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Napierian Logarithms
Gary K. Drown

Student, Drake University

1. Introduction. In my mathematical experiences, I have per
haps been most amazed and awe-struck by the powerful calculating
tool available in the tables of logarithms. From the time I first used
these miraculous figures, I wondered time and again—"How were
these computed?" and "Would I be able tounderstand their construc
tion?" Consequently, this paper is not the mere completion of an
assignment; it is, in part, the result of a personal challenge which
I've looked forward to meeting since the time I learned that calculus
would provide the answer tomy queries.

Logarithms rank among the three most amazing discoveries in
the field of mathematics, vying for honors with the Arabic number
system and the introduction of zero as a number. Why? Stop and
consider: By inspecting the series 21 = 2, 22 = 4, 23 = 8, etc., it
does not seem too profound that a person of great ingenuity would
reason that using the base 2, the exponent 2 with fractional incre
ments would evolve the numbers between 4 and 8. But, when one
considers the fact that exponential notation was not introduced into
mathematics until some 33 years after the first publication of
logarithm tables', and when one remembers that logarithms are ex
ponents, how can he help wondering, as did Henry Briggs, "by what
engine of wit or ingenuit)' you [John Napier] first came to think of
this most excellent help in astronomy, viz., the logarithms/"

The motivation behind the discovery of logarithms came from
what might seem to us today an unusual source—religion. To un
derstand how religion gave impetus to Napier's delving mind, abrief
description of the social organization of the time is necessary. The
early seventeenth century was aperiod in which basic loyalties of the
individual had not long been divorced from their centurv-old mater,
the church, and aligned with the political entity, the state. No
longer did religious loyalty ignore national boundaries. Religion still
played a major role in the lives of men, but it tended to be subordi
nate to the patria. This new era witnessed the Protestant Reforma
tion and free-thinking men openly challenged the principles of
scholasticism of the Roman Catholic Church whereby physical and
natural laws were reconciled to religious dogma.
1 fel*Sduc2f1 br Rene' Descartes In his GeomatrU, 1637

Florian Cafori. A HUtory ol Mathraurtla. Tho MacnWan Co., London; 1938, p. ISO.
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Such was the case with johann Kepler (1571-1630), official
astronomer of the Holy Roman Empire, and with John Napier
(1550-1617), Baron of Merchiston, in Scotland, a devout and
ardent protestant and active church official in the Presbyterian faith
of John Knox. Kepler, after studying a huge collection of data gath
ered from observations and applying his mathematical insight to it,
was inclined to disbelieve the Ptolemaic geocentric theory (a basic-
theory of Roman scholasticism). For twenty-five years, Kepler la
bored with the matlicmatical proof of the Copernican heliocentric
theory, a point of intense religious and metaphysical controversy,
calculating endlessly the natural trigonometric functions involved.
His prodigious task might not have been completed in his lifetime
were it not for the interest of Napier in "the invention of methods
for the diminution of the labour therein involved."3

How did Napier come about his idea of a logarithm? It has been
conjectured that he first thought of substituting the easier processes
of addition and subtraction for the more complicated operations of
multiplication and division bv examining the trigonometric identity

cos A cos B = (l/2)[cos(A + B) 4- cos(A - B)].
Others believe that because he had received much of his education
on the continent,he was familiar with the work of Stifel, whowrote:

"Additio in Arithmeticis progrcssionihus respondet multiplica-
tidni in Geometricis.

"Subtractio in Arithmeticis progressiouibus respondet in Geom
etricis Divisioni.'"

That is, addition in an arithmetic progression corresponds to
multiplication in a geometric progression; while subtraction in an
arithmetic progression is analogous to division in a geometric pro
gression. This latter belief would seem to have more plausibility when
one examines his method of establishing relationships between the
natural sines and their logarithms. In fact, Napier reasoned intui
tively that the logarithms ofa series of numbers in geometric progres
sion are themselves in arithmetic progression. This reasoning will
be shown in a cursory development of his logarithms.

2. Napier's construction of sinesand theirlogarithms. Appar
ently proceeding from the relationship between arithmetic and geo
metric series processes, Napier set about the task of constructing his
sines in a decreasing geometric progression, and the adoption of this

» E. W. Hobson, John NapUr and tho InronBon of Logarithms, 1614, Cambridge Unlvot-

«ft* ICco1idge!4kothomaUe« ol Great Amateums Oxford, at the Claredon Presw; 1949,
p. 72.
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premise led him to think of rates. He imagined two moving points
describing straight lines, both commencing at the same velocity. One
ofthe lines was ofdefinite length and was to be the whole sine, i.e.,
sine ofa 90° angle. The other line of indefinite length was to rep
resent, i.e., segments of it, the logarithms of the sines. It should be
clearly pointed out that his logarithms were for the natural sines
only.

f f B Si«cs

_jL0»»ftlTH|»,

FIGURE I

The point Q, representing the right terminal end of his logarithm,
CQ, was assumed to move at a constant velocity of v linear units per
unit of time. The point P, representing the left end of PB, a part of
the whole sine (or sine ofan angle less than a quadrant), was to be
gin its course at A with a velocity of r linear units per unit of time
but was to continue ata decreasing velocity such that its rate during
any time interval would be proportional to its distance from the ulti
mate goal at the beginning of that period of time. From these geo
metrical considerations he established his geometric and arithmetic
series. He called CQ the logarithm ofPB. If P, in the above figure, is
a position of the moving point at the beginning of a time interval
and P' its position at the end of that period of time, then the velocity
of the point while traveling from P to P' was assumed to be
(PB/AB>.

Napier did not have the instantaneous velocity concept which
was so baffling to earlier writers on the calculus; but, rather, imag
ined successive decreases in velocity—not continuous.

He reasoned that if the moving point P starting at distance r
from itsgoal at rate v goes at a decreasing rate of speed such that its
velocity at any instant during a time interval is proportional to its
distance from theultimate goal at the beginning of that time interval,
then its distance from the ultimate goal at the end of that time inter
val would be equal to its distance at the beginning of the interval
minus 1/r of that same distance. This may be shown as follows:

Let r = AB. Then during the first interval of time, the point
(according to Napier) moved at a rate of rfr • v wherev is the initial
velocity and rfr is theratio ofthe distance from thegoal, B, at thebe-
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ginning of the time interval to the whole distance. If die interval of
time is chosen to be \fv then, the point P travels a distance of
(.rfr) (v) (1/r) or 1 linear unit during the first interval of time
and consequently its distance from B at the end of that interval is
r — 1 or r(l — 1/r). During the next interval of time the point
would proceed at a rate proportional to its distance from Bat the be
ginning of the interval (or the end of the preceding one); i.e., the
velocity would be [(r — l)/r]t'. The distance traversed in the sec
ond interval of time is thus equal to [(r - l)/r]0>)O/v) or
1 — 1/r units. Now the point, at the second position considered, is
r - 1 — (1 - 1/r) orr[l - (1/r]2 units from B.

The distance of P from B at the end of the second interval of
time is geometrically serial with itsdistance from Bat the endof the
first interval of time with a ratio [1 - (1/r)]. During the third
interval, the velocity (being proportional to the remaining distance
at the end of the second interval is [r(l — l/r)2/r] • v and the
point travels fr(l - l/r)'7r]t<l/r) = (1 - 1/r)2 units from
the last position. Now the point is r(l — 1/r)2 — (1 — 1/r)2 or
r(l — 1/r)" units from its ultimate goal—again in geometric series
with the other positions. It can be established by mathematical in
duction that the pointwill be r( 1 — 1/r)n units from B at the end
of »intervals of time. The distance of the point P from B at the end
of any interval of time will be its distance at the beginning of the
interval less 1/r of the distance.'1 Since the intermediate points of
any interval are not traversed by P at a rate actually proportional to
their distances from the end of the line, Napier ignored them and
chose only those at the ends of the intervals where the velocities de
creased and did become proportional to the remaining distance.
These points, were to be the sine values represented by the segment
PB. For simplicity, if r is chosen as 10", each sine value can be de
termined bysubtracting from the preceding sine value, 1/10" of that
same sine value. Napier made r — 10' and computed his sines as
follows:

5 It is well to note here that Napier could actually roach the end of line AB and his
method would make sine 0 finite, whereas wo who now comprehend the instantaneous
velocity concept know that if the velocity of P decreased proportionally to the distance
from B at every Instant, Lo., continuously, V would roach a condition such that its
velocity would be infinlteslmally small requiring an infinitely long time to reach B;
and In that time. Q, the point describing his logarithm would have reached "Infinity"
so that as N approaches 0 the Urn Nap. log N = « as it should bo. (Not -=o, because
his base Is actually fractional.) This Is of only academic significance, however, be
cause he did not need to worry about stno 0, for multiplication by sine 0, (or plain
zero if you please) results, of course, in a product of zero.
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Whole sine, r = 10,000,000.000 0000
lfr of r = 1.000 0000
r(l - 1/r) = 9,999,999.000 0000
1/r of r(l - 1/r) = .999 9999
r(l - 1/r)2 = 9,999,998.000 0001

etc.

As pointed out earlier, Napier had to reason that his logarithms
increased arithmetically while the sines decreased geometrically.

A p, r» p, p'p. B SlMCS

? Q. v Q. o'i' i ti i »i -&- Logarithms
>

r 16VIRE 2

He said: let PxBfP2B = P2B/P3B, that is P„ P2, and P3, were
to beidentifiable terminal points of sine segments constructed or de
termined in geometric series. Further, he said let p be any point
within the interval PjP, and p' be the corresponding point in P2P3.
Since the velocity of the moving point at p bears a constant ratio to
thevelocity of the point p1 and since Napier required that a constant
velocity exist during each time interval, the time required for p to
assume all positions between Px and Pa would be equal to the time
required for f to assume all positions between P2 and P3. In the same
interval oftime, the points qand q1 would have assumed all positions
from Q, to Q2 and Q_2 and Qs respectively so that QtQ^ = Q2Q3, thus
making his logarithms progress arithmetically. Although Napier as
sumed the converse to be true, i.e., that arithmetically progressing
logaridims would result in geometrically progressing sines, he did not
prove it.

3. Instantaneous rates andNapier's notions. Napier's logari
thms were not what are known under the name of Napierian or
natural logarithms today. In fact, Napier had no notion of bases or
indices, and his logarithms are actually more closely related to the
base 1/2 than to the natural base. This would seem apparent, i.e.,
die base being fractional, in order that the logarithm of a number
should increase while the number itself decreased. The relationship
using modern notation and the concept of instantaneous rates can
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be shown as follows:
Let r = whole sine, (r — x) = PB, a partial sine where x is

the difference between a whole sine and a partial sine. Let y = CQ,
die Nap.log (r — x); and let In N be the symbol for the natural
logarithm of N.
dxfdt = [(r - x)/r](v) or d(r - x~)fdt = [-(r - x)/r](v)

where the minus sine indicates that (r — x) is a decreasing function
and [(r —x)/r](v) is the rate, as Napier defined it, of P at the dis
tance x from the beginning of the line. Hence,

d(r - x)/(r - x) = (—i>/r)dt.
Integrating we obtain:

ln(r - x) = (-v/r)t + c.
To determine the constant of integration, we remember that when
t = 0,x = 0.
Thus,

c = In r

and
(1) l«(r - x) = (-v/r)t + In r.
Now, consider the logarithm line CQ or Y.

dyfdt = v,
i.e., Q moves at the constant initial rate.

.*. dy = v dt\
and integrating gives

y = vt + c, •
But when t = 0, y = 0; so c, = 0 and y = vt.Thus

t = yfv.
Substituting this value for t above in (1) we get

ln(r — x) = (-v/r)(y/v) + In r
or

y = r In r —r ln(r —x).
Buty also equals Nap. log (r —x) as defined by Napier.

.'. Nap. log (r - x) = r[ln r — I«(r —x)],
the relationship between Napier's logarithms and natural logarithms.

Using instantaneous rates and natural logarithms, it can be
shown that if numbers increase geometrically, their logarithms in
crease arithmetically, and conversely. Let

dxfdt = (v)(AB - x~)fAB or dxfdt = KAB - x)
where k = vfAB.

Therefore
-dxfCAB - x) = -k dt.
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Integrating we obtain
4-/»(AB - x) = -kt + c, and J»(AB) = c

because when t = 0 then x = 0. Now, since (AB - x) = PB,
CAB - x.) = P,B, CAB - x2) = P2B • • •.

bi(PB) - InCAB) = -kt = J»(PB/AB)
InCPiB) - Jn(AB) = -ktt = I»(P-B/AB)
Jn(P2B) - fn(AB) = -fef2 = Z«(P2B/AB)

By subtracting any two of the above equations of such a series,
we get

i«(Pi+tB/PlB) = KU - «,„)
Thus, if QtQ3 = Q2Q_3 (i.e., logarithms are arithmetically

serial), (ti —tUl) is constant; that is, equal time intervals transpire
in the production of his logarithms of sines. Therefore Pi+1B/P4B
equals a constant, and the sines will consequently be in geometric
series. Conversely, if the sine values are to be in geometric progres
sion, then /n(PJ+1B/P,B) will be constant and hence (tf - ti+1)
must be constant with the corresponding resultant of arithmetically
progressing logarithms.

4. Napier's construction of logarithms of sines. Before we fi
nally examine his method of finding logarithmic values for particular
sines, we will call your attention to a point of interest regarding the
ultimate development of common logarithms:

As was shown earlier, Napier determined his sine values by
successive subtractions of one ten-millionth of each sine from itself
to arrive at the subsequent values. He continued this process up to
T(l - 1/r)100. Having done so, he found that some of the values he
was obtaining were worthless because they were not tabulated sine
values. This, ofcourse, is obvious, for the rate of change of the sine
function ( a decreasing function) increases as the angle approaches
zero.'

Realizing he was making useless subtractions, his common
ratio affecting only the seventh place, Napier increased his common
ratio to (1 —1/105), which meant that instead ofsubtracting one
ten-millionth part of the preceding sine to obtain the next sine frac
tional value, he subtracted one hundred-thousandth of it resulting in
a change in the fifth place for sine values. Since (1 —1/105)1 was
to be comparable to (1 - I/IO7)100, (1 - l/10s)2 would be

' ^«^r.^C5?n-v?J^ua.5 °{ cos "i.J? " aoos bcm 'n ,0 °- These functional valuesarethe rato oi chango of Bin x with respect to a cbango in x, since Main x)]/d»
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comparable to (1 — 1/10:)200- Thus in one operation, he "lopped-
off" ninety-nine of his previous subtractions which were not quickly
enough producing tabulated values of the natural sine function.
Note that I said (1 - 1/10s)1 was comparable to (1 - 1/101)100,
not equal to it.

(1 - l/lO7)100 = 1,0° - (100) (l)09 (1/10')1
+ [(99) (100) (l)08 (l/10O2]/2

= 1 - 100(1/10') + (50) (99) (1/10")
= 1 - (1/105) + (l/2)(l/10,u)- (approximately)

This discrepancy of approximately (1/2)(1/10">) between
1 - l/lO')100 and (1 - 1/103) affected the eleventh place and
was not serious enough to impair theutility of his method.

Again, after fifty of these operations, the process was not pro
ducing tabulated sine values rapidly enough. At this point he appar
ently became aware of the fact diat he could produce sine values by
any common ratio, and the only effect this would have on his log
arithms would be a commensurate adjustment in the common ad
dend. Hence, he began to "just make numbers", i.e., sets ofnumbers,
in geometric progression with slighdy varying common ratios and
then select those which were virtual equals of tabulated natural sine
values. It was this revelation that he passed on to his contemporary,
Henry Briggs, who ultimately began computation of common loga
rithms of natural numbers.

Now, how did Napier compute his logarithms? Since nomethod
was then available by which logarithms would be calculated to an
arbitrary degree of accuracy, Napier obtained two limits between
which his logarithms must lie and also established limits for die dif
ference of the logarithms of two sines. These limits were the very
basis on which his whole logarithm construction depended.'

p B Sinks
i >

n' q Q Loe»«iiHN$
**! 1 1 —*1-

FIGURE 3
Since the velocities of P and Q at A and C are equal, thatof P

decreasing, it is clear that CQ > AP when P lies beyond the first
interval. Letting Qx move to the left of Cfor the same length of time
that Qmoves toThe right of C, and letting P, be the point on AB

7The P" and O' in Figure 3 should be Pl and Qt respectively.
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corresponding to Q, on the logarithm line, it is clear that since
Q,C = CQ, PtA > QtC. Let PB = x. By definition Nap. log x
- CQ. Therefore, recalling that Napier chose AB to be 107, Nap.
log x > AP or (107 - x). Also, Nap. log x = Q,C < PtA. Consider
now P,B as thewhole sine. Then AB/P.B = xfAB because wehave
already shown that PjB, AB, and PB are in geometric progression.
Consequently 10VP,B = x/107, AB being equal to 107. Therefore,
P,B/107 = 107/x (by inversion) and (P,B — 10T)/10T
= (107 - x)/x. P^ - 107 = P,A. So P,A/107 = (107
- x)/x or P,A = [107x](10' - x). As a result Nap. log x
<[107/x](10'-x). F *

These are Napier's limits for the logarithm of a sine equal to
x, i.e.,

(107 - x) < Nap. logx < (107/x)(107 - x).
Suppose the sine decreases from y to x. Napier's logarithm in

creases at a steady rate. The sine decreases at a decreasing rate.
At y the sine decreases at a rate which isy/107 times the rate of in
crease of the logarithm, but at x the rate of decrease of the sine is
x/107 times the rate ofincrease ofthe logarithm. Therefore

y - x < (y/107)(Nap. logx - Nap. logy)
y - x > (x/107) (Nap. log x - Nap. log y)

and thus

[107/y](y - x) < (Nap. logx - Nap. log y) < [107/x](y - x).
Accordingly, the logarithm ofhis first sine (9,999,999) is between
1.0000000 and 1.0000001. Napier chose the arithmetic mean,
1.0000005, as the logarithm.

5. Conclusion. We have thus seen how Napier developed his
logarithms. We have barely touched on the development of his tables.
However, enough has been done to show the clear thinking and ana
lytical approach that Napier made to his problem. It is indeed a re
markable feat; I humbly bow to his genius.

€

'How is error possible in mathematics?"
—Henri Poincare



Modern Trends in Cryptography:
The Fractionated Cipher

By S. H. Sesskin
Student, Hofstra College

The history of cryptography links the development of secret
writing with the increase in literacy. Obviously an illiterate can read
no message, hence any writing to him is secret writing and there is
litde need for ciphering. The need grows when knowledge spreads.

As the level of literacy rose, military, diplomatic—and crimi
nal—activities dictated a need for more secure ciphers. Generally
this led to more and more complicated ciphering procedures, most
of which were outgrowths of the then current methods and were
merely expansions of transposition or substitution ciphers.1 Unfor
tunately for some of the so-called experts, complication often did
not mean security, though many of their ciphers served well in
earlier periods.

Today, with the high degree ofliteracy, the device which seems
to beattracting most attention from cryptographers is a substitution-
transposition technique.

Though these are the ciphers to be examined here, this dis
cussion will be limited stricdy to paper and pencil ciphers, and, of
course, will not include ciphers coming from the newer electronic
devices. (Despite these new devices paper and pencil ciphers will be
studied as long as there are spies and criminals who cannot have
access to such devices, and as long as wars are fought in the field
where such devices not only would prove cumbersome, but would
require the maximum protection from capture.)

The substitution-transposition cipher is not mere substitution
and transposition piled on transposition upon retransposition. The
rawest amateur can take any message, effect some land of substitu
tion, transpose it in some elementary fashion, and then continue to
retranspose it until the message will, of course, be beyond solution;
but it will also be beyond practicality and thus, useless, since an
important consideration mustbe practicality.

>See Introduction to CryptanalyiU, THE PENTAGON, Fall, 1954, for brief description of
these two typos of ciphers. Also bibliography.
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Practicality presupposes a recipient, a human recipient with
human failings; practicality requires that for safety's sake in the case
of spies and criminals the key to the cipher be sure-fire and easily
remembered by the recipient (no writing down of key); practicality
requires that themethod have only a few steps (the fewer the better)
first because of the time factor, and secondly because of the error
factor. Acomplicated method would result in compounding mistake
upon mistake both in enciphering (putting the message into cipher)
and in deciphering, so that the message could be lost in a maze of
error. In this case the message would be secret to everyone—includ
ing the recipient."

Practical ciphering has always been a compromise between
space and time (die mathematician's fields, by the way) in an effort
toobtain the maximum security in time at a minimum cost in words.
And today it is more so than ever. In fact, today the balance is even
more delicate, for the experts seek not so much an insoluble svstem,
as one that will give security for a stated time.

The story is told that duringa batde in North Africa in World
War II when Rommel was winning, Nazi orders to tanks in action
went out in clear language. Secrecy was not necessary, for the enemy
was so disorganized they could do nothing even knowing the Nazi
plans.

This is one extreme of ciphering; the amateur's cryptogram is
the other.

The main point of this paperwill be to show the mathematical
type of thinking that goes into cipher analysis as exemplified in
development of the cryptographic tools which led to the general
solution of the classic fractionated cipher known as Delastelle's
bifid.

Fractionation describes these ciphers accurately, as will be
evident in an examination of two substitution-transposition types
which will be made before studying Delastelle's bifid. There will be
no attempt toanalyze these; they are being presented simply as inter
esting illustrations of method.

The first example, suggested some years ago by M. E. Ohaver,
a cipher expert, is a Morse Code fractionation which was explained
in Helen F. Gaines' Elementary Cryptanalysis.3 The second is the

• Col. Parker Hitt in his Manual tor too Solution ol Military Ciphers devotes a chapter
iSS!^!?riy to efrora a.Sd »ay?: "*> 3°m» elphor methods a mtstake in enciphering oneletter will so mix up the deciphering process that only one familiar with such errors
can apply the necessary corrections."

• Elementary Cryptanalysis is schodulod for republication this year by Dover Press.
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German Field Cipher of 1918, which was actually in use and which
proved very effective for a time during World War I until solved
by the French analytical genius, Georges Painvin.

The Continental Morse Alphabet Arranged by Group-Lengths

E . S ... H .... B ....

T . U ... V .... X ....

R ... F .... C ....

I .. W ._ ii ..— Y ....

A .. D ... L .... Z _..

N _. K — a — Q ...
M _ G _. P ._.

O ... J ._ ch .._

Fig. 1

We will illustrate the Ohaver fractionation as applied to the
message "The Cartesian system . . . ".

The message is first set up in groups of uniform length
(seriated) and one-to-one substitutions are effected from the Morse
Alphabet (Figure 1). A seriation of seven results in the following:
Plain: THECART ESIANSY...
Morse: - - .-. - - -

No. of
elements: 1414231 1322234

The transposition is effected by reversing the digits, retaining
the sequence of Morse elements, but regrouping them according to
the sequence of reversed digits. In effect, this simply changes the
spacing:
Digits: 132414 1 432223 1
Morse: . .... . .... - — -
Cipher: TSICECT HSMIIKT

This method received attention as recently as April, 1950,
when it was discussed in The Cryptogram in connection with an im
proved system suggestion by Col. F. D. Lynch, USAF, ret.'

For the German Field Cipher the first step is to set up a check
erboard substitution square. In Figure 2 such a square has been set
up on the key word PENTAGO(N), giving each letter two coordi
nates from among the substitution letters A D F G X, which were

1 Indicating the high interest in these types is the fact that Col. Lynch's system is
lately proving very popular with members of the American Cryptogram Association.
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actually used by the Germans. For P we get the substitution AA (row
first, column second); for B, DF.

ADFGX

A

D

F

G
X

PENTA

GOBCD

FH IKL

M Q R S U
V W X Y Z

Fig. 2

In Figure 3 the method has been applied to the message,
"Attack hill ten at dawn." The substitutions are set up under the

6143257

fractionation key TANGENT, each letter being numbered according
to the following plan: 1 is assigned A; 2 to E (since BCD do not
appear); 3 to G; 4 and 5, respectively, to the first and second N's
from left to right, etc.

For clarity in the sample encipherment we have included the
plaintext equivalents in lower case letters above and between their
substitutes.

6 14 3 2 5 7

TANGENT

plaintext: a t t a
substitutes: A X A G A G A

c k h

XDGFG FD
i 1 1 t

FF F XF XA
e n a

GADAFAX
t d a w

A G D X A X X
n

DAF
Fig. 3

The cryptogram is now taken out by columns starting with
column 1 (A), 2 (E) etc., and transmitted in five-letter groups
thus:

XDFAG AAGFF AGFXA XAGFD DFGFX AXAXF GADAD AXX
In a preliminary analysis of this cipher in The Cryptogram of

August, 1953, by Milton Harawitz, the following remarks were
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made, the terminology of which should be interesting to mathema
ticians:

"The development of the mathematical theory is not essential
to the method of solution and will be omitted. The theory requires
us to reconstruct the key. Since the order of the columns of both
messages are mathematical functions of each other, we can form
a cycle . . . and reconstruct the key."

As is now evident, fractionation requires a substitution alphabet
with characters composed of two or more elements. Bifid would be
two, trifid three elements, multifid many elements."

We illustrate the classic bifid method on the message "Time,
space, and motion . . .".

In Figure 4 we have the basic key square necessary to
Delastelle's method, set up on the key word GEOM(E)TRY, with
each letter in die key square identifiable by two number coordinates
(row first, column second). Thus R is 21.

In Figure 5 we have used a sedation of seven to divide the
message and have placed vertically beneath each letter its two coor
dinates from the key square.

In Figure 6, the transposition has been effected so that the
coordinate numbers from Figure 5 have been read off horizontally,
but replaced vertically in pairs. These vertical pairs give us the
ciphertext, the top letters being read as the row coordinate of the
cipher letter, the bottom letters as the column coordinate, and the
cipher letter itself being taken from the appropriate intersection in
the original key square. Decipherment is, of course, die inverse
process.

12 3 4 5

1GEOMT
2RYABC
3DFH I K
4LNPQ S
5UVWXZ

Fig. 4
Plaintext: TIMESPA CEANDMO

row coord: 1311442 2124311

col. coord: 5442533 5232143

Fig. 5

• Indicating the recent Interest in fractionation ciphers Is the fact that a trifid cipher was
analyzed in The Cryptogram as recently as August, 1952. It 1b noteworthy that a
trinumoral alphabet was invented and used by tho Abbo Trlthomo, 1499. Parker Hilt
comments in tho introduction to his Manual that "tho ciphers of tho Abbe Trlthomo are
the basis of most of the modern substitutions."
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r. for cipher: 1142423 2231224
c. for cipher: 3145453 1415313
ciphertext: OGQCQCH RBDTARP

Fig. 6

A cryptographic opinion in The Cryptogram doubted if this
cipher's "fair degree of security is of enough value to compensate for
the time required to encipher and decipher; a speed of about eight
letters per minute."

This posedthe cryptographic problem: A fair degree of security
vs. lengthy encipherment and decipherment time. Could a speedier
method be devised to make this cipher more worthwhile?

In this case the cryptographic and cryptanalytic problems were
solved together. We will show the analysis of the latter problem,
passing over for the moment the question of establishing seriation
length, which is of primary importance in this cipher.

We'll start by establishing the precise relationship between the
elements of cipher letters and those of plaintext. Since each letter
has two elements—row and column—we will assign subscript 1 for
row elements, 2 for column elements to each plaintext letter (Figure
7) and use the subscripted plaintext letters instead of number coordi
nates to perform the transposition (Figure 8), finally (Figure 9)
placing the cipher letters from Figure 6 over their equivalents, and
identifying each column of three letters by 1, 2, 3, etc.

TIMESPA 12 3 4 5 6 7
TJtMtEtSAAt T1MIS,A112 EjP- OGQCQCH
TSI2M2E2S2P2A2 I, EtPtTaMsStA, TtM.S.A, IjEjPj

I, E1PIT2M2S2A2

Fig. 7 Fig. 8 Fig. 9

In Figure 9 we have, in effect, solved for each cipher letter in
terms of plaintext, which is the enciphering method. Let us use
Figure 9 to solve for each plaintext in terms of cipher letters, which
is the deciphering method.

In Figure 9 we have from col. 1 that the row-element of cipher-
letter O, that is O,, is equivalent to Ti; and from col. 4 that the col
umn-element of cipher C, that is C2, is equivalent to T2; so that
(T,T2) which is plaintext T, is thus (OiC2); and (I,I2) from Figure
9 cols. 1 and 4 is (OzQi). Solving similarly for all values, we get:
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T IM ES P A
O.OzG.GjQjQjC,
C2QiQ2CiC2HiH2

And noting that the horizontal sequence of row and column ele
ments is the sequence of cipherletters from the cryptogram in Figure
6, (except that they are doubled), we set up die entire sample
cryptogram similarly. (Figure 10)

group 1 group 2
T IMES P A CEANDMO
OjOsCG-Q^C, R1R,B1B,D1DIT|
C2Q1Q2ClC2H1H! T2AlA2R,RsP,P3

Fig. 10

Now let us suppose that die cryptogram of Figure 10 is a frag
ment of a longer unknown cryptogram, and that the probable words,
obtained through frequency examination and knowledge of the
source of the cryptogram, are correct. We next attempt to build up
the key square.

We have two types of cipher values, l-2s and 2-ls. The 1-2
values give us direct relationships which can be manipulated alge
braicallyto build up the key squarethus:

In group 1, Figure 10, we have for example, that the row
element of A, which is A„ is equivalent to Ct, the subscript of which
identifies it as the row element of C. Since AC have the same row
element, they must be in the same row.

In group 2, A, is equivalent to B,; therefore B is on the row
with AC. In die samegroup, Ct is equivalent to R»; therefore R joins
ABC.

The 2-1 values give indirect information which, nevertheless,
can be manipulated.

In group 1, 11 is equivalent to 02, which means that I's row in
the key square of Figure 4 equals O's column (3 in this case); and
P2 is equivalent to H,.

In group 2 (a 1-2 value) O. is equivalent to P2. Therefore,
Pz = 02 = Ii = H, which places H and I in the same row; and,
of course, O and P in the same column of the key square.

These equations can be used to set up partial key squares from
which other plaintext values may be obtained, the entire process
building up to complete solution.
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The dominant factwhich emerged after years of research along
this line is that the original number coordinates are unnecessary
middlemen which can be eliminated in the ciphering process.

Figure 11 shows the ingeniousdevicewhich resulted and which
was fully explained in The Cryptogram of February, 1947, in an
article by Herbert Raines.

2-square
GRDLU

EYFNV
OAHPW
MB IQX
TCKSZ

1-square

GRDLU
EYFNV

OAHPW
MBIQX
TCKSZ

GEOMT

R YABC

DFHI X

LN PQS
UVWXZ

basic square

Fig. 11

The 1-square is composed of rows from the original basic square
set up column-wise. The 2-square is composed of columns set row
wise. The basic square, of course, is the original square.

Now let's assume we are deciphering. Set up the cipher letters
this way to save copying:

OGQC RBDT
CQCH TARP

This, of course, is Figure 10 with the repetitions deleted. The
1-2 letters are the vertical OC, GQ, QC, CH, etc. The 2-1 letters
are the diagonalOQ, GC, QH, etc.

We examine the l-2s first in connection with Figure 11.
0,C2 is die letter at the intersection of the row containing O in

the basic square and the column containing C in the basic square.
ItisT.

GiQ.. is the letter at the intersection of G-row and Q-column
in the basic square—M. Q,C2 yields S; CiH8 yields A.

Now die 2-ls.

02Q, is that letter in the basic square which is at the intersec
tion of the row governed by 2-square O, and the column governed
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by 1-square Q. It is I. For G2C, find G in the 2-square, C in the
1-square. The required letter is at the intersection—E. Q2Hj yields
P;etc.

For enciphering with this literal indices method, we can use
the message direcdy. In Figure 9, for example, the first cipher letter
is obtained from (TJ,); (M,E,) gives us the second cipher letter;
the third is from (SxPi); (A,T2) gives us the fourth, with T starting
a message repeat, and the fifth cipher coming from (I2M2); (E2S2),
the sixth; and (P2A2) the seventh. Thus we have all the first group
cipher letters from f, L - M, E, - S, P, - A» T2 - I2 M2 - E-
S2 — P2 A.. We now examine these in connection with Figure 11.

(T,I,) the intersection of the T-row in basic square, and the
I-column in the 1-square—O.

(MtEi) find M in the basic square, E in the 1-square and at
the intersection in the basic square is G. (S,Pi) yields Q. (A,T2) a
1-2, yields C.

(I2M2) is that letter in the basic square which is at the inter
section of die row governed by 2-square I and the column governed
by basic-square M. It is Q.

(E2S2) find E in the 2-square, S in the basic square and at the
intersection of their respective row and column in the basic square
is C. (P2A2) yields H.

To recapitulate:
All "real" letters are obtained from the basic square. (By real

letters we mean those which actually appear as plaintext when we
are solving for plaintext—deciphering or decrypting; or those which
appear as ciphertext when we are solving for ciphertext—encipher
ing. These are distinguished from the others which are being used
as coordinates.)

In the notation (A B), the first value is always a row value, the
second a column value.

For 1-2 values—All letters are in the basic square.
For 2-1 values—First letter in 2-square, second in 1-square.
For 1-1 values—First letter in basic square, second in 1-square.
For 2-2 values—First letter in 2-square, second in basic square.
An important point in recovery of the key square is the presence

of the so-called "spine" letters, the five letters which appear in the
same position in all three squares, along the diagonals from upper
left to lower right.

If in building up the key square, we get the same letter in the
2-square and the basic square on the same row, then that letter is a
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diagonal letter. Similarly, if the same letter appears in the basic
square and the 1-square in die same column, it is on the diagonal.

(An interesting exercise to pose at this point for those inclined
to try would be to use the above technique to establish the method
of enciphering and deciphering an evenly seriated message, as op
posed to an oddly-seriated one which is being treated here.)

For the decrypting procedure (solving without knowledge of
the key) we will take Figure 10 as our assumption, and seek to
recover the key square. Set up a tentative square as in Figure 12.

O,
Q.

T
C2

Fig. 12

The square is built up in the following manner: 1-2 values and
2-1 values are transferred to the tentative squares in accordance with
the properties oudincd above. When letters are found on the same
row in the basic square, they are added to the related columns in the
1-square. The inverse is also applied. When letters are found in the
samecolumn in the basic square, they are added to the related rows
in the 2-square. Actually the three-square device automatically
equates the values mentioned earlier.

From the two groups in Figure 10 all the relationships in
Figure 13 can be recovered. The reader may try this as an exercise.

RGD

MQ

Fig. 13
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One more item of great aid in decrypting is the appearance in
the cipher of "naturals" and "half-naturals". These are cipher values
in which actual message letters appear. For instance, if in Figure 10,
group 2, we had established (B2R\) as N and had no other values,
then the "half-naturals (B,A2) and D,R2), preceding and following
N might suggest "and". A "natural" would be a doubled 1-2 letter
such as (A,A2) equals A; but (A2A,) ^ A unless A is a "spine"
letter.

Seriation: We will illustrate without theory a purely statistical
method of finding the period of a bifid which was discussed by
Charles P. Windsor in The Cryptogram of June, 1946.

cipher:

TIMESPA
13 1 14 42

544 25 33

CEANDMO

2 12 4 3 1 1

5 2 3 2 14 3

13 11 44 25 44 25

0 G Q C Q C
33 21 24 31

H R B D
15 23 21 43

T A R P

Fig. 14

In Figure 14 the cipher letters O, G, and Q (group 1) and R,
B, and D (group 2) are formed by combining exclusively the first
(row) components of the plaintext; while Q, C, and H and A, R,
and P result exclusively from the second (column) components. If
we take separate frequency counts for the first component letters and
second component letters for various possible periods, we shall find
that that period which shows the greatest difference between these
distributions generally is the correct period.

We will illustrate on the following sample bifid:

TTTYC AIBXE AMGBL S MGM L NAIMD

SMGOE OXNNV LAEWI TTLYA S F S I F

TITYF LIPWG TOFTO TSRPK I ICLN

RMLQW IKDTR MKBRK ABHQR NHLXM

MSBVF MMTNL S MGM L NNIKA S.

For period 5, in group 2, A and I are first-component letters,
B is mixed, and X and E are second-component letters. Following are
the frequency counts for three different periods:
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Period 5

ABCDEFGHIKLMNOPQRSTUVWXYZ
1st: 51 1_ 1622942. .167 .. _ 1 _ _
2nd: 21 11231 .2354321 23.2.2 323.

Period 7

ABCDEFGHIKLMNOPQRSTUVWXYZ
1st: 321.311 15158.31 2117__ 22..

2nd: 2211 .42 1454 5 511 .334 .2 . . 1.

Period 9

ABCDEFGHIKLMNOPQRSTUVWXYZ
1st: 32 11 323 1214 5 231 1356 .1 1.1.
2nd: 32.1.12 16266511 1135-1 122.

Karl Pearson's Chi-square test is used to establish the measure
of divergency between the elements of these pairs. It is computed
this way: Take the difference between the first and second compon
ent frequencies for each letter, square the result, then divide it by the
sum of the two frequencies. For each period add the 26 quotients;
the greatest sum indicates the most likely period.8

Results for the three examined periods are:

Period 5: 34.7; Period 7: 26.2; Period 9: 12.5. Period 5
happens to be correct. As a check, note in the sample cryptogram the
characteristic formation of bifid repeats in groups 1 and 9:
T T — Y; and in groups 3 and 4: M G — L. (An analysis of such
repeats was used in earlier techniques of obtaining the period.)

In lieu of more material we give the following information
about the sample cryptogram:

Starts "The beautiful . . . "; Probable words: Equations,
theorems, mathematics.

a It Id interesting to note from a mathematical viowpoint that moro and moro completely
mathematical tools are being fashioned by mombors of tho American Cryptogram
Association for use in decryptment Recent articles hava dealt not only with the
Chl-oquaro test, but also with tho Sigma tost and Phi tost. Furthormoro, using the
theory of coincidences, certain constants havo boon ostabliahod for plaintext alphabets
and random alphabets which have boon found to bo extremely useful.
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See if vou can solve it. If you cannot, the kev square is based on
L Q W H J U D O F (D O F) X (O X) V. This is Caesar's alphabet:

Plaintext: A B C D etc.

Cipher D E F G etc.

One final point to answer the obvious question: How would you
start if you didn't know this was a bifid, or, generally, how would
you tackle the unknown cipher?

There is no technique for this except judgment, experience,
and a working knowledge of cryptography. The author has solved
somefew such unknown ciphers and can only say that starting such a
problem is like being thrust into the blackness of a huge cavern with
the knowledge that there is, somewhere, a tenuous thread that will
lead die way out. One gropes and gropes and first finds all sorts of
cobwebs that merely feel like threads. Perhaps one may not even
find the thread, but there may be a wisp of a zephyr, a hunch, that
might be followed to the light. Just keep groping till something turns
up.

The advice given by the French cryptographer General Marcel
Givierge in his Cowrs de Cryptographic is less impressionistic though
more direct. General Givierge remarks that novices tend to recoil
from the multiplicity of possibilities inherent in an unknown cipher
and seem to be uncertain "which end to pick it up by". The best
advice, the General adds, is to pick it up somewhere and dosome
thing, rather than be satisfied to sit all day long and admire the cryp
togram!

©
'Tet we, who are borne on one dark grain of dust

Around one indistinguishable spark
Of star-dust, lost in one lost feather of light
Can by the strength of our own thought, ascend
Through universe after universe."

—Alfred Noyes



A Small Sample of Additive Number Theory
J. B. Roberts

Faculty, Reed College

1. Introduction. In number theory one of the types of problems
which has excited a great deal of interest is the general question of
writing each of a given set of integers as the sum of other integers
where die summands are to be chosen from a particular class of
integers. For instance one might ask the questions:

1. Which positive integers can be written as the sum of two or
more consecutive positive integers?

2. Which positive even integers can be written as the sum of
two prime integers?

3. Which positive integers can be written as a sum of distinct
powers of 2 and in how many ways?

4. In how many ways can a given positive integer be written as
a sum of positive integers, repetitions being allowed but order of
summands irrelevant?

These arc but a sample of many hundreds of questions which
could be and are asked. These questions are not all easy to answer—
despite the simplicity of their statements. In fact, of the four listed,
the second has not yet been answered by the mathematical world.
There is a conjecture—known as Goldbach's conjecture—to the ef
fect that all even integers greater than 2 arc indeed sums of two odd
primes. The truth of the conjecture is unknown. On the other hand
the answers to questions (1), (3), and (4) are known. The
answers to (1) and (3) arc quite easy to arrive at while that of
(4) is a litde more difficult.

2. Positive integers as the sum of two or more consecutive
positive integers. The answer to question (1) is that all integers
which have at least one odd factor greater than 1 and only those can
be written as a sum of at least two consecutive positive integers.

To show this we proceed as follows. I^et the number be «. Now
n = 2«(2fe + 1) for some fej^l. Thus

« = k + (fe + 1)
+ (fe - 1) + (fe + 2)
+ (fe - 2) 4- (fe + 3)

+ (fe - 2' + 1) + (fe + 2').

89
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The numbers on die right are paired so that if the two num
bers in a pair are added we arrive at the sum 2fe + 1. But there are
2' pairs so the sum on the right is 2'(2fe 4- 1). Hence the equality is
valid. Now starting at the bottom of the left column on the right of
the equal sign and reading to the top and then reading down the
right column we find
7; = (fe - 2l + 1) 4- ••• 4- (fe - 2) + (fe - 1) 4- fe

4- (fe4- 1) 4- ••• 4- (fe4- 2l).
This gives /; as a sum of consecutive integers. We leave it to the
reader to finisli the proof so as to have only positive integers in the
sum.

As an example of the above we have
12 = 2s (2 • 1 4- 1)

= 14-2

4-0 4-3

-14-4

-2 4-5

= (-2) 4- (-1) 4-04-14-24-34-44-5 = 34-44-5.
We omit the proof that 2° cannot be written as a sum of at least two
consecutive integers.

3. Positive integers as the sums oi powers oi 2. The answer to
question (3) is that every positive integer can be written as a sum
of distinct powers of 2 (allowing the zero power to appear) and in
only one way. A method of proofwhich has proved very valuable in
answering questions of the kind expressed in (1) to (4) will be
employed here. Let us consider the algebraic identities

(1 — x)(l 4- x) = 1 — x*,
(1 - x)(l 4- x)(l 4- xJ) = (1 - xs)(l + **) = 1 - *S
(1 - x)(l + x)(l 4- x=)(l + x«) = (1 - x*)(l + x*)

= 1 — Xs,
(1 - x)(l 4- x)(l 4- xOO + *0(1 + **)

= (1 - x8)(l 4- x8) = 1 - x16,
etc.

We can rewrite these as follows:
1 4- x = (1 - *s)/(l - x),

(1 4- x)(l 4- xa) = (1 - x*)/(l - x),
(1 4- x)(l 4- x*)(l 4- x1) = (1 - x8)/(l - x),

(1 + x)(l 4- x*)(l 4- x*)0 + x8) = (1 - x18)/Cl - x),
etc.

By long division we find
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(1 - x<)/(l - x) = 1 4- x 4- x2 4- x3,
(1 - x8)/(l - x) = 1 4- x 4- xs 4- Xs 4- x* 4- Xs 4- Xs 4- x1,

(1 - x,s)/(l -x) = 14-x4-x24-xs4--"4- x,s,
etc.

Therefore we have
1 4- x = 1 4- x,

(1 4- x)(l 4- x2) = 1 4- x 4- Xs 4- Xs,
(1 4- x)(l 4- x2)(l 4-x*) = 14-x4-x24-x3

4- x* 4- x8 4- Xs 4-x',
(1 4- x)(l 4- x=)(l 4- x*)(l 4-x8) = 14-x4-x;!4-xs4----

4- x»,
etc.

The (h 4- l)th such expression is

(1 4- x)(l 4- x2) • • • (1 4- x2 ) = 1 4- x 4- x2

4- Xs 4- • • • 4- x2 -\
n

Thus in multiplying the factors 1 4- x, 1 4- x2, • • •, 1 4- x2 we get
2n*1 different powers of x, each only once. But in multiplying die
left-hand side we get all possible summands of the form
x" • xb • • • x1 where a is 0 or 1, b = 0 or 2, • • •, I = 0 or 2".
Now x" • xb • • • x' = *» ♦•>*••.♦ <and sincex™ occurs once only
on the right for each m from 1 to 2n+l — I we must have m
= a 4- b 4- • • • 4- I for one and only one set of a, b, • * •, I. These
numbers a, b, • • ♦, 7, are powers of two or are 0, so we have proved
that every positive integer from 1 to 2n+1 — 1 can be written in one
and only one way as a sum of distinct powers of 2. The reader
should check and make sure that this really proves what we set out
to prove.

In a similar vein using the identity
CO - x3)/(l - x)][(l - x9)/(l - *»)][(1 - x")/(l - x»)]

[(1 - x8')/(l - x")] = (1 - x81)/0 - x),
and observing that

(1 -*0/O -x) = 1 4-x 4-x2
(1 - x»)/( 1 - x3) = 1 4- x3 4- x6
(1 - x2J)/(l - x9) = 1 4- x* 4- x18

(1 - xs,)/(l - x") = 1 4- x" 4- x"
(1 - x8l)/(l - x) = 1 4- x 4- • • • 4- x80

we find that

(1 4- x 4- x2)(l + x:i 4- xs)(l 4- x9 4- xl8)(l 4- x" 4- x64)
= 1 4- x 4- • • • 4- x80.
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Now dividing both sidesby x*° we get
[(1 4- x 4- x2)/(x)][(l 4- x3 4- x6)/(x-0]

[(1 4- x9 4- x'8)/(x°)][(l 4- x27 4- x")/(x27)]
= x-40 + x-39 4- • • • 4- x">

or

(X-1 4- 1 4- x)(x-3 4- 1 4- xO(x-° 4- 1 4- x9)(x-27 4- 1 4- x")

This equation shows that all numbers from —40 to 4-40 can be
written in oneand only oneway by using withoutrepetition the num
bers ±1,±3,±9, ±27. This result has application to the prob
lem of finding the minimum number of weights needed to weigh all
weights from —n to 4-7* where the weights may be placed in either
pan of a balance (Bachet's weight problem).

4. Partitions of positive integers. We now come to question
(4). Again the answer is known. Here, however, we find that one
can give two sorts of answers. The first is to give a formula by which
one can bydevoting enough time and patience calculate in a mechan
ical fashion die number in question. The second sort of answer is
one that will give us a good approximation to the correct result with
relatively little calculation. At present all methods of giving the sec
ond sort of answer are very difficult. In tiiis paperwe will evolve a
formula which gives a satisfactory answer. That is, we will derive a
formula which will give us a mechanical procedure for determining
the result but which is rather useless for actual calculations. Our
result will give a formula for the number of ways n can be written
as a sum of positive integers in terms of die number of ways that
n — 1,7/ — 2, ' • ', 1 can be so written. Such a formula is called a
recursion formtila. We will denote the number of ways by p(>0- For
example p(4) = 5 since 4 can bewritten in the following five ways

1 4- 1 4- 1 4- 1; 1 4- 14- 2; 1 4- 3; 2+ 2; 4.
We will call each of these five ways of writing 4 a partition of 4.
Then p(4) is the number of partitions of 4 and in general p(»0 is
the number of partitions of it. In the partition 1 4- 3 of 4 we call
1 and 3 parts. Now if we add up all parts of all partitions of 4 we
will get
(1 4- 1 4- 1 4- 1) 4- (1 4- 1 4- 2) 4- (1 4- 3) 4- (2 4- 2) 4- 4

= 4-p(4).
In general if we add up all parts of all the partitions of 7i we will get
M'p(«) since the sum of the parts in a given partition is » and there
are p(w) partitions.

We shall now proceed to add up all parts in all partitions in a
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second way. We will do this by first adding together all the I's which
appear asparts in the partitions, then the 2's, etc. For instance in our
example with 4 we have 4*p(4) = (14-14-14-14-14-14-1)

4- (2 4- 2 4- 2) 4- 3 4- 4.
Our first question is then—how many I's are there altogether? Since
n = (n — 1)4- 1 we see that from any partition, saya 4- • • • 4- I,
of m — 1 we get a partitionof n containing 1 by adding 1,

(« 4- • • • 4- 0 4- 1 = (w - 1) 4- 1 = «.
Since every partition of n containing a 1 is of the form 1 4- a
4- • • • 4- I where a + • • • 4- 1is a partition of n — 1 we see that
the number of partitions of n which contain at least one 1 is equal
to the number of partitions of n — 1, i.e., is equal to p(n — 1). In
a similar way we reason that the number of partitions of n which
contain at least two I's is equal to p(n — 2). Continuing we find
that the number of partitions of n having at least fe I's is equal to
pCn — It). Now the number having exacdy one 1 is given by
pin — 1) — pCn —2). The number having exacdy two I's by
p(« —2) —p(n —3), etc. Thus the total number of I's is given by

[p(« - 1) - p(« - 2)] 4- 2[p(n - 2) - p(« - 3)]
4- 3[p(77 - 3) - p(» - 4)] 4- ♦ • • 4- (n - l)[p(n - [« - 1])
- p(« - n)] 4- 7i p(0) = p(« -1)4- pCn - 2) 4- p(« - 3)

4- • • • 4- p(0)
where p(0) = p(w — »0 = 1 = number of partitions with n I's.
Our example with 4 gives p(3) = 3 partitions with at least one 1,
p(2) = 2 partitions with at least two I's, p(l) = 1 partition with
at least three I's, p(0) = 1 partition with at least four I's. Thus the
number with exacdy one 1 is p(3) — p(2). The number with ex
acdy two I's is p(2) — p(l), with three I's p(l) — p(0) and with
four I's, p(0). Hence the total number of I's is

[p(3) - p(2)] 4- 2[p(2) - p(l)] 4- 3 [p(l) - p(0)]
+ 4p(0) = p(3) 4- p(2) 4- p(l) 4- p(0)

= 34-24-14-1 = 7.

In general the number of parts h occurring in all partitions is given
by

p(« — fe) 4- p(« — 2fe) 4- • • • 4- p(» — rfe)
where r is die largest integer such that rfe ^ n. Thus r _? nfk and
r 4- 1 > jj/fe. One usually writes this r = [n/fe] = largest integer
less than or equal to fe. Hence the sum of all parts h is
fe[p(« - fe) 4- p(n - 2fe) 4- • • • 4- p(« - [n/fe]fe)]

[n/fe]
= fe 2 pCn- *fe).

i= 1
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Since there are parts 1, 2, • • •, n we find that the sum of all parts
of all sizes is then

w [»//*]
n • pOO = 2 fe 2 pC» —ih).

fe= 1 i = 1

If we divide both sides of this equation by u we obtain

» [»A]
(1) p(7») = (l/«) 2 fe 2 pCn - ih).

fe = 1 »=1

This formula (1) gives us a recursion formula for p(«) and solves
the problem as we phrased it. However for the purposes of greater
symmetry we proceed to write (1) in an alternative way. To do this
we ask for the coefficient of p(0) on the riglit side of (1), then for
the coefficientof p(l), etc. Now p(0) will occurwith coefficient fe
whenever n —ih = 0, 1 _; i _; [«//*], i.e., when fe is a divisor of n.
Hence we will haveon collecting all p(0)'s on die right of (1)

p(0)2fe = p(0>(n) , fe a divisor of n,
where we use the symbol o-(n) to denote the sum of all divisors of n.
E.g.,

<r(6) =14-24-34-6= 12.
Now p(l) will occur with coefficient fe whenever n — ih = 1,
1 ^ i ^ [«/fe], i.e., when » — 1 = ih or in other words when fe is
a divisor of n — 1. Hence we will have on collecting all p(l)'s to
gether the coefficient o-(n — 1). Similarly p(fe) occurs with coeffi
cient fe whenever n — ih = k or when ih = n — fe; hence when fe
divides n — fe. Thus the coefficient of p(fe) is o<n — fe). Now add
ing all up we get the final result

n [n/fe]
(2) pCn) = (l/«) 2 fe 2 pCn - ih)

fe = 1 i = 1

n- 1

= (l/«) 2 p(i>(n - 0-
i = 0

As an example we computep(5) using this formula.
4

p(5) = (1/5) 2 p(f>(5 - 0
i = 0
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= (1/5) [p(0>(5) 4- p(l>(4) 4- p(2>(3)
4- p(3>(2) 4- p(4)a(l)]

= (1/5) [1«6 4- 1*7 4- 2-4 4- 3'3 4- 5*1] = (l/5)(35) = 7.
These 7 partitions are
14-14-14-14-1, 1H-14-1 4-2, 14-14-3, 14-24-2, 14-4, 24-3, 5.
One will have no difficulty in convincing himself that (2) is not
very useful as a computational device.

One might feel that the recursion could be removed in (2) by
replacing pCn — 1) by its value in terms of p(« — 2), • • •, p(0)
and then replacing p(n — 2) in the same way by its value in terms
of p(n — 3), • ♦ •, p(O), etc. Carrying out this process gives the re
sult

pOO = (1/«)K«) + AktOi - 1) 4- A2o(n - 2)
+ ••• + Aa-KrO)]

where the A's are given by
Ai = [l/(« - i)][o-(i) 4- AMI -1)4- A2o<i - 2 4- • • •

4- A,.2o-(2) 4- A,.x<r(l)].
Thus we see that such a process removes the recursion so far as the
pCO on the right are concerned but gives us another recursion in
terms of the A( which is equally bad.

For further reading we recommend:
1. Encyclopedia Brittanica
2. Notes on Summer Conference on Collegiate Mathematics, 1954,

by Hans Rademacher; obtainable from University of Oregon, Mathe
matics Department.

3. G. H. Hardy and E. M. Wright, Introduction to the Theory of
Numbers, Oxford University Press.

For other references consult Hardy and Wright.

€)
"Arithmetical symbols are written diagrams and geometrical

figures are graphic formulas."
—D. Hilbbrt



A Game Of Solitaire With Checkers
Norma Louise Jones

Student, Southwest Missouri State College

Have you heard about the "drummer", who, about35 years ago,
traveled from town to town takingorders for the firm he represented?
In addition to being a salesman, he served as an entertainer for the
townspeople. He had a repertoire of tricks which he used to awe them
and gain their respect. One game he introduced was solitaire with
checkers.

The checkers were arranged on the board as shown in the dia
gram below. No moves were to be made, and the object was to clear
the board of all exceptone checker by jumping the other checkers off
the board. Jumps could be made along any diagonal as in a regular
game of checkers and could be made either forward or backward.
The individual won if after a sequence of jumps only one checker
remained on the board.

I i
•-•»
il*J.i

WK Wd 2*J-
J&Jfo„J.i

i»!=
I I 1 I

I • ^R W

FIGURE I

Have you ever tried it? Why not get out your checkers and try
your luck before going further?

After playing this game you are probably wondering if your
lack of success was due to failure to make certain proper jumps.
The number of sequences of jumps possible is so large that it would
not be practical to determine empirically whether or not a solution
is possible. It is the purposeof this paper to show a method by which
we can determine whether or not it is possible to win.
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Suppose the squares of the checker board are colored in the
manner indicated in the following diagram where 4- is a symbol for
red, — for green, and X for yellow.

Z*Z5Z*Z*
±_+_+_±_

*Z*Z*Z*Z

FI6URE 2

It may be observed that when a jump is made onto a square of any
color, the number of checkers on squares of that color is increased
by one, while the number of checkers on squares of each of the other
two colors is decreased bv one.

Let

R = the number of checkers on red squares at the beginning
of the game.

G = the number of checkers on green squares at die beginning
of the game.

Y = the number of checkers on yellow squares at the beginning
of the game.

r = the number of jumps onto red squares,
g — the number of jumps onto green squares,
y = the numberof jumps onto yellow squares.

R' = the number of checkers on red squares after a sequence
of r 4- g + y jumps.

C = the number of checkers on green squares after a sequence
of r 4- g 4- y jumps.

Y/ —the number of checkers on yellow squares aftera sequence
of r 4- g 4- y jumps.

Sincea jump onto a square of any color increases the number of
checkers on that color by one and decreases the number of checkers
on eachof the other two colors by one, we can write the relations:
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(-1) . R4-r-g-y = R/-
- G 4- g - r— y = G'

Y + y-r.-g = Y'.
By adding the above relations in pairs, we obtain
(2) (R 4- G) - 2v = B7 + C

(G 4- Y) - 2r = C+ Y'
(R 4- Y) - 2g = W 4- Y'.

From die diagram it may be noted that at the start of die game
R = 10, G = 10, and Y = 4, and hence, R 4- G, G 4- Y, R 4- Y,
being the sum of even numbers are even. Also, 2r, 2g, 2y, are even.
Therefore R' 4- G', G' 4- Y7, R' 4- Y', being the difference of even
numbers, must also be even.

The three ways of successfully completing this game of soli
taire may be indicated as follows:

C

Case 1 1

Case 2 0

Case 3 0
In Case 1, R' 4- G' is not even; in Case 2, G* 4- Y' is not even;

in Case 3, R' 4- Y' is not even. Therefore the impossibility of win
ning this game of solitaire has been demonstrated.

This paper has given an illustration of the fact that mathe
matics coupled with ingenuity can be used to solve rather easily
problems which otherwise might prove more difficult.

w Y'

0 0

0 1

1 0

€>
"Mathematics is the science which draws necessary conclu

sions."
—B. Pierce



Length, Width, Height, and Then What?
Sherralyn Denning

Student, Central Missouri State College

What is the fourth dimension? Do we ask a physicist to define
electricity? The mathematician cannot find a model of the fourth
dimension which means anything to the physiological sense for we
are stricdy three-dimensional beings, at least in sense perception.2

It is impossible to form a mental picture of the fourth dimen
sion. Nevertheless it is not an absurdity, but a useful mathematical
concept with a well-developed geometry. In the realm of science the
physicist says that it takes four or five dimensions, or perhaps even
six to describe the atom. We have long heard of time as a fourth
dimension in relativity.

The idea of geometries of n dimensions began to suggest itself
to mathematicians about the middleof the nineteenth century. Gay-
ley, Grassmann, Riemann, Clifford, and others introduced it into
theirmathematical investigations. Othermathematicians tookit up in
different ways as time passed. In the first volume of the American
Journal of Mathematics4 there is an article which shows that a sphere
maybe turned inside out in space of four dimensions without tearing,
and in the third volume of the same journal a full description of the
regular figures in space of four dimensions was given. Others have
written on the theory of rotations and on the intersections and pro
jections of different figures. Veronese has an extensive work on
geometry of n dimensions with theorems and proofs similar to the
proofs we use in school. In the last few years there have been many
varied and interesting articles in popular magazines, and some books
have been published to explain more particularly what the fourth
dimension is.'*

We do not speak of time as the fourth dimension for, mathe
matically speaking, time involves the unit of imaginaries, yf—1, and
is indeterminable.9 We are concerned with the fourth dimension
exacdy like length, width, and height, standing at right angles to all

A paper presented at a Joint meeting of Missouri and Kansas chapters of Kappa Mu
Epsilon at warrensourg, Missouri, Spring, 1954.
Ingalls. A. G.. "Hypergeometry and Hyporperploxlty", Scientific American, 161:131.
September, 1939.
American Journal of Mathematics, (Johns Hopkins University; American Mathematical
Society, 1878), Baltimore, Johns Hopkins Press.
Manning, Henry P., The Fourth Dimension Simply Explained, Munn and Company,
Inc., New York (1919), pp. 14-15.
Farley, Ralph, "Visualizing Hyperspaco", Sctontillc American, 160:148-149, March,
1939.
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these. We must suppose a direction in which we can never point
extending from every point of our space.

To gain a partial and symbolic idea of the meaning of a fourth
dimension, we resort to analogy in four different processes. These
processes are (1) comparison with lower dimensions, (2) bounding
lines, (3) algebraic powers, and (4) symmetrical forms.

In comparison with lower dimensions we first consider a space
ofonly one dimension. A person in such aspace would be limited to
a straight line, which he would conceive as extending infinitely in
both directions. If he encountered another being, neither could pass
the other because his only possible movement would be along this
line. If he is really within a space like ours, although his perception
isconfined toone direction only, and if someone in our space should
lift one of the two beings, and place him on the other side of the
first, he would lose sight of the first as soon as the movement took
place and it would be beyond his comprehension how the movement
was effected.

Now diink of a space of two dimensions, like a shadow. Beings
in such a space could move around one another, but one of them
completely surrounded by others would be imprisoned by them. If,
as before, the two-dimensional space is within our space, and really
depends on the limitation of the perceptive faculties of the beings in
question, the imprisoned being could be lifted by a person in our
space, and set down outside of the beings surrounding him. They
would lose sight of him during this movement, and not understand
how the change of position had been effected.8

From these suppositions of one-dimensional space and two-di
mensional space, the inference is drawn that there may be a fourth
dimension in our supposedly three-dimensional space, and that our
lack of understanding of it arises only from the limitation of our per
ceptive faculties. We are told that diere are light rays which are
invisible to us, solely because our eyes are so constructed as to be
unable to perceive them. Also we are told that there are tones solow
or so high that we can never hear them because our ears are not
attuned to them. Hence, it may be that a fourth dimension does exist
but the limitations of some of our senses might operate to render us
unable to perceive it.'

The straight line segment of one-dimensional magnitude, ends

• Kaempfiort, Waldemar, "What Is tho Fourth Dimension?" McClnro, 42:222,225,226,
Novombor, 1913.

* Nlkonow, I. P., "b Space Curved?" UclonUile Amorlcan, 147:278-279, November, 1932.
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in points; the square, a two-dimensional magnitude, is bounded by
straight line segments which are one-dimensional; the cube, a three-
dimensional object, is bounded by squares, which are two-dimen
sional. It is inferred by analogy that three-dimensional magnitudes
bound four-dimensional magnitudes. The "four-dimensional cube"
is named the "tessaract" and is said to be bounded by cubes."

In the series of the successive powers of a number x, x-, x3,
xi . . . xat x mav jjg represented graphically by a straight line, of
which x is the length; x", by a square, with x as the length of a side;
x?, by a cube, with x as the length of an edge. It is inferred that if
wekeep on, there mustbe a configuration corresponding to x4, and so
on indefinitely up to x".

Students of geometry might picture this idea in a different way.
An equation containing two "variables" may be considered as repre
senting the locus of a series of points in a plane, so an equation of
three variables is die locus of points in three-dimensional space. But
since, as shown before, in explaining the word "dimensions" the co
ordinates fix definitely and exactly the position of a point, equations
with more than three variables exceed the scope of our perceptual
geometry, and require the use of analogies for their interpretation.9

In the use of symmetrical forms to explain the fourth dimension
we connect the vertex of an isosceles triangle with the middle point
of the base and divide the triangle into two equal triangles. If we
were confined to two-dimensional space wc could never prove them
equal by superposition. Since we arc in three-dimensional space we
are not under this restriction and we turn one of the triangles a half
revolution on one side, and then the two figures may be made to
coincide. There are many symmetrical solids; for instance, the two
hands, which can never be brought into identical shape. We cannot
prove the left hand equal to the right by putting on the right-hand
glove. If we turn the right-hand glove inside out it will fit the left
hand. With two-dimensional figures we prove them equal by use of
three-dimensional space. From this it is inferred that in four-dimen
sional space, not only the glove, but the hand within it, might be
turned inside out and made to coincide with die other hand.18 The
right and left rotation is characteristically four-dimensional. Some
thing similar to it occurs in nature. A beam of polarized light is ro-

" Kaempifert, op. ciL. p. 229.
~ "" ' The r• Hlnton, C. Howard, The Fourth Dimension, Swen Sonnenschcin and Company, London

(1906), pp. 67-72.
16 Kaempifert, op. elL, p. 226.
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tated either to the right or the left on passing through certain sub
stances. Dextrose and levulose (sugars) owe their names to the fact
that one rotates a polarized beam to the right (dextra—"right
hand"), the other to the left (laeva—"left hand"). In chemical
constitution they are exacdy the same. It is suggested that their con
trasted properties are due to right and left reversal of their atoms, a
four-dimensional movement in the minute particles of which they
are built up."

Certain snails, exacdy alike in all other characteristics, have
one difference; some are coiled to the right, others to the left. It is
remarkable that their juices have a corresponding property of rotating
a polarized beam to right or left. This suggests that their external
form is an expression of an internal difference, a right or left twist
of their atoms by a four dimensional force."

There are other applications that would be possible in a four-
dimensional space. For example, knots would only be loops or coils
and could be untied by carryingone loop out of our space and bring
ing it back in a different place. Links of a chain would fall apart.
The contents of a botde could be taken out without removing a cork.
A four-dimensional physician could see and touch the inner parts
of the body without breaking the skin. A four-dimensional man could
leave or enter a closed room without disturbing the walls. He could
see any part of the interior of a solid no matter how dense or opaque
to us. Our safes would lie open to him. He could take a diamond
necklace from a locked box without opening it. This is four-dimen
sional robbery and would be easy to a four-dimensional bank rob
ber."

Geometry of four dimensions is of importance not only to the
mathematician, but it is also of interest in certain other lines of study.
It involves questions of space which concern the philosopher; efforts
to understand it make use of space perceptions and so attract the
attention of psychologists; and attempts to use the theories of higher
space in the explanation of physical and other phenomena make the
subject of interest to those working in other branches of science.
However, no one can consider himself completely equipped as a
mathematician without some knowledge of the geometries of higher
dimensions.

This is an explanation of the term "fourth dimension". The

" Ibid., p. 230.
>» Ibid., p. 230.
13 Manning, op. dL, pp. 188-169.
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persistent reader will perhaps repeat the question, "Is there a fourth
dimension?" If by this question he means, does a four-dimensional
world exist physically, all we can say is that it is highly improbable.
As a mental concept, the fourth dimension exists, but the world of
our physical experience includes only the three dimensions.
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The Problem Comer
Edited by Frank C. Gentry

The Problem Corner invites questions of interest to undergraduate
students. As a rule the solution should not demand any tool beyond
calculus. Although new problems are preferred, old problems of par
ticular interest are welcome providea the source is given. Solutions
of the following problems should be submitted on separate sheets of
paper before October 1, 1955. The best solutions submitted by students
will be published in the Fall, 1955, number of THE PENTAGON witn
credit being given for other solutions received. To obtain credit a
solver should affirm that he is a student and give the name of his
school. Address all communications to Frank C. Gentry, Department
of Mathematics, University of New Mexico, Albuquerque, New Mexico.

PROBLEMS PROPOSED

72. Proposed by Frank Hawthorne, Hofstra College, Hempstead,
New York.

(Note: An error occurred in the wording of this proposal in the Fall,
1954, number. It should have read as follows:)

A rectangular piece of sheet metal with integral dimensions
a and b has equal squares of side x cut from each corner. The sides
are then bent up to form a rectangular box with no top. The value
of x is chosen so as to make the volume of the box a maximum. If
x is rational and if a triangle is formed with sides a and b and the
angle C between them is 60°, show that the side c of this triangle
is integral.
77. Proposed by Paul W. Healy, University of New Mexico, Albu

querque, New Mexico.
Find all numbers less than 10,000 such that each may be

divided by 2 by prefixing the 2 and erasing the last digit. What is the
form of all such numbers?
78. Proposed by VictorL. Osgood, Oceanport, New Jersey.

From the Pythagorean Theorem 22 + 3! = 13. Find 3 more
pairs of rational numbers, the sum of whose squares is 13.
79. Proposed by Frank Hawthorne, Hofstra College, Hempstead,

New York.
(Adapted from a problem in the American Mathematical Monthly.)

An Englishman had walked one-third of the distance across a
railroad bridge 7920 feet long when he heard a train comingbehind
him at 45 miles per hour. He could just escape by running at uni
form speed to either end of the bridge. What was his name?

104
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80. Proposed by the Editor. (From Rietz and Crathorne, College
Algebra, Third Edition)
An aeroplane flying at 75 miles per hour and following a long

straight road, passed an automobile going in the opposite direction.
One hour later it overtook a second automobile. The automobiles
passed each other when the aeroplane was 100 miles away. If bodi
automobiles travel at the same speed, how far apart were they when
the aeroplanepassed the second one and what was their speed?
81. Proposed by the Editor. (From the First William Lowell Putnam

Mathematical Competition, April, 1938)
A can buoy is to be made of three pieces, namely, a cylinder

and two equal cones, the altitude of each cone being equal to the
altitude of the cylinder. For a given area of surface, what shape will
have the greatest volume?

SOLUTIONS

71. Proposed by Charles Pearsall, Student, Hofstra College, Hemp
stead, New York.
Given a triangle partitioned into n equal areas by lines parallel

to the base. If the altitude is h, show that: (1) the partitioning is
independent of the length a of the base; (2) the location of the lines
of division as measured along the altitude from the vertex is given
by the sequence:

hy/lfn, /j\/2/m, hyfifn, • • •, h\/jfn, • • ; h,

(/= 1,2, ••-,«).

Solution by the Proposer.
Take the vertex of the triangle as the origin of a rectangular

system of axes, the altitude along the positivex-axis so that the equa
tions of the sides will be y = m& and y = nux and the equation of
the base x = h. Number the partitioned areas from the vertex from
1 to «. Then the area of the ;'tn area

A, = J**'' (mi, - m2)x dx = [()«, - m.,)/2][x,2 - (x,.,)2]
Jxi-i

(; = 1, 2, 3, • • •, «);x0 = 0.

Equating these areas leads to xf = xf — x,2 = x3= — x22 = • • •
= x,2 - (xj-,)2 = (x,+1)2 - *j2 = • • • = fe2 - (x„-,)2. From this
follows the recursion formula (Xj*,)2 = 2xj2 — (xj_t)2. Hence
*i2 = jxi" and h* = n xt*. Consequendy xx = hfyfn and
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Xj = h*\fjfli. Since the base a was not used it is evident that the par
titioning is independent of it.

Also solved by S. H. Scsskin, Hofstra College; Robert Ander
son, Wayne University.
73. No general solution received. S. H. Sesskin of Hofstra College
discussed a number of special cases.
74. No solution received.
75. Proposed by Carl V. Fronabarger, Southwest Missouri State Col
lege, Springfield, Missouri. (Source unknown).

It is known that eleven of twelve objects have the same weight;
show how it can be determined by three weighings on a pair of bal
ances which object hasa weightdiffering from that of the others and
whether it is heavier or lighter.
Solution by S. H. Sesskin, Hofstra College, Hempstead, New York.

Divide the 12 objects into 4 groups of 4, 4, 3, and 1 objects
respectively and let these numbers designate the particular groups.
Let x be the object sought and let R be any object established to not
be x. Weigh the two 4's. (A) They balance, hence they are R's and
x is in 3 or 1. (a) Weigh 3 against 3 R's. (1) They balance and x is
1 and a diird weighing of x against an R will determine whether it
is an L (lighter) or an H (heavier). (2) They do not balance, x is
in 3 and is an L or an H according as 3 is lighteror heavier than the
3 R's. Weigh any two objectsof 3 againsteach other. If they balance,
the unweighedobjectis x, if they do not balance then x is the L or H
one as established above. (B) The two 4's do not balance. Let objects
in heavy group be H and others L. (a) Weigh 2 H and 1 L against
2 H and 1 R (from the 3 or 1). (1) If they balance, x is one of the
remaining L's and canbe determined as above. (2) If 2 H and 1 L is
heavier, then x is one of the two H's and can be determined in the
third weighing. (3) If 2 H and 1 L is lighter, then either x is die L
or x is one of the two H's in 2 H and 1 R. Weigh these two H's. If
they balance x is the L and is lighter, if they do not then x is the
heavier.

Also solvedby HarveyFiala, State School of Science, Wahpeton,
North Dakota; Robert Anderson, Wayne University. Sesskin pointed
out that this problem, with another solution, appears in Kraitchik's
Mathematical Recreations.
76. Proposed by S. H. Sesskin, Student, Hofstra College, Hemp
stead, New York.

Show that the square of the sum 1 + 2 + 3 4- • • • + n, for
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any v., diminished by the square of the same sum for w — 1 is equal
ton'.

Solution by Harvey Fiala, North Dakota State School of Sciences and
Robert Anderson, Wayne University. (Same solution)

Since the series are arithmetic, we have
[(»[» + l])/2]2 - [([» - l]»)/2]2 = w2/4 [(» + 1)'

- (w - l)2] = (n2/4)(4«) = ifs.
Also solved by Glen E. Swain, Central Missouri State College,

Warrensburg, Missouri.

€)

Editorial Note: Corrections listed below should

be made to the Fall 1954 issue of THE PENTAGON.

Page 38, line 20, the equation should be

(D2 - 2D + 4)y = 12x3 - 2x2 4- 2x + 44

Page 38, line 24, should be

yp = 3x3 4- 4x2 + 9



The Mathematical Scrapbook
Edited by H. D. Larsen

Mathematics is queen of the sciences and arithmetic the queen
of mathematics.

—Gauss

•=A =

Carl Friedrich Gauss

Theyear 1955 marks the centenary of the death ofCarl Fried-
rich Gauss, oneof the greatest mathematicians the world has known.
In commemoration of this event, Germany has issued a large-sized
postage stamp bearing a portrait of Gauss.

"Wonderful was his richness of ideas; one thought followed
another so quickly that he had hardly time to write down even the
most meagre outline. Atthe age of twenty Gauss had overturned old
theories and old methods in all branches of mathematics; but little
pains did he take to publish his results, and thereby to establish his
priority. He was the first to observe rigour in the treatment of in
finite series, the first to fully recognize and emphasize the impor
tance, and to make systematic use of determinants and of imaginar-
ies, the first to arrive at the method of least squares, the first to ob
serve the double periodicity of elliptic functions."

—F. Cajori
"When scarcely three years old Gauss, according to an anecdote

told by himself, followed mentally a calculation of his father's rela
tive in regard to the wages of some workmen, who were to be paid
for overtime in proportion to their regular wages, and, detecting a
mistake in the amount, he called out, 'Father, the reckoning is wrong,
it makes somuch,' naming the exact amount. The calculations were
repeated and it turned out that the child was correct, while all who
witnessed the performance were gready surprised. He retained an
extraordinary abihty for mental calculations throughout hfe and re
membered the first few decimals of the logarithms of all numbers,
sothat he was able to use the data of a logarithmic table in his mental
calculations, and hence he possessed a mental slide rule—a unique
possession.

"Gauss was not only one of the greatest mental calculators on
record, but he excelled equally in all branches of pure and applied
mathematics. At the age of twenty he discovered the first rigorous
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proof of the fundamental theorem of algebra, which affirms that
every algebraic equation has as many roots as its degree, and at the
ageof twenty-four he published his greatwork on the theory of num
bers under the tide Disquisitiones Arithmeticae."

— G. A. Miller

= A =
Peter the Great, of Russia (went so far as to prohibit any noble

man from marrying until he had passed an examination in geometry,
arithmetic and navigation.

—Toynbee

= A =

Epitaph
Interred here arc:

2 Grandmothers with their 2 granddaughters,
2 Husbands with their 2 wives,
2 Fathers with their 2 daughters,
2 Mothers with their 2 sons,
2 Maids with their 2 mothers,
2 Sisters with their 2 brothers.

How many are buried here?
= A =

Are you familiar with the lives of the great mathematicians?
Then answer the following.

1. Who was the greatest Irish mathematician?
2. Who created projective geometry in a Russian prison?
3. Who advocated lying in bed until a late hour every morn

ing?
4. Who created non-Euclidean geometry?
5. Who contributed much to mathematics, yet considered

it merely as recreational?
6. Who was the Prince of Mathematicians?

7. Who did Napoleon designate as "the lofty pyramid of
mathematical sciences?"

8. Who, though blind, continued his mathematical work?
9. Who was the most prolific mathematical writer in history?

10. Who insisted on the choice of "10" as the base for the
metric system?

•aSmuStr] 'japg 'jajng 'zSwsjSvj 'ssneQ
'uojmo\! 'njSAaqoeqoq 'sajjeosaQ 'japauoj 'uoijiurefj :SH3MSNV
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"Infinite series were used by many mathematiciansbefore they
had any clear ideaof what we call convergence and divergence."

—E. C. Titchmarsh

= A =
"It was Sir William Thomson (before he became Lord Kelvin)

who first introduced the practice of writing a large or small number
in the form (a number lying between 1 and 10) x (a power of 10)."

—R. F. Muirhead

= A =
Show that the curve y = mx3 — (1 4- 8»i)x 4- 4(4w 4-1)

passes through a fixed point A and determine its coordinates.
= A =

Circles A, B, and C of radii a,b,c axe mutually tangent. Let D
be a larger circumscribed circle tangent to each of die three smaller
circles. Show that its radius is

dbc

2y/ab~cCa + b+~c) — (<ri> + fo + ac)
= A =

A merchant marked his merchandise in code, replacing each
digit by a preassigned letter. His new bookkeeper made out the fol
lowingbill using the code. What were the correct figures in the bill?

e gimcracks at ib<t $h.if
c baubles at ha^ .dh
g GeeGaus at j^ .bg

Total $i.ed
—Am. Math. Month.

= A =
There are five men in a poker game—Brown, Jones, Perkins,

Turner, and Riley. Each smokes a different brand of cigarettes—
Chesterfields, Old Golds, Camels, Luckies, and Raleighs—not nec
essarily respectively. They had at the start of the game, 3, 6, 8, 15,
and 30 cigarettes apiece, again not necessarily respectively. At a cer
tain moment during the game, when each man had just finished a
cigarette—

a) Riley, who has smoked one-half of his cigarettes, has smoked
one less than Turner.

b) The man who smokes Chesterfields had at the start twice
as many cigarettes as he now has, plus one-half as many as he now
has, plus 2V4 cigarettes.

c) The Camel smoker asks Brown to pass him a match.
d) Each man has at least 2 cigarettes left.
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e) One man absent-mindedly lights the tipped end of his fifth
cigarette.

f) The Lucky smoker has smoked more than Perkins. In fact,
the Lucky Smoker has smoked two more than the next heavier
smoker.

g) To the number of cigarettes Turner had originally, add the
number Riley smoked and the number of Chesterfields left, then
subtract one more than the number of Lucldes smoked. The result
is the number of cigarettes Brown had originally.

What brand did each man smoke? How many cigarettes did
each man have at the start? How many does each man have left?

—Scripta Mathematica

= A =
"Walking the other day to take the air,

(Bright shone the sun, the weathervery fair.)
At distance I a dismal cloud did spy,
Which (as I thought) against the wind did fly.
While I upon my watch did look to see,
How time did pass away; Lo! instantly,
A dreadful flash of lightning pierc'd the cloud;
Just fourteen seconds after which aloud
The thunder roar'd: now I inform'd would be
How many feet the cloud did burst from me?"

= A =

€)
'The majority of ideas we deal with were conceived by others,

often centuries ago. In a great measure, it is really the inteUigence
of other people that confronts us in science."

—D. Mach



The Book Shelf

Edited by Frank Hawthorne

From time to time there are published books of common interest
to all students of mathematics. It is the object of this department to
bring these books to the attention of readers of THE PENTAGON.
In general, textbooks will not be reviewed and preference will be
given to books written in English. When space permits, older books of
proven value and interest will be described. Please send books for
review to Professor Frank Hawthorne, Hofstra College, Hempstead,
New York.

Mathematics and Plausible Reasoning, G. Polya; Volume I: Induc
tion and Analogy in Mathematics; Volume II: Patterns of
Plausible Inference, Princeton University Press (Princeton,
New Jersey), 1954, Volume I, 16 4- 280 pp., $5.50; Vol
ume II, 10 + 190 pp., $4.50; die set, $9.00.
In these two volumes, Professor Polya continues the develop

ment of a theme with which he has been concerned for many years
and to which he has devoted a number of articles and two other
books. Readers of THE PENTAGON will undoubtedly be familiar
with Polya's How to Solve It which appeared several years ago. The
Aufgaben and Lehrsatze ans der Analysis written jointly with G.
Szego and one of the reviewer's favorite mathematical books, was an
earlier excursion, albeit in a more advanced and more restricted field,
into the territory with which the volumes at present under review are
concerned; namely, the art of mathematical discovery and proof.

To understand Polya'spurpose fully, let us recall the distinction
between the science of mathematics and the art of practicing it. Great
discoveries of our age are that mathematics is the collection of math
ematical sciences and that a mathematical science is an abstract
postulational system in which one begins with a system of postulates
and, by the use of a logic, deduces the consequences of these postu
lates! Euclid's Elementsis the earliest, though a somewhat imperfect,
example of such a postulational system. However, it took the discov
ery two millenia later by Bolyai and Lobachevsky Of the possibility
of non-Euclidean geometries to shock mathematicians into the begin
ning of an understanding of the true nature of their science. The
next century saw the understanding develop more fully and was high
lighted by the publication of Hilbert's Foundations of Geometry. It is
perhaps difficult for us today to appreciate fully the impact of Hil
bert's book and the novelty to mathematicians at that time of what
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is today a commonplace of mathematical thinking.
The witty wife of a college dean once described to the reviewer

her recollection of a college course in mathematics as being one in
which the instructor said: "So and so and so and so and so. See?"
This is indeed the structure of a mathematical demonstration. To
prove that the postulates, which in conjunction form a sentence
which we may represent by P, imply a consequence Q, one forms a
sequence of propositions P„ P2, ♦ • •, Pn such that P implies P,, P,
implies P2, • • ♦, Pn implies Q. The art of constructing proofs in this
manner is one of the two elements of the art of mathematics to which
Polya gives enthusiastic and inspired attention. The second element
is mathematical discovery: the art of conjecturing propositions Q
which, asone hopes todemonsrate, are implied by P.

The art of mathematical discovery employs a type of reasoning
different from that used in formal deductive reasoning. Polya calls
this plausible reasoning. In Volume I, inductive and analogical rea
soning are examined and profusely illustrated. The roles of generali
zation, specialization, and analogy in plausible reasoning are consid
ered and illustrated by a wealth of examples chosen from geometry,
the theory of numbers, and what Polya calls "physical mathematics".
The reader who follows the discussion attentively and sharpens his
wits on the examples at the conclusion of eachchapter (solutions are
given in an appendix) will have added considerably to his capacity
for practicing the art of mathematics.

Volume II is concerned with the explicit formulation of various
patterns of plausible reasoning suggested by the examples of the first
volume. An analysis of the relation between the calculus of probabil
ity and the logic of plausible reasoning leads Polya to the conclusion
that these patterns "are general points that, according to the usage of
good scientists, are admissible in a scientific discussion, with a view
to reasonably influencing the credibility of the conjecture discussed."
The book ends with this exhortation: "The result of the mathema
tician's creative work is demonstrative reasoning, a proof, but the
proof is discovered by plausible reasoning, by guessing • • •. I address
myself to teachers of mathematics of all grades and say: Letus teach
guessing!"

In the opinion of this reviewer, neither teacher nor student of
mathematics can do better in perfecting his grasp of the art of
guessing than to read carefully Polya's work on Mathematics and
Plausible Reasoning.

—Max Coral
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Relaxation Methods, D. N. de G. Allen, McGraw-Hill Book Com
pany, Inc. (330 West 42nd St.) New York, 1954, 246 pp.,
$7.50.
This book is a lucid exposition of numerical techniques, re

cently developed and in common use with practicing engineers and
mathematicians both here and in Great Britain. While no proofs are
given for die convergence or even the derivation of the useful itera
tive methods contained, the book fills a definite and long felt need of
engineers and technical students by compiling and organizing the
basic techniques of the "relaxation method", the means of prepara
tion of mathematical problems for the execution of the methods, and
finally the application of the procedure to an entire series of old and
new problems.

The method of relaxation derived its unique name from a literal
description of the physical process involved. In its original form, as
applied to the deformation of redundant structures under load, the
method consisted of rigidly fixing each unknown in an arbitrarily
constrained fashion, while momentarily "relaxing" one variable and
adjusting this value to satisfy the local conditions imposed by the
equation under study. In this manner, by successively permitting
each variable, or unknown, to undergo slight adjustments, keeping
all others fixed, an overall solution was eventually arrived at. This
crude method, first proposed by R. V. Southwell and his associates
proved to be so successful that it became universally adopted in the
field of numerical analysis. This trend of widespread acceptance has
continued in spite of the fact that little or no work has been done to
place the theory on a firm and rigorous foundation.

Starting with an elementary application to the solution of a
pair of simultaneous algebraic equations in two unknowns, the author
proceeds to develop the full usefulness of the method by considering
larger systems of equations, ordinary and partial differential equa
tions, characteristic vector problems, etc. Several of the common pit
falls are explored and illustrated. Methods are presented to increase
the rate of convergence of a solution, how to overcome a "divergent"
process resulting from the iteration technique, and finally methods
for increasing accuracy. Since the method can only be applied to a
system of simultaneous linear equations, every problem must first be
translated into this form before a solution is obtainable. Consequendy
a good portion of the book deals with setting up problems so that the
method can be applied. For example, a differential equation is first
replaced by an equivalent difference equation (equivalent in the
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sense that the solution obtained at a finite number of points ap
proaches the true solution in the limit as the number of points is in
creased without limit). The difference equation is now a system of
algebraic equations, with the boundary conditions acting as the non-
homogeneous vector and the unknowns being the values of the solu
tion at the given finite number of points. While no mention is made
of the application to the field of integral equations, the extension is
readily made.

The book is well recommended for correlative reading in
courses in engineering, applied mathematics, and numerical proce
dures. The book reads easily and should prove interesting and even
stimulating to students in linear algebra, differential equations, and
physics.

—Samuel Pines
Introduction to Mathematical Thinking, Friedrich Waismann, Fred

rick Unger Publishing Company (105 East 24th Street) New
York 10, 245 pp. $4.50.
The majority of text books used today by the students of under

graduate mathematics are designed primarily to give them techniques
of operations and efficiency in these techniques. The uninterested
and undiscerning student is satisfied with a mere proficiency in ma
nipulations and rarely does he question the basis or validity of the
operations he executes. To the discerning student many questions
arise regarding the foundations on which the science rests. Unfor
tunately, often he too will "proceed with faith", hoping "understand
ing will follow". The purpose of this book is to answer questions
which arise such as, the principle of complete induction, the necessity
of the Bolzano-Weierstrass theorem, and many others. As Karl Men-
ger remarks in the preface, die reader "will gain a fundamental in
sight into the methods of dealing with some very basic questions,
above all such diat are of interest to the philosopher."

The method used by the author in treating material is descrip
tive. There are very few proofs contained in the work and these are
given descriptively and not formally as in Wilder's Foundations of
Mathematics or VVeyl's Philosophy of Mathematics and Natural Sci
ence. Hence the book will not discourage those who are dealing with
these "foundations" for the first time. In general, the order of con
tents follows that of most classical works on the calculus, approach
ing the calculus from the concept of number.

The contents are well integrated. To the reviewer this is re
markably evident in the chapter on "remarkable curves". This chapter
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would seem to be of special interest to the undergraduate. Unfor
tunately the appendix to this chapter, "What is Geometry?", is far
too short. The chapter on the various schools of mathematical phi
losophy, although excellently organized, is also too short. At first
reading some of the ideas of the first chapters seem to be out of their
logical place, but considering that the author is writing primarily for
a "philosophically minded observer" and not a trained mathematician,
they fit in wellwith the overall purpose of the book.

According to the experience of the reviewer this book would be
interesting and stimulating to an undergraduate, especially one who
has completed a basic course in the calculus. It could also very well
serve as a basic text book for a madiematics course in the liberal arts
program. There is much material in this relatively shortbook and fur
ther development of some of the ideas mentioned therein could be
instructive topics for seminars.

—Damian Connelly

BOOKS RECEIVED BY THE BOOK SHELF EDITOR
Tlie Elements of Probability Theory. Harald Cramer, John Wiley

and Sons, Inc., (440 Fourth Avenue) New York, 281 pp.,
$7.00.

An Introduction to Deductive Logic, Hugues Leblanc, John Wiley
and Sons, Inc., (440 Fourth Avenue) New York, 9 4- 574 pp.,
$4.75.

Mathematics for Technical and Vocational Schools, Samuel Slade
and Louis Margolis, John Wiley and Sons, Inc., (440 Fourth
Avenue) New York, 9 4- 574 pp., $4.48.

©

"When I use a word, it means just what I choose it to mean—
neither more, nor less."

—L. Carroll (C. Dodgson)



Installation of New Chapter
Edited by J. M. Sachs

THE PENTAGON is pleased to report the installation of Vir
ginia Alpha Chapter of Kappa Mu Epsilon.

VIRGINIA ALPHA CHAPTER

Virginia State College, Petersburg, Virginia

Virginia Alpha Chapter of Kappa Mu Epsilon was installed and
nineteen charter members were initiated at Virginia State College on
January 29, 1955. Professor E. Marie Hove of Hofstra College, Na
tional Secretary of Kappa Mu Epsilon, served as the installing offi
cer assisted by Professor Louise S. Hunter and Professor R. D. Mc
Daniel of Virginia State College.

A banquet followed the installation with guests representing
the faculties of the schools and divisions of the college, the Walter
Johnson Mathematics Club, and the other honor societies of the col
lege. Mr. Benjamin Williams, Chapter President, acted as toastmas-
ter. Speeches of welcome were made by representatives of the other
honor societies and the responses for Kappa Mu Epsilon were made
by Miss Lottie J. Griffin, Chapter Vice-President. Professor E. Marie
Hove addressed the group on "The History of Kappa Mu Epsilon."

The charter members of Virginia Alpha are Dorothy Batts,
Emma D. Breedlove, Gladys M. Brown, College President R. P.
Daniel (honorary member), Rhcba Galloway, Lottie Griffin, Doro
thy J. Harris, Dr. J. M. Hunter, Dr. Louise S. Hunter, Serelda I.
James, James H. Johnson, Mary Hill Johnson, H. M. Linnette, B. S.
Lowe, Dr. R. R. McDaniel, Dr. A. M. Myster, C. A. Taylor, Mar-
celle M. Walker, and Benjamin Williams.

The chapter officers are Benjamin Williams, President; Lottie
J. Griffin, Vice-President; Emma D. Breedlove, Secretary; Gladys
M. Brown, Treasurer; Dr. Louise S. Hunter, Corresponding Secre
tary, and Dr. R. R. McDaniel, Faculty Sponsor.

We wish to extend a most hearty welcome to Virginia Alpha
and to wish them great success in our fellowship.
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Kappa Mu Epsilon News
Edited by Laura Z. Greene, Historian

Alabama Beta held its annual Homecoming for members in
October. The meeting was well attended and they feel it is a most
worthwhile and enjoyable undertaking.

- 4- -

Colorado Alpha holds an annual picnic in the spring. Members
of the freshman class who have shown a special interest in mathe
matics during the year are special guests.

Dr. George Polya, Professor Emeritus of Stanford University
was a guest of Colorado Alpha recently. He gave a series of lectures
to members of the mathematics classes.

- 4- -

Dr. C. N. Mills retired last August from teaching at Illinois
State Normal University after twenty-nine years of service. It was
under his direction that die Illinois Alpha Chapter was installed in
1933. Dr. Mills served as National Treasurer of Kappa Mu Epsilon,
1933-35. At the present time he is teaching mathematics at Augus-
tana College.

- 4- -

Illinois Delta presented "Apologia Mathematica" written by Ber-
nadine Arseneau on a radio broadcast from W.J.O.L., Joliet, Febru
ary 22.

Sister M. Ursuline is now advisor of the Illinois Delta Chapter.
- + -

Twelve members were initiated at the annual Kappa Mu Epsi
lon banquet for theIndiana AlphaChapter. Mr. Lester M. Rouch
spoke on "The Use of Mathematics in the Problems of Everyday
Life."

Indiana Alpha holds five regular meetings a semester.
-4--

IndianaBeta will sponsor a public lecture by Dr. Frank Ed-
mondson, head of the Astronomy Department of Indiana University,
to be held in the new Holcomb Observatory and Planetarium, April
14. This will follow the annual dinner of the chapter.

- + -

Kansas Beta is planning a newsletter to be sent to all alumni.
This practice was followed before the war, and is now being revived.

Carol Law, a freshman, received a book, Standard Mathematical
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Tables, as the Underclassman Award for having the highest scho
lastic standing.

- + -

Kansas Gamma published a special edition of The Exponent
which gave detailed information of Kappa Mu Epsilon, its purposes,
requirements, and advantages.

- 4- -

George Jones, a member ofKansas Delta, received the 1954
award for the highest scholastic standing in the freshman mathe
matics classes.

Terry McAdam, corresponding secretary of Kansas Delta Chap
ter, is the author of Very Much Alive, arecent publication of Hough
ton-Mifflin. It is the story of the reactions of several paraplegics in
a veteran's hospital where Mr. McAdam spent several months fol
lowing an accident which paralyzed him permanendy.

Margaret E. Martinson, instructor of mathematics at Washburn
University, is on a leave of absence for the year 1954-55 and is
studying at the University of Wisconsin.

- + -
Michigan Beta again sponsored the Freshman Mathematics

Award. The prize, Mathematics and the Imagination, was given to
Tom Lee.

- 4- -

Mississippi Gamma reports the following officers for the year
1954-55: President, Charles Young; Vice-president, Dorothy Proc
tor; Secretary-Treasurer, Shannon Clark; Reporter, Spurgeon Brad
ley; Faculty Adviser, Professor Harold L. Leone; and Corresponding
Secretary, Professor Jack D. Munn.

A custom which helped tomaintain interest in the chapter is the
requirement that all members give a paper during their senior year.
Mississippi Gamma Chapter feels that this provides very worth
while programs.

- 4- -

Missouri Beta sponsored a Kansas-Missouri meeting of Kappa
Mu Epsilon May 1, 1954. The chapters participating were: Kansas
Alpha. Kansas Beta. Kansas Gamma. Kansas Delta, Missouri
Alpha. Missouri Beta, Missouri Gamma. Missouri Epsilon.
Ninetv members attended. Eight student papers were presented.
Professor Tucker gave the address, "Whither Mathematics?", at the
luncheon meeting. Both student and faculty members met in discus
sion groups. — + —
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New Mexico Alpha initiated 30 members at thelastmeeting in
the spring of 1954.

- 4- -

Professor Morris Kline of New York University will be the
speaker at theannual banquet on March 25 of NewYork Alpha.

- 4- -

The Wisconsin Alpha Chapter of Kappa Mu Epsilon held a
mathematics contest on April 10, 1954, under theauspices ofMount
Mary College. Senior students from high schools in Milwaukee and
vicinity were invited to participate and fourteen schools responded,
ten of which were represented by a team of three.

The examination consisted of twenty problems involving arith
metic, algebra, and geometry, arranged in five groups of four prob
lems each. Each set was timed according to relative difficulty and
each set was checked for correct solutions while the next set was
being solved. In this way it was possible to determine the winners
veryshortly after the last set had been finished.

Riverside and Messmer High School teams, both from Milwau
kee, tied in the contest, and after three more bouts Riverside won by
one point. The winning team was awarded a plaque with the year
and the name of its school engraved on it. It is to be kept by that
school until the next contest, which we hope to hold next year.

The six highest individual contestants each received a medal.
These were Ronald Shaefer of Messmer with highest score; Ann
Scherr of Messmer, second; and Thomas Howell and Charles Fran-
chino, both of Riverside, and John Martin and Karen Gustafson of
Immaculate Conception High School, Elmhurst, Illinois, tied for the
next four prizes.

All the participants seemed to enjoy the challenge given them in
this contest and felt that they had gotten a real inspiration.
Wisconsin Alpha hopes to make this an annual affair to encourage
and stimulate high-school students in their study of mathematics.



Program Topics
(Spring Semester 1953-54 — Fall 1954-55)

Colorado Alpha. Colorado A and M, Fori Collins
Snow Plow Problem, by Keith Gardels
Maximum and Minimum, by David Wait
Three Problems in Analysis, by Peter T. Work
Transcendental Numbers, by Ted Speiser
Special Lectures, by Dr. George Polya, Leiand Stanford University

Illinois Beta. Eastern Illinois Stale College. Charleston
The Binary System, by Miss Hendrix
The Use of Binary Numbers in Electric Computers, by Mr. Carl

Willam
The Placement of Graduates toith Training in Mathematics, by

Dr. Zeigel
Rectangles, Continued Fractions, and Fibonacci Numbers, by

Dr. Ringenberg and Mr. David Brown
Problems were proposed and solutions presented by students. Miss

Joan Wyack, Jess Orvedahl, Bob Thrash
Illinois Gamma, Chicago Teachers College, Chicago

Discussion of the problem, "The Case of the Playful Children"
Screwballs and Inertia in Mathematics, by Dr. Goldsmith
Codes and Ciphers, by Dr. Sachs

Illinois Delta. College of St. Francis, Joliet
Christopher Clavius, by Mary Ann Hasse
The Discovery of All Dark Things, by Patricia McLaughlin
Magic Squares, by Anne Rademacker
Point Set Theory, by Sister M. Claudia, O.S.A.
History of the Club, by Sister M. Ursuline, O.S.A.
Pentagon Review, by Betty Anselmino
Book Review "The Diary and Sundry Observations of Thomas

Edison" by Runes, Sister M. Rita Clare, O.S.A.
Periodical Review from Mathematics Teacher, by Joan Nahas

Indiana Alpha. Manchester College, North Manchester
Recent Solar Eclipse, showing slides which he took in the path of

totality at Minneapolis, by George Arnold
Some Mathematical Fallacies, by David Neuhouser
The Teaching of Arithmetic During the Past Century, by Profes

sor Merritt
On the Mathematics Books in our Library—A challenge to our

KME members to use these books, by Professor Dotterer
Indiana Beta, Butler University. Indianapolis

Tour of New Holcomb Observatory and Planetarium Astronomy,
by Dr. Harry Crull

Mathematics in Medicine, by Robert Crawford
Some Topological Properties of Continuous Functions, by Dr. R. H.

Oehmke
Boolean Algebra, by Richard Thompson
Statistical Astronomy, by Dr. Frank Edmondson
Curve Fitting and Empirical Equations, by James Rogers

Iowa Alpha, Iowa State Teachers College, Cedar Falls
The Seven Bridges of Konigsberg, by Diane Sorenson
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A Condensation of the Cartesian Coordinate System, by John
De Jong

La Courbe du Diable, by Jame Lockwood
Mnemonics, Magic, and Mathematics, by Wayne Stark
The Geometry of Rene Descartes, by Lyman C. Peck
The Game of Nim, by Deloy Benson
Pivotal Condensation Metliods of Ewoluating Determinants and

Solving Linear Systems of Equations, by Fred W. Lott
Iowa Beta, Drake University, Des Moines

Probability of Winning Craps, by Paul Gilman
Boolean Algebra, by Ted Kowalchuk
How Our NumeraU Developed, by Walt Whitman
Magic and Numbers, by Richard Haun
Mathematical Relations in Music. Bill Manning
A'umber Systems, by Dr. Basil Gillam
Mechanical Solution of a Cubic Equation, Dean Dunsworth

Kansas Alpha. Kansas Stale Teachers College, Pittsburg
Probability, by Don Arnold
Logic, by Edgar Henry
Leonardo Da Vinci as a Mathematician, by Miss Helen Kriegsman
Quality Control, by William Goodwin
Introduction to Elementary Logic, by Tome Martin
Uses of Mathematics in a Ballistics Laboratory, by J. D. Haggard

Kansas Beta. Kansas Slate Teachers College, Emporia
Topology, by Homer Hackett
Mathematics of Primitive Americans, by Vernie Witten
Mathematical Oddities, by Professor Lester Laird
Grinding Telescope Lenses, by Dr. O. J. Peterson

Kansas Gamma. Mount St. Scholastic* College, Atchison
Social Security, by Bernadine Law
Insurance, by Jo Ann Fellin
Taxation, by Donna Rump
Movie on Home Ownership, "Every Seventh Family"
Credit Buying and Small Loans, by Virginia Breland and Bettv

Gross
Mathematical Recreations, by Bernadine Law
Job Possibilities, by Virginia Breland
Teaching of Mathematics, by Jo Ann Fellin
Pi and Probabilities, by Carol Law
System of Winning at Games of Chance, by Joan Carvalho

Kansas Delta, Washburn University. Topeka
Mathematics in the Field of Engineering, Mr. William Mains
Counting Infinities, by Kirk Romary
History of the Theory of Numbers, by Barbara Bartley
Some Mathematical Fallacies, by Dick Admussen
From Oog to Googool, by Darrell Parnell
How to Get a Bright Idea, by Dr. W. C. Foreman, Baker University
The IBM Computers, by Mr. Beverly Brown
Some Topics in Topology, by Dr. R. H. Bing, University of Wis

consin

Louisiana Beta. Southwestern Louisiana Institute, Lafayette
Formation of Empirical Formulae and Equations, by Mr. Lloyd

Vincent
Fluid Dynamics Developments, by Dr. P. A. Chieri
Plane Collineations, by Dr. Merlin M. Ohmer
Roots of an Algebraic Equation, by Mr. Gene P. LeBlanc
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The Electronic Analogue Computer, by Dr. Z. L. Loflin
Affine Trigonometry, by Dr. W. L. Duven, Jr.
The Special Theory of Relativity, by Dr. Paul A. Delaup

Michigan Beta, Central Michigan College, Ml. Pleasant
The Circular Slide Rule, by Erland Engstrom
Jumping Off at Infinity, by Donald Jennings
Mathematics and Religion, by James Bower
Computing Machines, by Jerre Moore
The Fourth Dimension, by Helena Kayward
Our Magazine, THE PENTAGON, by Dana Sudborough

Mississippi Gamma. Mississippi College, Halliesburg
Development in Power Series, by Robert Cox
Quadratic Surds, by James Wheeler
Analog Computers, by Shannon Clark
Fotiriers Division, by Ralph Everett
Cylindrical Coordinates, by Gene Hiller
Idempotent Semi-groups, by S. Bradley
Graphical Group Representation, by John Steele

Missouri Alpha. Southwest Missouri Stale, Springfield
Some Examples of the Application of Fourier Series, by Robert

Ayres
Natural Logarithms, by Charles Roberts
Symbolic Logic, by Bill Northrip
Representabilitj/ of any Non-negative Integer as the Sum of Four

Squares, by Dr. C. V. Fronabarger
Projectile Geometry, by Charles Roberts

Missouri Beta, Central Missouri Stale College, Warrensburg
The dumber -a, by Royce Bradley
Et?otutes, by Ralph Coleman
The Gambling Scholar, by Margaret Handley
Oblique Coordinate Systems, by Jean Crecelius
Algebra of Sets, by Glen Swain
Our Present Calendar System, by Bill Klingenberg
Incommensurables, by Paul Heider
The LORAN Method of Navigation, by Dr. Robert Gray
Yellowstone Park, by Jean Crecelius
Cosmic Rays, by Bill Vardeman
History of Geometry, by Elizabeth Baile
Life of Einstein, by Duane Endicott
Perfect Numbers, by Homer Hampton
Application of Mathematics to Modern Automobile Engines, by

John Graham
Trisecting an Angle, by Dennis Hough
Prediction of Success in College Mathematics, by Shirley Loeven
Whether the Action on the Tangent Line to the Helix is Torsion

or Bending, by Jim Rush
Nebraska Alpha. Nebraska Stale Teachers College. Wayne

Mechanical Teaching Devices, by Miss Beulah Bornhoft
Puzzles, Riddles, and Recreations

New Jersey Beta, Slate Teachers College, Monlclair
The Development of Critical Thinking Through Geometry, by

Dr. Harry Lewis
Women in Mathematics, by Dr. Edna Kramer Lassar
Topology, by Dr. Bruce E. Meserve
Mathematics in Economics, by Dr. Harold Sloan
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New Mexico Alpha. University of Now Mexico, Albuquerque
Film: The Univac, by Dr. Hank Schutzberger, Sandia Corporation
The Mathematical Theory of Digital Computers, by Gustavus

Simmons
New York Alpha. Hofstra College. Hempstead

The General Electric Fellowships for Teachers of Mathematics,
by Gertrude V. Decker

Taxicab Geometry, by Morris Rosen
The Simplest Problem of the Calculus and its Relation to Some

Nice Triangles, by Frank Hawthorne
North Carolina Alpha. Wake Forest College, Wake Forest

Fermat's Method of Descent, by Dr. Gene Medlin
Boolean Algebra, by Tom Morris
Geometry with Respect to Location, by Joanne Till
Curve Tracing, by Dr. Sell
Determination of Logarithms, by Joe Stokes
Peano's Axioms, by Bob Johnson
Some Problems Encountered in Schools by Mathematics Teachers,

by Tom Reynolds
Perfect Numbers, Rosa Faison

Ohio Alpha, Bowling Green Stale University. Bowling Green
Mathematics of Insurance, by Professor Harry Mathias
Student Papers, by Charles Repp and David Slough
Some Experiences of a Traueling Mathematician, by Professor

Vaslav Hlavaty
A Mathematical Library, by Professor Frank C. Ogg
Mathematical Engineering, by Mr. A. B. Clymer
Mathematics in Ceramics, by Professor Charles Lakofsky
Chemistry, Mathematics, and Glass, by Dr. Donald E. Sharp

Ohio Gamma. Baldwin-Wallace College, Bexea
Movie: Geometry for You
Topology, by Alan Ruess
Mathematics in Teaching, by Mr. Whitacre
Beyond the Googol, by Marion White
Mathematics of Insurance, by Charles A. Crouse
Statistical Methods in Quality Control, by Mr. George Hoy
Program for Graduate Mathematics Teachers in Secondary Educa

tion, by Mr. Richard Andriaek
Oklahoma Alpha, Northeastern State College. Tahlequah

Review of Algebra, Trigonometry, and Analytic Geometry, by
Howard Cummings

Mathematics in Atomic Research, by Stanley Thompson
Optics, by Dr. Luther Strauhun
History of Mathematicians, by Claire Harrison
Roots of Numbers, by Don Baker
Opportunities with Mathematics, by Max Lowery
Mathematical Quizzes, by Gary Spears
Scientific Movies, by August Khilling
Use of Mathematics in Astronomy, by L. P. Woods

Pennsylvania Beta, LaSalle College, Philadelphia
Point Set Theory, by John Mackey
Fundamental Theorem of Algebra, by John McHenry
Maxwell's Equations, by Anthony Dennison
Philosophy of Mathematics, by Brother Damian

Texas Beta, Southern Methodist University. Dallas
A Career in Electronic Computing, by Jean Harrison
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Ramanujan, by Sterling Middings
Ewery Triangle is Equilateral, by Beth Upham
Magic Squares, by Don Hansen
Non-Euclidean Geometries, by Malcom Bowers
Mathematics Journals in Our Library, by Martha Atteberry
A Calculus Problem in Physical Chemistry, by Pat Krebs
Jobs for Mathematics Majors, by Barbara Jean Cook
Fulbright Scholarships, by Barbara Jean Cook
The Fields of Mathematics, by Mary Elizabeth Cozby
A Four-Dimensional Cube, by Dr. C. J. Pipes

Texas Delta, Texas Christian University, Fort Worth
Pythagorean Theorem, by Professor Charles R. Sherer
Life of Pythagoras, by Roy House
Life of Cayley, by Patricia Ward
Meteorites, by Mir. Oscar Monnig
Mathematics in Chemistry, by Dr. E. R. Alexander
Number Bases, by John Douglass

Texas Epsilon, North Texas Stale College. Denton
IBM Calculators, by Paul W. Kaplund
Square Root of 2 by Several Methods, by Richard Brodie
Number Systems, by Howard Kennedy
Actuarial Mathematics, by William Battle
Logic, by Dr. R. B. Escue
On the Trisection of an Angle, by Genero Gonzalez

Wisconsin Alpha. Mount Mary College, Milwaukee
Euclidean Algorithm, by Kay Cunningham
Use of the Slide Rule, by Sister Mary Felice
Types of Multiplication: Lattice, Russian, etc., by Evelyn Donegan
inequalities, by Vivian Woyak ,. „ .
Adding Complex Numbers, Algebraically and Graphically, by

Luanne Bauer
Boolean Algebra, by.Ruth Renwick

©
"In my opinion a mathematician, in so far as he is a mathema

tician, need not preoccupy himself with philosophy—an opinion,
moreover, which has been expressed by many philosophers."

—Henri Lebesque



Instructions for Preparation of Manuscripts
Manuscripts prepared for use in THE PENTAGON should be

prepared in a manner to lessen the editorial burden. The author
should accept the responsibility ofmaking many of the decisions on
punctuation, wording, and organization which too frequendy fall
upon the editor.

Attention to the following considerations will ease the burden
on author and editor:

1. Editorial correspondence and manuscripts should be ad
dressed to:

C. V. Fronabarger, Editor
THE PENTAGON
Southwest Missouri State College
Springfield, Missouri

2. Manuscripts should be typed double-spaced on good quality
white paper with one inch or one and one-half inch margins.

3. Drawings to accompany an article should be on good quality
white paper in black India ink. Drawings should be about twice as
large as it is to appear in the published article. They should be pro
tected against folding or crushing in the mail.

4. References and footnotes should be numbered consecutively
and placed at the bottom of the page. Prepare footnotes according to
the following style:

To a book:

•Florian Cajori, A History of Mathematics, (London: The Mc
Millan Co., 1938), p. 150.

To a periodical article:
'J. P. Nikonow, "Is Space Curved?" Scientific American,

147:278-279, November, 1952.
•Ralph Farley, "Visualizing Hyperspace", Scientific American:

160:148-149, March, 1939.
To a technical bulletin, pamphlet, or similar publication:

'Guidance Pamphlet in Mathematics, The National Council of
Teachers of Mathematics, Washington, D.C., 1953, p. 16.

5. For a bibliography at the end of an article use the following
as a guide:

For a book:

Allen, D. N. de G., Relaxation Methods, New York: McGraw Hill
Book Co., Inc., 1954, 246 pp.

For a periodical article:
Sesskin, S. H., "An Introduction to Cryptanalysis", The Pentagon,

14:16-26, Fall, 1954.
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ACTIVE CHAPTERS of KAPPA MU EPSILON*

Chapter
Oklahoma Alpha
Iowa Alpha
Kansas Alpha
Missouri Alpha
Mississippi Alpha
Mississippi Beta
Nebraska Alpha

Illinois Alpha
Kansas Beta

New Mexico Alpha
Illinois Beta

Alabama Bota

Alabama Gamma

Ohio Alpha
. Michigan Alpha

Missouri Beta

South Carolina Alpha
Texas Alpha
Texas Beta

Kansas Gamma

Iowa Beta

New lersey Alpha
Tennessee Alpha
New York Alpha
Mlchiqan Beta
Illinois Gamma

New lersey Beta
Illinois Delta

Michigan Gamma
Kansas Delta

Missouri Gamma

Texas Gamma

Wisconsin Alpha

Texas Delta

Ohio Gamma

Colorado Alpha
California Alpha
Missouri Epsilon
Mississippi Gamma
Indiana Alpha
Pennsylvania Alpha
North Carolina Alpha
Louisiana Beta

Texas Epsilon

Indiana Beta

Kansas Epsilon
Pennsylvania Beta
California Beta

Virginia Alpha

Location Installation Date
Northeastern State College, Tahleguah April IS, 1931
State Teachers College, Cedar Falls May 27, 1931
State Teachers College, Pittsburg Ian. 30, 1932
Southwest Missouri State College, Springfield May 20, 1932
State College for Women, Columbus May 30, 1932
Stato College, State College Doc. 14, 1932
State Teachers College, Wayne Ian. 17, 1933
Illinois Stale Normal University, Normal Ian. 26, 1933
State Teachers College, Emporia May 12. 1934
University of Now Mexico, Albuquerque March 28, 1935
Eastorn Illinois State College, Charleston April 11, 193S
State Teachers College, Florence May 20, 1935
Alabama College, Montevallo April 24, 1937
Bowling Green State University, Bowling Greon April 24, 1937
Albion College, Albion May 29, 1937
Central Missouri State College, Warrensburg June 10, 1938
Coker College, HdrtsvUIe April 5, 1940
Texas Technological College, Lubbock May 10, 1940
Southern Methodist University, Dallas May 15, 1940
Mount St. Scholastica College, Atchison May 26, 1940
Drako University, Des Moines May 27, 1940
Upsala College, East Orange luno 3, 1940
Tennessoo Polytechnic Institute, Cookeville June 5, 1941
Hofalra College, Hempstead April 4, 1942
Central Michigan College, Mount Pleasant April 25, 1942
Chicago Teachers College, Chicago lune 19, 1942
State Toachers College, Montclair April 21, 1944
College of St. Francis, toilet May 21. 194S
Wayne University, Detroit May 10. 1946
Washburn Municipal University, Topeka March 29, 1947
William Jewell College, Liberty May 7, 1947
Texas State College for Women, Denton May 7, 1947
Mount Mary College, Milwaukee May 11, 1947
Texas Christian University, Fort Worth May 13, 1947
Baldwin-Wallace College, Berea luno 6, 1947
Colorado A & M College, Fort Collins May 16, 1948
Pomona College, Claremont luno 6, 1948
Central College, Fayette May 18, 1949
Mississippi Southern College, Hattiesburg May 21, 1949
Manchester College, North Manchester May 16, 1950
Westminster College, New Wilmington May 17, 1950
Wake Forest College, Wake Forest Ian. 12. 1951
Soulhwost Louisiana Institute, Lafayette May 22, 1951
North Texas State College, Denton May 31, 19S1
Butler University, Indianapolis May 15, 1952
Fort Hays Kansas State College, Hays Dec. 6. 1952
La Salle College, Philadelphia May 19. 1953
Occidental College, Los Angeles May 28, 1954
Virginia Stato College. Petersburg Ian. 29. 1955

* Listed in order of date of installation.
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Kappa Mu Epsilon Key
Is a Beautiful Symbol of Your Membership

Wear your Kappa Mu Epsilon key with pride wherever
you may go. Your pin identifies your fraternity association
and may often be the means of recognition and new friend
ships.

Choose your key from the illustrations here or write for your complete
illustrated price list, mentioning your fraternity name.

Official Key, 10K Yellow Gold
Official Key-Pin, 10K Yellow Gold
Official Key, White Gold
Official Key-Pin, White Gold

TAXES: Add 10 per cent Fedora! Tax and
any State Tax in offoct to the
above prices.

BALFOUR BLUE BOOK
features many new and different
crested gifts, favors and personal
accessories. Send for your free
copy now.

PRICE LIST

$3.50
. 4.25
. 4.50
. 5.25

Regulations:

All ordors must be placed with the Na
tional Secretary, Miss E. Maria Hove,
Kappa Mu Epsilon, Hofstra College, Hemp-
stoad, L. I., New York.

CHRISTMAS CARDS
Special discounts for orders placed
now for summer production and
fall delivery. Write for samples.

Official Jeweler to Kappa Mu Epsilon
In Canada. . .contact your nearest BIRK'S STORE.

L. G. Balfour Co.
Attleboro, Mass.

Please send:

( ) Blue Book
( ) Ceramic Flyer
( ) Knitwear Flyer
( ) Badge Price List

..Date

Samples:

( ) Stationery
( ) Invitations
( ) Programs
( ) Christmas Cards

Name KME

,.<£B<4
ATTLEBORO, /

OUTCompany
MASSACHUSETTS


