing not more than five regions. Then
as each boundary which was removed to reduce the number of
regions in themap is replaced, a color can befound to usein the new
area formed.10

Proofs of the four-color theorem for plane and spherical maps
having up to thirty-eight regions have been found; so it is evident
thata proof regarding a general number of regions would necessarily

• Ibid. p. 265.
" Ibid., p. 2654.
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be quite complex. Considering the rateof progress being made today
in variousfieldsof mathematics, it is to be expected that entirely new
areas are waiting to be discovered and explored. Quite possibly, the
reasoning necessary for the understanding of these areas would seem
as fantastic today as the idea of space satellites appeared to the aver
age person a hundred years ago. If one simple new approach to math
ematics is found bya study of the four-color problem, much has been
gained; very possibly much more thancanbe appreciated at the pres
ent time. And perhaps someone will have his or her name placed
among the greatest names in mathematics justby proving that four
crayons are all that any schoolboy really needs in order to color his
map!"

" Ibid. p. 247.
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".. .A good notation has a subtlety and suggestiveness which at
times makes it seem almost like a live teacher."

—Bertrand Russell



A Short, but Concentrated, Lesson
on the Digital Computer

Wallace Manheimer

Faculty, Franklin K. Lane High School
Brooklyn, New York

Many teachers and students at our school have expressed curi
osity about the operation of the digital computer. Working on the
assumption that learning proceeds best by doing, I devised a little
problem to give them a start The reader is urged to give some time
to it himself.

You will see that the problem starts with a brief description of
the characteristics of the computer and then describesa mathematical
problem broken down into steps that a computer is able to perform.
You are then challenged to "play the part of computer" in solving the
problem yourself. Instead of obtaining the entire answer, which is the
type of lengthy routine job best suited to a computer, you are asked
simply to describe the sort of answer that will be printed on cards.

Solving this problem will give more insight into the logical
structure of this marvelous modern machine than almost any other
approach. The answer is given for those who do not discover it for
themselves.

A certain automatic electronic computer can:
a) store a number in any one of 1,000 numbered storage loca

tions where it will remain until replaced by another. Transferring a
number from an old to a new storage location leaves it in both loca
tions and erases the previous contents of the new location.

b) perform arithmetical operations upon stored numbers and
store the result or print it on a card.

c) follow a sequence of instructions, called a program, in which
each instruction also directs the computer to the succeeding instruc
tion.

d) be directed to proceednext to either of two alternate instruc
tions, depending upon whether the contents of two storage locations
are equal or unequal to each other.

The symbol, C(x), will mean "contents of storage location x."
For example, C(104) = 1001 means that the number 1001 is
stored in location 104.

8
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The problem:

The following set of numbers is stored in the computer:
C(100) = 37 C(102) = 2 C(104) = 0
C(101) = 3 C(103) = 31

The following set of instructions is given:

No. Instructions

1. Store C(101) in location 150; proceed to (instruction) 2.
2. Divide C(100) by C(150); store remainder in location 151

and proceed to 3.
3. If CC151) = C(104), proceed to 7; otherwise proceed to 4.
4. If C(150) = C(103), proceed to 6; otherwise proceed to 5.
5. Add C(102) to C(150). Store sum in location 150 and pro

ceed to 2.

6. Print C( 100) on a card; proceed to 7.
7. Add C(102) to C(100); store result in C(100) and proceed

tol.

The human operator stops the machine as soon as it has printed
1369.

Requirement:

a)What information is printed on the cards?
b) If comparable information beyond 1369 is desired, a change

must be made in the stored information. What change must be made
to obtain on cards comparable information up to 1,000,000?

Solution:

The computer will divide 37 by successive odd integers 3
through 31. If it encounters a zero remainder, the machine will re
place the dividend by one that exceeds it by 2 and repeat the process.
If no zeroremainder occurs, the machine will print the dividend on
a card, again add 2, and repeat the series of divisions. Note, for ex
ample, that the machine will print 37 but not 39 since division of
39 by 3 will give a zero remainder.

Therefore the numbers printed on cards will be primes so long
as division by odd integers up to and including 31 will constitute a
test for primes. It will fail for the first time at 372, or 1369. Thus
the answer to requirement a) of the problem is that all the printed
numbers are primes except for the last one, 1369.
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To obtain primes up to 1,000,000, we must replace C(103)
by 997, the largestprime less than 1,000.
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Problems are generally programmed on "logical flow charts"
before encoding for machine operation. The flow chart for this prob
lem is reproduced here (see figure), except that the stopping of the
machine by the human operator is replaced by an automatic "stop"
order.



Electronic Analogue Computers
Louis Kijewski

Student, La Salle College

An electronic analogue computer is a general-purpose problem-
solving machine which is composed chiefly of electronic components
but which may also include mechanical components. Variables of a
problem are represented in the machine by voltages and mechanical
displacements.

The heart of the computer is the operational amplifier. This is
a simple type of electronic amplifier which multiplies the input
voltage by (—A); i.e., for an input of ein volts, the output voltage
e0 is equal to —Aeta volts. A typical value for A may be 3 X 108.
If an impedance (inductor, capacitor, resistor, or combination) is
connected across the input and output, the output voltage will feed
back through the impedance into the input. Since the output voltage
has a sign opposite to that of the input, the output voltage will reduce
the input voltage to an increment which will be almost zero. But the
high-gain amplifier will multiply the increment to obtain a finite
output voltage dependent on the input voltage.

o-

-o

1

{>
0»t KftTltMAl

A ft* f>I. IF IK ft

FIG. 1

If the voltage e0 in Figure 1 is to be no higher than 100 volts
for the safetyof the programmers, then the voltage at Q with respect
to ground will be ( —1/A")e0, which is almost zero; and hence point
Q may be considered to be at ground potential. The voltage across
2i is then eit where e{ is a function of time and a source of voltage.
Thus

«i(0 = C«iCO]/[2kCO].

11
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The resistance of the operational amplifier may be considered
infinite, hence negligible current flows through it. Therefore

n n

(1) if = 2 it or —e0/Zf = 2 (ci/z,)-
i=1 i= 1

(2) e0 = -zt 2 (ei/z,).
i= 1

If zf is a resistor, one obtains an electronic summer (Figure 2)
capable of multiplying by a constant.

IKI

(wiMi.<t,.Hi .e.-t.•(.)

• n*t*W t is .W|

CIRCUIT OF SUHMCD SYMBOL FOR SUM Men

FIG I

If Zf is a capacitor, one obtains an electronic integrator (Figure
3) capable of multiplyingby a constant. Equation (1) becomes

n

it = dq/dt, or 2 (ei/zt) = —c(de./dt).
i= 1

(3) e.= (-l/c)/2 (e,/z,)<fc.
i= 1

The feedback capacitor is usually kept fixed at lj*f in an inte
grator,
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In the symbolic notation all grounds are deleted, but they are
actually present in the machine. All voltages are with respect to
ground.

___ 5 \-J("«.»io»•««», «>e. .c..e.-r.)J1

F I 6. 3 $TM»»l r*H IMT««MT#R

Potentiometers (Figure 4), called pots, are generally used to
multiply by constants less than one.

CIRCUIT OF POT >OT IfHICL

FIG. 4-

There are several ways to observe the voltage variables. One
method is to use an oscilloscope. For permanent recordings, pen re
corders may be used. These are controlled by electromagnets. Positive
voltages will displace the pen in one direction proportionally to the
voltage applied, and negative voltages will displace the pen in the
opposite direction. The pen inks or burns impressions on ruled paper
rolling by it at a constant known velocity (e.g., 1 mm./sec). This
supplies a calibration for the x or t-axis.

A description of the setting up of a simple problem may prove
more interesting than the above discussion. Suppose a mass is sus
pended from a spring as shown in Figure 5. There will be a force on
the mass which will be proportional to the displacement. When the
mass is in motion, there will be a retarding force which is propor
tional to the velocity of the mass. This force is due to the fluid in the
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cylinder. Equating the forces on the mass, when it is displaced a
distance y = L and released, results in the differential equation,

d*y/dt* = (-K/mXdy/df) - (c/nt)y

mC|1

Fl«.

FCOI»

IH

CrUMIIK

Assume that d'y/dt* is fed into integrator 1 in Figure 6. Then
the voltage out of integrator 1 is —f(.d*y/dt?)dt = —dy/dt. Pot 1
is fed by (—100) volts and is set to feed integrator 2 the (—L)
volts which is the initial condition on y when time t is zero. Pot 3
multiplies y by c/m andamplifier 3 merely multiplies this by ( —1).

FIG.

Pot 2 multiplies —dy/dt by K/m. The result is that [(-K/i»)
(.dy/dt) — (c/w)y] volts is fed into integrator 1, which is the
voltage assumed to be fed into this integrator. Thus, when the patch
ing together of the summer, integrators, and pots is finished and the
switch on the computer is closedto operate, the voltages will begin to
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vary in time according to the differential equation. With m — 2
slugs, C = V£ Ib./ft., and K = IVfc lb./ft. sec., the displacement
y represented by voltage will vary in sinusoidal manner with ex
ponential decay.

Solving the above problem does not require an analogue com
puter. But the use of an analogue computer is particularly suitable
for handling the more intricate problems involved in designing elec
tronic brains for missiles and gun directors, where there may be ten
parameters which will affect the speed of response to the target. Ten-
digit accuracy is not always needed in this type of design work, and
the lower cost of the analogue, as compared to the cost of the digital,
warrants its use in this field.

Analogue computers are excellent tools which perform tedious
calculations for man and leave him with extra time to do more cre
ative work.

€

"Nature gets credit which should in truth be reserved for our
selves: the rose for its scent, the nightingale for its song, and the sun
for its radiance. The poets are entirelymistaken.They should address
their lyrics to themselves and should turn them into odes of self
congratulation on the excellence of the human mind."

—Alfred North Whitehead



Mathematical Structures
H. C. Trimble

Faculty, IowaState Teachers College

Historians trying to dramatize the vastness of the literature of
mathematics have identified Poincare' as the last mathematician to
view mathematics as a whole. Toward the close of the nineteenth
century, Poincare wrote philosophical treatises about mathematics
and physics and published important research papers in many
branches of mathematics. Most mathematicians since Poincare* have
limited themselves to a few specialties within the broad field of
mathematics.

What then of a student who sets for himself today the goal of
understanding where the pieces of mathematics that he knows fit
into the total picture of mathematics? Is it impossible to match the
genius of Poincare and thus to get up-to-dateas of 1900? Even if the
student duplicates Poincard's performance, what about the mathe
matics of the twentieth century that has been said to exceed in bulk
and significance all of the pre-twentieth-century mathematics?

This ambitious student should realize that modern mathe
matics has taken two main directions. It is true that twentieth-cen
tury mathematicians have created new branches of mathematics and
extended older branches of mathematics far beyond the levels famil
iar to Poincare^ It is also true that twentieth-century mathematicians
have learned much that will help the student of today to viewmath
ematics as a whole. So, while they have multiplied the details of
mathematics, twentieth-century mathematicians have simplified the
total picture.

It was difficult, perhaps impossible, in 1900 to say just what
mathematics was. Now, in 1958, many mathematicians would agree
that mathematics is a storehouse of structures. Adopting this point of
view, it may be possible to achieve a panoramic view of mathematics
even in this short paper.

First, what is a mathematical structure? A structure involves a
set of elements, some symbols, and some agreements about the ma
nipulation of these symbols. In a mathematical structure the ele
ments are abstract. Examples are numbers, points, and triangles.
Mathematicians use symbols—a numeral like "2" for the number
"two,"a dot on the blackboard for a point, or a sketchof a triangle—
to facilitate the discussion of the correspondingabstractions.

16
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As an example of a structure, consider a set of elements sym
bolized by S = {a, b, c,...} and the agreements:

A 1) If x is an element of S then vx is an element of S (more
briefly: x e S -> vx e S).

A2) v(v%) is equivalent to x.

This means for each element x of S there is a corresponding element,
vx, of S; moreover, the element, v(vx), that corresponds to vx, is
equivalent to x.

This may seem very remote from the world, that is, abstract.
But many familiar-looking things are instances of this structure.
Take, for example, a set of statements. A statement is a collection of
words to which you can assign a truth value; that is, you can decide
whether a statement is true or false. Now interpret the symbol, v, as
"It is not the case that." If the set S contains the negation of each of
its elements, (A 1), then the set S is an instance of the structure;
that is, ordinaryEnglish usagedemands that

"It is not the case that (It is not the case that %)"

is true when x is true and false when x is false. Hence, it has the
same truth value as x; that is, it is equivalent to x (A 2). Other ex
amplesare: a set of numbers that includes the negative of each num
ber and the interpretation of v as the ordinary negative sign; a set of
triangles that includes the mirror image of each triangle and the in
terpretation of v as "the mirror image of."

In some ways the structure which we described is typical of
mathematical structures. It is abstract and has several interpretations
that are, on the surface, quite different. But it is too broad to serve
as a good example of mathematical structures. You would find it
hard to prove an interesting and extensive list of theorems for this
structure.

For the purposes of classification, the great structures of math
ematics fall into three categories, as follows:

1) order structures,
2) algebraic structures,
3) topological structures.

The mathematical structure with which you have had most experi
ence is a combination of an order structure and an algebraic struc
ture. It is called an ordered field. The identities of algebra and skills
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hke the solving of equations are really based upon the postulates of
an ordered field. That is, the large number of seemingly isolated
rules of algebra are properties of an ordered field. They can be
proved as theorems from the postulates of an ordered field.

To begin with a simple order structure, consider a linearly or
dered set defined as follows:

asetS: {x,y,z,...};
a connective phrase: <;
the postulates: 0 1. (x =j£ y") -* (x < y, or y < x),

0 2. (x < y) -» Cy < *),
0 3. (x < y and y < z) -» (x < z).

Examples of this structure are:

1) English words with "alphabetically preceeds,"
2) weights of packages with "is lighter than,"
3) real numbers with x < y interpreted as "there exists

a positive real number, p, such that x = y + p."
(Notice that this is not the usual interpretation of
"less than.")

Sample theorem:

To prove: x <£ x.
Proof: Suppose x < x.
Then x <t x (by 0 2).
Since the assumption that x < x leads to a contradiction
of the assumption, we must reject it and conclude that
x < x.

Other theorems to prove:

1) (x = y) or (x < y or y < x),
2) it is not the case that (x = y and x < y~).

Notice that theorems proved for linearly-ordered sets apply to
each instance of a linearly-ordered set. This suggests the power of an
abstract approach. There is no need to develop a separate theory for
each interpretation of the postulates for a linearly-ordered set.

To introduce algebraic structures, consider an abelian group:

asetG: {a,b,c,...};
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a well-defined binary operation: *;
the postulates: G 1. (x e G and y e G) -» (there is an ele

ment z e G such that x * y = z),
G 2. (x e G and y e G) -» (x * y = y * x),
G3. (xeG,yeG,andzeG)->

[x * (y * z) = (x * y) * z],
G 4. There is an element e e G, and

(x £ G) - (x * e = x),
G 5. (x e G) -» (There is an element xf e G

and x * x? = e).

Examples of abelian groups are:

1) the integers with * as addition, e = 0, and xf = —x;
2) the nonzero remainders obtained in the division of

natural numbers by 5, {1,2,3,4,}, with * as multi
plication, e = 1, 1' = 1, 2' = 3, 3' = 2, 4' = 4.

3) the rotations of the Euclidean plane, with * as com
bining successive rotations, and xf as a rotation that
undoes what the rotation x does.

Sample theorem:

To prove: GO' = X.

Proof: x* *GO' = e. (G5)
x :*{xf* COT = x*e. (* is well-defined)

But x • iy * CO'] = (x * xO

= e * (x')'

= GO'.

• GO' (G 3)
(G5)

(G 2 and G 4)
And x * e = X. (G4)
Hence GO' = X.

Other theorems to prove:

1) x'*x = x*x',

2) the inverse, xf, of x is unique.

Notice that the postulates begin to look more familiar. You
probably recognize the commutative law (G 2) and the associative
law (G 3). There is a very extensive theory of abelian groups; that
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is, many theorems can be proved from these postulates. There is also
an important theory of nonabelian groups in which the commutative
law (G 2) is not assumed.

Typical of algebraic structures is the presence of binary opera
tions, like the * of the group structure. You are most familiar with
binary operations like addition and multiplication. But the binary
operation of the group is abstract. Example 3) above suggests
another kind of interpretation of the operation *.

As a second example of algebraic structures, consider a com
mutative field:

a set K: {a,b,c,...};
two well-defined binary operations: + and *;
the postulates:

for +

K is an abelian group under +. We designate the identity
for + by 0; the inverse of x with respect to + by —x.

for •

With the element 0 excluded, K is an abelian group un
der •. We designate the identity for • by 1; the inverse of
x with respect to • by 1/x.

for + and • (Distributive Law)

If x, y, and z are variables whose range is K, then
x*(y 4- z) = x'y + x«z.

Examples of commutative fields are:

1) the set of integers modulo 5 (that is, remainders ob
tained in the division of natural numbers by 5);

2) the set of rational numbers;
3) the set of numbers a + b V3 where a and b are

rational numbers.

Sample theorem:

To prove: x»0 = 0.

Proof: a + 0 = a. (G 4 for +)
x«(a + 0) = xra, (• is well-defined)

Hence x«a + x*0 = x-a. (Distributive Law)
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Since x*a e K, there is an element —(x*a) e K,
and x'a + [—(x-a)] = 0. (G 1 for • and

G 5 for +)
Now —(x*a) + (x*a + x-0)

= {x'a + [-(*•«)]} + **0 (G 3 for +)
= x'a + [-(*•«)] + **0 (G 2 for +)
= 0 + x«0 (G5for+)
= x'0. (G 2 and G 4 for +)

-(x«a) + x-a = x>a + [-(x-a)] (G 2 for +)
= 0. (G5for+)

Hence

x«0 = 0.

Other theorems to prove:

1) (a'b = 0) <—> (a = 0 or b = 0).

2) (-a)-i = -(«•&).

3) in a field an equation of the form a*x + b = c with
a ^ 0 is equivalent to an equation of the form
x=(l/a)[c+ (-&)]•

Notice how the previous study of abelian groups makes it easier
to describe the field structure. Notice that the identity elements, 0
and 1, suggest numbers but should be considered as abstract. Notice,
also, that the operations + and • suggest addition and multiplication
but should be considered as abstract Notice how the groups under
+ and • (with the element 0 excluded) are tied together by the dis
tributive law.

The set of rational numbers is the "smallest" field that contains
the natural numbers as a subset. The set made up of positive num
bers and zero is not a field; this set does not include the inverses for
addition (such as —3, the inverse of 3). The set of integers is not
a field; this set does not include the inverses for multiplication
(such as 1/3, the inverse of 3). This is, of course, the mathematical
reason for inventing negative integers as additive inverses of positive
integers and fractions as multiplicative inverses of nonzero integers.

As an example of combining order and algebraic structures,
consider the postulates for linear ordering of a commutative field:
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Postulates: K 0 1. (x < y) -» (x + z < y 4- z).
K 0 2. (x < y and 0 < z) -> (x»z < yz).
K 0 3. (x < y and z < 0) -> (yz < x*z).

Taken together, the postulates for a linearly-ordered set, a
commutative field, and linear ordering of a commutative field are
a sufficient basis for much of the work in elementary algebra. These
postulates do not completely characterize the set of real numbers.
There is, besides, the order postulate related to denseness:

(x e S, y e S and x < y) -> (there is an element b e S such that
x < b < y);

that is, between each two distinct elements of a dense set, there is
another clement of the set. The set of rational numbers has this prop
erty.

The set of real numbers has, in addition, properties connected
with continuity. The postulates that enable you to deal with "geo
metrically evident" ideas about continuity and limit are typical of
topological structures. They introduce concepts like upper bound and
least upper bound. You may be interested in studying the axiom of
continuity:

(S e L and S =j£ a and S is bounded above) -» (there is an ele
ment u e L such that n is a least upper bound of S)

This means that you consider each subset, S, of a set L other than
the empty set a. If for each such subset there is an element of L such
that each clement of S is less than or equal to this element of L (that
is, there is an element b e L and for each x such that x e S, x 2= £),
then the axiom of continuity states that there is, in L, a least upper
bound of S (that is, among all the upper bounds there is a smallest
one). An example will clarify the application of this postulate to
numbers and illustrate the fact that it holds for real numbers but not
for rational numbers.

Consider the set, S, of all numbers whose squares are less than
3. Then 1.7 e S, 1.8 is not an element of S, etc. An upper bound for
S is 2; that is, each element of S is less than 2. Other upper bounds
for S are 1.8, 1.74, 1.733, • • •. In the set of rational numbers, the
set S has no least upper bound. In the set of real numbers, the set S
has the least upper bound y/Z.
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These few examples of mathematical structures serve their pur
pose if they help you to understand the assertion that "mathematics
is a storehouse of structures." Some of the advantages of thinking of
mathematics in this wayare immediately evident:

1) the student of mathematics who endeavors to fit isolated
fragments of mathematics into the total picture has a
framework in which to work;

2) the teacherwho tries to decide which topics to include and
which topics to exclude from the mathematics curriculum
may use, as a guide, the question, "Will this topic help my
students to gain insight into an important mathematical
structure?"

3) the scientist who needs a mathematical model to apply to
his observations can examine several mathematical struc
tures. If he finds that the postulates for a given structure
fit the situation with which he is working, he may proceed
to use the theorems that have been proved for this struc
ture with a high degree of confidence. If one or more of the
postulates do not fit his problem, he can avoid the mistake
of trying to apply the wrong mathematical model. If he is
unsure as to whether or not a postulate holds in this situa
tion, he has a direction for the further study of his prob
lem.

4) the research worker in mathematics can organize his study
of unsolved problems—either creating new structures or
investigating further properties of old structures.

A word of caution may be appropriate in closing. There are a
great many logically-possible mathematical structures. It is true that
similarities appear in different structures and that the same structure
may appear in many disguises. Hence, it seems fair to say that view
ing mathematics as a storehouse of structures will be useful to stu
dents, teachers, and persons interested in applying known mathe
matics or discovering new mathematics. Whenever a frame of ref
erences is needed to relate the parts to the whole, this view of mathe
matics should be exploited.



A Note on Areas Under a Sine Curve
Mark Brtdger

Student, Bronx High School of Science

In this article I shall attempt to show how the area bounded by
the x-axis, the linesx = a, andx = b, and the curve y = sin x may
be found by a means other than the usual antidifferention of the sine
function. I think that this method is more interesting from a mathe
matical standpoint although calculating the integral of sin x from a
to b by antidifferentiation is quiteeasy.

Let us consider the curve y = sin x in the interval (0,6). If
this interval is divided into n segments (&/»), the area will be ap
proximated by

»

A = 2 (fc/»)sin r(fc/w); r an integer. If we let 0 = b/n,
r = 1

n n

A = 2 (fc/»)sin rO = b 2 (sin rO/n").
r= 1 r= 1

It follows, and is fairly simple to prove, that the area is given
exactly by

n

A= lim b- 2 (sin r$/n).
n -> eo r = 1

Having stated this theorem, we may now derive an expression
for the area. The method will be to find the required summation,
take the limit as« -» co, and then multiplyby b.

24
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n n

Let Sn = 2 sin rO and S'n = 2 cos r9.
r= 1 r= 1

If we add G'Sn) to S'D we will get terms of the form cos r9
+ isin r6, (i* = —1); therefore, by De Moivre's theorem:

n n

S'n + iSn= 2 (cos rd + isin r0) = 2 (cos 6 + isin 0)r.
r = 1 r = 1

This is, of course, a geometric series whose first term is
cos 0 + i sin 0, whose ratio is cos 0 + isin 0, and whose sum is given
by

S'n + iSD = [cos 0 + i sin e - cos (« + 1) 0 - i sin (» + 1)0]
/[l — cos0 — tsin0].

Since we have to find only S„, it will only be necessary to take
the imaginary part of the right-hand expression. Rationalizing the
denominator,

S'n + «S„ = [cos 0 + i sin 0 - cos (n + 1) 6 — isin (n + 1)0]
[1 - cos 0 + i sin 0]/[(l - cos 0)* - i*sin20]

The imaginary part of this expression ( = iSn") is

[isin 0 — isin 0 cos (n + 1)0 — i sin (n +1)0
-f isin (m + 1)0 cos0]/[2 - 2cos 0].

Simplifying, since sin (« + 1)0 cos 0 — cos (« 4- 1)0 sin t
= sin n0,

S„ = [sin «0 + sin 0 - sin (« + 1)0]/[2(1 - cos 0)]
= [sin «0 + sin 0 — sin m0 cos 0 — cos n0 sin 0]/[2(l — cos 0)]
= [sin 0(1 — cos «0) + sin «0(1 — cos 0)]/[2(l — cos 0)]
= [sin 0(1 - cos n0)]/[2(l - cos 0)] 4- (sin «0)/2. But

1 - cos 0 = 2 sins(0/2).

Remembering that 0 = b/n,

S„ = [(1 - cos fc) sin (&/»)]/[4 sin* (fe/2«)] + (sin fe)/2.
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which can be written in the equivalent form

SB = [sin (&/*)]/(&/») *[(1 - cos&)(!/&)]
/[sin2 (&/2«)/(fc74«)] 4- (sin fc)/2.

We must now divide Snby n since the summation is on (sin r0)/«.

c ,M = [sin (b/n)/(&/«)][(l - cos !>)/!>] (sin fr)
a/ [sin (b/2«)/(fc/2n)][sin (&/2»)/(&/2«)} "*" 2n

The lim fc/w = lim fc/2« = 0, as m-» oo.

Also, lim (sin i)/2n = 0, and lim (sin x)/x = 1.
n -» oo x-» 0

Therefore as n -» oo the limit of the sum S„/n is (1 — cos V)/b.

n

A = lim b' 2 SJn = fc[(l - cos fc)/fc] = 1 - cos fe.
« -> oo r = 1

Therefore the area from 0 to b is equal to 1 — cos b. The area from
0 to a is similarly given by: 1 — cos a. Hence, the area under the
curve from a to b is given by

aAi, = cos a — cos b.

The reader may generalize this procedure to curves of the type

y = r sin »»x and y = r cos mx.

o

"How often have I said to you that when you have eliminated
the impossible, whatever remains, however improbable, must be the
truth."

—Sir Arthur Conan Doyle (The Sign of Four)



Newton's Method
B. McClure and W. M. Perel

Faculty, TexasTechnological College

The method of approximating the real roots of equations,
known as Newton's Method, is presented in almost every elementary
calculus book. Although it is the method in common use, it is con
siderably different from the one actually devised by Newton.

The method is explained as follows:
Let f(x) be a real-valued function of a real variable x. It is de

sired to find approximately a real root of the equation /(x) = 0.
Consider the graph of the equation, y = f(x), (Fig. 1). A first ap
proximation of the root is selected. Denote this first approximation
by a,. At the point [(at, f(a,)] on the graph, draw the line tangent
to the curve. Its equation is y —f(fli) = f ("iX* ~~ <0- The x-in-
tercept of this line is found to be a2 = ai — f(.a,)/f(aO- «fe is then
taken as a second approximation and the tangent line at the point
[("2. f(O] is drawn and its x-intercept found. The new x-intercept,
called a3, is taken to be a third approximation to the actual root r. In
order that the method work, it is assumed that the sequence of ap
proximations thus obtained converge to r.

No calculus book that we have seen tells the student what as
sumptions are sufficient on the function f(x), in order that the
sequence, au a2, «•,, .. ., converge to a root and no text presents any
thing that could be called a proof. Indeed, one text makes the state
ment that the approximation a2 will "probably be better than the ap
proximation ai." It is quite easy to draw pictures which will illustrate
situations in which the method will not work. It is also easy to see
that at least we must not allow f (x) to be zero in too many places as
we have f (at) in a denominator of our formula. We propose to state

27
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and prove rigorously the sufficient conditions for convergence of
successive approximations obtained by Newton's Method to the real
root of an equation.

We shall assume that f(x) satisfies the condition that there
exists an interval a ^ x ^ b which contains one and only one root
r of the equation /(x) = 0. We shall also assume that f(x), f (x),
and f'GO are continuous throughout the interval and that f (x)
and f"(x) are never zero and hence cannot change sign on this inter
val. Under these conditions there are four cases which may arise.
These four cases are illustrated in Fig. 2.

S)*1M

Figure 2

Case 1. If /(a) is positive and /(r) is zero, /(x) is decreasing
so that f (x) is negative and therefore negative throughout the inter
val. Here the curve is concave downward; that is, f'(x) is negative.

Case 2. The same as Case 1, except that the curve is concave
upward, so that f (x) is positive.

Case 3. If f(a) is negative and /(r) is zero, then /(x) is in
creasing so that f'(x) is positive and must remain positive through
out the interval. Here the curve is concave downward, so that f(x)
is negative.

Case 4. The same as Case 3, except that the curve is concave
upward, so that f (x) is positive throughout the interval.

The readeris reminded that the continuity of f (x) and f (x)
togetherwith the requirement that they be different from zero on the
interval a ^ x g b necessarily implies that they not change sign on
the interval.

The conditions and case divisions which have been given were
first obtained by G. T. Coate in "On the Convergence of Newton's
Method of Approximations," American Mathematical Monthly, 44:
464, (1937). However, the proof which he presents is entirely geo
metricaland depends in a very real wayon his figures. Also, his geo
metrical arguments obscure the real analysis which is behind the
proof. •<;*
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In each of the four cases mentioned, there is what we shall
call a "right side"and a "wrong side" of the root. The right side is the
side on which the function and the second derivative agree in sign
and the wrong side is the one on which they disagree in sign. Since
in each case the function changes sign and the second derivative does
not, there is in each case a right side and a wrong side. In each case
we select our first approximation from the right side, although it is
easy to show that if the first approximation is selected on the wrong
side, the second approximation will be on the right side. The "right
side" is on the right for Cases 1 and 4 and on the left for the other
cases. We shall present a proof only for Case 1, but the proof is en
tirely similar for each of the other cases.

Recall that the law of the mean says that if a function f(x) is
continuous on the interval a :S x ^ b and possesses a derivative on
the interval a < x < b, then there exists a c, a < c < b, such that
fCO = [/(&) - /(«)/[& - a].

In Case 1 we have a < r < b, /(a) > 0, /(r) = 0, and
/(b) < 0, f (x) < 0, and f'(x) < 0. We shall take b as our first
approximation. The equation of the line tangent to the curve at the
point [(b, /(b)] is y(x) = /(b) 4- f (b)(x - b). The x-intercept
of this line is b2 = b —f(b)/f(b) and b2 is the second approxima
tion. Since /(b) is negative and f(b) is negative, —/(b)/f(b) is
negative, hence bs < b. We may apply the law of the mean to the
function /(x) on the interval r 5^ x ^ b and find a c, r < c < b,
such that f (c) = [/(r) - f(&)]/[r - b]. Since /"(x) is negative,
f(x) is decreasing. Therefore, since c <b, /'(c) = —/(6)/(r —b)
> f(b). That is, -/(b) < fCbXr - b), since (r - b) < 0.
Thus 0 < /(b) 4- fCbXr - b) = y(r). Now/(x) - f(b) < 0,
so that y(x) is a decreasing function. SinceyCh) = 0 by definition
and y(0 > 0, we have r < b2. We now have r < b2 < b, so that
the second approximation is necessarily better than the first.

We now proceed by induction and suppose that this process
has been repeated until we have an nth approximation b„, satisfying
the condition r < bn < b. We then find b„ +1 from b„ in the same
manner that we found b2 from b and the same proof will show that
r < bn +i < bn. Thus we have r < • • 'ba *, < b„ < • • • < b2 < bu
and we see that each successive approximation is better than the pre
ceding one. ,

The sequence {bn} is a strictly decreasing sequence bounded
below by r. Such a sequence necessarily has a limit. Therefore, let
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lim bn = h as n -* oo. Since h is the greatest lower bound of the se
quence h < ba for every b. If h < r, we could take w so large that
b\ would differ from h by less than r —h and hence bn would be
smaller than r. Since this is impossible, h § r.

&„♦, = &.- /(&n)/f(bn) Or fC&OCfci ♦ ,"&.) = -/(&n).

If we take the limit of both sides of the second equation as « ap
proaches infinity and use the continuity of /(x) and /'(x), we have
fdhXh - b) = -/(&). Therefore /(b) = 0, and since r is the
only root in this interval, h = r. Thus it is seen that the sequence
of approximations converges to the root r.

It might be pointed out that the restrictions on the function
/(x) may be relaxed somewhat. All one really needs to assumeis that
/GO. /'G0> and /"(x) are continuous and non-zero on the interval
except perhaps at the root itself. These changes increase the applica
bility of the method.

Another method of producing the formula is to expand the
function /(x) into a Taylor Seriesabout the first approximation, viz.,

/GO = /GO + f GOC* - a,) 4- [f(<0/2!][* - a,]2 + • • •
It is then assumed that if one substitute x = r, that the terms involv
ing (r — ai")2 and higher powers are so small that they may be
neglected. Then the equation 0 = fC^O 4- /'GOG — a,) is solved
for r and the answer is called a2, a second approximation.

While this method produces the usual formula, we have no
where seen a proof of the convergence of the approximations using
the Taylor Series. Certainly the Taylor Series requires much more
hypothesison /(x) than doesour proof.

It is our hope that the foregoing will prove helpful to the many
calculus students who have wondered whether or not Newton's
Method would always lead to correct answers.



Development of Orthogonal Functions
Ernest Milton

Student, Kansas State College, Fort Hays

1. The dot product of vectors as related to orthogonality.
The dot product or inner product of two vectors Vi and V2 is

defined as |Vi||V2| cos 0, where 6 is the angle between the two vec
tors and |Vi | is the absolute value of the length of the vector.

If 0 is an angle of 90°, cos 0 = 0; and the inner product is
zero. Thus the two vectors are orthogonal (or perpendicular to each
other) if and only if the inner product is zero.
2. Orthogonality in a space of three dimensions.

Let g(r) or g denote a vector in three-dimensional space whose
rectangularcoordinates are g(l), g(2), g(3). The squareof the vec
tor's length, called the vector's norm, will be written as N(g). From
the Pythagorean theorem we know that the norm is equal to the sum
of the squares of the vector's components.

3

N(g) = g2(l) 4- g2(2) + g'(3) or 2 gKO.
r = 1

If N(g) = 1> the vector g(r) is a unit vector and is called a normcd
or normalized vector.

The inner product of two vectors, symbolized by (gi, g2), can
also be expressed as the sum of the products of each vector's com
ponents on each axis.

(g„ «0 = gxCOfeCD + g.(2)gX2) 4- g,(3)g2(3)
3

= 2 g,G)g2(r).
r = 1

(The subscripts differentiate between the vectors and the numbers
in the parentheses indicate the components along the respective
axes.)

If our vectorsgi(r) and g-(r) are orthogonal,

(gi, g2) = 0,

3

or 2 gi(r)g2(r) = 0.
r = 1

31
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3. Orthonormal sets of vectors.

If we have an orthogonal set of three vectors gn(« = 1,2,3), a
set of unit vectors 4>n having the same directions are formed by divid
ing each component of g„ by the length of g„. For example the com
ponents of fr are ^(r) = g,(r)/VN(gO; G = 1, 2, 3).

This set of unit vectors is called an orthonormal set. Such a set
can be described bymeans of inner products by writing

(.4>m, ^n) = 0 if m # «,
(.<t>m, T>n) = 1 if m = n.

An example of an orthonormal set is the set of unit vectors along the
three coordinate axes.

Every vector /(r) in three-dimensional space can be repre
sented as a linear combination of the three unit vectors of any ortho-
normal set.

Thus /(r) = Cj^.G) 4- c2Ts2(r) 4- c^Cr); (r = 1,2,3).
To find the coefficients of the unit vectors ^(r), we can take

the inner product of both members of the above equation by fa. For
example to find c,,

(/, tO = cttfa, 4O 4- 02(^2,^1) + c3G/>3. <r»i)-
But becausethe set of vectors <£„ (r) are orthonormal

Ci>n tO = 0,
and (<f>3, 4»0 = 0.
But (e>„ *,) = !,
thus (/, $,) = c,.

c2 and c3 are found by a similarprocess.
The coefficients c„ are written as

3

C = (/, *•) = 2 /(r)^B(r); (« = 1,2,3).
r= 1

Thus our vector /(r) can be represented as

/G) = (/, *,)o>,G) 4- (/, fc)»>,G0 + (/, e>.)*iG)
3

= 2 (/, 0n)*n(r); (» = 1,2,3).
r = 1
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The definitions and results just found can be extended to vec
tors in a space of k dimensions. Thus the index r would vary from
1 to fe and the indices m, n which identify the different vectors of an
orthonormal set, vary from 1 to fe. Thus the definition of the inner
product of the vectors gt and g2becomes

fe

(gi. &) = 2 giG)g2(r)
r = 1

Likewise an extension to a space of countably infinite dimen
sions is possible. Indeed this extension is necessary in order that we
might describe a relationship between orthogonal vectors and ortho
gonal functions.

4. Functions as vectors.

Any function G(r~) which has real values when
r = 1,2,3, •", k will represent a vector in a space of fe dimensions
if it is agreed that these values are the components of the vector. This
function may not be defined for any other values of r, in which case
its graph would consist of fe points.

If G(r) is defined only at these points, it is determined by the
vector. Graphically it is represened by fe points whose abscissas are
r = 1,2, • • •, fe and whose ordinates are the corresponding com
ponents of the vector.

Now let G(x) be a function defined for all values of x in an
interval a ^ x ^ b. To consider this function as a vector, the com
ponents should consist of all the ordinates of the function's graph in
the interval from a tab.

The argument x has as many values as there are points in the
interval, so that the number of components is not only infinite but
uncountable.

The norm of the function or vector G(x), is defined as

NQG) = fb[G(x)]2ax.
The inner product of two functions Gm(x) and Gn(x) is de

fined as

(Gm, G„) = C Gm(x)G„(x)ix.
Two functions are orthogonal if and only if (Gm, GB) = 0

when m ^ «.
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The norm may also be expressed as N(G) = (G,G~).
A set (or system) of functions {Gn(x)}, where n = 1,2,3 • • ♦,

is orthogonal in the interval a to b if (Gm, G„) = 0 is true when
m =£ n for all functions of the set. The functions of the set are

normed by dividing each function G„(x) by VN(G), thus forming
a set{«/»„(x)}, « = 1,2,3, • • ♦, which is orthonormal. An orthonor
mal set of functions Gn(x) in the interval a Sj x ^ b is then shown
as follows:

(<£m, r>n) = 0 if m =£ «; (m,« = 1,2,3, • • 0
(^m, ^n) =1 if m = «.

I ^>m(a;)<#>n(x)dx = 0 if m=£n;

» ^m(x)T»„(x)dx =1 if m = n.
a

5. The use of the orthogonal property of orthonormal functions.

Many times in physics, it is convenient to express the motion of
some vibrating body with an infinite series of orthogonal functions
as terms. One series commonly used is the Fourier sine series. For an
example suppose we have found that, among other conditions, the
body is vibrating in a single plane and is at a distance y = /(x)
above the x-axis of a coordinate system. Then it is possible in certain
cases that /(x) = AiSin x 4- A2sin 2x 4- A3sin 3x 4- • • • 4- Ansin nx
4- ' • \ In order to evaluate the coefficients, we can use the ortho
gonal properties of the sine functions whose fundamental interval is
—Tf £ X —^ TT.

Our definition of an orthonormal set of functions is one where

or

b

^mG0<£n(x)dx = 0 if m # »; (m,n = 1,2,3, • • 0

b

T>m(x)^n(x)dx =1 if m = n.

i
I
It is necessary to recall that

sin mx sin jkx = (V6)[cos(m — m) x —cos (hi 4- »)x]
and sin2MX = (Vfc)(l — cos 2«x).

J sin mx sin mix dx = (Vi) I [cos(wi — n~)x — cos(m 4- n)x~\dx
o Jo

= (V2)[(sin (ro — m)x)/(?m — n)
— sin (ro 4- m)x)/(m» + m)]J
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and because the sine of any multiple of ir is zero the

I sin mx sin mx dx = 0 ifm^M (jm,m = 1,2,3, •• •)

If m = n the above integral becomes

( sin'MX dx = (Vi) I [1 —cos 2mx]«*x
= (Vi )[x - sin 2mx/2m] ; = t/2.

We can now use this property of the sine functions in the inter
val 0 g x _? - to evaluate the coefficients of the Fourier sine series.

If we take the inner product of both sides of the equation
00

/(x) = 2 A,sin zx
z = 1

by sin mx we get
00

f(x)sin mx dx = 2 [As I sin zx sin mx dx}.
o Jo

z= 1

But we know that the integral on the right is nonzero only when
z = m. When z = « the integral is jt/2 and so our equation now is

/(x)sin nxdx = A„ w/2.
ro

And thus we have found by the use of the inner product that our
coefficient is

X"

A„ = (2/ir) I /(x) sin mx dx.

Here we see one application of orthogonal functions to deter
mine the coefficients in a Fourier series.
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Sign of a Real-Valued Function
of Real Variables

A. R. Amir-Moez

Faculty, Queens College

1. Introduction.

In very few books written in English can one find a systematic
treatment of sign of real functions of real variables. Aside from its
being interesting, the indication of the sign of real functions of real
variables is necessary for many problems of mathematics. For ex
ample, the sign of the first derivative is necessary to determine
whether the function isincreasing ordecreasing. In this note we give
some methods for obtaining the sign of a real-valued function of real
variables for all possible values of the variables, and we give a few
examples of the use of this sign. Intuitive methods are stressed. We
hope that some of these ideas may be carried to the classroom for
high-school and freshman college algebra.

Theorem 1: Leta and b, witha =fc 0, be real numbers, and let
x be a real variable. Then ax 4- b has the same sign as a for
x > —b/a, and it has different sign from a for x < —b/a.

Proof: Suppose / = ax + b. Then f/a = x 4- b/a. Since
x = —b/a makes f/a equal to zero, x > —b/a makes f/a > 0, i.e.,
f and a have the same sign; and x < —b/a makes f/a < 0, i.e.,
f and a have opposite signs.1

Theorem 2: Let a, b, and c be real numbers with a =j£ 0, and
x a real variable.

1) If b2 —4ac < 0, theny = ax2 4- bx 4- c has always
the same sign as a.

2) If b2 —4ac = 0, then y = «xs 4- bx 4- c has always
the same sign asa, except forx = —b/2ain which case y = 0.

3) If b2 — 4ac > 0, let n < r2 be the two roots of
ax2 4- bx —c = 0. Then y = ax" + bx + c has the same sign
as a when either x < u or x > ra and y has opposite sign to
a for Ti < x < r2.

1 Also, see Th» Pentagon. Spring, 1957, p. 88.
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Proof: Clearly,
y = ax2 4- bx 4- c = a[(x 4- b/2a)2 - (b2 - 4ac)/(4a')].
If b2 - 4ac < 0, then (x 4- b/2a)2 - (b2 - 4ac)/(4a2) > 0.

Therefore, y has always the same sign as a and 1) is proved.
If b2 - 4ac = 0, then y = a(x 4- b/2a)2. Here (x 4- b/2a)2

is always positive except when x = —b/2a. Therefore y has always
the same sign as a except for x = —b/2a which establishes 2).

If b2 — 4ac > 0, then y = ax2 4- bx + c = a(x — r,)
(x — r2). Let us use a table and carry the sign of each element on
the table and keep in mind that the product of two numbers with the
same sign is positive and the product of two numbers with opposite
signs is negative.

By Theorem 1, x — r, is positive for x > ri and it is negative
for x < r-i and of course it is zero for x = ri. A similar thing can be
said about x — rt. Therefore, we have Table 1.
This table shows that (x — rx)(x — r2) is positive for x < ri and
x > r2 and negative for n < x < r2. If a > 0, then the signs of
y and (x — fi)(x — r2) are the same; if a < 0, then y and
(x — rt)(x — r2) have opposite signs; and the proof of 3) is com
plete.

2. Sign oi a Rational Fraction.

Let y = (a„xn 4- a„ _ jX" -* 4- • • • + aiX 4- a„)
/(&m*m + bm.1xn-1 + '" + b1x + bo),

where alt bt are real numbers for i = 0, • • •, n and / = 0, • • •, m.
To determine the sign of y we first obtain the sign of the numerator
and the sign of the denominator; then observing that the sign of the
ratio of two numbers of like sign is positive and the ratio of two num
bers with different signs is negative, we obtain the sign of y for the
values of x for which y is defined. So the problem reduces to one of
finding the signs of two polynomials. Now to obtain the sign of a
polynomial we factor it into linear factors and quadratic factors with
real coefficients. Indicating the sign of each factor, we can get the
sign of the polynomial. We shall discuss later the case for which
there are not rational roots and factoring is not practical.

EXAMPLE: y = (1 - xs)/(x* 4- 2x» - 3x2 - 8x - 4).
In order to determine the sign of y for different values of x, we

note that y = [(1 - x)(x2 4- x + l)]/{f - 4)(x2 4- 2x 4- 1)].
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We display the signs of each factor in Table 2.

The result is:

y>0 forx<-2, and 1 <x< 2.
y < 0 for-2<x<-l, -1 < x < 1, and x > 2.

3. An Application to Solving Inequalities.

EXAMPLE: Solve 9/(x - 3) > 16/(3x 4- 2).
Clearly this inequality can be replaced by 9/(x — 3) — 16
/(3x 4- 2) > 0, or (llx 4- 66)/[(x - 3)(3x + 2)] > 0. This
step changes the problem to one of determining the sign of
y = (llx 4- 66)/[(x — 3)(3x 4- 2)] and choosing x where
y > 0. By Theorems 1 and 2 we show the signs of llx 4- 66 and
(x- 3)(3x-2)inTable3.

Therefore the inequality is satisfied if —6 < x < —2/3 or
x> 3.

4. Sign of a Nonalgebraic Real-Valued Function oi a Real
Variable.

In general, there may be some special devices that can be used
in obtaining the sign of y = /(x) in a certain domain; for example,
the sign of y = (2 — 3x) tan x, for 0 ^ x ^ 2tt. This problem is
very easy and can be solved by methods similar to that used in the
preceding examples. The actual solution is left to the reader. For
some functions, if other devices fail, the graph of the function can
be used to obtain the sign.

5. Sign of a Real-Valued Function of Two Real Variables.

Let z = /(x, y) be a real function of two real variables x and y.
It is intuitively clear that the surface z = /(x, y) intersects the
xy-plane in the locus /(x, y) = 0 and this locus may divide the
plane z = 0 into different regions. For the regions where the surface
is above the xy-plane clearly z > 0, and for the regions where the
surface is below the xy-plane z < 0. So in this case the problem of
discovering sign is one of determining the different regions in which
the point (x, y) must be located in order to have z > 0 or z < 0.
We will give an example and leave the formal work to the reader.

EXAMPLE: A projectile P is shot with the initial velocity v„.
Where in a vertical plane should a point (X, Y) be in order to be
reachable by P? If we choose the coordinate system in the vertical
plane with the x-axis horizontal, positive y-axis directed upward and
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the origin at the mouth of the gun, then the equation of the path of
Pis:

y = x tan a — (g/2v20 cos2«)x2.

The point (X, Y) is on the path. Therefore,

Y = X tan a - (g/2v20)(l 4- tan2«)X*.

This is a second degree equation for tan a. In order to have any real
root the discriminant must be non negative, i.e.,

XXv*o ~ 2gv\Y - g2X2) ^ 0.

This implies that

v*o - 2gv2.Y -g2X2 ^ 0.

We easily see that z = v\> — 2gv20Y — g2X2 intersects z = 0 in
the parabola

Y = v2„/2g - (g/2v2„)X2,

and this parabola divides the xy-plane into two regions. One region
makes z > 0 and contains (0,0); the other makes z < 0. There
fore the answer to the problemis:

The point (X, Y) has to be either on the parabola

Y = v20/2g - (g/2v20)X2

or in the region containing (0,0), i.e., below the parabola.

3

"The number is certainly the cause. The apparent disorder
augments the grandeur."

—Edmund Burke (On the Sublimeand the Beautiful)



The Problem Corner
Edited by J. D. Haggard

The Problem Corner invites questions of interest to undergradu
ate students. As a rule the solution should not demand any tools be
yond the calculus. Although new problems are preferred, old ones of
particular interest or charm are welcome provided the source is given.
Solutions of the following problems should be submitted on separate
sheets before March 1, 1959. The best solutions submitted by students
will be published in the Spring, 1959, issue of THE PENTAGON, with
credit being given for other solutions received. To obtain credit, a
solver should affirm that he is a student and give the name of his
school. Address all communications to J. D. Haggard, Department of
Mathematics, Kansas State Teachers College, Pittsburg, Kansas.

PROBLEMS PROPOSED

116. Proposed by J. Max Stein, student, Colorado State University.

While traveling in Iowa in the spring, I observed that there
were several directions I could look across a field of check-planted
corn with the hills of corn apparently lying along straight lines. As
suming that a hill of corn determines a point, that the distance be
tween rows is the same as the distance between hills in a row, and
that the field is infinite in extent, then by looking over any hill of
corn will there be any direction I can look across die field such that
my line of sight will contain no other hill of corn?

117. Proposed by Frank Hawthorne, New York State Department of
Education.

(From a New York Regents examination in advanced high
school algebra.)

A man traveled 60 miles by bus and 600 miles by plane, taking
6 hours for the trip. On the return trip the speed of the plane was
reduced by 50 miles an hour, but the speed of the bus was increased
by 10 miles per hour so that the return trip also took 6 hours. Find
the average speed of the plane and the average speed of the bus.

118. Proposed by Frank C. Gentry, University of New Mexico,
Albuquerque.

Find four integers a, b, c, d; a < b < 10, c < 10, d < 10,
such that (a/b)(10c 4- d) = lOd 4- c.

41
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119. Proposed by Mark Bridger, High School of Science, Bronx,
New York.

(Taken from Hall and Knight's Higher Algebra.")
Find the sum of all numbers greater than 10,000 formed by

using the digits 0, 2, 4, 6, 8, no digit being repeated in any number.

120. Proposed by the Proble7n Corner Editor. (Taken from the July,
1957, Preliminary Actuarial Examination.)

If g'(x) = /(*) and /(x) is continuous, evaluate
b

S f(x)g(x)dx.
a

SOLUTIONS

85. Proposed by Carl V. Fronabarger, Southwest Missouri State Col
lege, Springfield.
In any quadrilateral circumscribed about a circle, the diagonals

and the lines joining the points of tangency of opposite sides are con
current.

Solution by Charles Pierson, University of New Mexico, Albu
querque.

Consider the following circle inscribed in the quadrilateral
whose sides are c, d, e, f.

Specialize Brianchon's theorem and consider the 6 degenerate
lines, c, c, d, e, e, f and also d, d, e, f, f, c.

cc, ee

cd, ef intersect in the Brianchon point B.
de, cf
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also,
dd, ff
de, cf intersect in the Brianchon point B'.
ef, cd

But two of the lines in each of these cases are the same two lines,
thus B coincides with B' and all four lines go through the same
point B.

107. Proposed by the Problem Corner Editor. (From a Russian sec
ondary school examination.)

Prove that the g. c. d. of the sum of two numbers and their
1. c. m. is equal to the g. c. d. of the numbers themselves.

Solution by Mark Bridger, High School of Science, Bronx, New
York.

Let the two numbers be x = ac and y = be, with g. c. d.
= (x, y) = c and (a, b) = 1. Since the 1.c. m. is the smallest num
ber that is divisible by x and y, it is obvious that this number is abc.
Since a and b are relatively prime, no factor of a is a factor of b nor
is it a factor of (a 4- b); thus (ca 4- cb, abc) = c. That is, the
g. c. d. of the sum (ca 4- cb) and their 1. c. m., abc, is c; which is
also the g. c. d. of the two numbers ac and be.
111. Proposed by C. W. Trigg, Los Angeles City College.

The letters in (HI)(VE) = BBB represent distinct digits,
some four of which are consecutive. Decode the equation.

Solution by Charles F. Waite, Pomona College, Claremont,
California.
(H1)(VE) = BBB = 11IB. Since the only factors of 111 of

two digits or less are 3 and 37, (H1XVE) = (3)(37)(B), and
since the right side of this equation is equal to the product of two-
digit numbers, B ^ 4. Let B = (M)(N) where M = (HI)/3 and
N = (VE)/37. Then since HI is two-digit, M ^ 4, and similarly
N ^ 2. Since 4£B = MN5 9,then 1 ^ N ^ 2 and 4 ^ M g 9.
This restricts E to be either 7 or 4. Now E = 4 implies HI = 12,
VE = 74 and B = 8, which does not fulfill the consecutive require
ment. E = 7 implies V = 3 and H = 1 or 2. Therefore E is not one
of the consecutive digits and consequently 1 :f§ B ^ 5, but we have
previously seen that 4 ^ B £ 9, thus B is either 4 or 5. For B = 5,
H = 1 which does not fulfill the consecutive requirement. For
B = 4, HI = 12, VE = 37, BBB = 444, which fulfills all the
requirements of the problem.
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Also solved by Mark Bridger, High School of Science, Bronx,
New York; George Frank, Colorado State University, Fort Collins;
Barry Campbell, William Jewell College, Liberty, Missouri; and
Carol Ann Sexton, Southwest Missouri State College, Springfield.

112. Proposed by the Problem Corner Editor. (From The American
Mathematical Monthly.)
For what positive values of a is logab < b for all positive b?
Solution by Bostwick F. Wyman, Massachusetts Institute of
Technology, Cambridge.

In the inequality log^b < b, substitute in b/In a for the left
member and solve for the natural logarithm of a, resulting in
In a > (In b)/b. Now the maximum value of (In b)/b is deter
mined by setting its derivative (1 — In b)/b2 = 0. Thus In b = 1
and b = e. On substituting this value for b in the last inequality we
get In a > 1/e or a > elAr.

Also solved by Mark Bridger, High School of Science, Bronx,
New York.

113. Proposed by the Problem Corner Editor. (From The Mathe
matics Teacher.)
Find two similar triangles which are noncongruent but have

two sides of one equal to two sides of the other.
Solution by Mark Bridger, High School of Science, Bronx, New
York.

Let the similar triangles have sides of a, b, c, and d, V, c',
respectively, with a/a? = b/V = c/d. Since two sides of one tri
angle are equal to two sides of the other, take d = b and V = c,
thus by substitution we obtain alb = b/c = c/d or b = yfac and
c' = c*/b.

These_two triangles will be similar since a/y/ac = y/ac/c
= c/Cc'/y/ac)

In locating a numerical example we must remember that the
sum of two sides must be greater than the third side. A set of two
such triangles is:

a = 4 _ d = 2V5*
b = 2V5 V = 5
c = 5 d = 5V5/2
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Also solvedby BarryCampbell, William Jewell College, Liberty,
Missouri; and George Frank, Colorado State University, Fort Collins.

114. Proposed by the Problem Corner Editor. (Taken from Robin
son's Mathematical Recreations, 1851.)

Professor E. P. B. Umbugio has recently been strutting around
because he hit upon the solution of the fourth degree equation which
results when the radicals are eliminated from the equation:

x = (x - 1/x)1'2 4- (1 - 1/x)1'2

Deflate the professor by solving this equation using nothing
higher than quadratic equations.

Solution by Calys Emanuel, Washburn University, Topeka,
Kansas.

The given equation may be written

(x - l/x)1/2 = x - (1 - 1/x)1'8.

Squaring both sides we obtain

x - 1/x = x2 - 2x(l - 1/x)1'2 4- 1 - 1/x

or 2(x2 - x)1'2 = x2 - x + 1.

Letting x' — x = y this becomes 2y1/2 = y 4- 1 which has
y = 1 as a solution. Substituting y = 1 into x2 — x = y gives
x2 — x — 1 = 0, which has the two roots 1 ± y/S/2. But only
1 4- V5/2 is a root of the given equation.

Also solved by Mark Bridger, High School of Science, Bronx,
New York; Barry Campbell, William Jewell College, Liberty, Mis
souri; and George Frank, Colorado State University, Fort Collins.



The Mathematical Scrapbook
Edited by J. M. Sachs

Everything that the greatest minds of all times have accom
plished towards the comprehension of forms by means of concepts is
gathered into one great science, mathematics.

—J. F. Herbart
= A =

Mathematicians are like Frenchmen; whatever you say to them
they translate into their own language and forthwith it is something
entirely different.

—Goethe

= A =

The calendar, in its past, present, and future, offers a fertile
field for investigation and speculation. A number of items, historical
and otherwise, connected with the calendar have crossed the desk
of the Editor of the Scrapbook in the past few months. Some of them
are old, some seem new.

= A =

Many of the earliest known calendars were based on a moon
cycle of about 29Vi days, with the yearcomposed of 12 lunar months
for a total of 354 days. This kind of rough approximation made nec
essary the insertion of an extra month from time to time to keep the
same months in the same seasons.

The ancient Hebrews inserted the extra month seven times in
a period of nineteen years. In nineteen of our years we have 6939%
days. The nineteen Hebraic years plus the seven months would be
a total of 6932Vi days. Thus the Hebrew calendar would disagree
with ours by 7V4 daysin nineteen years.

The ancient Greeks added three months in eight years. This
would be a total of 2920Vi days compared with 2922 days in eight
of our years, a difference of 2Vz days in eight years.

= A =

It seems clear that rather early in the development of civiliza
tion came the recognition of the fact that the year was approximately
365 days. The following ingenious method is probably responsible
for the early use of the 365-dayyear. A prominent star, clearlyiden
tified, was watched for and the day was noted when this star ap
peared abovethe horizon just before sunrise, the star not having been

46
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visible in the sky on the previous day just before sunrise. A tally of
days was made until this same star again appeared just before sun
rise (heliacal rising). This tally led to the conclusion that the year
consisted of 365 days.

= A =

The Roman calendar also used the extra month but before the
time of Julius Caesar the insertion of extra months seems not to have
followed any regular pattern. With the aid of the Egyptian, Sosi-
genes, Caesar reformed the calendar. In the process the year 46 B.C.
was lengthened to 445 days, with succeeding years to be 365 days
except for leap years which were to be 366 days. This was the Julian
Calendar.

= A =

In 1582 Pope Gregory XIII adjusted the calendar again by or
dering that the day following October 4 should be October 15, and
that henceforth a century year would be a leap year only if the first
two digits were divisible by 4. Mostof the Catholic countries adopted
the Gregorian Calendar before 1600. England and America did so in
1752 by having September 14 follow September 2. (Eleven days
were lost instead of the 10 days in 1582 because 1700 was a leap
year in the Julian Calendar and was not in the Gregorian.) Consid
erable distrust and suspicion followed this action in England with
many people feeling that somehow their lives were being shortened
and they were being made old before their times.

= A =

In 1793 in France it was decreed that the calendar should com
mence with the formation of the First Republic on September 22,
1792. A year was to consist of twelve 30-day months, each month di
vided into three ten-day periods, with five festival days at the year's
end dedicated to Virtue, Genius, Labor, Opinion, and Rewards, re
spectively. Every fourth year was to have an additional "Revolution
Day". The century years were to be treated as in the Gregorian Cal
endar with a fine adjustment scheduled for the year 4000 which was
not to be a leap year. Napoleon returned France to the Gregorian
Calendar in 1806.

=A=

Russia adopted the Gregorian Calendar in 1918.
= A =

Some of the readers may wish to test the following conjectures
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or answer the questions based on our present calendar.
In a non-leap year:

1) The year begins and ends on the same day of the week.
(For a leap year this would mean that the ending day
would be one day later in the week than the beginning
day.)

2) There are 52 of everydayof the week except the beginning
and end day and 53 of this day. (For a leap year this would
mean that there are 52 of each day except the beginning
and end day. There are 53 of the beginningday and 53 of
the end day.)

3) Put a pin through the 12 monthly pages of a monthly cal
endar so that a number is pierced on each page. If the Jan
uary day of the month is N, the sum of the numbers
pierced is 12N — 3.

4) Every day in the week will be the first day of some month
in the year.

5) What is the maximum sum possible under the conditions
proposed in 3)?

6) What is the minimum sum possible under the conditions
proposed in 3)?

= A =

Calendar reforms are still being discussed and many proposals
have been made. One of these is the suggestion that the year be di
vided into equal quarters of 91 days or almost equal quarters. This
proposal suggests further that the months be somehow equalized. At
present a month may have as few as 24 or as many as 27 weekdays
and either 4 or 5 Sundays.

= A =

The thirteen-calendar-month schemesuggests four-week months
plus a Year Day in a non-leap year or two Year Days in leap years.

= A =

The World Calendar Association proposal calls for four 91-day
quarters—each quarter having, in order, months of 31, 30, and 30
days. An intercalary day, not part of either year, occurs between
December 30 and January 1. This day would not have a day name
such as Monday or Tuesday. There would be two such days in leap
years. Holidays such as July 4 would always occur on the same week
day. For example, if January 1 were Sunday to begin with, then
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January 1 would always be Sunday, July 4 would always be Wednes
day, and Thanksgiving would always be on November 23.

The calendar square trick which follows is credited by Martin
Gardner (.Scientific American, January, 1957) to Mel Stover of
Winnipeg. Suppose a square array of sixteen numbers is marked off
on any calendar page. For example, supposewe have

3 4 5 6

10 11 12 13

17 18 19 20

24 25 26 27

Cross out any number in the array (say 25) and line out its row and
column. Now cross out any number remaining (neither crossed out
not lined out) such as 10 and line out its row and column. Do the
same for any number remaining, say 5. The single number now left
is 20. Cross it out. The sum of the cross-outs is twice the sum of the
corner numbers on either diagonal. In our example, the sum of the
cross-outs is 25 4-104- 5 4-20 = 60; and the sums of the corner
numbers on the diagonals are 3 4- 27 = 6 + 24 = 30.

How could one prove this result for any 4X4 square from any
calendar page? We could call the number in the upper-left corner n.
Any element in the first column is thus n 4- i*7, i = 0,1,2,3; any
element from the second column is (n 4- 1) 4- j'7, j = 0,1,2,3;
any element from the third column can be written as (w 4- 2)
4- k'7, k = 0,1,2,3; any element from the fourth column can be
written as (m 4- 3) 4- m'7, m = 0,1,2,3. If we choose elements
according to the suggested scheme we will have exactly one element
from each row and exactly one from each column. In this way the
sum of the four elements can be expressed as,

m + i-7 + (m + 1) + j'7 4- (n + 2) 4- k'7 + (n + 3) + »»7

= 4m 4- 6 4- (» 4-; + k + m)7.

Since there is exactly one element from each row, i + j 4- k 4- m
= 0 + 1+2+3 = 6. Thus the sum of the four cross-outs is
4m + 48. The sum of the corner elements on either diagonal is
2m + 24. Twice 2k + 24 is 4m + 48.

Gardner suggests that this trick has many ramifications as yet
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unexplored. Your Editor suggests the following for further investi
gation :

1) Any 2X2 calendar square has the sum of the cross-outs
equal to the sum of the diagonal elements on either diag
onal.

2) Any 3X3 calendar square has the sum of the cross-outs
equal to 3/2 times the sum of the corner elements on either
diagonal.

3) Any N X N calendar square has the sum of the cross-outs
equal to N / 2 times the sum of the comer elements on
either diagonal.

4) What can you say about an N X N square of integers ar
ranged so that the difference in consecutive elements in the
same row is r and the difference between consecutive ele
ments in the same column is c. (Let us agree that the ele
ments increase as we move to the right and down.)

5) What is the largest possible value for N for a calendar
square?

6) What are the possibilities for calendar cubes consisting of
an N X N square marked on a page of the calendar and
the same positions marked on the following N — 1 pages?

©

"Mathematics is a useful tool, but it is also something far
greater, for it presents in unsullied outline that model after which all
scientific thought must be cast"

G. St. L. Carson
Essays on Mathematical Education



The Book Shelf
Edited by R. H. Moorman

From time to time there are published books of common interest
to all students of mathematics. It is the object of this department to
bring these books to the attention of readers of THE PENTAGON. In
general, textbooks will not be reviewed and preference will be given
to books written in English. When space permits, older books of
proven value and interest will be described. Please send books for re
view to Professor R. H. Moorman, Box 169A, Tennessee Polytechnic
Institute, Cookeville, Tennessee.

Finite-Dimensional Vector Spaces, (2nd edition), by Paul R. Hal-
mos, The University Series in Undergraduate Mathematics, D.
Van Nostrand Company, Inc., (120 Alexander Street) Prince
ton, N.J., 1958, 193 pp., $5.00.
The appearance of this book is most welcome to those of us

who were familiar with it in its earlier paperback form as Number 7
of the Annals of Mathematics Studies, published by the Princeton
University Press in 1942. The new edition has been revised and
extended, although the most noteworthy change is the addition of
exercises.

The author's purpose is to make his work entirely self-con
tained. He includes fields, matrices, and determinants in this edi
tion, material which was almost entirely absent from the earlier edi
tion. A mathematics book at this level, however, cannot be entirely
self-contained, and it may be assumed that most readers will have
some background in algebra. Certainly, it seems strange to include
a section on fields and to assume at least an elementary knowledge
of groups.

The first chapter includes a discussion of fields and the defi
nition and development of vector spaces. In this chapter the discus
sion of dual spaces seems particularly excellent. Although the discus
sion is confined to spaces of finite dimensions, the author's stated
purpose of emphasizing theorems and proofs which have infinite-
dimensional analogues is thoroughly realized.

The second chapter is concerned with transformations, thus
supplying the author's motivation for the material in the first diap
er. An excellent discussion of matrix theory is included in this chap
ter and much of the material on matrices would be accessible and
valuable to a student even out of the context of the book. The au
thor's lucid style is displayed to excellent advantage in this chapter.
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The third chapter is concerned with inner products, normed
spaces, and orthogonality. The first part of this chapter seems so
much more accessible and easy than the second chapterthat it might
have been better pedagogy to present it first. The author's efforts
to keep a simple geometric modelbefore the eye of the reader are in
evidence here. With this technique the reader is introduced to some
difficult ideas almost withoutrealizing it.

The fourth chapter connects the foregoing material with mod
ern analysis. This chapter also illustrates the impossibility of a self-
contained mathematics book. Surely no reader will appreciate this
chapter who has not obtained a strong foundation in advanced cal
culus. The chapter contains a general discussion of convergence and
concludes with an elegant proof of the ergodic theorem and a perhaps
too-brief discussion of power series.

The fourth chapter is followed by an appendix which presents
the Hilbert space to the reader as the most useful generalization of
the previous material to infinite-dimensional spaces.

The addition of the exercises certainly makes the book more
usable as a text. Although the exercises vary in difficulty from the
trivial to the extremely difficult, thisvariation is not indicated in any
way. Here, most of all, it is apparent that the book is not self-con
tained. The reviewer questions the advantage of presenting a prob
lem to a student before the tools of solution have been developed.
Possibly this technique would aid the development of a research
capability in a graduate student, but more probably it woulddiscour
age a reader who might well be able to grasp most of the material.
When a student masters a section of a mathematics book, he expects
to be able to work the problems at the end of that section. If he is un
able to work them, he becomes frustrated.

In general the publisher has done a good job in presenting the
author's material. The expression "The University Series in Under
graduate Mathematics" which appears on the cover should not be an
obstacle to its use as a text in a graduate course, for at many univer
sities this material might be more suitable at that level.

Halmos' book is the best in its field and is one of the best-writ
ten mathematics books available. Mathematics students and teach
ers alike are indebted to Professor Halmos for making his work avail
able in more useful form.

—W. M. Perel

Texas Technological College



The Pentagon 53

Understanding Arithmetic, by RobertL. Swain, Rinehart and Com
pany, Inc., (232 Madison Avenue) New York, 1957, xxi +
264 pp., $4.75.

For the student preparing to teach arithmetic in the elementary
schools, an understanding of basic mathematical principles is essen
tial. The title of this book is very appropriate, since it makes clear
many of the basic principles of arithmetic. Many of the topics are
introduced by giving a short historical background, stimulating both
interest and understanding. There is other supplementary material,
consisting of illustrations and comments, which the author includes
asan integral partof the book but which is printed in smaller type.

The book has many excellent features, probably the most out
standing being its readability. The language is clear and concise, and
the examples and illustrations are excellent. The illustrations are
unusually effective because of the use of shaded areas and blocks.
There is a large amount of enrichment material introduced with each
topic. Someexamples are: a paragraph on logic included in the chap
ter entitled "Sets and Numbers," and the paragraphs on duodecimal
and binary number systems in Chapter VI entitled "Twelves and
Twos."

The number system and operations are based on the mathe
matical concepts of sets and set operations. Subtraction and division
are developed as inverse operations of addition and multiplication
respectively. The traditional computational methods are also intro
duced, but the introduction appears to be with greater emphasis upon
understanding rather than mere mechanical manipulation.

In the preface the author writes, "We propose with this book
to help him (the adult who seeks to understand arithmetic) lay a
new foundation and build more soundly." The reviewer believes that
the author has accomplished his objective.

The chapters on fractions and decimals are well organized and
interspersed with teaching suggestions.

The National Council of Teachers of Mathematics has pub
lished a pamphlet which expresses very well the present-day needs
in arithmetic:

The first half of the twentieth century has witnessed rapid
developments and changes of point of view in the field of
mathematics. The curricula of the schools and colleges have
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not been sufficiently influenced by these changes. Our mathe
matics program must be revised. Much of what we now have
is good and must remain in the curriculum, but the time has
come for careful selection of content and method related to
present-day mathematical needs. The changes that must be
made can be considered under three headings: content, pres
entation and requirements.1

The reviewer believes that the author has skillfully selected
and interwoven the traditional mathematics usually taught in ele
mentary schools with the most recent developments and applications
of mathematics. The reviewer believes that this publication fulfills a
long-felt need in arithmetic.

—Irene Nolan
Tennessee Polytechnic Institute

Arithmetic for Colleges, Revised Edition, by Harold D. Larsen, The
Macmillan Company (60 Fifth Avenue) New York, 1958,
xiii + 286 pp., $5.50.
This book is designed fora one-semester course in the principles

andapplications of elementary arithmetic. The exceedingly fine man
ner in which this book is written makes it invaluable to all students
who seek proficiency in arithmetic as well as to those who are pre
paringto teach in the elementary schools.

The bookis not merelya view of arithmetic. The topics are pre
sented from an advanced point of view, giving the reader greater
knowledge of the fundamentals of arithmetic.

The thirteen chapters of the books are very logically arranged.
The first chapter starts with the systems of notation and takes the
reader through the history of numerology. The chapters which follow
deal with addition, subtraction, multiplication, division, common
fractions, decimal fractions, and percentage. The author has written
these chapters in such a manner as to create great interest in short
methods of calculation. The chapters on approximate numbers and
the slide rule are clearly and carefully presented in considerable de
tail.

Throughout the book historical and recreational items are in
cluded which can be valuable aids to the teacherof elementary arith
metic. Methods of checking which emphasize the casting out of nines
and elevens are used.

> Tho National Council ol Toachoro of Mathematics, "Aa Wo Soo It," 1201 Sixteenth
Stroot NW, Washington 6, D.C., 1958, pp. 3-4.
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There are three main additions to the revised edition which
were not included in the first edition: (1) two simple tests for
casting out sevens, (2) a "bridging" rule is described which simpli
fies the casting out of elevens, (3) a simple, but little-known, theo
rem concerning the greatest common divisor of two numbers is de
scribed and then applied to the reduction of fractions to lowest
terms.

A fine feature of this book is the supplementary exercise at the
end of each chapter. These exercises and an extensive bibliography
make it possible to extend the material covered in the book.

—F. W. Block
Tennessee Polytechnic Institute

a

"Certain characteristics of the subject are clear. To begin with,
we do not, in this subject, deal with particular things or particular
properties: we deal formally with what can be said about "any" thing
or "any" property. We are prepared to say that one and one are two,
but not that Socrates and Plato are two, because, in our capacity of
logicians or pure mathematicians,we have never heard of Socrates or
Plato. A world in which there were no such individuals would still
be a world in which one and one are two. It is not open to us, as pure
mathematicians or logicians, to mention anything at all, because, if
we do so we introduce something irrelevant and not formal."

—Bertrand Russell



Installation of New Chapter

Edited by Mabel S. Barnes

THE PENTAGON is pleased to report the installation of

CALIFORNIA GAMMA CHAPTER

California State Polytechnic College
San Luis Obispo, California

On May 23, 1958, California Gamma Chapter was installed
at California State Polytechnic College. Mr. Dana R. Sudborough of
San Jose State College, San Jose, California, and formerly business
manager of THE PENTAGON, conducted the installation ceremony.
A banquet was held on the campus, and, following it, Mr. Sud
borough addressed the new chapter on "Some Aspects of Kappa Mu
Epsilon."

Student charter members are Paul W. LeVier, Henry C. Miller,
Joe K. Bryant, Albert C. Dandurand, Gilbert C. Myers, Jr., Ray
Kitaguchi, George Wells, Ted W. Miller, Jr., Robert Y. Minami,
Donald L. Snider, Jerre J. Zimmerman, Thomas H. Schultz, Ross C.
Higbee, Richard M. Bird, William C. Ring, William L. Lockwood,
Richard Eckerman, and J. Byron Culbertson. Faculty charter mem
bers are Robert D. Gordon, Milo E. Whitson, Chester H. Scott,
Oswald J. Falkenstern, George R. Mach, John Manning, Vol A.
Folsom, Michael L. Hall, Olive M. Anderson, and Charles A. Elston.

The following officers were installed: Joe K. Bryant, president;
Robert Y. Minami, vice-president; Jerre J. Zimmerman, secretary;
Richard Eckerman, treasurer; George R. Mach, corresponding secre
tary.

We extend a warm welcome and best wishes to our new western
chapter.
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Kappa Mu Epsilon News
Edited by Frank Hawthorne, Historian

Alabama Beta sponsored a coffee hour at the annual Home
coming on October 25. Representatives from ten different initiation
years attended. Their regular programs featured outstanding speakers
from Redstone Arsenal and local industries.

The spring activities of California Beta included a field trip to
Electrodata Corporation in Pasadena and a lecture on "The Shoe
maker's Knife" by Dr. Leon Bankoff, a Los Angeles dentist, who has
mathematics as a hobby. Dr. Wayne E. Smith, a charter member of
California Alpha, has joined the Mathematics Department as an as
sistant professor.

The following members of California Beta have entered grad
uate schools: Hugh Lawrence, Columbia; Charles James Pearson,
Yale; and Fred Weiler, Purdue. Robert Emmerling, George Engelke,
and Arthur Stacy have completed the 3-2 program in engineering
and have received degrees from both Occidental College and the
California Institute of Technology. Steve Ahrens, Edward Gehle,
Anthony Grande, and John Stene are at the California Institute of
Technology and Dorothy Dirks and James Manson are at Columbia
on the 3-2 program. Jack Prestwich received the Kappa Mu Epsilon
Award for achievement in freshman mathematics.

Merl Kardatzke, last year's president of Indiana Gamma, has
been awarded a Woodrow Wilson Fellowship for graduate work in
mathematics at the University of Chicago this year. The president
and vice-president of this chapter are automatically the senior and
the junior with the highest averages in mathematics courses. It is of
interest that this year's officers are brother and sister, Myron and
Myrna Williams.

"Mathematics in Three Dimensions" is the theme which
Kansas Gamma has selected for the year's program. It was voted
to have each meeting consist of three sections: a) mathematical
theory underlying games and tricks; b) biographical sketch of a
famous mathematician; c) a magazine report on current mathemati
cal news. Both members and pledges will cooperate in the presenta
tion of the semi-monthly programs. The first meeting of the year,
October 6, was an orientation meeting in which the "actives" ex-
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plained various aspects of chapter activities to the twenty new
pledges. Formal pledge induction is scheduled for October 20.

A chili supper honoring the newcomers to Kansas Gamma will
be held October 23, 1958. Plans are being made to feature two
guest speakers during the coming academic year. Professor William
R. Scott of Kansas University will speak on "Game Theory" in mid-
November. Professor Robert Gaskill, a visiting lecturer sponsored by
the Mathematical Association of America, will be on the Mount
campus February 27, 1959.

Highlighting the spring activities of Missouri Alpha was the con
ferring of two annual awards. Charles Atwater received the Fresh
man Award which is bestowed annually upon the first-year student
whose achievement in mathematics is most outstanding. Chapter
President Howard Hufford was the recipient of the Merit Award
which is given to the chapter member making the greatest contribu
tion to the fraterniy during the school year. Programs presented by
students included "Theoryof Games" by Robert Pearce and "Kaleido
scopic Geometry" by Howard Hufford. Alumnus Harold Steenbergen
presented an interesting program on the qualification test for regis
tered engineers in Missouri.

Wedding bells will ring for Barbara Rentchler, Missouri Beta
Chapter President, '57-'58, on Thanksgiving Day at Clinton, Mis
souri. The chapter sponsored tours through the I.B.M. Midwest Re
search Institute and Linda Hall Library as well as a trip to the
regionalconvention at Emporia, Kansas.

New Jersey Beta won an originality award for its booth, a
maze, in Montclair State's annual carnival.

Ohio Alpha sponsored a series of four lectures last year which
were well attended by university students and high school students
and teachers from the area of northwest Ohio. The lectures were:

"Some Basic Ideas in the Theory of Transonic Flow" by Dr.
Karl Gottfried Guderley, Chief of Applied Mathematics Re
search Branch at Wright-Patterson Air Force Base.
"Principles and Applications of Analog Computers" by Roger
A. Gaskill, Ford Engineering and Research Center.
"Your Telephone, 1965" by Ralph T. Riefenstahl, Public Ac
tivities Supervisor of the Ohio Bell Telephone Company.
"Mathematical Recreations" by Dr. Harry Langman, Chairman
of the Mathematics Department, Ohio Northern University.
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All of last year's officers of this chapter are now either in school or
teaching.

An unusual feature of the October program at Ohio Gamma
was the reports by students of their summer work. Dave Kaiser spoke
of his work as a statistician at the National Carbon Laboratory; and
Marlene Brown, of her experience as computer for the NACA (now
NASA) Laboratory. Mr. Gino Coviello spoke in November on analog
computers, and in January a demonstration of the differential ana
lyzer was given by Dr. Dean L. Robb and Dave Kaiser. At subsequent
programs, Mr. Robert Schlea spoke on Laplace transforms; and Dr.
Gordon Grant, on "Radio Satellite Tracking."

Wisconsin Alpha again sponsored a mathematics contest for
high school seniors. One hundred twenty contestants from twenty-
six schools participated. Madison West High School placed first and
was awarded a plaque. David Peterson from Madison West and
Stephen Andrews from Riverside High School, Milwaukee, tied for
first place. This year's pledges were required to work the problems
that hadbeen posed for thehigh school contest as a partof theiriniti
ation.

KANSAS-MISSOURI-NEBRASKA REGIONAL CONVENTION

On Saturday, May 10, 1958, the Kappa Mu Epsilon chapters
from Kansas, Missouri, and Nebraska met at Kansas State Teachers
College, Emporia, for a regional convention. This was the third
regional convention covering this area. Kansas Beta was the host.

Eleven chapters were represented, and a group was present
from a campus having no chapter, with the following registrations:

Chapter

Kansas Alpha—Pittsburg
Kansas Beta—Emporia
Kansas Gamma—Mt. St. Scholastica
Kansas Delta—Washburn
Kansas Epsilon—Fort Hays
Missouri Alpha—Springfield
Missouri Beta—Warrensburg
Missouri Gamma—William Jewell
Missouri Epsilon—Central College
Nebraska Alpha—Wayne
Kearney, Nebraska

Faculty Students Total

4 15 19

6 20 26

2 10 12

2 8 10

1 4 5

3 9 12

3 3 6

2 3 5

1 10 11

3 11 14

27

6

99

6

126
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PROGRAM

8:00-9:00 a.m. Registration - - - Music Hall

9:30 a.m. First General Session - Music Hall Auditorium
Charles Trauth, Kansas Beta, Presiding
Address of Welcome, President John E. King,
Kansas State Teachers College, Emporia
Business Meeting
Roll Call

10:00 a.m. Student Papers - Music Hall Auditorium
1. "Development of Orthogonal Functions,"

Ernest Milton, Jr., Kansas Epsilon, Fort
Hays.

2. "Continued Fractions," Marilyn T. Houston,
Kansas Epsilon, Fort Hays.

3. "Solving the Cubic Equation," David Pool,
Kansas Beta, Emporia.

4. "Relations Between Hyperbolic and Circu
lar Functions," Richard Franke, Kansas Ep
silon, Fort Hays.

5. "Economics and Linear Programming,"
Marion Rowin, Missouri Gamma, William
Jewell.

12:00 noon Banquet - Student Union Ballroom
Address, "What is New in Mathematics?"
Professor O. J. Peterson, Kansas State Teach
ers College, Emporia.

1:30 p.m. Let's Exchange Ideas
Faculty Section - Music Hall Room 102

Professor Charles B. Tucker, Chairman
Professor Helen Kriegsman, Secretary

Student Section
Charles Trauth, Chairman

2:30 p.m. Student Papers - Music Hall Auditorium
6. "Kaleidoscopic Geometry," Howard Hufford,

Missouri Alpha, Southwest Missouri State
College.
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7. "The Seven Bridges of Konigsberg," Francis
Botts, Missouri Gamma, William Jewell.

8. "A Discussion of the Four-Color Problem,"
Vernon W. Powers, Kansas Alpha, Pitts
burg.

3:30 Business Session - Music Hall Auditorium

Professor Helen Kriegsman, Kansas Alpha, re
ported for the faculty group. The problems dis
cussed were:

1. The number of activities and other pressures
that interfere with attendance at meetings.
Two chapters require attendance with ex
cused absences. The quality of the program
is the largest factor.

2. Changes: Membership requirements with
anticipated higher-level students entering
college. Ten chapters felt a year of college
work should be required. Three chapters
felt students should be admitted on reaching
a defined level of maturity in mathematics
even if freshmen.

3. Need for material and problem solutions for
THE PENTAGON: Use of THE PENTA
GON for programs, and even solution of
problems might well be meeting activities.
Many solutions currently come from other
than KME members.

Miss Nancy Bowman, Missouri Beta, reported
for the student group.
1. Social activities at meetings: picnics, ban

quets, carnivals.
2. Program: Speakers from the outside.
3. Fund-raising activities: Carnival, selling ta

bles and slide rules, shows, and dues.
4. General activities: Term papers, student

speeches, tours.
5. Time of meetings: Scheduled, on call, with

mathematics or science club.
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6. Expenses: Scholarships, banquets, delegates
to convention, newsletters.

7. Attendance at meetings: Required by some
chapters, inactive status for those who do
not attend.

At the final business meeting several chapters, Kansas Epsilon,
Missouri Epsilon, and Missouri Beta extended invitations for the next
regionalconvention two years from date. It was moved and approved
that the National Secretary, Miss Laura Green send out a ballot for
the selection of the next regional convention site.

©

"Through and through the world is infested with quantity: To
talk sense is to talk quantities. It is no use saying the nation is large—
How large? It is no use saying that radium is scarce—How scarce?
You cannot evade quantity. You may fly to poetry and music, and
quantity and number will face you in your rhythms and your
octaves."

—Alfred North Whitehead



Mathematics Student Journal
A quarterly publication of the

National Council of Teachers of Mathematics

For students from Grades 7 thru 12.

Redesigned in format, doubled in size, printed in two colors,
expanded in range and content.
Contains material for enrichment, recreation, and instruc
tion.

Featureschallenging problems and projects.
Edited by W. Warwick Sawyer.

Two issues each semester, in November, January, March,
and May.

Note these low prices:
Sold only in bundlesof 5 copies or more. Price computed
at single-copy rates of 30# per year, 20<J per semester,
making the minimum order only $1.50 per yearor $1.00
per semester.

NATIONAL COUNCIL OF

TEACHERS OF MATHEMATICS

1201 Sixteenth Street, N.W.

Washington 6, D.C.

Pentagon Reprints
1. Paine: Undertaking a Graduate Mathematics Program
2. Pettofrezzo: Career Opportunities for Students of Mathe

matics

3. Kempe: How To Draw A Straight Line

Prices: Items 1 & 2: 10jJ each, (8^ in lots of 10 or more)
Item 3: 50{S per copy

Send orders to THE PENTAGON, Central Michigan Col
lege, Mount Pleasant, Michigan.




