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The Logarithmic Spiral

DonaLp G. JoHNsON
Student, Albion College

One of the most fascinating curves in mathematics is the loga-
rithmic Spiral (Fig. 1). The purpose of this paper is to investigate
and compile all of the interesting properties of this spiral that are to
be found in the literature. The main part of the paper will be a dis-
cussion of these properties and a few simple applications. This will
be followed by a brief historical sketch.

FIGURE

We shall begin with the simplest definition of the logarithmic
spiral—the definition which displays the most outstanding single
property of the curve. The logarithmic spiral is a curve cutting radius
vectors from a fixed point at a constant angle. This property has led
many to favor the name equiangular spiral for the curve. The con-
stant angle property also is the basis of many applications of this
curve in nature. It is said that insects, because of the compound
structure of their eyes, keep a light which they are approaching at a
constant angle to their line of flight. Continually adjusting their path
to this constant angle, they approach the light along a logarithmic
spiral.

The two most common forms of equation for the logarithmic
spiral follow immediately from the definition. Consider the “right
triangle” having for its hypotenuse the element of arc and for one leg
the increment of the radius vector (Fig. 2); then

tan ¢ = r do/dr;
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whence
dr/r = cot ¢ * d§
and, integrating,
log r = @+cot ¢ + log a;

or
(D r = ae*,
where

k = cot ¢.

Fi6. 2

From equation (1) it is readily seen that the form of the spiral
is wholly dependent upon k and independent of a. Thus, for small
changes in the constant angle ¢, there are large changes in the form
of the spiral. Suppose the distance between two successive convolu-
tions to be one inch. Then, if the constant angle of the spiral were
80°, the distance to the next convolution would be about three
inches; if it were 70°, the distance to the next convolution would be
about ten inches; and if it were 60°, the distance to the next convo-
lution would be nearly four feet. If the angle were 17°, the next
convolution would be some 15,000 miles away [11, p. 7921.*

Further information as to the shape of the spiral is obtained
from equation (1). At 8 = 0, r = 4, and it is seen that r diminishes
for negative values of @, but does not vanish until # becomes nega-
tively infinite; hence, the pole is an asymptotic point. As the spiral
gets larger the curvature diminishes, the radius of curvature con-
tinually increasing.

*Numbers in brackets refer to the references cited at the cnd of the paper.
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From the triangle of Fig, 2,
dr/ds = cosé,
from which, by integration,
r = s cos¢,

where s is the length of the curve from the pole. Hence, this length
is equal to the polar tangent PT (Fig. 3).

Filg. 3

By adding successive equal increments % to the polar angle 4, it
is seen from (1) that each radius vector will bear the ratio ¢** to the
one previous. That is, the lengths of radius vectors form a geometric
progression if their central angles are in arithmetic progression.
Thus, the pole and any two points on the curve uniquely determine
the spiral, since the bisector of the angle made by the radius vectors
is a mean proportional between their lengths.

If k = cot¢ = 1, the ratio of radius vectors corresponds to a
number and the angle between them to its natural logarithm, whence
the more common name for the curve.

The arca swept out by the radius vector from r = O tor = ris
given by the integral
]
% f r* de
-0

K
Ca°/4k)j‘ oczkozkdg

(a2/4k)ezks
r*/4 cot¢
% [%r(r tang)]

o



70 The Pentagon

Therefore, this area is seen to equal half of the area of the triangle
formed by the radius vector to the point r = r, the tangent at that
point, and the perpendicular to the radius vector at the pole (Fig. 3,
triangle OPT).

A remarkable property of the spiral, and one that has attracted
much attention to it, is its so-called “perpetual renascence.” By this
is meant that many of the derived curves are also equal logarithmic
spirals. A few of thesc will be mentioned only briefly while others of
them will be discussed in more detail.

The caustics by reflection and refraction, with light source at
the pole, arc cqual logarithmic spirals.

The orthoptic curve (the locus of points from which two mutu-
ally orthogonal tangents can be drawn to the spiral) is again a log-
arithmic spiral.

In order to investigate the geometric inverse of the logarithmic
spiral we obtain the equation of the derived curve from the expres-
sion

rr = ¢,
where ¢ is the radius vector to a point on the inverse curve and c is
the radius of the circle of inversion. Then,

r = c/r = (c*/a)e™,
and it is seen that the inverse curve is an equal logarithmic spiral
asymptotic to the same point, unwinding in the opposite direction.

In order to investigate the evolute of the spiral, we first find
the center of curvature. Let R = the radius of curvature = r dr/dp,
where p = OY is the perpendicular distance from the pole to the
tangent (Fig. 3). Now

p = r sing,
whence
dr/dp = csce.
Therefore,
R = rdr/dp = r cscy = CP,
and the center of curvature is at C, the intersection of the polar nor-
mal and the polar subtangent.

Since PC is tangent to the evolute at C and angle GCP = ¢,
the first evolute and all succeeding evolutes are equal spirals with
the same asymptotic point. Here OC becomes the radius vector of C.
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Conversely, all of the involutes of the logarithmic spiral are again
equal spirals,

It can be shown that the axis of the spiral must be rotated
through an angle =/2—(log k)/k to be brought into coincidence
with the axis of its evolute. The proof of this is neither long nor
especially difficult.

The logarithmic spiral can even be made to coincide with its
own evolute; namely, if

a/2 — (log k)/k = 2n=, n any integer.

Thus, in Figure 4, P, is a point on the first evolute and P. is a point
on the second evolute. The condition for this “auto-evolute” will be
fulfilled for any integral value of n, and it is scen that therc is a dif-
ferent solution for each of these values. For # = 1, by numerical
calculation we find ¢ to be approximately 75°. This special spiral
is named after Bernoulli and will be mentioned later in connection
with one of its applications.

P

FiG. 4

A fundamental property of the pedal curve is that the angle
between the radius vector and the tangent at a point on the pedal is
equal to the angle between the radius vector and the tangent at the
corresponding point of the original curve. Thus, it is immediately
seen that the first positive pedal of the logarithmic spiral, as well as
all succeeding pedals, is an equal logarithmic spiral with the same
asymptotic point.

Haton de la Goupilliere proved that the logarithmic spiral is the
only curve whose pedal with respect to a given pole is an equal curve
which can be brought into coincidence with the first by rotation
about that pole.

To assist in further investigation of the properties of the spiral,
we will here give an alternate definition of the spiral showing the
manner in which the spiral is described:
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.. If an extended straight line turn uniformly about its ex-
tremity, a point which is carried along it, with a celerity

. proportioned to the distance from that centre, will de-

. scribe the logarithmic spiral [6, p. 430]. L

It will be noticed that this point can be either advancing or receding
along the line.
. From motion as in the definition above, describing the logarith-
mic spiral r = ge, it is seen that the velocity at any point is given
by

v = sec ¢ - dr/dt,
= sec ¢ * cot ¢ * ae*® * a,
= acsce * ac,
where « = df/dt is a constant. Thus, the locus of the extremities of
succeeding velocity vectors laid off from the pole (the hodograph of
the logarithmic spiral about its pole) is an equal spiral. It can be
shown that the hodograph is obtained from the original spiral by
rotating it about the pole through a constant angle ¢ if the spiral is
described by a point advancing along a uniformly turning line or
through an angle = — ¢ if the point is receding along the line. The
;lirection of this rotation is the same as that of the uniformly turning
ine.

As a result of a proposition in Newton’s Principia (Book I,
Proposition 9), it develops that if the force of gravity had been in-
versely as the cube, instead of the square, of the distance, the planets
would have all shot off from the sun in “diffusive logarithmic
spirals.”

Several properties of the spiral appear in a little known paper
by James Clerk Maxwell, published when its author was only
eighteen years of age [7, pp. 4-29]. Among them are the following:

“If any curve be rolled on itself, and the operation be repeated
an infinite number of times, the resulting curve is the logarithmic
spiral.” The curve which being “rolled on itself traces itself is the
logarithmic spiral.” .

“When a logarithmic spiral rolls on a straight line the pole
traces a straight line which cuts the first line at the same angle as
the spiral cuts the radius vector.” Among later results, two are inter-
esting because of their similarity to the two quoted above from Max-
well. They are: :

(1) The limit of a succession of involutes of any given curve
is a logarithmic spiral {12, pp. 208-9].
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(2) If a logarithmic spiral rolls on a straight line, the locus of
its center of curvature at the point of contact is another straight line.

The logarithmic spiral is the stereographic projection of a
loxodrome (the spherical curve which cuts all meridians at a con-
stant angle; the course of a ship holding a fixed direction on the
compass) from one of its poles onto the equator.

Since the circle also has a constant angle between the tangent
at a point and the radius vector to that point, it is interesting to view
the circle as a special case of the logarithmic spiral. For this special
case the constant angle ¢ is 90° (i.e., k = cot¢ = 0), and the equa-
tion of the spiral becomes

r = a,
the equation of a circle of radius a about the pole.

An important application of the logarithmic spiral is in the
field of engineering. Since the radius of curvature of the spiral in-
creases continually, the spiral can be fitted to any portion of a given
curve. This fact, together with the property of the auto-evolute of
Bernoulli, provides a method for the rapid and easy determination of
the center of curvature of any portion of a curve. There are at least
two plastic curves of this type available at the present time.

F16. 5

Consider two equal spirals which are tangent at point T (Fig.
5). Since the common tangent must make equal angles with the two
radius vectors, this point T must be on the line connecting the two
poles 0, and 0.. Now let each curve rotate about its own pole in such
a way that they remain tangent. The tangent point will move along
the line 0,0,. After a certain rotation, let T,’ and T’ become tangent
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points. The change in length of the first radius vector r, will be pro-
portional to the distance s, between T and T,’ along the first curve,
and the change in length of the second radius vector r. is similarly
proportional to the distance s, between T and T.’ along the second
curve. If the poles of the two curves are fixed, the sum of the radius
vectors must be constant, and r; and r, will change by equal, though
opposite, amounts. Therefore, s, and s are equal, and the two curves
will roll without sliding. We may note that the angular velocities of
these two curves differ, and that even the ratio of the two angular
velocities is not constant, so that wheels of this form may be used to
transform uniform rotation into nonuniform rotation or, conversely,
to correct for the nonuniformity of a rotation.

If all tangents to a logarithmic spiral are drawn from a fixed
point R, the line OR is seen to subtend the fixed angle ¢ from all
tangent points on one side of the line, and the angle = — ¢ on the
other side of the line. Hence, the pole, the fixed point R, and all of
the tangent points are situated on a circle. This simple property can
be utilized to determine the pole of a spiral when given only a por-
tion of the curve. It is necessary only to construct any two of these
circles, their intersection determining the pole.

HISTORICAL NOTE

Descartes first discussed the logarithmic spiral in connection
with a problem in dynamics in a letter to Mersenne in 1638. He
showed that radius vectors at equal angles to one another at the pole
are in continued proportion; and that distances mecasured along the
curve from the origin and intercepted by any radius vectors, as
P, P’, are porportional to the radius vectors OP and OP’. Hence, the
logarithmic spiral was the first transcendental curve to be rectified.
It follows that sectors cut off by successive radii, at equal angles to
one another, are in every way similar to one another; and the quest
of Descartes for a growing curve produced a curve which grows con-
tinuously without ever changing its shape.

Torricelli studied this spiral and obtained expressions for areas
and lengths of arc. John Wallis and Sir Christopher Wren also
arrived at similar results.

Jaques Bernoulli (1691-93) and Collins (at an earlier date)
also studied the spiral. Bernoulli noticed several of the properties of
the curve, including some of the properties of “perpetual renascence.”
The spiral so delighted him that he requested, in imitation of Archi-



The Pentagon 75

medes, that the logarithmic spiral be cngraved on his tomb, along
with the inscription Eadem Mutata resurgo (I shall arise the same,
though changed).

Bernoulli gave to the spiral the name which is most commonly

used, the logarithmic spiral (1691). Other names displaying certain
properties of the spiral are: geometrical spiral, by P. Nicholas in
1693; and proportional spiral, by E. Halley in 1696. R. Cotes,
referring to Descartes’ original conception, termed it the equiangular
spiral in 1719,

10.

11.

12,

13.
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Consequences of A* + B° = C

ALFRED MOESSNER
Gunzenhausen, Germany

If A* + B* = C?
then
1) A* + B* + C* = (B* — A* — AB)* + (2AB)?
+ (B? — A® + AB)?
2) A® + B® + C* = (B* — A®> — AB)* + (2AB)*
+ (B — A? + AB)
Substituting D = B* — A> — AB, E = 2AB, and F = B* — A?
+ AB in 1) and 2) respectively we obtain

3) A*+ B*+ C*'=D* + E? + F? and
4) A® + B*+ C*=D* + E* + F.
For any arbitrary k

5D 3[{(ABC)* — (DEF)*} = [(A* + k)® + (B* + k)?
+ (C* + k)*] — [(D* + k)* + (E? + k)* + (F* + k)*] and
6) 3(ABC)* = [(A* + k)* + (B* + k)* + (C* + k)?)
— [ + 2(G + k)%
where
G = A* + B*C* = B* + A2C? = C* — A%B2,
If we let H = ABC it follows that

7 —A° — B* + C* = H* + H* + H* = 3H*
(_A)B . (_B)ﬂ . (C)a - H2 «H? . H2 = HB
9) (—A)= + (—B)* + C* — 2G° = 3H!
10) —A® — B® + C° + 3(2H?) = 3H?
+ (3H® + A®) + (3H? + B%) + (3H? — C*)
11) A® + B + C* + 3(2H?)?

= 3H* + (3H* + A®)* + (3H* + B%)* + (3H* — C°)*
76



The Pentagon 77

12) ~A® — B 4 C® + 3(2H?)?

= 3H¢ + (3H? + A®)® + (3H> + B¢)% + (3H®* — C°)*
13) A* + B* + C* + 3(2H®)*

= 3H* + (3H* + A®)* + (3H® + B®)* + (3H* — C®)*
14) “(A*+ B*+C) =G
15) %(A® + B® + C®) = G*?
If S=%A+B-0)
16) A* + B* + 2[(SA)* + (SB)* + (AB)*]} = C* + 2(8C)?
also for n=123 4

17) (A +2C)" + [2(A+B+CO)FP +2(B— A+ C)
+ 2(B — A + 3C)"
=[2(C— A +2(A+B+C) + [2(B— A+ OF
+ 2(A + B + 3C)

For A = 3, B = 4, and C = 5 the relations expressed by 17)
become:

8 + 2(3) + 12 + 2(8) = 2 + 2(6) + 6 + 2(11)
82 4+ 2(3)% + 122 + 2(8)% = 22 + 2(6)* + 62 + 2(11)?
85 + 2(3)* + 129 + 2(8)° = 25 + 2(6)* + 6° + 2(11)*
8¢ + 2(3)* + 12¢ 4 2(8)* = 2¢ + 2(6)* + 6* + 2(11)*

 J)

Mathematics, like all other subjects, has now to take its turn
under the microscope and reveal to the world any weaknesses there
may be in its foundations.

—F. W. WesTAawAY



Paradox Lost—Paradox Regained

PEGGY STEINBECK
Student, Central College

Once upon a time there lived a little man who delighted in
confusing people—no, he wasn’t a professor, but rather one of those
students who spends his lecture periods searching for the slightest
opportunity to ask a question that will stump the professor and thus
openly embarrass him. But of all such students that have cxisted
through the ages, this “blue ribbon” grand champion managed not
only to stump his professor but all who followed him for centuries.

Approximately 475 B.C., this little man known as Zeno of
Elea, a student of Parmenides, confounded the mathematical world
with his paradoxes. Four of the eight paradoxes preserved for us in
the writings of Aristotle and Simplicius are concerned with motion
and are of special significance to us as mathematicians because of
their appalling effect upon the development of higher mathematics.
The paradoxes arose from the logical difficulties encountered by the
ancient Greeks in their attempt to express their intuitive ideas with
respect to ratio and proportion of line segments, which they vaguely
recognized as continuous—in terms of the integers which are dis-
crete. Because of this discreteness of their numbers, the Greeks were
completely baffled by the resulting inconsistencies and abandoned
anything of the infinite, forestalling the development of the calculus
for almost 2000 years.

These paradoxes, which had such a retarding effect on the de-
velopment of mathematics are referred to as The Arrow, The
Stadium, The Dichotomy, and The Achilles.

The Arrow: Anything occupying space equal to itself is at rest;
but this is true of the arrow at every moment of its flight. Therefore
the arrow does not move.

The Stadium: Space and time being assumed to be made up of
points and instants, let there be given three parallel rows of points,
A, B, and C. Let C move to the right and A to the left at the rate of
one point per instant, both relative to B; but then each point of A will
move past two points of C in an instant, so that we can subdivide
this, the smallest interval of time; and this process can be continued
ad infinitum, so that time can not be made up of instants.

The Dichotomy: Before an object can traverse a given distance,
it must first traverse half this distance; before it can cover half, how-

78
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ever, it must cover one quarter; and so on ad infinitum. Therefore,
since the regression is infinite, motion is impossible, inasmuch as the
body would have to traverse an infinite number of divisions in a
finite time.

The Achilles: Assume a tortoise to have started a given distance
ahead of Achilles in a race. Then by the time Achilles has reached
the starting point of the tortoise, the latter will have covered a cer-
tain distance; in the time required by Achilles to cover this additional
distance, the tortoise will have gone a little farther; and so on ad
infinitum. Since this series of distances is infinite, Achilles can never
overtake the tortoise.

In the last two Zeno denies the possibility of infinite subdivi-
sion, while in the former he requires just such a subdivision. Thus
Zeno tried to show that the assumption of the existence of such an
infinitude of things in time and space carried with it serious incon-
sistencies.

These paradoxes may be grouped in still another manner. Let
us consider the geometrical aspects of the first two while classing the
latter ones as “the possibility of motion.”

Under this grouping we may observe that the Arrow can be
geometrically interpreted as a line segment consisting of points of
zero length. Zeno’s assertion is that the sum of these zero lengths can
be nothing other than zero, i.c., no motion when interpreted in the
light of our hypothesis. Thus Zeno, conceiving of a line as the sum-
mation of discrete points and thereto applying the laws of finite
numbers, arrived at this paradoxical result.

It was Cantor who isolated the crux of this problem in dis-
tinguishing between a denumerable and a non-denumerable infinity
of points. Surely Zeno would have been astounded, as are most stu-
dents, with his encounter with Cantor's bland assertion, “Therec are
as many points on a line two centimeters in length as one one centi-
meter in length.”

Let AB and CD be two unequal and parallel segments. Let P
be the intersection of the two lines AC and BD. The pencil of lines
determined by P will set up a one-to-one correspondence between the
points of AB and CD.

Zeno's idea was that there must surely be twice as many points
on a line two centimeters Jong as on a line one centimeter long.

We see that unfortunately there is no definition for the sum
of a non-denumecrable infinity of entities analogous to our definition
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of the sum of a finite number of entities. This analogy falsely made
was the pitfall of Zeno.

Thus, as the measure of a non-denumerable infinity of entities
can be finite, the flight of the arrow consists of time intervals of zero
duration whose sum is a finite value. I.e., motion is, as is daily per-
ceived.

In the Arrow Zeno defies the summation of an infinity of points
while in the Stadium he refutes infinite subdivison. Here again he
was unable to comprehend the denseness of instants in time due to
his belief in the discreteness and order of these instants. That there
is no such thing as a “next” instant in time or a “next” point in space
is the basis for the refutation of this paradox as it was the former.

In the Dichotomy and the Achilles Zeno bases his argument
that motion cannot begin, or if begun cannot be completed in a finite
time, on the infinite subdivision of motion which HAS ALREADY
TAKEN PLACE!! One cannot justify the impossibility of motion
by an argument which necessitates not only motion but its comple-
tion in a finite time.

Here, as before, Zeno leans on his intuition and runs into the
problem of denseness. It is not true, as he assumed, that event B is
later than event A because of the occurrence of intermediary events
in a discrete ordering, but rather that a suitable definition of later
event must be chosen to meet the requirement of a dense order of
events. Thermodynamics does just this in its second law which de-
fines time, order, and direction in terms of entropy states.

Thus Zeno's paradoxes resolved themselves into problems of
continuity, the infinite, and the infinitesimal. And, as shown, in the
19th century with the establishment of the real number theory and
a rigorous formulation of the fundamental concepts of the calculus
by Cantor, Weierstrass, and Dedekind the paradoxes were labeled
fallacies and mathematicians rejoiced in paradox lost. But the para-
doxes were no sooner laid aside than serious questions were again
raised by prominent logicians about the turn of the century. Thus for
such men as Bertrand Russell and L. E. J. Brouwer paradox has been
regained although it need not bother us in our mathematical work
for it is merely an indication that the foundation upon which our
mathematical thought is based may still be profitably studied.

Logicians, such as Russell, have propounded many paradoxes.
Such statements as,
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All statements on this board are false; and
All generalities are false, including this one,
are examples of this type of paradox.

Mathematics abounds in interesting fallacies and seeming par-
adoxes. Thus one can “prove” that the area of an infinite number of
points is equal to the area of a single point.

Construct a square ABCD with diagonal AC and the quadrant
of a circle having AB as radius and center A. Draw any line PR
parallel to AD, intersecting the quarter-circle DB at M and the di-

Fig. 1
agonal at N. Construct, with center at P, a circle of radius PN, (this
circle will pass through A as PR is parallel to AD and ZPAN = =/4),
another with radius PM, and another with radius PR. Denote AM
as ri, MP as r;, and PA as r;. Then A,, the area of the small shaded
circle is

A, = z(PN)? = #(PA)* = ar.
A., the area of the ring, is
A. = =(PR)* — =(PM)?
= n(AM)® — =(PM)?

= ar,2 — ar’.

Considering triangle AMP,
rs =1t =k
ars? = an’ — ar?;
ie., A, = A..

Therefore the shaded areas are at all times equal. Let PR approach
AD. When they coincide, the small circle becomes point A and the

iTo Zono this would not have presonied any contradiction, but in the light of our
previcus argumonts it becomes g fallaclous oquality,
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ring becomes the circumference of the circle having PR as a radius.
Therefore from our calculations, the area of a single point is equal to
that of an infinite number of points contained in the circumference.

In contrast are geometrical fallacies which generally arise from
the fallacious location of points or other incorrect assumptions. One
of the best known of these is the apparently sound geometrical proof
that all triangles are isosceles.

We are given AABC; point 0, the intersection of the bisector of
A and the perpendicular bisector of BC; OE L AB; and OF L AC.
Proof:

EO = OF,

AAEO congruent to AAFO implies AE = AF.
AEOB congruent to AFOC implies EB = FC.
AE + EB = AF + FC.

AB = AC.

Fig. 2

Therefore all triangles are isosceles.

But suppose that point 0 does not lie within the triangle. Re-
draw the figure; this time placing the point 0 outside the triangle.

Fig. 3
It is easily verified using this figure that all the statements in the
above proof are true and that the same conclusion may be drawn.

A final light touch is an extremely simple example of an arith-
metical fallacy.
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Let x = the weight of an elephant.
y = the weight of a gnat.
x + y = 2v, where v is a constant.
Then, x=2v—y,
x—2v=—y.

Multiplying member by member,
X2 — 2vx = y° — 2vy,
x* — 2vx + v =y — 2vy + v,
(x —v) = —v)
X—v=y—uv,
ie., x=y.
Therefore the elephant and the gnat weigh the same.

I guess gnats and elephants are about my speed, but I hope that
logicians such as Russell can someday wholly and satisfactorily pre-
sent us with paradox lost.

Editorial Note. Miss Steinbeck has graciously left for the student the
discovery of the fallacies in the “proofs” that she has given.
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Many eminent men of science have been bad mathemati-
cians. . .
—BERTRAND RUSSELL



Watch That Check — It Might Bounce!

Dana R. SubnoroucH
Faculty, Central Michigan College

Is “casting out nines” a bona fide check on arithmetical compu-
tations? May a calculation in algebra be verified by substituting a
specific number for the variable involved? (This is the kind of check
the writer refers to—not those sent to him by subscribers of THE
PENTAGON.)

First, for the benefit of readers who may not be acquainted with
the method of checking called “casting out nines”, we briefly review
the procedure. We shall define the “residue” of an integer to be the
remainder obtained when the integer is divided by 9, and we point
out the fairly well-known fact that this residue may be most readily
obtained by dividing 9 into the sum of the digits of the integer
instead of the integer itself. Now the method of checking, simply
expressed, consists of replacing the integers of the problem by their
respective residues and performing the same operations on these
residues. Then, if the residue of the answer obtained in the checking
operation is equal to the residue of the original answer, the original
computation is supposedly correct.

For example, consider the following multiplication:

6497
X 516
38982
6497
32395

3343452

The residues of the factors are 8 and 3, respectively, and the residue
of their product, 24, is 6, which is also the residue of the product
obtained above. Was the original multiplication correctly performed?
No, and unfortunately the error happened to be a multiple of 9.

As an example of a different sort of checking, consider the fol-
lowing problem from elementary algebra:
Multiply 2x — 6 by 3x + 11. Now suppose the student writes the
following “identity”:

(2x —6) (3x + 11) = 522 + 4x — 17
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To check the result, one writer of a fairly recent college algebra
textbook would, apparently, advise the student to substitute for x
some specific number other than 0 or 1. Then, if the left member
reduces to the same value as the right, the above “identity” is
“indicated to be correct”. But the reader may find it interesting to
substitute 7 for x in the foregoing case. Unfortunately, the parabolas
¥y = 6x* + 4x — 66 and y = 5x* + 4x — 17 intersect at the point
(7, 256).

Construction of the Circle of Inversion

SuirLey T. LoEvEN
Student, Central Missouri State College

An application of a theorem from plane geometry gives an easy
construction of the circle of inversion. This construction is as fol-
lows:

If C and C’ are any two inverse curves with respect to the cen-
ter of inversion O, draw any line m through O which intersects C
and C’ at P and P”, respectively. P and P’ will be inverse points.

The problem is to construct the circle of inversion. To contruct
a circle two things are necessary—the center and the radius. In this
pr:])})lem, the center O is given so the problem is now to find the
radius.

The radius of inversion is equal to the square root of the prod-
uct of the two line segments from the center of inversion to any two
inverse points. Therefore, the radius of inversion r equals the square
root of the product of the two line segments OP and OP’.

The theorem mentioned above can now be applied.

The tangent from an external point is the mean proportional
between the external segment of any secant drawn through the ex-
ternal point and the complete secant.

To use this theorem it is necessary to draw a circle through P
and P’. There are any infinitely many circles through P and P’ and
each will give the same result, but the easiest one to use is the one
whose center bisects line PP’.

Line m is now a secant of the circle. If the tangent is con-
structed from O to the circle, it will be the radius of inversion.



Mathematical Notes

MEeRL KARDATZKE
Student, Anderson College

Pseudo Circles

For some purposes, graphing is not used to find accurate values
but rather as an inquiry into the characteristics of an equation. This
means that we may make substitutions into our equation to change
the variables in order to make the nature of the curve more apparent.

In many equations such as x*/* + y*/3 = 1 we may make the
substitutions # = x'* and v = ¥ to get the simple equation
u? + v* = 1 which may be casily drawn.

Then by reversing the substitution x = u?, y = v* and applying
these equations to conveniently selected points (u, v)e——(u?, v°)
= (x, y) we get a fair idea of the curve.

This curve may be plotted with as many points as one has
patience to determine by methods of cubing lengths geometrically.

Other substitutions may be made where certain other fractional
powers or even powers are involved.

Circles are not the only basic figure which may be used for
this method. Thus we have pseudo parabolas, pseudo hyperbolas, and
many others.

An Application of the Rhombus to Trigonometry
Prove: sin 20 = 2 sin cosd where 0 < 26 < =

Construct rthombus wxyz with sides equal to unity and the
angle at x equal to 26. Construct points A, B, C, D as midpoints of
wx, xy, yz, zw respectively. Draw all lines joining A, B, C, D. The
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area of wxyz = sin 24. By plane geometry we know: (1) ABCD is

Y C z

20 B
3 4 [ 4

a rectangle, and (2) the area of ABCD = % the area of wxyz.
Therefore, the area of ABCD = (CD)(AD) = sin a cos a. Since
AC is parallel to xy, « + 8 = 26. But « = B and hence a = 6. We
now have sin 260 = area of wxyz = 2(area of ABCD) = 2 sin «
cos « = 2 sin @ cos § which was to have been shown. By basic trigo-
nometry the formula may be extended to any angle.

Two Triangles in One

Theorem: If two sides of a triangle are equal, the angles opposite
arc equal.

B
Given: AB = BC
Prove: LA = £ C

A G
Proof:
1. AB = CB 1. Given
2. BC=BA 2. Identical lengths as in (1)
3. /B=/(B 3. Identity
4. AABC is congruent 4. S.AS. = S.AS.
to ACBA 5. Corresponding parts of congruent

5. A=C { triangles arc equal.

The converse of this theorem may be proved in similar fashion.



Creating Interest for Gifted Students

Aur R. Amir-Moez
Faculty, Queens College

Some of my colleagues, as well as college students, might be
interested in knowing that a few students of mine became interested
in finding their own proofs of some theorems. In fact some of their
proofs are so elegant that they are worthy of attention.

THEOREM: Let a and b be real numbers, and let x be a real
variable. Then ax -+ b has the same sign as a for x > —b/a and it
has different sign from a for x < —b/a.

PROOF (1): This proof is given by Frank Miller, a freshman
of UCLA. Let x > —b/a. Then x = —b/a + ¢ where ¢ > 0.
Therefore ax + b = a(—b/a + ¢) + b = ac which has the same
sign as a. Similarly let x < —b/a. Then x = —b/a — ¢ where
¢ > 0. Therefore ax + b = a(—b/a — ¢) + b = —ac which has
different sign from a.

PROOF (2): This proof is supplied by Jess Liss, a freshman
of Queens College. Suppose f = ax + b. Then f/a = x + b/a.
Since x = —b/a makes f/a equal to zero, x > —b/a makes
f/a > 0, i.e., f and a have the same signs, and x < —b/a makes
f/a < 0, i.e., f and a have opposite signs.

Both proofs are quite elegant because they avoid the use of
inequalities.

Studying relations between the sides and the angles of a tri-
angle ABC, we ran into the law of tangents which was stated with-
out proof since the formulas for addition of angles were presented in
the next chapter. The theorem was given to the class as an exercise.
Two geometric proofs were supplied which were quite interesting.

A PROOF OF THE LAW OF TANGENTS: This is by Joe
VanEpps, a freshman of the University of Idaho. Let ABC be a
triangle (Fig. 1). Without loss of generality we can suppose @ > b.
Choose D and E on CB so that AC = CD = CE. The triangle AED
is a right triangle at A because AC = %ED. Erect a perpendicular to
CB at B. This perpendicular intersects the line EA at F. We observe
the following: ~

The four points A, F, B, and D are on a circle.
EB=a+b,DB=a—b.
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Jiyg. 1

LEFB = %(A + B) because angle C is the exterior angle of the
isosceles triangle ACE, and therefore ZAEC = %C. /DFB
= %(A — B) since ZAFD = B. They are inscribed angles with
common arc AD. Therefore,

LDFB = LEFB — LAFD = %(A + B) — B = %(A — B).

Thus, tan %(A + B) = EB/FB = (a + b)/FB, tan %(A — B)
= DB/FB = (a — b)/FB. Consequently,
tan (A + B)/tan % (A — B) = (e + b)/(a — D).
ANOTHER PROOF OF THE LAW OF TANGENTS: This

is the proof by Lee Davison, a freshman of the University of Idaho.
Let ABC be a triangle so that @ > b (Fig. 2). Choose CF = CE = b
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as in Figure 2 and draw FD parallel to EA. The triangle AFE is a
right triangle because AC = %EF. We cobserve:

BE=a+ b,BF =a—b.

ZACE = A + B since it is the exterior angle of the triangle ABC.
On the other hand ZACE is the exterior angle of the isosceles triangle
ACF., Therefore, J/AFE = (A + B)/2 = [FAC. (/DAF
= (A — B)/2 because ZDAF = A — LFAC = A — (A + B)/2
= (A — B)/2. Now tan (A — B)/2 = DF/AF and tan
(A + B)/2 = AE/AF. But [DF/AF}/[AE/AF] = DF/AE =
BF/BE = (a — b)/(a + b) which proves the theorem.

®

From the axiomatic point of view, mathematics appears thus as
a storehouse of abstract forms-—the mathematical structures; and it
so happens—without our knowing why—that certain aspects of
empirical reality fit themselves into these forms, as if through a kind
of preadaptation. Of course, it cannot be denied that most of these
forms had originally a very definite intuitive content; but, it is exactly
by deliberately throwing out this content, that it has been possible
to give these forms all the power which they were capable of display-
ing and to prepare them for new interpretations and for the develop-
ment of their full power.

It is only in this sense of the word “form” that one can call the
axiomatic method a “formalism”. The unity which it gives to mathe-
matics is not the armor of formal logic, the unity of a lifeless skele-
ton; it is the nutritive fluid of an organism at the height of its devel-
opment, the supple and fertile research instrument to which all the
great mathematical thinkers since Gauss have contributed, all those
who, in the words of Lejeune-Dirichlet, have always labored to
“substitute ideas for calculations.”

—N. BouRrBARI
Translated by A. Dresden
American Mathematical Monthly
Vol. 62 (1950)



Order Among Complex Numbers

MEeRL KARDATZKE
Student, Anderson College

Order (relative precedence) is defined:

0,: Ifastb, thena<borb<a
0,: Ifa<bandb <c,thena<c

There is order among the real numbers or any subset thereof.
This order seems intuitive because of our ideas of quantity. We must
not let quantity or magnitude be our only means of putting numbers
in order.

I. Semicountable Complex Numbers

Rule of Order: Where z = x + 1/(1 + ¢7) and x, y are

integers (x + iy) is ordered if (x + iy) shall have the same order
as z.
Proof: For every x + iy there exists a distinct z; z is real; hence z is
ordered; therefore x + iy is ordered. This formula is just as good if y
assumes any real value. We can extend the formula to cases where x
is countable, If we let z = r + 1/(1 + ), there exists a one-to-
one correspondence between z and x -+ iy, where r is the ordinal of
x, x is countable, and y is real.

Similarly, x may assume any real value if y is countable and
x + iy may be ordered by the same formula by interchanging x and y.

Thus we see that we may order all semicountable complex
numbers. As we have seen semicountable means complex numbers
with either the real or the imaginary coefficient countable.

Now we shall order the general complex numbers. First we
shall order them by a rule compatible with the rule for the semicount-
able complex numbers but not by formula. Second we give a rule
of order, by a formula, which gives a different concept of order.

II. Rule One for Ordering General Complex Numbers

Since [x, + iy, = x. + iy.] if and only if [x, = x:, y1 = y:], we
may state a rule for ordering the general complex numbers as fol-
lows: (R,) [x: + iy, < x2 + iy.] if and only if (1) x < x,, or
(2) X, = x; and Y1 < Y2
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Proof that the rules of order @, and 0, are satisfied: 0, becomes: If
[ + iy 5= x; + iy,} then [x, + iyy < %2 + iy.] or
[x: + iy. < x, + iy,]. This is true for if [x, + iy, 5= x. + iy.] then
(Dx; <xorx; < x0r (2) x, = x,and y, < y2 0r y» < y, which
may be grouped as follows:

(Dx<x ] [ MDx<x ] .
[or Dx=xmn<y] & lor @Dx=x,7<y) Fod
only if [x, + iy, < x2 + iy:} or [x; + iy < x, + iy,] respectively,
by R;-

0: becomes: If [x, + iy, < x: + iy.] and [x: + iy < x5 + iys])
then[x, + iy, < x5 + iys). [*: + iy, < x; + iy.] if and only if
(M) <x0r ()3 =% and 31 < y25 [x: + iy < x5 + iys] if
and only if (1) x; < x5, or (2) x, = %3 and y» < y; by R,.

This gives combinations: [x, < x: < x5}, [%1 < %2 = 5],
[x, = x; < x5}, and [x, = x; = x5 and 3, < y: < y;] which imply
either (1) x, < x; or (2) x, = x, and y, < y; which, in turn, im-
plies [x; + iy, < x; + iys] by R,.

II. Rule Two for Ordering General Complex Numbers

We shall now put a general complex number x + iy in one-to-
one correspondence with a real number z.

The absolute value of x and y may be represented as the infinite
decimal:

lx' =X X2X3°°*Xn o Xasa Xne2 *

I}'l SY1Y2Ys ' Yan - Yaer Yooz
n = the number of significant digits in x or y before the decimal
(whichever) is greater), zero being filled in, starting x, or y, for as
many values as is necessary. For example if y = —56234.18, we
shall write x = 00012.12. We shall let z = gx,pxay2Xsys * ¢ *
XoYn-Xns1Ynsr * * ¢ Where g is the quadrant number (Arabic numeral)
when labeled in the usual way.

Thus in our example z = 40,506,021,324,1182.

For every (x + iy) there exists a distinct z.
For example if x + iy = 5 + 3i, z = 153.0 or if x + iy
= —200.01 + 0.01 i, z = 2,200,000.0011,



The Pentagon 93

Conclusion

We have ordered complex numbers (x + iy). Thus we have
shown that a pair of coordinates (x, y) may be put in one-to-one
correspondence with a single coordinate. This when applied to a
two-dimensional surface means we may represent the points of such
a surface on a line. A three-dimensional space may, in turn, be made
to correspond to a line.

In other words (w, x, y)«—z

where [z, < z.] if and only if (1) w, < ws; (2) w, = w, and
% < X5 (3) Wy = oy % = X, and yy < P

We can easily show that n—dimensional space may be put in
corespondence with points on a line.

J)

“It is impossible not to feel stirred at the thought of the emo-
tions of men at certain historic moments of adventure and discov-
ery—Columbus when he first saw the Western shore, Pizarro when
he stared at the Pacific Ocean, Franklin when the electric spark
came from the string of his kite, Galileo when he first turned his
telescope to the heavens. Such moments are also granted to students
in the abstract regions of thought, and high among them must be
placed the morning when Descartes lay in bed and invented the
method of co-ordinate geometry.”

—ALFRED NoRTH WHITEHEAD



The Problem Comner

Eprtep BY Frank C. GENTRY

The Problem Corner invites questions of interest to undergradu-
ate students. As a rule the solution should not demand any tool be-
yond the calculus. Although new problems are preferred, old problems
of particular interest or charm are welcome provided the source is
given. Solutions of the following problems should be submitted on
separate sheets of paper before October 1, 1957. The best solutions
submitted lﬁr students will be published in the Fall, 1957, number of
THE PENTAGON with credit being given for other solutions received.
To obtain credit a solver should affirm that he is a student and give
the name of his school. Address all communications to the new
Problem Corner Editor, J. D. Haggard, Department of Mathematics,
Kansas State Teachers College, Pittsburg, Kansas.

PROBLEMS PROPOSED

101. Proposed by Frank Hawthorne, New York State Education
Department, Albany, New York,

Show that if a gun be fired (in vacuo) from a point P on a
Plane hillside of inclination 6, the points of extreme range form an
ellipse with P as the “uphill” focus, with the eccentricity equal to
sin 6, and with one directrix of the ellipse in the directrix plane of the
paraboloid of revolution which is the envelope of the trajectories.
(Note: See the author’s article, “Projectile Geometry,” in the Spring,
1954, number of THE PENTAGON.)

102. Proposed by ]. L. Brenner, Stanford Research Institute.

Let x* + ¢x + d be a quadratic polynomial with zeros a and b.
If ¢ is a positive number, show that the roots of the equation
x*> + ex + d = ¢ can be so arranged that one root is within e of a
and the second root is within e of b.

103. Proposed by Glenn W. Thornton, Student, University of New
Mexico, Albuquerque, New Mexico.

A military ambulance traveling at the average speed of 12 miles
per hour sent on ahead a motorcyclist who could travel with twice the
speed of the ambulance. A half hour later it was found necessary to
revise the message, and a second motorcyclist was sent to overtake
the first. The second messenger returned to the ambulance in 45
minutes. What was his average speed while delivering the message?
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104. Proposed by Vaughn Hopkins, Student, Central Missouri State
College, Warrensburg, Missouri.

Cut the slotted rectangle shown below into two pieces which
may be placed together to form a square 10 inches on a side.

12

q~$x 9

4
4

105. Proposed by Roger Entringer, Graduate Student, University
of New Mexico, Albuquerque, New Mexico.
If p is a prime and m + » = p — 1, (m, n non-negative),
prove that p divides m! ! + (—1),
Note by the Editor. No satisfactory solutions have been received for
the following problems: Nos. 84, 85, 86, 87 published in the Fall,
1955, number of THE PENTAGON; No. 91, Spring, 1956; Nos.
99, 100, Fall, 1956.

SOLUTIONS

97. Proposed by Harvey Fiala, Student, North Dakota State College,
Fargo, North Dakota.

If two circles, one having a radius of 1 inch and the other a
radius of 1 light year, each have their circumferences increased by 6
feet, what is the difference in the increase in the radii of the two
circles.

Solution by Vaughan D. Hopkins, Central Missouri State Col-

lege, Warrensburg, Missouri.

If r is the radius and C the circumference of a circle, then
r = C/2x and dr = dC/2=. Hence the increase in radius of either
circle varies directly with the increase in circumference, so the dif-
ference in the increase in the radii is zero. In fact dr = 6/2x feet
= 0.96 feet approximately for cither circle.

Also solved by Richard Ross, Southwest Missouri State College,
and Neal Durkin, Chicago Teachers College.
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98. Proposed by the Editor. (From Robinson’s Progressive Higher
Arithmetic, 1871).

A general forming his army into a square had 284 men remain-
ing; but increasing each side by one man he wanted 25 men to com-
plete the square. How many men had he?

Solution by Jerry Thompson, Texas Technological College,

Lubbock, Texas.

Let x be the number of men on each side of the first square.
Then the total number of men is represented by x* + 284 or by
(x + 1) — 25. Setting these two expressions equal to each other
and solving the resulting equation leads to x = 154 and (154)*
4 284 = 24,000, the total number of men.

Also solved by Vaughen D. Hopkins, Central Missouri State
College; and Richard Ross, Southwest Missouri State College.

The theory of invariants sprang into existence under the strong
hand of Cayley, but that it emerged finally a complete work of art,
for the admiration of future generations of mathematicians, was
largely owing to the flashes of inspiration with which Sylvester’s

intellect illuminated it.”
—P. A. MACMAHON



The Mathematical Scrapbook

Epitep BY J. M. Sachs

Pure mathematics proves itself a royal science both through
content and form, which contains within itself the cause of its being
and its methods of proof. For in complete independence mathematics
creates for itself the object of which it treats, its magnitude and laws,
its formulas and symbols.

—E. DiLLMAN

=A=

Those of us who are familiar with the courses taught in the
American schools, the texts used for these courses and the various
topics covered in these courses are sometimes led into the false belief
that it was ever so. Oh, we know that there have been changes in
stress and some material has gradually disappeared while other ma-
terial has edged into the small gaps. But in general I think we are
prone to think the pattern rather rigid. The editor, as guilty as most
in the above named misconception, derived a great deal of enjoyment
from reading Bulletin No. 18 of the Bureau of Education of the De-
partment of Interior. This bulletin, issued in 1924 and written by
L. G. Simons, traces the history of the introduction of algebra into
;he American schools. The following material is drawn from this bul-
etin.

With the American University modeled on the English Uni-
versity, the introduction of courses in algebra and the publication of
texts in England in the late 17th Century brought this material to the
American Universities early in the next century. Isaac Newton’s
ARITHMETICA UNIVERSALIS, a work of algebra and theory of
equations appeared in 1707 and was published in English in 1720.

The earliest records of algebra in the Americas comes from
notebooks. Often these contained material or problems from the
popular English texts. There is one such notebook written by James
Diman who was later the librarian of Harvard College. This notebook
is dated 1730 and was probably from lectures prepared by Isaac
Greenwood, a brilliant student of mathematics at Harvard and then
a professor of mathematics and natural philosophy at Harvard.
(Greenwood was later dismissed from Harvard for “. . .many acts
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of gross intemperance, to the dishonor of God and the great hurt
and reproach of the society.” There seems to be complete agreement
as to genius of Greenwood, but it would seem from the wording above
that his passion for mathematics was not as great as his taste for good
New England rum.)

There is another notebook almost identical with Diman’s writ-
ten by Samuel Langdon, later president of Harvard, dated 1739.
There seems little doubt that both of these were taken from the lec-
tures of Greenwood. From the topics covered in these notebooks it
would seem that algebra was not taught for the practical everyday
usage which prompted so much of the instruction in arithmetic.
This seems the proper place to give a quotation, undoubtedly from
Greenwood’s lectures since it appears in both notebooks. Under the
heading: The Method of Resolving Algebraical Questions, we find,
“This part of Algebra is wholly arbitrary & everyone is left to himself
to pursue his own particular Genius and way of thinking, which is
so far from being a Defect y* it is one of y* Chief Excellencies of this
Science, which may from hence not unjustly be called a sublime
way of Reasoning.”

A set of problems used at the College of New Jersey, now
Princeton University, in the latter part of the 18th Century seem to
be drawn from two English texts, Elements of Algebra, by Saunder-
son and Arithmetick, by Hill. The name and notebook of Professor
Robert Patterson appear in connection with 18th century algebra at
the University of Pennslyvania. The notebooks of Robert Brooke, the
five-volume hand-printed set by Thomas Sullivan, and the notebook
of Nathaniel Bowditch are part of the material available for the
period. The custom of keeping manuscript notebooks gradually died
out as printed books became commonplace in America. With the
popular printed text, the notebook became a supplement instead of
being the principal source of information.

One rather unlikely source of information on the introduction
of algebra teaching comes from the public press. The following ad-
vertisements are self explanatory: N. Y. Gazette, Jan. 7, 1734
“. . .At the said School are Taught all the Branches of the Mathe-
maticks, Geometry, Algebra, Geography, and Merchant’s Bookkeep-
ing after the most perfect manner.”

N.Y. Evening Post, June 15, 1747 “Arithmetic, Vulgar, Deci-
mal and Algebra carefully and exactly taught by Joseph Blancherd.”

Pennsylvania Gazette Oct. 1, 1728 “.. .Algebra, or the Doc-
trine of AEquations, Simple, Quadratick, Cubic, & c., . . .”
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=A=

“The true mathematician is always a good deal of an artist, an
architect, yes, of a poet. Beyond the real world, though perceptibly
connected with it, mathematicians have intellectually created an
ideal world, which they attempt to develop into the most perfect of
all worlds, and which is being explored in every direction. None has
the faintest conception of this world, except he who knows it.”

—A. PRINGSHEIM
=A=

“Heliodorus says that the Nile is nothing else than the year,
founding his opinion on the fact that the letters nu, epsilon, iota,
lambda, omicron, sigma as the name is spelled in Greek are respec-
tively the numbers 50, 5, 10, 30, 70, 200. The sum of these num-
bers is 365.”

—From LiTTELL’'S Livine AGE

“As lightning clears the air of impalpable vapours, so an incisive
paradox frees the human intelligence from the lethargic influence of
latent and unsuspected assumptions. Paradox is the slayer of Preju-
dice.”

—J. J. SYLVESTER
=A=

Mary is twice as old as Ann was when Mary was as old as Ann
is now. If Mary’s age in years is a two digit number with the ten’s
digit equal to one-half the unit’s digit, what are the possibilities for
the ages of Mary and Ann? All ages are an integral number of years.

=A=
“Herigone adopted the symbol < for “angle” in 1634. Harriot
had already used this symbol (1631) for “less than.” This ambiguity

persisted into the eighteenth century even though the modification

for the angle symbol into the familiar £ was suggested by Oughtred in
1657.

—From Cajori, A History
of Mathematical Notations.
“A friend of mine has a flower-garden—a very pretty one,
though no great size—"
“How big is it?” said Hugh.
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“That's what you have to find out!” Balbus gayly replied. “All
I tell you is that it is oblong in shape—just half a yard longer than
its width—and that a gravel-walk, one yard wide, begins at one
corner and runs all round it.”

“Joining into itself?” said Hugh.

“Not joining into itself, young man. Just before doing that, it
turns a corner, and runs round the garden again, alongside of the
first portion, and then inside that again, winding in and in, and each
lap touching the last one, till it has used up the whole of the area.”

“Like a serpent with corners?” said Lambert.

“Exactly so. And if you walk the whole length of it, to the last
inch, keeping in the centre of the path, it’s exactly two miles and half
a furlong [a furlong is 220 yards]. Now you find out the length and
breadth of the garden.”

“You said it was a flower-garden?” Hugh inquired, as Balbus
was leaving the room.

I did,” said Balbus.

“Where do the flowers grow?” said Hugh. But Balbus thought
it was best not to hear the question.

Perhaps you agree with Balbus that it is best to ignore Hugh’s
last question but can you find the dimensions of the garden?

—From A Tangled Tale
Lewis CARROLL

=A=

“The faculty of resolution is possibly much invigorated by
mathematical study, and especially by that highest branch of it
which, unjustly, merely on account of its retrograde operations, has
been called, as if par excellence, analysis.”

—Epcar A. Por

=A=

“Some persons have contended that mathematics ought to be
taught by making the illustrations obvious to the senses. Nothing can
be more absurd or injurious: it ought to be our never-ceasing effort
to make people think, not feel.”

—S. T. COLERIDGE



The Book Shelf

Eprrep ny R. H. MoorMAN

From time to time there are published books of common interest
to all students of mathematics. It is the object of this department to
bring these books to the attention of readers of THE PENTAGON. In
general, textbooks will not be reviewed and preference will be
given to books written in English, When space permits, older books of
proven value and interest will be described. Please send books for
review to Professor R. H. Moorman, Box 169-A, Tennessee Polytechnic
Institute, Cookeville, Tennessee.

Cryptanalysis, a Study of Ciphers and their Solution (formerly
published under the title of Elementary Cryptanalysis), Helen
Fouche Gaines, Dover Publications, Inc. (920 Broadway)
New;[ork 19, 1956, 237 pp., $1.95 paperbound, $3.95 cloth-
bound.

Cincinnati, November 26 (AP). “A cryptic forearm tattoo
today stumped police as they sought the identity of a man about 65
years old who collapsed and died here Saturday on a streetcar. He
appeared to be of Slavic extraction. The tattoo was:

KJKIRNXS
2ERAKOMP
BAAA

HO BOK O B
AHNEP

1909.”

Ten years ago the above item in a New York newspaper sent
this reviewer scurrying on a hunt for a cryptographic volume that
might help solve the cipher and expose long-sought spies, reveal long-
hidden diplomatic incidents and military secrets, and disclose in-
trigue against the Allies, circa 1914. The reviewer found the vol-
ume—Elementary Cryptanalysis—and promptly forgot the press
item in the vast new world of serious puzzles that the book had
opened to him. The volume, indeed, was his cryptographic teething
ring; and the current Dover reprint retains all the allure of the
original.

For an elementary work, the volume is remarkably complete,
discussing topics ranging from concealment ciphers and various
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forms of simple substitution ciphers, to the more advanced multi-
alphabet ciphers (Vigenere, Beaufort, Gronsfeld, Porta, etc.) and
polygram and fractional substitution. The book touches on other
ciphers with names fearsome to the uninitiated—quagmires, mixed
alphabets, bifid, multifid—but for a mathematician the charm and
interest of the volume lie in its painstaking mathematical approach
to the subject.

Cryptography here is examined as the study of behavior of
letters under conditions varying from normal to abnormal; and its
observational and statistical “thecorems” are carefully explained. They
go from the familiar, basic frequency list “ETAONIRSH..." to
Commandant Bassieres’ “theorems” on auteencipherment, in which
the message itself is the key for the cipher.

Theory is illustrated, step by step, and then applied, quite often
from different viewpoints. The method is good, and the reviewer can
testify that the book is, indeed, its own fine instructor. It is true that
there have been in the pages of the American Cryptogram Associa-
tion’s journal, The Cryptogram, many improvements in solving tech-
niques since the original was published, but this does not now in-
validate the theory. The present volume is augmented by solutions
to 165 of the 167 cipher examples appearing at the end of the chap-
ters. (The two remaining examples answer the tyro’s usual question:
“Are there unsolvable ciphers?” There are two of these.)

In this connection there is an oversight in the fact that the
reprint does not include solutions to the anagramming exercises in
Chapter VII on pages 64 and 65, and solutions to the exercises in
Chapter XVIII on page 183, which deal with recovery of mixed
alphabets. Omitted from the list of solutions is the keyword to prob-
lem 39—]JERKINESS—and there is a typographical error in the
keyword to problem 163, given as “chikory” instead of “hickory.”
Though the copyright notation at the front of the book declares this
reprint to be a “corrected cdition,” the reviewer has been unable to
find such corrections, the plates apparently all having been made by
the photographic process. The format is smaller than the original.

The publisher has dropped the word “elementary” from the
original title and now claims the volume is “intermediate.” The
reviewer must take issue with this. Excellent as the methodology is
and advanced as some of the material appears to be, the book is even
more elementary today than when it first appeared, for now it must
be viewed against the development of electronic ciphers.
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But all of these are admittedly small matters. From a larger
viewpoint, a mathematician looking for a related hobby would be
well rewarded in getting this book. Serious cryptography is close
enough to mathematics to be profitably fascinating to mathemati-
cians, and far enough removed from it to provide them a fresh point
of reference. But a warning goes with this recommendation: cryp-
tography is time-consuming, raising a challenge that is almost hyp-
notic in intensity. In any event it is good to have “Elcy” back in print.
A generation of amateur cryptographers grew up on this volume,
some even becoming “pros” during the war. In the several years past
the book has been missed. There is no doubt that the regrint will
again enliven interest in this important subject.

—SAMUEL SESSKIN
“New York Mirror”

Engincering Mathematics, Kenneth S. Miller, Rinehart and Com-
pany, Inc. (232 Madison Ave.) New York, 1956, xii + 417

Pp.» $6.50.

This text is aimed at the first year graduate engineering student
with prerequisites being elementary calculus and a “smattering” of
differential equations. This being the case, schools wishing to
strengthen their undergraduate program could well consider this
book for use in the curriculum of the junior or senior years.

An unusual feature is the early (first chapter) development of
determinants and matrices. Modern notation is employed extensively
to make the proofs reasonably brief. The succeeding four chapters
are concerned with topics usually found in an advanced calculus
text. Chapter II is a collection of non-elementary functions. The
author succeeds in producing a considerable degree of continuity
in the presentation by employing functions already introduced in the
derivation of further relations. In fact, Miller comments that “No
topic is introduced merely for the purpose of exhibiting mathematical
gymnastics.”

An engineering flavor is introduced by the use of j = v/ —1 as
well as certain terminology in the statement of illustrative examples.
In many cases, however, the tacit assumption is made that the
reader is familiar with its meaning. Also one might question the use
of x as both the variable and upper limit of integration in the defini-
tion of such functions as erf (x) and Si (x).

Chapter III, entitled Linear Differential Equations, covers the
subject quite adequately. Included is the Green’s function solution



104 The Pentagon

of the non-homogeneous linear differential equation in terms of the

homogeneous solutions. The general solutions of the equation
y" + xp,(x)y + x*p.(x)y = 0

are developed by the method of Frobenius and the results applied to

the equations of Legendre, Hermite, and Bessel.

Fourier analysis and the Laplace transform are the topics of the
next two chapters. The discussion is definitely slanted toward its
practical use with several illustrations and applications of each new
idea being presented. An opinion of the level of the presentation may
be gleaned from the fact that the Gibb’s phenomenon is not men-

tioned while the Fourier integral and transform are given in consid-
erable detail.

The type of material presented in Chapter VI deviates rather
sharply from that of the previous chapters. Electrical network theory
is discussed with apparently two objectives in mind. The material is
given in sufficient detail so that the student should obtain a sound
introduction to the theory. It also serves admirably to illustrate the
value of matrix theory, Fourier analysis, and the Laplace transform.
Several properties of the delta function are derived in a reasonably
careful manner. The author mentions some difficulties and refers
them to the theory of distributions.

The contents of the last chapter, “Random Functions,” are
more mathematical in nature. The foundations of probability are
presented in a rather concise and abstract form. However, the author
succeeds in discussing such topics as expected value for discrete and
continuous distributions, characteristic functions, multidimensional
distributions and stochastic processes in an assimilable style. The
student having no experience with probability would likely need
some guidance through this material. The type of reasoning required
is quite in contrast with that required for the familiar work of the
previous chapters,

The title Engineering Mathematics may include such topics as
vector analysis and complex function theory. The omission of these
may well be a commendable feature since there are well written
texts on each of these subjects and the inclusion of an adequate dis-
cussion of complex functions would cause the book to be of a size
rather unhandy for a text. On the other hand, the vector analysis
might well have been a useful and enlightening preliminary chapter
to the matrix theory.
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The book is printed in an open style with all equations dis-
played and well spaced. A brief introduction to each section is de-
signed to motivate the student by explaining what is to be accom-
plished and how it relates to other material. The reviewer finds the
text quite readable and well organized—a statement which cannot
be made concerning several competing books.

—Frank ], Pavras
Southern Methodist
University
Topology, E. M. Patterson, Interscience Publishers, Inc. (250 Fifth

Ave.) New York, 1956, 127 pp., $1.55.

This book was written by E. M. Patterson, lecturer in mathe-
matics at St. Andrews University, to serve as a textbook in introduc-
tory topology. It was originally published by Oliver and Boyd in Edin-
burgh. It is geared to the better students in mathematics at the senior
college level. It is brief and written in non-technical language as
much as possible. It does not take up the more modern aspects of
topology since its purpose is to lay a foundation for more advanced
study and to develop an interest in topology in the curious student.

The first chapter is introductory and explores the basic ideas
of topology. Topology is defined to be the study of situation and con-
tinuity. Topological equivalence is demonstrated by moulding and
remoulding a piece of plasticine into various shapes without making
breaks or joins. Special topological surfaces, such as the Mobius strip,
the torus, and the Klein bottle are illustrated in this section in pic-
tures and by identification of the points of a rectangle. One of the
unsolved problems of topology, the four-color problem, is discussed
here. The problem is this—in the making of maps, if no two bound-
ing divisions are to be the same color, it seems that four different
colors would be sufficient for a map. It can be shown that three
colors are sufficient in most cases and it has been proved that five
are sufficient in all cases. Theoretically it seems possible that the
number can be reduced to four, but the proof has never been found.

Chapter II deals with topological space in a general form.
Various theorems dealing with sets, which are collections of objects
determined by some property, and topological spaces are stated and
proved in this section. A group of exercises using these theorems is
listed at the end of the chapter.

Specific types of topological space, such as Hausdorff spaces,
are discussed in the third chapter and various theorems are demon-
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strated concerning open sets, convergence, compactness, and other
topics which are defined and discussed briefly.

Homotopy is discussed thoroughly in the next chapter. Two
subspaces are said to be homotopic if one can be transformed into the
other by continuous deformation.

The last two chapters deal with algebraic topology. The author
states that the main idea of algebraic topology is concerned with
homology, the process of dividing up space into pieces which are
topologically equivalent, or homeomorphic, with the interior of a
triangle or its analogues in other dimensions.

The senior college student will gain much from reading this
book on his own. To understand it thoroughly, however, it would be
necessary to have supervised study. Most of the topics require
knowledge of advanced courses in mathematics for clarity.

—BeTTY DoONATH
Tennessee Polytechnic
Institute

Electrical Interference, A. P. Hale, Philosophical Library, Inc. (15
E. 40th St.) New York, 1956, vii + 122 pp., $4.75.
Complaints of interference with radio and television reception

mount every year as the rapid growth of the radio and television
industry continues and more and more radios and televisions are
sold. The chief cause of dissatisfaction is with the wide range of
high frequency noise, normally the result of operating electrical
machinery, neon lights, diathermy apparatus, ham-radio equipment,
and industrial clectronic equipment.

As the author states, literature on electrical interference is at
present scarce, being largely in the form of papers in technical
journals. Specialist engineers have gained most of their knowledge
from practical experience and have rarely put it into print. This book
has accordingly been written from a thoroughly practical point of
view. It covers the causes of interference, the effects of interference,
receiving antennas, measurement of interference levels, location of
sources of interference, avoidance of interference, basic filters,
safety, practical filters, and Faraday cages.

Whether called upon to design electrical apparatus conforming
to legal requirements relating to interference suppression or to trace
and eliminate existing interference, electrical engineers and service
technicians will find this practical book invaluable in their work.
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Since mathematics is finding increasing use in connection with
the problems of radio and television, any person whose major interest
is mathematics could profit by understanding some of the general
principles given in this book.

—RoserT Q. CHILDRESS
Tennessee Polytechnic
Institute

Introduction to Mathematical Logic, Volume I, Alonzo Church,
Princeton University Press (Princeton, New Jersey) 1956,
x + 372 pp., $7.50.

This is the first volume of a planned two-volume set and covers
the propositional calculus and functional calculi of first and second
orders.

In an excellent introductory chapter, the author develops the
formalized language so essential to the analysis of propositions and
proof by form as abstracted from matter. To make clear the failure
of the natural languages, examples are given such as the following
comparison of two arguments that have the same linguistic form:
(1) “I have seen a portrait of John Wilkes Booth; John Wilkes Booth
assassinated Abraham Lincoln; thus I have seen a portrait of an
assassin of Abraham Lincoln;” and (2) “I have seen a portrait of
somebody; somebody invented the wheeled vehicle; thus I have seen
a portrait of an inventor of the wheeled vehicle.” Similar examples
are given illustrating Frege’s theory of proper names, the name rela-
tion, denotation and concepts.

Other explanations in the introduction are of constants and
variables, functions, propositions, truth values, and propositional
functions, symbols, connectives, operators, quantifiers, the logistic
method, syntax, and semantics, as used in the formalized language.

Though Introduction to Mathematical Logic would not be
chosen as a text for undergraduate study, it could be very useful as
a reference book. This use is enhanced by extensive footnotes, and
especially by an index of definitions and an index of authors cited
throughout the book.

—JameEs M. Doran
Tennessee Polytechnic
Institute
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The Philosophy of Mathematics, Edward A. Maziarz, Philosophical
Library (15 East 40th Street) New York, 1950, viii + 286

pp., $4.00.

This is a most valuable work of scholarship, distinguished by
exhaustive treatment, and showing evidence that it was indeed a
“labor of love” on the part of the author. Its scope can best be indi-
cated by the chapter headings: The Problem of the Philosophy of
Mathematics; The Historical Relation Between Mathematics and
Philosophy; Ancient Conceptions; The Gartesian Era; British Em-
piricism; Idealism and Positivism; Contemporary Directions; The
Distinction of Speculative Sciences; Nature of Mathematical Abstrac-
tion; Mathematical Abstraction; and Contemporary Mathematics.

This book is, however, one for the relatively sophisticated
reader. The apparatus of scholarship, so evident throughout, would
make it seem rather forbidding to a tyro in cither mathematics or
philosophy, or worse still, in both.

The present reviewer is especially appreciative of the critical
bibliography and feels that scholarship is indebted to the author for
its construction. This bibliography will be of important service to
future scholars in these fields. The careful study of “intuitionism”
vs. “formalism” is especially significant for the contemporary math-
ematician.

—F. C. Oce
Bowling Green State University

Editorial Note. A number of people have suggested that we review
The World of Mathematics by James R. Newman. The book editor
has written to the publisher to request a review copy, but the com-
pany can not furnish it to THE PENTAGON. If any one will write
a review of this four-volume work without receiving complimentary
review copies, the bookshelf editor will be delighted to publish it.



Installation of New Chapter

EpiTED BY MABEL S. BARNES

THE PENTAGON is pleased to report the installation of
Indiana Gamma Chapter of Kappa Mu Epsilon.

INDIANA GAMMA CHAPTER
Anderson College, Anderson, Indiana

Indiana Gamma Chapter was installed at Anderson College on
April 5, 1957, by Dr. Harold D. Larsen of Michigan Alpha. Dr.
Larsen is chairman of the Mathematics Department at Albion Col-
lege, and was national vice-president from 1949 to 1951 and editor
of The Pentagon from 1943 to 1952,

The fifteen charter members initiated were: Patricia Arnold,
Norman Burd, Hubert Dixon, Carl Foley, Thomas Harbron, Louise
Johnson (faculty), Merl Kardatzke, Terry Magsig, Harry Nachtigall,
Gloria Olive (faculty), Herman Reichenbach (faculty), Paul Saltz-
mann, Joann Snook, Kenneth Swick, Myron Williams.

A banquet was held at the Top Hat Restaurant, with Myron
Williams of Kingston, Jamaica, acting as master of ceremonies. Dr.
Larsen addressed the group on the subject “Some Famous Problems
of Mathematics”. Harry Nachtigall and Norman Burd composed a
song “Hail to Kappa Mu Epsilon” for the occasion. President and
Mrs. John A. Morrison of Anderson College were special guests.
Indiana Alpha was represented by Dr. J. E. Dotterer and Professor
A. E. Baumgart.

We welcome Indiana Gamma and wish to express our pleasure
at their association with us.
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Kappa Mu Epsilon News

Epitep By Frank HawrHORNE, Histomian

In preparation for homecoming this year, active members of
Alabama Betaextended invitations to all former members to attend
a coffee hour during the activities of the day. Much interest was
demonstrated in writing invitations, making place cards, displaying
materials, and sharing responsibilities of the coffee hour. Representa-
tives from fifteen years of the chapter’s history attended.

The members of California Alpha have shown a great interest
in applied mathematics this year. They had as a guest speaker Mr.
Don Furth from Douglas Aircraft Company for a talk entitled “Com-
puters and Computer Engineering.” A field trip is planned through
the El Segundo refinery of the Standard Oil Company.

California Beta cooperated with Occidental College, The Ac-
tuarial Club of Los Angeles, and the Southern California Council of
Teachers of Mathematics in sponsoring a mathematics field day on
March 2, 1957. Over 350 students from 75 southern California
high schools participated, and some applications Cunfortunately) had
to be denied.

The events were a leap frog relay (a two-part written examina-
tion taken by partners), a mad hatter marathon (a rapid calculation
and estimation contest), a chalk talk derby (a speech contest), and
three kinds of individual games—threc-dimensional tic-tac-tce, nim,
and five-in-a-row. Twenty-five KME members helped plan and run
the events. The day was a great success and plans are being made for
another field day next year.

Donna Mac Sorensen won the KME Freshman Mathematics
Award for 1955-56. She was among the sixteen new members ini-
tiated on February 21, 1957,

Nlinois Alpha has spent a busy and memorable year, taking
its place in the activities of Illinois State Normal University’s Cen-
tennial Year. The Homecoming Breakfast, honoring alumni, was one
of the special events of the year. Mr. W. D. Ashbrook of the Indus-
trial Arts Department was the principal speaker.

Highlighting one of the regular chapter meetings was a discus-
sion of mathematical logic titled, “Looking Under Geometry.” At
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the annual Spring Banquet in April, Dr. Bruce E. Meserve, State
Teachers College, Upper Montclair, New Jersey, was our guest
speaker. Dr. Henry Van Engen, former National President of KME,
also spoke briefly about the National Fraternity.

Illinois Beta was host to the Eastern Sectional Conference on
the Teaching of Mathematics sponsored by the Illinois Council of
Teachers of Mathematics on April 10. Dr. Lester R. Van Deventer
was chairman of the conference,

Dr. Ruth Rasmusen became the sponsor of Ilinois Gamma
upon the death of Dr. Norman Goldsmith.

On March 12 Illinois Delta broadcast “Kappa Mu Epsilon
Presents” over Joliet's own station WJOL. It depicted a typical meet-
ing of the local chapter.

Indiana Beta took a field trip to the Naval Avionics Facilities
at Indianapolis in January.

On March 4, 1957, Kansas Gamma gave a fifteen minute
program on KFEQ-TV, St. Joseph, Missouri. The theme of this pro-
gram was “Math and You.” The purposes of Kappa Mu Epsilon were
illustrated by showing the personal, cultural, and practical values of
mathematics to the general public.

Michigen Beta revised its local by-laws. There will be no fur-
ther fines for unexcused absences from meetings. An “Integration
Party” welcomed back student teachers of mathematics who had
been externing. In conjunction with the departments of Psychology,
Education, and Mathematics, the chapter sponsored two lectures and
an exhibit by the Do-All Company titled: “The Story of Mecasure-
ment.”

Michigan Gemma is conducting its meetings on a three-week
rotational plan. One week is utilized for chapter business with a lec-
ture by one of the members, one week for a problem session, and the
third for a talk by a member of the faculty.

As an added incentive to student effort, the mathematics de-
partment conducts annually an honors examination. First and second
places in 1957 went to Charles Conley and Eva Kuhn, respectively,
both members of KME.

Dr. Walter Hoffman, KME Alumnus, has been appointed
“Manager of Computational Services” at the Wayne State University
computation laboratory, the home of UDEC.

Missouri Beta will again honor the outstanding boy and girl
mathematics students of the freshman class.
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New Jersey Beta gave a banquet in honor of Dr. David R.
Davis who resigned as faculty member and head of the mathematics
department. He was presented with a portable radio and jewelry.

Tennessee Alpha is sponsoring a scholarship to be awarded to
the winner of the Upper Cumberland regional contest of the state-
wide mathematics competition. Each member is contributing one
dollar. The scholarship, amounting to $120, will cover all the fees at
Tennessee Tech.

The students of Ohio Alpha are conducting “help sessions” on
both the freshman and sophomore level. Andrew P. Ogg, past presi-
dent, won a National Research Scholarship in Mathematics and is
now studying at Harvard.

Pennsylvania Beta will join with the other scientific clubs of
the college for an annual banquet at which each of the clubs will
hold separate formal inductions.

Wisconsin Alpha is emphasizing among its members the Essay
Contest on “Opportunities in Teaching Mathematics in Secondary
Schools” and the upcoming National Convention. Plans also have
been made for the annual mathematics contest set for April 13.

Program Topics

(School Year 1956-57)

California Alpha, Pomona College
The Theory of Games, Dr. Chester G. Jaeger
Boolean Algebra, Graham Wallace
Computers and Computing Engineering, Donald Furth
Illinois Beta, Eastern Illinois State College, Charleston
Movies on astronomy, arranged by Dr. Davis
The Seven Bridges of Konisberg, Dr. Ringenberg
Sidelights on Euler’s Theorem for Polyhedra, Dr. Van Deventer
History of Some Units of Measure, Sherrill Harrold
Some Aspects of the Trachtenberg System of Computation,
Gilbert Rainey
Discussion of mathematical opportunities
Illinois Gamma, Chicago Teachers College
Paradox Lost, Paradox Regained, Erwin Marks
Illinois Delta, College of St. Francis, Joliet
Applied Geometry—Through Problems from Geometrical Optics,
Sister M. Crescentia
Geometric Problems Lead to Algebraic Statements, Dorothy Pulo
Departure from Euclidean Geometry, Vivian Makowski
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Development of Non-Euclidean Geometry, RoseMary Kotesa

Introduction to Projective Geometry, Sister M. Claudia .

Stud}f'lI O{I the ligolden Section and its Application to Nature, Sister
. Ursuline

Indiana Beta, Butler University
The Mathematics of High Fidelity, Robert M. Gasper
How to Draw a Straight Line, James Fulton
The Abacus, Janet Crull
Rockets and Guided Missiles, Lloyd W. Stark

Towa Alpha, Iowa State Teachers College
Four Color Problem, Roger Brockmeyer
New Meaning for Old Symbols, John Shuler
Nim, Sandra Ladehoff
Some Early Egyptian Mathematics, Oma Chody
One Plus One, 1200 Times a Second, Dale Bird

Iowa Beta, Drake University, Des Moines
IBM’s Electronic Business Machine “705”, Russel Thurau
Computer Memories, John Niccum .
Mathematical Notation and its History, John Flitte
The Abacus, Steve Ashford
The Relation of Mathematics and Mechanics to Bone Structure,
Jerry O’Mara
Kansas Gamma, Mount St. Scholastica College, Atchison
Home Ownershi& Sister Jeanette, OSB
Stocks and Bonds, J. Henry
Problem Workshop, Carol Law, Joan Carvalho, Marilyn Zimmer-

man
‘Wassail Bowl Christmas Party
Income Tax, Julia Handke, Dorothy Schmedding
Logarithms, Barbara Rentchler
Probslem Workshop, Dorothy Schmedding, Judith Bock, Mary
yron
Problem Workshop, Sr. Benedict Joseph, DC, Julia Handke, Bar-
bara Rentchler
Resegi_-ch_ in Modern Age, Marilyn Zimmerman, Mary Anne
inaine
Technical report of opportunities in mathematics experienced
})‘y graduates, Dorothy Schmiedeler, Dolores Rea y, Carol

aw

Michigan Beta, Central Michigan College. Mount Pleasant

How to Lie with Statistics, Lois Sudborough

Time and its Measurement, Oliver Porter

Factoring Trinomials-Novel Methods, Norma Fultz
Michigan Gamma, Wagne State University

Boolean Algebra, Student committee

Differential Equations and Applications, Faculty

Geometry, Faculty

Probability, Faculty
Missouri Beta, Central Missouri State College, Warrensburg

The Graduate Program in Mathematics at Central Missouri State

College, Dr. Reid Hemphill

The Life of Gauss, Wallace Grififth

Flexigons, Hubert Kienberger

Unusual Personalities of Mathematics, Linda Land
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New Jersey Beta, State Teachers College, Montclair
Problems in Industry, Pautl Clifford
High Speed Computing, George W. Kays
Ohio Alpha, Bowling Green Siate University, Bowling Green
An Experimental Approach to Teaching Elementary Mathematics,
Dr. Bernard H. Gundlach
Some Properties of the Normal Distribution, Dr. Leon H, Harter
Finite Difference Solutions, Ross Cornell
Operations Research, Dr. E. Leonard Arnoff

Pennsylvania Beta, La Salle College, Philadelphia
The Laplace Transform and its Applications, Thomas Devlin
Theory of Groups, Brother Brendan Gregory
The Galois Theory of Equations, Brother Damian
Nomography, Joseph Liebsch
Game Theory and Linear Programming, Brother Damian
Some Applications of Point Set Theory, Dr. Robert Putnam

South Carclina Alpha, Coker College
History of Mathematics, Elinor Askins

Virginia Alpha, Virginia State College, Petersburg
Numerical Solutions of Differential Equations, Janie L. Cooper
The Cubic Equation, Gene A. Dimmie
The Gamma Function, Robert R. Edmonds
Special Chemistry Problem Involving Differential Equations,
Blondell Hudson
The Simple Pendulum, Dr. J. M. Hunter
Infinity, Dr. R. R. McDaniel
Linear Programming, Benjamin Williams
Mathematical Aspects of a Problem in Economics, Dr. W. E.
Williams
Wisconsin Alpha, Mount Mary College
Permutations, Ilene Victory
Multiplication Short Cuts, Gwen Petretti



How to Draw
A Straight Line

A

Lecture on Linkages

By

A. B. KEMPE, B. A,
Of the Inner Temple, Esq.;

Member of the Council of the London Mathematical Society;

and late scholar of Trinity College, Cambridge.

London:
Macmillan and Co.
1877

Reprints of this classic lecture, long out-of-print, are available
for fifty cents per copy from THE PENTAGON. Address: Business
Manager, THE PENTAGON, Central Michigan College, Mount
Pleasant, Michigan.
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ACTIVE CHAPTERS of KAPPA MU EPSILON*

Chapter
Oklchoma Alpha
lowa Alphg
Kansas Alpha
Missour! Alpha
Miaatssippi Alpha
Mississippi Beta
Nebraska Alpka
Dlinois Alpha
Kansas Bota

Now Mexico Alpha
Nlinois Beta
Alabamg Bota
Alabama Gemma
Ohio Alpha
Michigan Alpha
Missour] Boeta

South Carolina Alpha

Toxas Alpha
Texas Beta
Kcnsas Gamma
lowa Bota

Now Jorsoy Alpha
Tennessee Alpha
New York Alpha
Michigan Beta
lllinols Gamma
New Jorsoy Beta
Dlinofs Daltx
Michigon Gamma

Wisconsin Alpha
Texas Delta

Ohio Gamma
Colorado Alpha
Californta Alpha
Missour! Epsilen
Miseissippl Gamma
Indiana Alpha

Ponnsylvania Alpka
North Carolina Alpha

Loulsicna Beta
Toxas Epallon
Indiana Beta
Kansas Epsflon
Ponnsylvania Beta
California Beta
Virginia Alpha
Indiana Gomma

Locatien
Northeastern State College, Tahlequah
State Teachsrs Colloge, Codar Falls
State Toachers Collage, Pittsburg
Scuthweat Missouri State College, Springiield
State College for Women, Columbus
State College, State Colloge
State Teachers Colloge, Wayno
Iilinois State Normal University, Normat
State Toachera Collego, Emporia
University of New Moxico, Albuquerque
Eastern Illinois State Collego, Charleston
State Teachers College, Florence
Alabama College, Montevallo
Bowling Green Stato University, Bowling Green
Albion Collego, Alblon
Central Missouri State College, Warronsburg
Coker Collogo, Hartaville
Texas Tochnological Collego, Lubbock
Scuthorn Mothodist University, Dallas
Mount St. Scholastica Colloge, Atchison
Drake University, Des Moinos
Upsalg Collego, East Orange
Tonnossco Polyiochnic Instituto, Cookoville
Hofstra Collogo, Hompstead
Central Michigan College, Mount Pleasant
Chicago Teachers Collego, Chicago
State Teachers College, Mentclair

- Collogo of St, Francis, Joliet

Wayns University, Detroit
Washburn Municipal Univessity, Topeka

- William Jewoll Collego, Liberty

Toxas State Collego for Womon, Denton
Mount Mary College, Milwaukoe

Texzas Christian University, Fort Worth
Baldwin-Wallace College, Borea
Colorado A & M College, Fort Collins
Pomona College, Clasemont

Contral College, Fayetle

Mlississipp! Southern Colloge, Hattiesburg
Manchoster College, Nosth Manchaester
Waeatminstor College, New Wilmington
Wake Forast Collogo, Wako Forest
Southwost Louisiana Inatitute, Lafayette
North Toxas State College, Denton
Butler University, Indianapclis

Fert Hays Kansas State Collogo, Hays
La Salle Colleqo, Philadelphia
Occidental College, Los Angolos
Virginia State College, Petersburg
Anderson Colloge, Andorscn

* Listed in order of date of installation.

April 18,
May 27,
Jan, 80,

Installation Date

1991
1931
1932

May 20, 1932

May 30,
Dac. 14,
Jan. 17,
Jan. 28,
May 12,
March 28,
Aptil 11,
May 20,
April 24,
April 24,
May 29,
June 10,
Aprll 5,
May 10,
May 15,
May 26,
May 27,
Juno 8,
June §,
April 4,
April 25,
Juno 19,
April 21,

May 21,

May 10,
March 29,
T, M“ 7-
May 7,
May 11,

May 13,

Juno 6,
May 16,
June 6,
May 18,
May 21,
May 18,
May 17,
Jan. 12,
May 22,
May 81,
May 15,
Doc. 6,
May 19,
May 28,
Jam, 29,
April S,

1932
1932
1933
1933
1934
1935
1935
1935
1037
1997
1887
1938
1840
1940
1940
1840
1940
1940
1841
1842
1842
1942
1944
1945
1846
1947
1947
1047
1947
1047
1947
1848
1948
1949
1949
1950
1950
1951
1951
1951
1952
1852
1953
1954
1958
1957



