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EGYPTIAN FRACTIONS*

B. M. Stewart
Professor, Michigan State College

1. Introduction. In accounts1 of the history and uses
of fractions one finds that the Egyptians were the earliest
mathematicians to use fractions, but that these people were
handicapped by being unable to work with multiples of unit
fractions. For example, although they could conceive of
a fraction like 2/5, for a problem of addition or multipli
cation they would replace this fraction by a sum of distinct
unit fractions such as 2/5 = 1/3+1/15. Apparently they
were very clever in finding methods for obtaining such
representations. The purpose of this talk is to indicate
some of the ways such a representation can be obtained. In
deference to those first people we speak of the problem as
one of obtaining an Egyptian representation or of working
with Egyptian fractions—meaning always a sum of distinct
unit fractions.

2. Method of division. It is not clear to me from my
reading whether the combined results of all the Egyptians
really showed that any given positive fraction does have an
Egyptian representation. Certainly in modern notation we
do not have too much trouble in establishing this fact—the
only tools we need are the division algorithm for whole
numbers and a little knowledge of infinite series.

Suppose first that given fraction A/B is proper and not
itself a unit fraction so that the integers A and B satisfy
1 < A < B. By a modified division algorithm we can find
integers Q and R so that B = QA - R, 1< Q, 0 ^ R < A.

(If the minus sign puzzles you, note that in the usual
division process you would have B = Q'A + RiO^R1 < A;
if R = 0, take Q = Q', R = K\ if 0 < R', take Q = Q' + 1,
R = A - R'.)

Then A/B = 1/Q + R/BQ, so if R = 0 or 1, the process
is complete. In the remaining cases, where 1 < R < A, the
•An Invited addttu for the Ninth Biennial Convention of Kappa Ma Eprilon at St. Mary's

Lake Camp. Battle Ctttk. Michigan April 17. 1953.
'Smith. D. E., HUtoty of Matbmuia. II. p. 209 tt acq.
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process can be applied again to the fraction R/BQ. Be
cause of the non-negative decreasing numerators obtained
at successive steps, the process is sure to terminate in a
finite number of steps. Because R/BQ < 1/Q, it follows
that the unit fractions obtained at each step will be dis
tinct from those obtained before. Hence a representation
in terms of Egyptian fractions will be obtained.

For example, consider A/B = 5/17. Since 17 = 4-5 — 3,
we find 5/17 = 1/4 + 3/68; since 68 = 23-3 - 1, we find
that 5/17 = 1/4 + 1/23 + 1/1564.

As far as I can discover, if the given fraction should
have been improper, even the earliest mathematicians would
have done a natural thing by taking away the largest in
teger and working with the remaining proper fraction. But
should we for theoretical satisfaction want an Egyptian
representation for every rational number, we might proceed
as follows.

Recall that the series %1/n, n = 2,3,4,... is divergent,
so for any positive rational number a; > V2 we can find an
integer t such that

0 ^ A/B = x - %1/n < l/(t + 1),
3

i.e., such that the next partial sum of the divergent series
will exceed x. Now if A = 0 or 1, it is clear that a repre
sentation for x has already been found. Otherwise, we may
apply the algorithm previously suggested for improper
fractions. Since B = QA — R > (t + 1)A, it is clear that
Q > t + 1, so that 1/Q and the other additional unit fractions
are not only finite in number, but also distinct from those
in %1/n, n = 2, 3, . . ., t.

For example, we find when x = 2, that t = 10 and A/B
= 179/2520. Proceeding as above, we soon find
2 = 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8

+ 1/9 + 1/10 + 1/15 + 1/230 + 1/57960.
I hope the previous theoretical discussion was not too

hard for you to follow and that it left you with a satisfied
feeling that an Egyptian representation is always available.
I know that you are mature enough in mathematical train-
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ing to appreciate that it is quite a different matter to pro
duce a proof that the representation is always possible from
merely producing a representation for one or two special
examples. Had I merely asked you to accept the fact that
a representation can be found, and then asked you to find
it for either of the above examples, I daresay you would
have come through with flying colors—but not necessarily
with exactly the same answers which I obtained. Does this
surprise you? Or did you notice that there was no point
in our discussion where we claimed that the representation
was unique? As you will see the next method which I will
discuss reveals this ambiguity clearly.

3. "Method" of optic formulas. If we write the frac
tion A/B = 1/B + 1/B + . . . + 1/5 with A summands,
it appears that we might be able to solve the Egyptian
problem if we can find A different representations of
1/2?. For this purpose we can try using repeated appli
cations of the following optic formula2

1/B = 1/(B + 1) + 1/B{B + 1).
For example, we may write 2 = 1/2 + 1/2 + 1/2 + 1/2.
Then using the optic formula we obtain
2 = 1/2+ (1/3 + 1/6) + (1/4 + 1/12 + 1/7 + 1/42)

+ (1/5 + 1/20 + 1/13 + 1/156 + 1/8 + 1/56 + 1/43
+ 1/1806)

and we check that we have removed all duplications.
Effective as this method may be for special examples,

I do not see any simple way of showing that repeated appli
cations of the optic formula will always remove duplications
in a finite number of steps. Bear in mind, if it hasn't oc-
cured to you before, that a proposed process here might
merely lead to a convergent infinite sequence of unit frac
tions. Thus I have chosen to put quotation marks around
the word when speaking of this use of an optic formula as
a "method."

We note that the optic formula does show us how from
any one representation we can obtain as many more dif
ferent representations as we desire. We simply apply the

•Dickion. L. B., Torero- or" Nambtn. II, pp. 688.691.
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formula to that unit fraction with the larger denominator
and produce a representation with one more summand.

The fact that there are many representations sug
gests that we may try to formulate some sort of a descrip
tion of one representation being better than another,
and then we will have a new problem of trying to determine
a best representation. What definition of a "better" repre
sentation do you prefer?

Our first representation for 2 has 12 summands, the
second has 15 summands. Does this make you feel the first
representation is better? But our second representation
has as its largest denominator only 1806, whereas the first
has the very large denominator 57960. Isn't this a reason
for preferring the second form? We realize in such a
dilemma that it may not be easy to hit upon a natural
definition of "better," that we will probably have to make
an arbitrary, subjective decision.

It is interesting that various Egyptian papyri show
different representations for the same rational number.
Apparently each master gave that representation which
arose most naturally out of the particular tricks or devices
which he knew for obtaining a representation.

4. Method of sodd numbers. If we suppose A/B =
21/tJ to be a representation of A/B as a sum of distinct
unit fractions, and let M be the lowest common multiple of
the d's, then we may write M = dd' and A/B = %d'/M
where the d' are distinct divisors of M. Then there must
exist an integer C such that AC = td' and BC = M.

This reverse sort of analysis shows that we can solve
the representation problem if we can find an integer C so
that AC can be written as a sum of distinct divisors of
BC = M.

This brings us around to a discussion of numbers M
which I wish to call sodd, because they possess, a certain
maximal property as far as sums of distinct divisors are
concerned; namely, every integer x satisfying 1 gx ^*(M)
can be written as a sum of distinct positive divisors of M.
This is indeed a maximal property, for a(M) indicates the
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sum of all the positive divisors of M so «r(M) is certainly
the largest integer we can hope to write in this way.

For example, M = 6 is sodd, for <r(6) =1 + 2 + 3
+ 6 = 12, and 4 = 3 + 1,5 = 3 + 2,7 = 6 + 1, 8 = 6 + 2,
9 = 6 + 3,10 = 6&+3 + l, 11 = 6 + 3 + 2.

In a recent paper I have determined the structure of all
such sodd numbers M, finding that we must have either
M = 2% a _: 0; or M = 2apxa so° »pa»8Ub 2 • • • pf «<"> « where
each J>, is a prime with 2 < px < p2 < • • • < p*, where
each exponent a, a, • • •, a* is positive, and where px _; «r(2a)
+ 1 = 2»+1 and p,+1 _; <x{2*pxa «»•»... Pl<» ««<> i) + l for £ =
1, 2, • • •, k-1.

Since the sigma-function is readily evaluated by
<r(2«Pl..»ba . . . P|..«bi) = (x + 2 + . . . + 2») (1 + px
+ *' * + Pia8Ub a) • • • (1 + Pi + • • • + p,a 8Ub') the above
theorem describes in a neat way every possible sodd
number.

For example, M = 666 is sodd because M = 2«3a«37
with3 < <r(2) + 1 = 4 and 37 < <r(18) + 1 = 40. ButM =
10 = 2*5 is not sodd, because 5 > <r(2) +1 = 4.

It is easy to check that a product M = 2a2? will pass
the above test for being sodd if i? _f 2**K Thus no matter
what B may be, we can choose C in at least one way so
that BC = M will be sodd. Then if A/B is proper, since
we have AC < M, it will follow that we can write AC =
3d' where the d' are distinct divisors of M and d' < M.
Hence

A/B = AC/M = W/M = %1/d
where the d are distinct and each d > 1.

Should x not be proper we can follow exactly the pro
cedure in Section 2, first finding t so that 0 _; A/B =

x —%1/n < l/(t + 1), and then applying the method of

sodd numbers to A/B.
For example, to deal with 5/17 we may choose C = 16,

for 17 < 32. Quickly we find AC = 80 = 68 + 8 + 4 and
obtain 5/17 = (68 + 8 + 4)/[(17) (16)] = 1/4 + 1/34
+1/68.
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5. A related problem. Perhaps you wonder when you
see someone give more than one proof of a theorem, par
ticularly if one of the proofs seems quite complicated.
Sometimes I suppose such an additional proof is a mere
tour de force, but often one learns a great deal by trying
to solve a problem in several ways. I have purposely given
the two methods above for solving the Egyptian problem
and the pseudo-method of the optic formula, so that you
might appreciate the various attacks one might make on
the following problem proposed by E. P. Starke.

Let A/B be a positive rational number where B is an
odd integer. Show that an Egyptian representation
is possible in which the distinct unit fractions all have odd
denominators 2:3.

Let us notice first that the series 1/3 + 1/5 + 1/7 + • • •
is divergent so that, if a; is an improper rational number
with an odd denominator, we can begin our problem by
finding t so that

0^ A/B = x - il/(2n + 1)< 1/(2* + 3),
i

where B is an odd denominator. Therefore Starke's problem
will be solved for any fraction if we can solve it for any
proper fraction A/B.

As far as I can see you will have trouble inventing a
division method for this problem, for if in B = QA — R you
insist that Q be odd, you will have trouble controlling the
size of R and getting a process that can be guaranteed to
terminate in a finite number of steps.

The optic formula method also seems of doubtful value,
not for lack of a formula, but because it seems difficult
to guarantee that a finite number of applications of the
formula will remove all duplications. The formulas are
perhaps of some interest in themselves, witness the follow
ing:

1/B = 1/(1? + 2) + l/2?(2? + 2) + 1/(B>+ 2B + 2)
+ l/[i?(l? + 2) (2?* + 21? + 3)/2]
+ 1/[2?(1? + 2) (I?2 + 21? + 2) (B> + 21? + 3)/2] ;
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1/1? = 1/(21? + 1) + 1/(31? + 2) + 1/[3(21? + 1)]
+ 1/[1?(21? + 1)] + 1/[3(21? + 1) (31? + 2)].

Verifying these identities makes a nice exercise in algebra.
Note that when B is an odd integer, all the denominators
are odd integers and, in general, distinct.

For example, we have 1/5 = 1/7 + 1/35 + 1/37
+1/665 + 1/24605 or 1/5 = 1/11 + 1/17 + 1/33 + 1/55
+ 1/561.

Not able to give a general proof with the division or
optic formula methods, we are glad to know another method
to try—namely the use of some sort of sodd number. For
as before we can write A/B = tl/d = Xd'/M and get the
idea of trying to find an integer C such that if BC — M,
we can write AC =2d' as a sum of distinct divisors of M.

Of course, M must be odd, so the number 2 cannot be
written %d', nor can the number <r(M)—2 be so written.
But we can seek odd numbers M such that for any integer
x with 3^!t| o{M) —3 we can write x = %d't where the
d' are distinct divisors of M. There are such numbers, the
smallest one being 945, and I have succeeded in getting a
complete description of them, although the situation is much
more complicated than with the sodd numbers described
in the previous section.

In particular, the number M = 3*9451? is of the special
type just described if B < 3™«4 — 14. So given A/B with
1< A <B with B odd, we can find at least one odd integer
C so that BC = M has the maximal sodd property for odd
numbers. Since AC < M, it will follow when 2 < AC, that
AC = %d' where the d' are distinct divisors of M with d'<
M. Then

A/B = AC/M = Xd'/M = %1/d
is a representation of the desired type with distinct d ^ 3.
The remaining case where AC = 2 implies C = 1 and
B = M; but M must have the factor 5, so we can set
M = 5W and note that

2/M = 2/5W = 1/ZW + 1/15W;
or we can increase a in our choice of C and avoid this case
completely.



74 The Pentagon

Except that I cannot here discuss the details of the
structure theorems for sodd numbers, this completes the
proof that the representation suggested by Starke is always
possible. For the missing details I must refer you to a
forthcoming paper.

In conclusion let us consider an example to illustrate
the sodd method of solving Starke's problem.

When A/B = 5/17, the method described above guar
antees that C = 945 will be effective. Pairs of divisors
d, d' of BC = dd' are as follows:

1, 16065; 3, 5355; 5,
9, 1785; 15, 1071; 17,

27, 595; 35, 459; 45,
63, 255; 85, 189; 105,

Then it is easy to write AC = 4725 as a sum of distinct divi
sors of BC, say, AC = 3213+765+459+153+135; then

A/B = 1/5 + 1/21 + 1/35 + 1/105 + 1/119.
Of course, even when BC does not have the maximal

sodd property, it may still have the sodd property for
the particular number AC of a given problem. Thus in
the example above C = 15 happens to be effective, for
15M = 75 = 51 + 15 + 5 + 3 + 1, whence A/B = 1/5
+1/17 + 1/51 + 1/85 + 1/255.

But I hope I have presented these matters in such a
way that you see that choosing C to make BC have the
maximal sodd property guarantees a constructive solution
of the representation problem, whereas choosing C at
random may or may not provide a solution. There is a
lesson to be learned here—of being satisfied only when
we have a truly general solution of a problem.

%

213; 7, 2295;
945; 21, 765;
357; 51, 815;
153; 119, 135.

"What Gauss put into print is as true and important
today as when first published; his publications are statutes,
superior to other statutes in this, that nowhere and never
has a single error been detected in them."

—M. Cantor



AN ANALYTIC APPROACH
TO THE THREE-FOCUS CURVE

Clyde A. Dilley and R. Wayne Stark
Students, Iowa State Teachers College

At the 1953 National Convention of Kappa Mu Epsilon,
a paper entitled "A Device for Drawing N-Focus Curves"
was read by Raoul Pettai of Colorado A & M College. In
this paper, he discussed a device for drawing three-
and four-focus curves. He also mentioned a few proper
ties of each. This paper is a continuation of his work,
using an analytic approach rather than the synthetic ap
proach used by Mr. Pettai.

The three-focus curve may be defined as the locus of
points, the sum of whose distances from three fixed points,
called foci, is constant.
(1) K - d, + d2 + ds
We shall consider the special case in which the three
foci lie on the same straight line with the distances between
adjacent foci equal. The equation of the curve is most
easily derived using polar coordinates, with the pole at
the middle focus and the polar axis containing all three
foci. If (p, 8) is a point on the locus; dx = p, the distance
from the focus (0, 0); d\, the distance from the focus
(to, 0); and d3, the distance from the focus (—w, 0),
equation (1) may be written:
(2) K = p + V (p cos 8 - m)2 + p2sin2 8

+ V (p cos fl + to)2 + p2sin2 8
where m is the distance between adjacent foci. Elimin
ating radicals by squaring, we obtain:
(3) (K - P)* - 4(to2 + p2) {K -p2) + 16toV cos2 6 = 0

0

(4) or (K - P)< - 4(m2 + P2) (K - P)2 + 16to2p2
= 16ro2pi!sin2 8

Then, solving for sin 0, we obtain:

(5)
± V (K - 3p) (K + P) {K - 2to - P) IK + 2to - p)

sin 8 = 4TOp

75
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Because the terms of equation (2) were squared, equa
tion (3) would have resulted if equation (1) had been
either K = & + d* - tk or K = dx — d* + <2». Points
which satisfy these equations also satisfy equation (3),
and equation (3) is now the equation of three curves. If
P, that is, d\, is allowed to be negative, three more loci
are added to equation (3): K = —di + (k + d„ K =
-ck + d2 - d3, and K - -dx - d3 + da. These equations
may be eliminated by using only positive p's. We shall
restrict K to the values K ^ 0. Thus, K = -dx - d2 - ds
and K = di — dt — dt will not be considered.

Equation (3) then represents six curves, but all of
these six do not exist for all values of K/m. For example,
it is obvious that K = & + d2 + d3 does not exist when
K/m < 2. It is desirable to know for what values of
K/m each curve exists. This can be found by solving each
equation for p when 8 = 0; for, since the curves are sym
metrical with respect to the polar axis [see equation (3)]
and are continuous for all values of 8, there will be inter
cepts on the polar axis if the curve exists. If 8 = 0,
equation (2) becomes

If
If
If p < to, K = p + (to - p) + (p + to) = 2to +
From this it can be seen that the curve K = di + ds + d3
does not exist when K < 2m, exists as a point at the pole
when K = 2to, exists as a curve which crosses the polar
axis between the pole and the other two foci when
2to < K < 3to, exists as a curve which crosses the polar
axis at each of the two external foci when K = 3to, and
exists as a curve which crosses the polar axis beyond the
foci when K > 3to.

By a similar analysis of the other five curves, it
can be determined that: K = dt + d* — d* and K =
dx — ck + ds exist for all values of K/m. K = —di —
ck + d\ and K = —dt + ds — dj can be represented
graphically as K/m varies from 1 toward 0. Each of the

K = Vp* + V(p -my + V(p + to)2

or It = ip| + Ip- m\ + |p + to|.
p > m, K = P + (p- to) + (p + m) == 3p.

p
= TO, K = 3to.
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latter two curves exists as a point when K/m = 1. K =
—d\ + dz + da exists as K/m varies from 1 to oo. This
curve exists as two points when K/m = 1.

Graphs 8 and 9 show what happens when (K/m) -> 0
and (K/m)-> oo, K being held constant while w varies
from co to 0. In Graph 9, each of the four curves ap
proaches a circle as a limit. This can be seen if equation
(3) is rewritten:
(6) (K-3P)(K-P)HK + p)

+ 4to2[2p cos 6 + (K - P)] [2P cos 8 - (K - p)] =0
If m-> 0, then (K/to)-» oo and Equation (6) becomes

(K - 3P) (K -P)HK + P) = 0.
This is the equation of three circles with radii K and
one of radius K/3. Comparison of Graphs 7 and 9 will
show the changes as to becomes smaller with respect to
K.

If Equation (6) is divided by 4m2, we obtain
[(K-3P)(Ji:-p)2(li: + p)]/4TO2
+ [2P cos 8 + (K - p)] [2p cos 8 - (K- p)] = 0

As w-» co, and (K/m)-+ 0, (see Graph 8) the equation
approaches:

[2Pcos 8 + (K - P)] [2Pcos 8 - (K - P)] = 0
This solved for p gives,

_ K
9 ~ 1 ±. 2 cos 8

which is the equation for a hyperbola. The graph shows
that the curves K = dx — d2 + d3 and K = dx + d3 — d3
apparently approach hyperbolas as limits as to becomes
very large with respect to K. When to increases beyond
all bounds, only two curves exist while in Graph 8 there
are four. The curves K = —dx + d2 — d3 and K =
—di —dz + d3 disappear when

UK - 3P)(K - P)HK + p)]/4to2
does—that is, when to becomes infinitely large. For all
finite values of to, all four curves exist.

LEGEND FOR GRAPHS
Graphs 1 through 7 show the shapes and relative

sizes of the curves which exist for the various relations



The Pentagon 79

between K and m. The scale used is the same for graphs
1 through 7. The scale was changed for each of the graphs
8 and 9 for ease in drawing. Graphs 8 and 9 show what
happens as m becomes very large and very small with
respect to K.

H

"A 'rope is supposed to be hung over a wheel fixed to
the roof of a building; at one end of the rope a weight is
fixed, which exactly counterbalances a monkey which is
hanging on the other end. Suppose that the monkey be
gins to climb the rope, what will be the result?"

"This problem was proposed by Lewis Carroll in Dec
ember, 1893, and in his diary he remarked: 'Got Pro
fessor Clifton's answer to the Monkey and Weight Prob
lem. It is very curious, the different views taken by good
mathematicians. Price says that the weight goes up with
increasing velocity; Clifton that it goes up, at the same
rate as the monkey; while Sampson says that it goes
down.' "

—Amer. Math. Monthly, Oct., 1921.



ELEMENTS OF CRYPTANALYSIS:
THE SIMPLE SUBSTITUTION CRYPTOGRAM

S. H. Sesskin

Student, Hofstra College

1. Introduction. The puzzle aspect of the hobby of
cryptanalysis is fascinating, but what is more interesting
from a mathematical viewpoint is the fact that the behavior
of each letter has been scientifically analyzed and its
peculiarities classified.

The method of simple substitution is well known—
letters, numerals, or other abitrary symbols are substituted
1 to 1 for each letter of the message (plain text).

Based on the peculiarities in the words and letters
of the language, certain techniques have been devised
which enable a solver to "break" a cipher. This paper
will discuss some of these elementary techniques and
the language peculiarities from which the solving tech
niques were developed.

2. The Frequency Table. Basic to cryptanalysis, of
course, is the frequency table, ETAONISHRD
LUCFMWPGYBVKXJQZ, which lists in
order of decreasing frequency the letters as they are
normally used in English. Other languages have their
own unique properties which we will not discuss here.

Though this list is correct for large numbers of letters
in normal text, it may not be correct for a short crypto
gram, in which the most frequent symbol may be neither
E nor even T. But generally, the predominant symbols
will be among the high-frequency letters.

3. Short Words and Affixes. Comparison of common
short words often offers a short cut to breaking the cipher.
ABC and ABCXC might be THE, and THERE or THESE.
Similarly THEN, THIS, THAT, THEY, or THEIR may be
spotted. X, XY, XYZ may be A, AN, and AND or ANY (or
I, IT, ITS). Others are: OF, FOR, OR, FROM; ON, NO,
NOT, INTO; IS, HIS, ITS, IT; WE, WERE, WHEN,

80
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WHERE; HE, HAS, HAVE, HAD; WDLL, WITH, WHICH.
You'll find others with experience.

Short words, also, can often be identified by noting
letter frequency. For instance, a two-letter word with
a low-frequency initial letter may be WE, HE or BE;
with a low-frequency final, may be OF or IF. FROM
and WITH are the most common four-letter words carry
ing low-frequency initial and final letters.

Comparison of prefixes and suffixes with each other
or with short words affords another short cut. The pre
fix XY—, appearing with the suffix —XYZ, —XWY or
—XZY, may be IN—, and —ING, —ION, or —IGN. The
prefix RE— and the suffix —ER are common, as are DE—
and —ED. The suffix —TION, too, can be identified if
tiie message contains any short words using those letters
— IT, IN, ON, NO, INTO, TO, NOT.

Letter frequency often opens the way to identification
of affixes. Low-frequency finals may indicate ING, ISM,
IC or FUL. Low-frequency antepenultimates (second from
last) may indicate SHIT, ICAL, ABLE or D3LE. Among
the most common suffixes are: ED, HOOD, ANCE, ATE,
ING, ER, OR, S, ES, LESS, MENT, EST, 1ST, Y, LY.
The affixes ING, ED, ER, and S often follow doubled
letters as in CALLING, CALLED, CALLER, CALLS. The
most common repeated final trigram is ING as in SINGING,
BRINGING. The most common suffixes with doubled be
fore final letters are: ALLY, EED, TEEN, EER, EES,
and HOOD. Among the most common prefixes are: AD,
COM, CON, DE, DIS, EN, EX, IM, IN, INTER, MIS,
OB, OUT, PER, PRE, PRO, RE, UN.

Remember that in analyzing clues on suffixes and
endings, it is often necessary to shift one or two letters
to the left because they may be joined with S, ES, D,
ED, LY, etc.

4. Punctuation. The apostrophe identifies—besides
final S— such words as E'ER, NE'ER, DON'T, O'CLOCK,
WASN'T, HASN'T and others. A comma usually pre
cedes the connectives AND, BUT, YET. Sentences ending
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with question marks usually include either WHO, WHAT,
WHY, WHEN, WHERE, or HOW as first word.

5. Frequency Chart. If the crypt has resisted the
elementary methods discussed in the preceding paragraphs,
a little deeper digging is required to unearth the solution.
First make a frequency chart of the symbols used in the
message, then try to spot the vowels in the message keep
ing the following factors in mind:

Vowels, except U and Y, outnumber most of the con
sonants, Thus, a high-frequency letter before, after, or
between low-frequency symbols can be tentatively estab
lished as a vowel. Similarly, in a three-letter series having
the first and third letters repeated, as ABA, if the re
peated letter is a consonant, the middle letter ordinarily
is a vowel (as in PAPER), and if the repeated letter is
a vowel, the middle letter probably is a consonant.

In the sequence ABCBDB, the repeated letter is usual
ly, though not always, a vowel, while the adjacent letters
are usually consonants (as in CALABASH, RECEDE.
Exception: STATUTE. Incidentally, the letter I appears
most often in such a sequence (as in VISIBILITY, INITI
ATE).

In a repeated or reversed digram (series of two letters),
one letter is usually a vowel.

A resume of vowel and consonant positions discloses
that, depending on word length, the letters favor cer-.
tain positions. In two-letter words, vowels predominate
as initials, consonants as finals; in three-letter words,
consonants are more frequent as initial and second letters;
in four-letter words, vowels favor second position, con
sonants first and fourth; in five-letter words, vowels pre
dominant as third letter, with the consonants heavy in all
other positions. In longer words, consonants generally
favor first, third, and final positions, with the other posi
tions using both classes of letters equally. Vowels make
up about 40 per cent of normal text and are uniformly
distributed throughout plain text.

6. Vowel Characteristics. After spotting a few
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vowels, examine their usage in greater detail. Some of
the most important characteristics of the vowels are:

E—A high-frequency final often used as next-to-last
letter; often used as a final in two-letter words, but not as
an initial. Doubled in all positions, frequently as final.

I—A high-frequency antepenultimate (second from
last) letter. Used infrequently as a final (TAXI and in
Latin plurals such as RADII). Its antepenultimate usage
arises in such endings as —ING, —ION, —IVE, —ICE,
—ITY, etc.

A and 0—Medium high-frequency letters used often
as finals (AREA, TOBACCO), but not as often as E.
0 favors second position, this, quite often, enabling the
solver to differentiate between the two vowels. O appears
either as an initial and final in numerous common short
words, while A appears only as an initial in such words
and is only occasionally doubled. 0 is doubled in all posi
tions.

U—Low-frequency is the clue to this vowel. It is
seldom doubled (exception: VACUUM), and has an af
finity for the letter Q.

Y—An average low-frequency final that turns up quite
often in first and second positions (as in YESTERDAY,
HYSTERIA). Only exceptionally doubled.

The most frequent two-vowel combinations are in or
der: EA, OU, 10, EE, EI, 00, IE. Most frequent three-
vowel combinations are IOU and EAU.

7. Consonant Characteristics. Some of the important
consonant characteristics are:

S—A high-frequency final frequently doubled in the
middle and at the end of words. S appears more often
than any other letter as the initial and final letters of
the same word.

H—A medium-frequency letter often employed as a
second letter. It nearly always follows a consonant (C, G,
P, R, S, T) and precedes a vowel. Consonants most used
after H are R, S, T (SHREW, PATHS, EIGHT). H can
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often be identified as a second letter through its affinity
with T in the digram TH, the most frequent in the lan
guage, which is often used initially. When preceded by
a vowel, H is also usually followed by a vowel (as in
BEHEAD, AHEAD). It is frequently employed as a first,
penultimate,or final in short words (HER, EIGHT,SUCH).
When occasionally doubled, it normally follows a consonant
and precedes a vowel (as in HITCHHDXE).

N—An average high-frequency letter which occurs
as a next-to-last letter about three-tenths of the time
(as in the affix —ING). N usually follows a vowel, and
precedes a consonant (C, G, D, S, T as in —ING, HAND,
WINS, WENT). Doubled N is usually flanked on both
sides by vowels. The most common affixes using N are
IN—, UN—, CON—, INTER—, INTRO—, —ING, —ION,
—IAN, —ANCE, —ENCE, —MENT.

And now some advice on the procedure for using this
information. When you spot the symbol for H, examine
the letters preceding the H's for consonant clues, and those
following for dues to vowels. Or, in reverse, having spotted
some vowels, if you note a symbol mostly preceded by con
sonants and followed by vowels, it may be tried as H. The
same idea can be used for the letter N.

L and R—A couple of wishy-washy letters that go
with either consonants or vowels. Both form reversed di
grams with the vowds (as RE—, —ER), but R does this
about twice as often as L. Both appear often in second
position where they follow a consonant (usually the low-
frequency initials B, C, F, G, P) and precede a vowel.
Both appear frequently after doubled consonants.

T—A high-frequency initial and final. The most com
mon suffixes using T are —TION, —ENT, and —ANT.

And now for the low-frequency consonants. In short,
artificially constructed messages of the type used in
dailies and periodicals, it is often possible to suppress
high-frequency letters, distort normal letter positions and
characteristics. Under such circumstances, the only possi
ble entry to a cryptogram might be provided by a low-
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frequency consonant. It will, therefore, repay the solver
if he studies these letters well.

Q—A low-frequency letter often used initially and in
second position preceded by a vowel. Always followed
by U, which in such a sequence is followed by another
vowel.

J—Often used as an initial when it is normally followed
by a vowel. Sometimes appears in second position when it
is normally preceded by E. J often follows the prefixes
AD—, IN—, OB—, RE—, UN—, CON—, PRO—, and
SUB—.

X—Favors second position, where it is ordinarily pre
ceded by a vowel, most often E. Used as a final in such
words as BEAUX, EXECUTRIX.

Z—Appears often as second-from-last letter preceding
—ED, or —EN (as in RAZED, DOZEN). It also favors
the next-to-last letter position followed by E (as in PRIZE,
DAZE). Z is often employed as an initial letter and in
third position. When doubled, Z is most often followed
by L or a vowel.

B, C, M, V—Commonly appear as first letters, while
F, P, and W are used mostly as first letters. These letters
except for W are all often doubled after an initial vowel
(as in ACCUSE, IMMOLATE, OPPOSITE). V frequently
appears as a penultimate, —IVE being the most common
affix.

D, G and K—Favor final position. This is due to the
frequency of the affixes —ED, —ING and —OK

8. Pattern Words. There is one more aid to break
ing monoalphabetic substitution ciphers—recognition of
"pattern words," that is, words with repeated letters.
Sdentific identification of "pattern words" is possible if
you make your own "pattern word" dictionary by dassify-
ing words according to the number of letters and the postion
of the repeated letters. For instance 3 (words of 3 letters):
13 (first and third letters repeated) —DD3, POP, MOM.
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3:12—EEL 4:24—HERE, WERE
3:13—MUM, DID 4:34—TELL, TTLL,WELL,
3:23—BEE, ALL, OFF WILL
4:13—NINE, EVER, 7:15-24—AWKWARD

AWAY
4:14—ELSE, THAT, AURA

Some common pattern words: AGAIN, ALL, ALREADY,
ANYWAY, AWAY, BECAUSE, BEEN, BEFORE, BE
TWEEN, CANNOT, DID, EITHER, EVEN, EVER,
FINALLY, FORWARD, HERE, HERSELF, KNOWN,
LESS, NEITHER, NEVER, NOTHING, ONTO, PERHAPS,
RATHER, SHALL, SOMEONE, STILL, THOUGH,
THROUGH, THERE, THESE, TDLL, TOO, UNLESS,
UNUSUAL, USUALLY, WERE, WILL, WELL.

9. Conclusion. Now it's up to you. If you learn
to coordinate the above information into a well-rounded
analysis, you'll be able to solve most cryptograms; you'll
have a lot of fun, pick up a lot of odd and interesting
information, and augment your vocabulary. Don't get
knocked for a tangent by those canny constructors who
distort the language with such words as SYZYGY; they
can't hide everything. In analyzing a cryptogram, a limit
can be placed on the letters that are likely to be repre
sented by a symbol. By establishing one letter, you have
gone a long way to solving the crypt.

If you have been interested in the content of this
article, you will want to solve the following simple sub
stitution cryptogram:

+ 5<9-Sj8 a+a<-\ -S 9_^4a7+S+A45=5 "
2=AA +a<r< + -\ =S 7p< 3+AA =55a< -3

7p< o-<S7+0-S

°8?

The first definition of the general concept of function
seems to be due to John Bernoulli I (1718).

—G. A. Miller



"AUDITORY IMAGES" OF NON-ACCELERATED
SOURCES OF SOUND—AN EXERCISE IN

PLANE GEOMETRY

Hugh J. Hamilton

Faculty, Pomona College

First, let me explain the formidable title — the excuse
for which is that it is brief. A non-accelerated object is
simply one which moves in a straight line at constant
speed. (We will not be concerned with the trivial case in
which this speed is zero.) And if a moving object emits
sound continuously, we use the term "auditory image" to
characterize the position which it would appear to occupy
on the basis of the direction from which sound waves
emitted by it reach us at any given time. Thus, the audi
tory image of a train whistle lags a short distance behind
the whistle itself, and the image of a supersonic airplane
does not even appear until the plane has passed over
head.

Suppose that A is a source of continuous sound, and
that A comes from indefinitely far to the left and proceeds
indefinitely far to the right, moving along a line L at
speed k; and suppose that an observer—"a hearer"—
stands at a point 0 which is not on L. We propose to show
by means of elementary geometry when and in what direc
tions the auditory images of A appear to the observer.

CASE t P<1

We let Q be the foot of the perpendicular from 0 to L
and let P be an arbitrary point on L. We will use the

87
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phrase the image of P to denote the auditory image of A.
when A is at P. Letting c be the speed of sound, we
observe that, if / is the image of P, then A has traveled
at speed k from I to P in the same time in which sound
has traveled at speed c from / to 0. Putting p = k/c, we
therefore see that IP/IO = p. But the locus of oK points,
the ratio of whose distances from P and 0 remains equal
to p, is—unless p = 1, a case which we will consider
separately—the circle K of which a diameter is ST, where
S and T divide the segment PO in the ratio P:l, internally
and externally, respectively. (Since PS/SO = PT/TO =
P for all positions of P, the loci of S and T as we vary
P along L are lines parallel to L; and hence the locus of
the center, C, of K is another such line, midway between
these lines.) Such intersections of K with L as lie to
the left of P are therefore the desired images /. We
discuss next, in succession, thecases p < 1,p = 1,andp> 1.

CASE I. p < 1. This is the case illustrated above.
(In the figure p = y2; that is, A is traveling with half the
speed of sound. Two points, P and F, are shown with
their respective images, / and /'.) The determination
of the image is clearly possible, and uniquely so, for all
points on L. Note that the angular lag (Angle POI) of
I behind P as measured at 0 is completely determined by
the angular position (Angle POQ) of P at O, whatever
may be the magnitude of OQ. The reader may be inter
ested in establishing the following facts. (1) This lag is
greatest when P is at Q. (It is then obviously equal to
arcsin p, to borrow a neat term from trigonometry.) (2)
If P and F are two points on L which are equidistant
from Q (which is actually the case in the diagram),
then the angular lags of their images, as measured at O,
are equal.

CASE II. p = 1. (In the figure two points and
their images are shown.) Here IP = 10, and since the
locus of all points which are equidistant from P and O
is the perpendicular bisector of the segment PO, the image
I is the intersection of this bisector with L when this
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intersection lies to the left of P. The determination of
/ is possible when and only when P is to the right of

CASEH p'\

Q, and is then uniquely possible. That is, if A travels
with the speed of sound there is no auditory image until
it has passed Q; also, the more recently A has passed
Q, the greater is the angular lag of its image behind it,
as measured at O, with 90° as limit.

CASE III. p > 1. In the figure, P = 2; that is,
A is traveling twice as fast as sound. Three points, P,
P*, and F, are shown, with images 7, and /, (for P)
and /* (for P*); we will see that F has no image.
As far as construction of the circle K is concerned, this
case differs from Case I only in that the external point
of division, T, lies below O rather than above P. How
ever, the relations between K and L are by no means the
same as they were in Case I. Letting P* be the point
for which the associated circle is tangent to L, we see

case m. p>i

that: for points F to the left of P* there is no image;
P* has a unique image, I*; and for points P to the right
of P* there are two images, IT and It with Ir moving
indefinitely far to the right and 7j moving indefinitely
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far to the left if P is moved indefinitely far to the right
Since 7^>//rO = P = hP/W, Angle 7rPO = Angle

7,PO, and triangles 7.PO and ItPO are not similar, the
internal angle, Angle PO/, of the one triangle equals the
external angle, Angle 7,OT of the other. Thus, the mean
of the angular positions of 7r and 7j as measured at O
is 90° behind the angular position of P at 0. In particular,
since the images of P* coincide at 7*, we have Angle
P*07* = 90°; and from this it follows that Angle
P*OQ = Angle P*/*0 and—to borrow another term from
trigonometry—that cos Angle P*7*0 = I*0/I*P* = 1/p,
so that cos Angle P*OQ = 1/p.

That is, if A travels faster than sound, there is no
auditory image until it has passed through a definite an
gular distance (trigonometrically speaking) arccos (1/p)
beyond Q, at which time an image appears, 90° behind A;
this image at once splits into two, one of which follows
A, while the other recedes indefinitely far to the left;
and the mean of the angular positions of these two images
remains constantly 90° behind the angular position of A.

REMARKS. The results of this paper can be obtained
more quickly by trigonometric means if we start with the
relation (see the first figure) sin Angle P07/ sin Angle
7PO = 7P/70 = p, which is given by the Law of Sines;
and the methods of analytic geometry provide us rather
readily with formulas for Q7 in terms of the time, a
matter which we have not considered here. But the geo
metric method, which we have preferred, provides special
insights of its own and puts to use machinery which, in
the mental shops of a good many of us, has become
somewhat rusty.

«
"Mathematics is the handwriting on the human con-

sdousness of the very Spirit of Life itself."
—Claude Bragdon



THE LINE, CIRCLE, AND PARABOLA
USING COMPLEX NUMBERS

Joe R. Ballard
Student, North Texas State College

The complex number w is a number of the form
w = a + ib where a and 6 are real numbers and i = V- !•
The number a is called the real part of w and will be
denoted by R(w). The number ib is called the imaginary
part of w and will be denoted by I(w). The conjugate of
w, denoted by w*, is defined to be w* = a — ib. The
absolute value of w is defined to be |w| = y/(a" + b2).

If w = a + ib, the following properties of w can be
derived:

1.

1)
2)
3)
4)
5)

6)
7)
8)
9)

10)
= VC72(wi) - R(y>*)¥ - [7(w0 - l(wt)¥

Derivation of the General Equation of the Line, Using
Complex Notation.

ww* = \w\2
(u>*)* = w
w + w* = 2R(w)
w — w* = 27(w)
If fc is real, then R(kw) = kR(w) and
7(fcw) = kl(w)
If 6 = 0, then w = w* = a
(it*! dfc W2) * = 10i* ± w2*
(wiW2) * = Wi* •w2*
(Wx/Wi)* = wx*/w2*
|Wi - w2|
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Let L be a line in the complex plane. Let G be the
line containing the origin which is perpendicular to L.
Let F be the complex number which corresponds to the
point of intersection of L and G. If F *£ 0, let a be the
complex number such that \a\ = 1, and the argument of a
equal to the argument of F. If F = 0, let a be the complex
number such that \a\ = 1 and the argument of a equal to
the inclination of G. Let p = |F|. If z is on L, then there
is a real number k such that \k\ = \z —F\ and

z = pa + A»a;
2* = pa* + fc(ta)*;
z* = pa* — kia*;

Therefore, az* = p — fct;
and a*z = p + fci.
Hence, if z is on L, then az* + a*z — 2p = 0

Conversely, if z is such that az* + a*z — 2p = 0,
let ik = 7(a*z). Then

a\z* — pa* — k(ia)*] + a*(z — pa — kia) = 0;
and thus R\a*(z — pa — kia)] = 0. Also,

a*(z — pa — kia) — a[z* — pa* — fc(ia)*]
= a*z — az* — hi + fc£*
= a*z — az* — 2ki = 0.

Hence, 7[a*(z — pa — kia)] = 0 and
a*(z — pa — fcia) = 0;
z — pa — kia = 0;
z = pa + feta.

Therefore, z is on L. We have shown that a necessary and
sufficient condition that z be on L is that

az* + a*z — 2p = 0.

If w is a complex number, then w can be written in
the form ha + kia where h and k are real numbers. If
w is on L, then fc = p and aw* + a*w — 2p = 0. It w
is not on L, then the distance between w and the line L
is \h —p|. Now |aw* + a*w —2p| = |a(fta* — kia*) +
a* (ha + fcta) —2p| = 2 |fc—p\. Hence, |aw* + a*w —2p|
is twice the distance between the point w and the line L.
We will call az* + a*z — 2p = 0 the normal^orm of the
equation of the line L.
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UB=£0 and q is real, we will show that Bz* + B*z +
q = 0 is the equation of a line. If q ^ 0, divide by
- |7?|. Then

' -(B/\B\)z* - (B*/\B\)z - q/\B\ = 0.
Let a = -B/\B\ and p = q/(2|B|), then

az* + a*z — 2p = 0
where |a[ = 1 and p = 0. If q < 0, divide by |B|. It
can be shown in a similar manner that az* + a*z — 2p = 0
where a = B/\B\, \a\ = 1, p = - «j/(2|7*|) and p > 0.
Hence an equation of the form Bz* + B*z + q = 0,
where B ^0 and g is real, is the equation of a line.
2. Derivation of the General Equation of the Cirde, using

Complex Notation.

©

FIGURE 2

Let K be a circle with center 77 and radius 72. If
z is a point of K, then the distance from z to the center
77 is equal to R, i.e.,

\z - H\ = 72;
\z - 77|2 = 722;
(z* - 77*) (z - 77) = 722;

and zz* - H*z - Hz* + 7777* - T22 = 0.
Conversely, if z is such that zz*

7777* - R* = o, then
zz* - H*z - Hz* + 7777* = T22;
\z - HY = 122;

and \z - H\ = 72.
Hence, a necessary and sufficient condition that z be on

H*z - Hz* +
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the circle with radius R and center 77 is that zz* — 77*z —
77z* + 7777* - 722 = 0.

If A and C are real and A =£ 0, then we will show that
^4zz* + Bz* + B*z + C = 0, is the equation of a circle.
This equation can be written in the form

zz* + (B/A)z* + (B*/A)z = -C/A.
If BB*/A2 is added to both members of the above equation,
then the left member is a perfect square. Therefore,

zz* + (B/A)z* + (B*/A)z + BB*/A* =
-C/A +BB*/A>;

(z + B/A) (z* + B*/A) = (BB* - AC)/A*;
\z + B/A\* = (7*7?* - AC) JA*;

and \z + B/A\ = y/(BB* - AC) /\A\.
If BB* — AC > 0, then z lies on the circle with center
-B/A and radius y/(BB* - AC)/\A\. If BB* - AC = 0,
then z = —B/A and we have a point circle. If BB* —
AC < 0, then there is no number z which satisfies the equa
tion Azz* + Bz* + B*z + C = O and hence we have an
imaginary circle.

3. Derivation of the General Equation of the Parabola,
Using Complex Notation.

FIGURE 3

If C is the focus of a parabola in the complex plane
and aw* + a*w —2p = 0 is the normal form of the equa-
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tion of its directrix, then for any point z on the parabola
2|z - C\ = |az* +a*z - 2p|;
4|z - C\2 = |az* + a*z - 2p|2;

4(z*-C*) (z-C) = (az* + a*z - 2p) (a*z + az* - 2p);
and

2zz* - a2(z*y - (a*)2z2 + (4pa-4C)z* + (4pa - 4C*)z
+ ACC* — 4p2 = 0. Conversely, if z satisfies this equa
tion, it can be shown that z is on the parabola.

If A •=£. 0, and A and E are real numbers, then i4zz* +
B*z" + B(z*y + D*z + Dz* + E = 0 is the equation of a
parabola if \2B/A\ = 1, and there exists a number C and a
real number p such that p > 0 and

D/A = 2pyjW/A~ - 2C
and E/A = 2CC* - 2p2
where either square root of 2B/A may be used. This
parabola will have C as its focus and the line (y/2B/A)z* +
(y/2B/A)*z — 2p = 0 as its directrix.

12

On opening a course for beginners in analytic geometry,
Wm. Benjamin Smith said, "You are invited to the wed
ding of two great mathematical disciplines. Or, to change
the figure, I may say that you have hitherto been pursuing
the separate courses, now one and now the other, of two
streams of mathematical thought, that of pure geometry
and that of pure algebra. You have now reached the
point where, as we may say in Homeric phrase, the
streams unite and dash their waters together."

—C. J. KEYSER in Scripta Math.



PROJECTILE GEOMETRY

Frank Hawthorne

Faculty, Hofstra College

If air resistance is neglected, the path of a projectile,
as is well known, is a parabola. This note presents a
few properties of such paths which with a little ingenuity
can be used to solve, usually by a remark or two, many
of the common, and some not so common, elementary
exercises about projectiles. Seven "theorems" (by no
means new) will be listed and an indication of a method
of substantiating each will be given.

General:

(1) The speed of a projectile at any point on its
parabolic path is equal to the speed of free fall
to that point from the directrix.

With initial position and initial speed fixed:

(2) The various parabolic trajectories caused by
varying the angle of elevation of a gun have a
common directrix at height v*/2g above the gun.

(3) The locus of the fod of the parabolic trajectories
is a circle with center at the gun and tangent
to the common directrix.

(4) The locus of the vertices is an ellipse with center
halfway between the gun and the common di
rectrix. The horizontal axis is v*/g and the ver
tical axis is half of this.

(5) The limit of range, which is the envelope of the
trajectories, is a parabola with focus at the gun
and vertex on the common directrix.

With two points fixed: (one of these may be the gun) —
(6) If a projectile is to pass through two given points

the focus of the trajectory must lie on one branch
of a hyperbola whose foci are the given points
and whose constant difference of distance from

96
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these points is equal to their difference in alti
tude.

(7) The trajectory which provides a minimum speed
at either point (or at any given level) has its
focus on the line joining the two points and di
viding this line into two parts whose difference
is the difference in altitude of the given points.

That there is a horizontal line which has the property
stated in (1) isa consequence of theconservation ofenergy.
That this line is the directrix takes a little showing. I
recommend (2) as an exercise for a superior student in
analytic geometry. Theorem (3) follows from the defini
tion of a parabola and the fact that the gun is a point
on the path. The points of (4) are simply half way be
tween those of the locus of (3) and the directrix. The
curve of (5) is simply the locus of centers of circles tan
gent to the circle of foci and also tangent to the directrix
at points other than that directly above the gun. Theorem
(6) may be substantiated directly from the definitions of
a parabola and ofa hyperbola, while (7) is the special case
of (6) which provides for the lowest possible directrix.



A PROJECT IN TRIGONOMETRY
H. T. R. Aude

Faculty, Colgate University
This paper will present a different approach to the

two basic formulas: the law of cosines and the law
of sines. It is written for those students who wish to look
beyond the pages of the textbook; also, it is placed before
those teachers who seek suitable projects for their better
students.

It is known that any side of a triangle can be
expressed in terms of the other two sides and the cosines
of its adjacent angles. Thus, if a triangle has the angles
A, B, C and the sides a, b, c to correspond, then the
relations are:

(1) a = b cos C + c cos B, b = c cos A + a cos C,
c = a cos B + b cos A.

From these formulas, the two sets of triangle formulas
mentioned will be derived. The main steps of their deri
vation are shown, but the details are left to the students.

Following this plan, it should be noted that the
relations in (1) hold for all triangles, which therefore
include the right triangle and those which have an obtuse
angle. Next, write the relations in (1) as a system of
three equations in cos A, cos B, and cos C. Since there
is cyclic symmetry in the notation, it will be sufficient to
solve for, say cos A, and then record the solutions for cos
B and cos C by a cyclic change of the symbols. It turns
out that

(2) cos A = (b2 + c2 - a2)/2bc
from which it follows that
(2.1) a2 = b2 + c2 - 2bccosA.
The relations in (2) and (2.1) with the corresponding
expressions for the other two angles and sides are known
as the law of cosines. At this point, it may be noted
that, A representing the determinant of the system,
A = 2 abc and that A=£ 0 if the triangle exists; also, it
may be.well to consider the implications that follow
when cos A = 0, when cos A -» l, and when cos A -+ -1.
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To derive the law of sines, return to the relations
in (1) and write these as equations in a, b, and c. The
result is the three homogeneous equations:

—a + cos C • b + cos B • c = 0
(3) cos C • a —b + cos A • c = 0

cos B • a + cos A • b — c = 0
That these equations are consistent and that the solution
a'.b'.c exists presupposes that the determinant

—1 cos C cos B
D = cos C —1 cos A

cos B cos A —1
will vanish. To show this in a few steps is a neat chal
lenge to thestudent. When it has been shown that D = 0,
then it is known that any two of the equations in (3)
can be used to find the solution a:b:c. By means of the
first two equations of (3), it turns out that

I cos C cos B

—1 cos A
= (cos A cos C + cos B)

Icos B —1

%

—1 cos C

Icos A cos C cos C —1
_ wo ^ , r . (cos B cos C + cos A) : sin2C.

SinceT= 180"' - (A +' C), the first ratio on the right
can be replaced by sinAsin C. Similarly, the second ratio
on the right becomes sin B sin C. It then follows that
(4) a:b:c = sinA: sinB: sin C
which is the law of sines.

These two basic formulas or laws have now been de
rived from the relations given in (1). An exposition
of the whole — with the details added and the implications
considered — may well become a student's first paper be
fore a Mathematics Club.

"There is no excellent beauty that hath not some
strangeness in the proportion."

—Francis Bacon



THE PROBLEM CORNER
Edited by Frank C. Gentry

«..w *??*? C?™er ,IJvit" questions of interest to undergraduate students. As a rule, the solution should not demand any
Sd^fXViS C?1CUl.U8: Alth0Ugh new problema are Purred,old ones of particular interest or charm are welcome provided the
source is given. Solutions of the following problems should be sub-

u 1°j *P*T*t(; sbeet* bef°n! October 1, 1964. The best solutions

»?iJ JG^" with credit being given for other solutions
^1 7°- <*£* credlt' a solver shouW affirm that he is astudent and give the name of his school. Address all communications

to Frank C. Gentry, Department of Mathematics, University of
New Mexico, Albuquerque, New Mexico.

PROBLEMS PROPOSED

65. Proposed by C. W. Trigg, Us Angeles City College,
Los Angeles, California.

What is the probability that the ten's digit of the
square of a randomly selected integer will be odd?
66. Proposed by C. W. Trigg, Los Angeles City College,
Los Angeles, California.

If the elements of each of the columns (or rows) of
a determinant of order greater than two when taken in
order form an arithmetic progression, then the value of
the determinant is zero.
/£. Pr°Posed by D. M. Morrison, St. Joseph, Missouri.
(From S. I. Jones, Mathematical Clubs and Recreations
p. 111).

The combined ages of Jane and Mary total 44. Now
Jane is twice as old as Mary was when Jane was half as
old as Mary will be when Mary is three times as old as
Jane was when Jane was three times as old as Mary
How old are they?

68. Proposed by James Woods, Student, University of
New Mexico, Albuquerque, New Mexico.

How long is the arc s in the figure?
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69. Proposedby the Editor. (From Nicholson's, Elements
of Plane and Spherical Trigonometry, The Macmillan Com
pany, 1911).

On the bank of a river, there is a column 200 feet high
supporting a statue 30 feet high; the statue to an observer
on the opposite bank subtends an equal angle with a man
6 feet high standing at the base of the column. Required
the width of the river.

70. Proposed by the Editor.
The point A is 3 feet from the center O of a circle

of radius 5 feet . The point B is 4 feet from 0 and 5 feet
from A. Locate the point P on the circle so that the
distance AP + PB may be as small as possible.

SOLUTIONS

60. Proposed by Frank Hawthorne, Hofstra College,
Hempstead, New York.

Two men play a game with a deck of 45 cards. Fifteen
of the cards have the leter "A" on both sides, fifteen have
the letter "B" on both sides and fifteen have "A" on one
side and "B" on the other. After thorough shuffling, in
cluding turning cards over, the first man cuts the pack
exposing one side of one card. The second man then tries
to guess the letter on the underside of the exposed card,
winning if he does so and losing if he doesn't. If one man
always cuts and the other always guesses, do they have
equal chances of winning?

Solution by Charles Pearsail, Hofstra College, Hemp
stead, New York.

Since the appearance of an unmatched card is probable
in one-third of the cuts, and since the second man should
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guess the sameletter as he sees, the odds are two to one in
his favor.

Also solved by Morris Rosen, Hofstra College.
61. Proposed by Charles Pearsall, Student, Hofstra Col
lege, Hempstead, New York.

A diskL0 of radius 722 = 1"is placed in the exact center
of a circular floor and six other identical disks are placed
around it so that each is tangent to L0 and to one another,
thus forming a ring Lx. Around this ring, another ring
L\ of six disks of greater radius 722 are placed so that each
disk is tangent to two disks of L2 and to two disks of Lx.
Successive rings L„ Lt, Lt, La each of six disks ofincreasing
radii 723 < 72« < 72„ < 72„ are placed in the same way.
If the disks of La are tangent internally to the edge of
the floor, what is the diameter of the floor?

Solution by Morris Rosen, Hofstra College, Hemp
stead, New York.

Let Obethe centerof L„;A,B, Cbethe centersof three
consecutive disks of Lx; and E, D be the centers of the disks
of L2 which are tangent to circles A and B and to drcles
B and C respectively. Let F be the point of tangency of
circles A and B, and G the point of tangency of circles D
and E. Then: AFB is perpendicular to OFE; OB = 2RX;
OE = 2722,_Angle BOF = 30°; ££_= 72x + 722. Hence,
OF = 72xV3, and FE = 2722 - Rxy/S; so in triangle BFE

(Rx + 722)2 = R\ + (2722 - Rxy/~S)2 or
372| - (2 + 4V3)72,72, + 37$ = 0

The latter equation may be solved for 722 in terms of Rx
giving

72i[l + 2\/T± 2(1 + V3)1/2]
ft = = RXC.

3
Then 723 = C722 = C272„ 72« = C72g = C'72,, 72, = C72, =
C«72lf 728 = C72, = C*RX. If D is the diameter of the room,
then D = 6R9 = fSC872x = 6C* inches. The positive sign is
to be chosen in the expression for C.
62. Proposed by C. W. Trigg, Los Angeles City College,
Los Angeles, California.
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Decipher the following anagrams of the names of
nineteen mathematicians: 1) NO CAB, 2) NO CART,
3) UNCLE EVAN, 4) HIS PAL LOU, 5) RAN MINE,
6) SHE CAN RUN THIS, 7) HOT ROD USE, 8) U.S.
GAS, 9) TANK, 10) WE START, 11) CRUISE UP, 12)
VINE ST., 13) CUT A RAIL, 14) IN SLOW, 15) ZONE,
16) LOST A TntE, 17) NOT NEW, 18) NO RAVING,
19) CHASE ON RIM.

Solution byJohn Manias, Jr., University of New Mexi
co, Albuquerque, New Mexico.

1) BACON, 2) CANTOR, 3) VAN CEULEN, 4)
PHILOLAUS, 5) RIEMANN, 6) TSCHIRNHAUSEN, 7)
THEODORUS, 8) GAUSS, 9) KANT, 10) STEWART,
11) EPICURUS, 12) STEVIN, 13) CLAHtAUT, 14)
WILSON, 15) ZENO, 16) ARISTOTLE, 17) NEWTON,
18) VARIGNON, 19) MASCHERONI.

Partially solved by Charles Pearsall, Hofstra College.
63. Proposed by David T. Benedetti, University of New
Mexico, Albuquerque, New Mexico.

A golf pro wishes to arrange a tournament for the
sixteen members of bis club. They are to play in four
somes and each member is to play with every other mem
ber once and only once. Show how the rounds are to
be arranged.

Solution by Charles Pearsall, Hofstra College, Hemp
stead, New York.

In the expansion of a 4th order determinant there are
two sets of 12 terms in which each element appears in
the same term with any other element once and only once.
Thus, if the 16 players are arranged in a 4th order deter
minant, three rounds of the tournament may be selected
in two ways by taking either the positive or the negative
terms out of the expansion. The rows of the determinant
will constitute the fourth round and the columns will con
stitute the fifth round. Since each member can play with
only three others in one round, five rounds are required.

Also solved by Sharon Murnick and Morris Rosen of
Hofstra College, and Joseph E. Mueller of Butler Uni
versity.
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64. Proposed by the Editor.
There are four fractions of the form a/b, a < b < 10,

such that N-a/b, where N is a two-digit integer, is equal
to N with its digits interchanged. Find the fractions and
the corresponding values of N.

Solution by Sharon Murnick, Hofstra College, Hemp
stead, New York.

Let N = lot + u. Then, since (10* + «)a/b =
(10a + t), t/u = (10b - a)/(10a - b). Let 10b - a =
72*, 10a — b = 72a. From these equations 99b =
72 (lOt + u). Now 11 can only divide 10* + « when t = u,
which is impossible. Hence, 11 divides 72. Let 72 = 11
then 9 divides lot + u and t + u = 0(mod 9). But since
t and u are both less than 10, t + u = 9, b = t + 1,a =
10 — t, a + b = 11. The possible values of a and b are
2, 9; 3, 8; 4, 7; 5, 6. Also, i = 10 - a = b - 1, « =
(10a — b)/ll. The solutions are then a/b = 2/9, 4/7.
3/8, 5/6, and N = 81, 63 or 21, 72, 54.

Also solved by Charles Pearsall, Morris Rosen, and S.
H. Sesskin, all of Hofstra College; Joseph E. Mueller,
Butler University; Jerry Jefferies, Albion College; Culbeth
Sadler, Jr., Washburn Univeristy.

Late solutions: Morris Rosen, Hofstra College, 55,
56, 57, 58, 59; JeweU Magee, Central CoUege, 56; Dorothea
Peterson, Hofstra College, 56 and 59.

H

"If you read about Einstein's theory of relativity,
you will find many references to a peculiar person called
'the observer'—the man who has a habit of falling down
lifts, or getting transported by aeroplanes traveling at
161,000 miles a second The point is that aU our knowl
edge of the external world as it is conceived today in
physics can be demonstated to him."

—Eddington



THE MATHEMATICAL SCRAPBOOK

Edited by H. D. Larsen

Let no one ignorant of Geometry enter my door.
—Plato

= V =
One day a group of engineers found themsdves com

pletely stumped by a mathematical problem, sothey decided
to take their troubles to Steinmetz. If anyone could
solve the problem, he could. They confronted him in his
laboratory and outlined their question to him, "Mr. Stein
metz, what is the cubic content of the metal which is
removed from a cylindrical rod two inches in diameter
when a two-inch hole is bored through the rod, separating
it into two pieces?"

That was a problem—The scientist's brow furrowed as
he became lost in deep concentration; then his face bright
ened; and with a smile, he exclaimed, "Why of course,
gentlemen, the answer is 5.33 cubic inches." Needless to
say, the engineers were dumbfounded, for Steinmetz had
worked the entire problem out in his head!
—General Electric Co., Steinmetz: Latter Day Vulcan.

= V =

This cryptarithm has a unique solution,
ab) cddefg (hifj

cch

ee

ab

hdf
dec

hag
hhj

c

—Amer. Math. Monthly
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1/ir = .3183098
77ow 7 remember you
O difficult equation.

—E. Leedham

= V =
A Minion, agile, in stature smaU
Panting came to great Diana's Hall,
Bearing a marble globe upon his shoulders,
Measuring one inch in its diameters.
He rolled it to the northeast corner of the Hall,
Left touching the northern and eastern walls,
Then following come three demi-gods in white,
Each bearing a globe of lustrous metal bright;
One of iron, copper one, and one of silver;
And they placed them in the order given,
Touching each the other, and at the same time,
Touching each the side walls, in a direct line,
The iron touching the marble, and its other side
Resting against the silver, in its glory and pride,—
All resting upon the oaken floor; and then
With heavy tread, and puff, and roar, Atlas came
Bearing a huge golden sphere, that filled the Hall.
Touching the four sides, floor and ceiling, and all
Radiant with beauty, resting against the silvery ball,
Making the globe's diameters in the rooms diagonals.
Tell me, all ye who mathematics know:
What size the copper sphere, and oh!
How large the iron globe? How great
The golden globe, immaculate?
The silver sphere, how great? What size?
And if presented as a prize,
What value do you hold
Would be the sphere of gold?
—Am. Math. Monthly, Vol. 7 (March, 1900) p. 85.

(For solution, see Am. Math. Mo., Vol. 7 (June-July 1900)
pp. 168-9.)

= V =
At one time "analogy" meant "proportion," whence

our term Napier's analogies in spherical trigonometry.
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"Cantor's theory of the infinite — one of the most
disturbing original contributions to mathematics made in
the past 2,500 years." _£ ^ ^

= V =
"I shall set forth the method of forming fractions

which is most pleasing to me today and it will rest in
men's judgment to appraise what they see."

—R. Bombelli

"Every new body of discovery is mathematical in
form, because there is no other guidance we can have."

—C. G. Darwin

=V =
"When you come to a hard or dreary passage, pass it

over; and then come back to it after you have seen its
imnortance or found the need for it further on."

—G. Chrystal

=V=
"Mathematics is the tool specially suited for dealing

with abstract concepts of any kind and there is no limit
to its power in this fidd."

—P. A. M. DlRAC

=V=
"Mighty are numbers, joined with art, resistless."

—Euripides

=V=
"How can it be that mathematics, being after all a

product of human thought independent of experience, is
so admirably adapted to the objects of reality?"

—Albert Einstein

= V =
A and B are exploring a desert with the object of

penetrating as far into the interior as possible. If each
man can carry provisions for 20 days, and if each man can
travel 12 miles per day, what is the greatest distance
penetrated?
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"Everymajor concern among the inteUectual concerns
of Man is a concern of Mathematics."

—C. J. Keyser

= V =

Laplace, when asked who was the greatest mathema
tician in Germany, replied, "Phaff;" his interrogator said
!L « ? have t*10"^ Gass was. "Oh," replied Laplace,
Phaff is the greatest mathematician in Germany, but

Gauss is the greatest mathematician in Europe."
—Nature, April 19, 1877

= V =

Note that the nine digits occur once and only once in
each of the foUowing fractions.

15768 17568 23184 31824

3942 4392 5796 7956
—Math. Gazette

= V =

An experimental "proof of the theorem, Every odd
number is a prime:

A prime is a number divisible only by 1 and itself.
Certainly this is true for m = 1. We proceed step by
step and in each case prove primality by dividing the odd
number by all numbers less than it. In this way we
find that 3, 5, and 7 are primes. Apparently 9 = 3X8
but this would spoil the theory which has covered the
facts perfectly so far, so we ascribe the discrepancy to
experimental error and continue undaunted. We find the
theory to hold for 11 and 13 and then we test a few odd
numbers chosen at random like 23, 37, 41, •••. Thus the
theorem is proved.

—Leo Moser, Math. Mag.
= V =

In how many ways can you write 100, using each of
the nine digits once and only once? DJustrations:

48/2 + 59 + 7 + 3 + 1 + 6 = 100
(2 + 6)9 + 1 + 3 + 4 + 5 + 7 + 8 = 100.



THE BOOK SHELF

Edited by Frank Hawthorne

From time to time there are published books of common interest
to all students of mathematics. It is the object of this department
to bringthese books to the attention of readers of THE PENTAGON.
In general, textbooks will not be reviewed and preference will be
given to books written in English. When space permits, older
books of proven value and interest will be described. Please send
books for review to Professor Frank Hawthorne, Hofstra College,
Hempstead, New York.
FMland, by Edwin A. Abbott, Dover PubUcations, Inc.,

(1780 Broadway) New York, 109 pp. Paper $1.00.
Flatland is not a new book. It comes to our attention

because its popularity has required the sixth edition of
this seventy year old book. The new low-priced edition
is most welcome as it presents a classic work of art in a
pleasant easy-to-read type that was absent in the earlier
editions.

Flatland is an adventure in pure mathematics — and
yet one which requires little mathematical training on
the part of the reader. If you know the difference between
a square and a pentagon, between an isosceles triangle
and an equilateral triangle, then you know enough mathe
matics to read Flatland. If you are young in heart and
love the mystery of the world around you, you will find it
a fascinating tale unlike anything else you have ever
read.

Here is the account of an intelligent being who lived
in a world of only two dimensions. He lived on a plane
and his senses could perceive nothing outside the plane on
which he lived. A fascinating story is told of his life
in Flatland and of the revelation of the world of three
dimensions to him.

When one lays down the book, he is haunted by the
mysterious possibility of yet higher dimensions—four, five,
or six—making our space only a minute subspace of aU
creation. Could such a thing be? Could there be higher
dimensional creatures free to pass through our space when
ever they wished? If your immediate answer is "That

109
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is impossible!" then read the account of the sphere who
interrupted the life of our friend in Flatland and think
for a moment about some of the stories you have heard
about flying saucers.

—Merrill C. Palmer

Mathematics in Western Culture, by Morris Kline, Oxford
University Press, (114 Fifth Avenue) New York, 16
+ 484 pp. $7.50.

Everyone accepts the fact that mathematics serves
the practical and theoretical needs of the engineer. Many
are aware, even if only vaguely, of the role that it plays
in the development ofthe physical sciences. Few, however,
recognize the full extent to which it has been a molding
force in the development of our civiUzation. In support of
the thesis that mathematics has been such a force, Profes
sor Kline has written a very exciting, stimulating, and
provocative book.

He, like many of us, viewsmathematics in its broadest
aspect to be a kind of spirit, a "spirit of rationality," a
"spirit that challenges, stimulates, invigorates, and drives
human minds to exercise themselves to the fullest. It is
this spirit that seeks to influence decisively the physical,
moral, and social life of man, that seeks to answer the
problems posed by our very existence, that strives to under
stand and control nature, and that exerts itself to explore
and establish the deepest and utmost implications of knowl
edge already obtained." (p. 10) It is with the operation
of this spirit that Professor Kline is largely concerned.

Its birth came with the Greeks. Their insistence upon
a deductive proof for all mathematical conclusions, their
ability to free mathematics from experience and hence
make it abstract, and their choice of a set of axioms for
geometry in no small measure determined the character
of modern mathematics and served to proclaim the su
premacy of reason in human affairs. Professor Kline's
contribution, needless to say, is not found in his repetition
of what is already known to be historical fact; but rather
in his insights and his explanations of why and how these
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facts grew out of the particular culture which gave rise
to them and what they meant for the growth of Western
civilization in general.

For example, he relates the Greek preference for an
abstract mathematics and deductive reasoning to their
mentality and their society. They were philosophers with
a love of reason and of beauty, a delight in mental activity,
and a concern with universal truths. They looked for
the permanent, the ideal, and the perfect in knowledge.
Their society placed the intellectuals in the highest social
class, and these intellectuals had as little as possible to do
with commercial and practical pursuits. It is no wonder
then, that they preferred abstraction to experimentation,
and deduction to induction. Their disdain of the practical
is related to the fact that they did nothing to develop
an adequate number system; the static quality of their
geometry is paralleled by the static quality of their archi
tecture and their drama.

Though these few words do not do justice to Professor
Kline's complete discussion of the Greeks, it is hoped that
they convey some idea of the nature of his analyses; for it
is just these which make reading his book so rewarding.
He discusses, among other topics, the work of Copernicus
and Kepler and the effect of each on the philosophy and re
ligion of his time; the relation of the Renaissance artists to
mathematics and the consequent development of projective
geometry; Descartes' analytic geometry and its relation
to his philosophical studies; Galileo's quantitative descrip
tion of nature; Newton's universal laws and the prediction
thereby made possible as well as the reorganization in
philosophic, religious, and literary thought which they en
gendered; the statistical approach to the study of man,
and the statistical, as opposed to the deterministic, view of
nature; the development of the non-Euclidean geometries
and the resultant upheaval in philosophy; and finally the
theory of relativity.

The approach used throughout is essentially historical.
What emerges is a vivid account of how the development
of mathematics and the development of all other aspects of
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civiUzation were mutually influential. The book should be
an enriching experience for everyone as well as a forceful
reminder that mathematics is not simply a series of high
technical operations, but rather an alive and highly imagi
native area of inquiry which has markedly affected con
temporary Ufe and thought.

—Azelle Brown

Introduction to Logic, by Irving M. Copi, MacmiUian Co.,
(60 Fifth Ave.) New York, 16 + 461 pp. $4.00
The book consists of three parts, Language, Deduction

and Induction, with emphasis on the latter two, but a
strong enough treatment of the first to point out its
necessity and its hindrances to logic. His treatment of
definition is indicative of his very careful development of
strict language usage.

The section on deduction thoroughly treats categori
cal systems from the standpoint of syllogisms, diagrams
and symboUc logic. Generous use of truth tables fadlitates
the understanding of this section and gives a good basis
for the section on symboUc logic.

His treatment of induction is replete with actual ex
amples from scientific literature, being very careful to
show the distinction between induction and deduction. A
systematictreatment of arguments by analogy gives a good
foundation for the discussion of the sdentific method. His
treatment of probable inference and probabiUty is out
standing.

The book throughout is very lucidly written, giving
many examples and a wealth of exerdses for student
practice. Although it appears to be too lengthy to be
covered in a three-hour course, it is arranged so that
parts may be treated lightly or left out entirely. It will
serve as an excellent reference for courses in mathematics
dealing with its general aspects.

—B. E. Gillam

Math is Fun, by Joseph Degrazia, Emerson Books, Inc.,
(251 West 19th Street) New York, 159 pp. $2.75.
Here is a collection of problems, old and new, which
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require little or no technique but considerable reasoning
power. Many are well known, but this does not detract
from their charm. Anyone who has toyed with such
problems will recognize old friends and make new ones.

In such a book the problem of selection is important,
and it is in this regard that one may disagree with the
author. For instance, the everlasting SEND + MORE =
MONEY is included, while FORTY + TEN + TEN =
SIXTY is not. However, such things are purely matters of
choice. Thank goodness, "What Color Was The Bear?" is
absent.

Altogether, this is a book which can furnish much
pleasure. It is sufficiently elementary that a child of
twelve (the reviewer's son to be specific) can understand
and solve some of the problems and sufficiently advanced
to cause some scratching of grey hairs.

—F. Hawthorne

BOOKS RECEIVED BY THE BOOK SHELF EDITOR —

A First Course In Ordinary Differential Equations, by
Rudolph E. Langer, John Wiley and Sons, Inc., (440
Fourth Ave.) New York, 12 + 249 pp. $4.50.

An Analytical Calculus, Vol. I. by E. A. Maxwell, Cam
bridgeUniversity Press, (32East 57thSt.) New York,
12 + 165 pp. $2.75.

Elementary Differential Equations, by Lyman M. Kells,
McGraw-Hill Book Company, Inc., (330 West 42nd St.)
New York, 10 + 266 pp. $4.00.

Elements of Statistics, by H. C. Fryer, John Wiley and
Sons, Inc., (440 Fourth Ave.) New York, 8 + 262 pp.
$4.75.

First Course In Calculus, by HoUis R. Cooley, John Wiley
and Sons, Inc., (440 Fourth Ave.) New York, 12 + 643
pp. $6.00.

Geometry AndThe Imagination, by D. Hilbert and S. Cohn-
Vassen, Chelsea PubUshing Co., (231 West 29th St.)
New York, 9 + 357 pp. $6.00.
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Ideal Theory, by D. G. Northcott, Cambridge University

Press, (32 East 57th St.) New York, 8 + 112 pp.
Paper $2.50.

Introductory CoUege Mathematics, by Adele Leonhardy
John Wiley and Sons, Inc., (440 Fourth Ave.) New
York, 9 + 459 pp. $4.90.

Methods ofAlgebraic Geometry, Birational Geometry, Vol.
Ill, Book V, by W.V.D. Hodge and D. Pedoe, Cam

bridge University Press, (32 East 57th St.) New
York, 10 + 336 pp. $7.50.

Plane Trigonometry, by Paul R. Rider, The Macmillan
Co., (60 Fifth Ave.) New York, 8 + 180 pp. $3.00.

Principles Of Numerical Analysis, by Alston S. House
holder, McGraw-Hill Book Co., (330 West 42nd St.)
New York, 10 + 247 pp. $6.00.

Stability Theory Of Differential Equations, by Richard
Bellman, McGraw-Hill Book Co., (330 West 42nd St.)
New York, 13 + 166 pp. $5.50.

Theory Of Equations, by C. C. MacDuffee, John Wiley
and Sons, Inc., (440 FourthAve.) New York, 7 + 120
pp. $3.75.

^



EAPPA MU EPSILON NEWS

Edited by Laura Z. Greene, Historian

Alabama Beta Chapter served as co-hosts with the
college for the meeting of the Alabama Teachers of CoUege
Mathematics which met on the campus of the Alabama
State Teachers CoUege at Florence.

- + -

A number of members of the Illinois Ddta presented
papers at a meeting of the Chicago Catholic Science Teach
er's Association which was held at the Museum of Science
and Industry in Chicago on April 11, 1953. The topics
selected for the papers concerned materials which could
be used for mathematics clubs at both the high school
and coUege levds.

- + -

Illinois Ddta wiU have a radio broadcast over Station
WJOL, JoUet. It wiU be an adaptation of the life of Luca
PacioU, written by Emmett Taylor.

- + -
The members of Indiana Alpha arranged an exhibit

of mathematical posters and models for an open house
held at Manchester College.

- + -
Indiana Beta Chapter held its annual reunion dinner

for the active members and alumni March 28 at the Athen
aeum.

- + -

Four students and two faculty members from Iowa
Alpha attended the National Convention of Kappa Mu Ep-
sUon which was held at Battle Creek, Michigan, in April.
Clyde DiUy entered his paper "Reverse Notation for Num
bers" in competition at the convention.

The Iowa Alpha officers for the year 1953-54 are:
Wayne Stark, president; Doris Reeves, vice-president; Tom
Yager, secretary-treasurer.

- + -

Dr. O. J. Peterson, Sponsor of Kansas Beta and former
National President of Kappa Mu Epsilon, has returned to
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his work after several months absence which was caused
by a hip injury last October.

- + -

The annual pledge program of Kansas Gamma was
held on April 20. The program was an impersonation of
a Boy-Mathematics. The five pledges wrote the script
and brought in the five phases of mathematics usuaUy
stressed by Kappa Mu Epsilon, i.e., business, biological
science, physicalscience, engineering and pure mathematics.

Kathleen Feldhousen, President of Kansas Gamma,
received the Agnesi Medal in recognition of the worth
while project of indexing the entire set of twenty-seven
volumes of the Kansas Association of Teachers of Mathe
matics Bulletins.

The Guard of Excellence was given for the first time
by the Kansas Gamma Chapter. This consists of a gavel
(or other charm indicative of a special chapter office)
bearmg three pearls and attached to the winner's Kappa
Mu Epsilon key. This is the highest award given by the
local chapter and went to Miss Bernadine Law for her
unusual achievement in the presentation of a paper which
merited second place at the national convention. The cita
tion was written by Sister De Montfort Knightley, Chap
ter Treasurer in 1947-1948.

The underclassmen award for excellence in work in
mathematics onthe freshman-sophomore level went to Miss
Betty Gross of Kansas Gamma.

Five members of the local chapter attended the Ninth
Biennial Convention of Kappa Mu EpsUon held at Battle
Creek, Michigan, April 17-18. Miss Betty Becker of Kansas
Gamma servedon the Resolutions Committee in the absence
of Sister Helen Sullivan who was unable to attend because
of illness.

Miss Bernadine Law of Kansas Gamma presented her
prizewinning paper by invitation at a special assembly of
the students of St. Benedict's College on April 22.

Officers of Kansas Gamma for the year 1953-54 are:
Bernadine Law, President; Kathleen Feldhousen, Vice-pres-
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ident; Suzanne Swann, Secretary; Betty Gross, Treasurer;
Virginia Breland, Publicity; Mary EUen Kuhlman, Musi-
dan; and Sister Jeanette Obrist OSB, Faculty Sponsor and
Corresponding Secretary.

- + -

Michigan Beta presented E. T. Bell's Men of Mathe
matics to Alfred Cambridge who won the Annual Fresh
man Mathematics Award for writing the best paper on a
Mathematics Department Examination.

- + -

Missouri Beta is now giving an annual award to the
outstanding freshman student in mathematics and to the
outstanding senior student in mathematics enroUed at Cen
tral Missouri State College. The freshman award for 1952-
53 was presented to Mr. Eugene Wilson, and Mr. Richard
Laatsch received the senior award. Mr. Laatsch was vale
dictorian of his graduating class. Two other members of
Missouri Beta, Miss Bess Rickman and Mr. Richard L.
Smith, placed second and third in the 1953 graduating
class.

- + -

Mississippi Gamma arranged a mathematics exhibit
for the annual Career Day at Mississippi Southern College.

- + -

Herman Rewinkle, a memberof Nebraska Alpha,served
as president of the student coundl, was elected to Who's
Who in American Colleges, and was awarded the Victor
P. Morey Memorial Scholarship which honors the late
President of Nebraska State Teachers CoUege. President
Morey was a member of Nebraska Alpha.

Marvin Stone of Nebraska Alpha served as editor of
the college yearbook.

- + -

On December 29, the New York Alpha Chapter made
a visit to the Special Devices Center at the Sands Point
Naval Training Center.

A chapter news letter written for chapter members
proved interesting enough to the college that they printed
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enough copies to send to aU the Hofstra CoUege Alumni.
Dr. C. V.Newsom, past President of KappaMu EpsUon,

an honorary member of the New York Alpha Chapter, and
Associate Commissioner for Higher Education of New York
was awarded the honorary degree of Doctor of Humane
Letters by Hofstra College in June, 1953.

The New York Alpha Chapter is again sponsoring the
"Help Sections" in which Kappa Mu EpsUon members help
those who are having difficulties in mathematics.

Thomas K. Howard of New York Alpha was the win
ner of the Kappa Mu EpsUon award given to the best
student in freshman mathematics. The winner is chosen
on the basis of grades earned in freshman courses in mathe
matics and a two-hourexamination. As prizes, Mr. Howard
received the book, What is Mathematics, by Courant and
Robins, an award certificate, and the honor of having his
name engraved on a plaque.

- + -

In the second annual Kappa Mu Epsilon Scholarship
Competition, Miles E. Vance of Ohio Alpha was awarded
first place, Richard S. Krowicki was awarded second place,
and Robert Foster was given special mention.

Miles E. Vance, a delegate to the national convention
from Ohio Alpha, was granted a graduate assistantship in
the Physics Departmentat Ohio State University.

Carl Hawk, President of Ohio Alpha (1952-53), joined
the faculty at Bowling Green Junior High School, Bowling
Green, Ohio.

WiUiam Elderbrock, a 1953 graduate of Ohio Alpha,
entered the Ohio State University Medical School.

Robert Foster, a member of Ohio Alpha, who recently
recdved his master's degree from Bowling Green State
University, joined the staff of Tri-State College, Angola,
Indiana.

James Faber, former treasurer of Ohio Alpha was
granted a graduate assistantship at Washington Univer
sity, St. Louis, in geo-physics.
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Dr. Gilbert de B. Robinson, University of Toronto, and
visiting professor at Michigan State College was initiated
into the Ohio Alpha Chapter, December 9, 1953. He gave
an informal talk on "Comparison of CoUege Training in
Mathematics in England, Canada, and the United States"
to the chapter after a dinner held in his honor.

- + -

A thorough, but non-statistical study, has led to the
conclusion that during the past three years 75% of the
mebers of Oklahoma Alpha found non-teaching occupations
more attractive than teaching.

Professor Raymond Carpenter has been granted a leave
of absence for 1953-54 for further work toward the D.Ed.
Degree.

Professor L. P. Woods, one of the founders of the
original chapter of Kappa Mu EpsUon, will serve Oklahoma
Alpha as official sponsor for 1953-54.

Mr. BiUy R. Turney has been granted the M.S. De
gree and wUl teach mathematics in Tahlequah High School.

Mr. Norman Watley has been elected Superintendent
of Schools, Strand, Oklahoma.

«



1955 BIENNIAL CONVENTION

The National Council is happy to announce that the
1955 biennial convention of Kappa Mu Epsilon will be held
at

Nebraska Alpha

Nebraska State Teachers College

Wayne, Nebraska

on

May 6th and 7th, 1955

Wayne, Nebraska is about 125 miles north of Lincoln;
about 55 mUes southwest of Sioux City, Iowa; and 110
mUes northwest of Omaha. It is located on State High
way 16. Although there is no railroad or commerdal
plane service to Wayne directly, the connections may be
made at NorfoUc or Sioux City with bus service three
times a day, and once daily at Lincoln and Omaha via
Fremont.

Nebraska Alpha offers us the fadlities of their four
dormitories, a fine hotel, and a very nice new motel. De
tails on these accommodations wiU be sent to you by the
host chapter in time to make your arrangements.

Kappa Mu Epsilon, its officers and members, wish to
express their thanks to Nebraska Alpha for its offer to
serve as our host in 1955.

Charles B. Tucker
National President
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DIRECTIONS FOR PAPERS TO BE PRESENTED
AT THE

KAPPA MU EPSILON CONVENTION

WAYNE, NEBRASKA
May 6 and 7, 1955

At past conventions we have had papers presented by K.M.E.
members and prizes awarded. Now !b the time for all chapter
sponsors and members to start developing papers for our next
convention. Most of the papers have been of excellent quality for
the level of work represented, although several people have re
marked that their chapters could have done better. Here is the
challenge; here is the opportunity. Start now to encourage at least
one of your members to prepare a paper to submit at the Nebraska
Convention. Read the rules below, and start to work.

Who may submit papers: Any member may submit a paper for
use on the convention program. Papers may be submitted by
both graduates and undergraduates; however, they will not com
pete against each other. Awards will be granted for the beBt
papers presented by undergraduates. If enough papers are pre
sented by graduates, special awards may be given for their best
paper or papers.

Subject: The material should be within the scope of understanding
of undergraduates, preferably the undergraduate who has
completed calculus. The Selection Committee will naturally
favor papers that are within this limitation and which can be
presented with reasonable completeness within the time limit
prescribed.

Time limit: The average time limit should be twenty minutes but
may be extended to thirty minutes on recommendation of the
Selection Committee.

Paper: A rather complete outline of the paper to be presented
must be submitted to the Selection Committee accompanied by a
description of charts, models, or visual aids that are to be used
in presenting the paper. A carbon copy of the complete paper
may be submitted if desired. All papers must indicate that
the individual submitting the paper is a member of K.M.E., and
whether he is a graduate or undergraduate student.

Date and place due: The papers must be submitted before Febru
ary 15, 1965, to the office of the National President

Selection: The Selection Committee will choose about eight papers
from" those submitted for presentation at the convention. All
other papers will be listed by title.
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Prizes:

1. The authors of all papers presented will be given a two-
year extension of their subscription to THE PENTAGON.

2. The two or three best papers presented by undergraduates,
according to the judgment of acombined faculty and student
committee, will be awarded copies of the Mathematical Dic
tionary suitably inscribed.

3. If a sufficient number of papers are submitted by graduate
students and selected for presentation, then one or more
similar prizes will be awarded to this group.

Charles B. Tucker
National President
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PROGRAM TOPICS
(Spring Semester 1952-53—Fall 1953-54)

Alabama Beta, Alabama State Teachers College, Athens
Twenty Questions and Answers, by J. D. Clanton
The Doctoral Program, by Dr. R. C. Boles

Alabama Gamma, Alabama College, Montevallo
Aesthetic Values of MaUiematics, by Dr. Rosa Lea Jackson
Non-Euclidean Geometry, by Miss Mamie Broswell
Polyhedrons, by Miss Ruth Peer

Colorado Alpha, Colorado A & M, Fort Collins
Functions, by Calvin A. Rogers
Snow Plow Problem, by David Wait

Illinois Gamma, Chicago Teachers College, Chicago
Ciphers and Codes, by Dr. J. Sachs
Alexander G. Bell, by Representative of Bell Telephone Company
Proof of Five Regular Polyhedrons, by Elaine Michenfelder
History and Significance of Pi, by Jerry Donohue
Orientation and Puzzles and Problems, by Jerry Donohue

Illinois Delta, College of St. Francis, Joliet
David Eugene Smith, by Sister Rita Clare
Comparisons and Contrasts, by Patricia Kasak
From Plato'8 Republic, by Geraldine Knowles
Venus, by Martha Marie
Christopher Claviue, by Marianne Hasse
The Discovery of All Dark Things, by Patricia McLaughlin
The Planet Saturn, by Jeanne Schwinn

Indiana Alpha, Manchester College, North Manchester
The Human Elements of Mathematics, by Dr. C. S. Morris
Standards of Kappa Mu Epsilon, Panel Discussion
Value of Kappa Mu Epsilon, by J. E. Dotterer
/s There an Infinity, by John Mack

Indiana Beta, Butler University, Indianapolis
Electric Computers, by Chester Rector
Cartography, by David Woodward
Mathematics and the Telephone, by Earl Dickey
The Naval Ordnance Plant, by William Fuller
Mathematics and Music, by Mary A. Evans
Mathematics of the Ancients, by Raymond Cowan
Milestones in Higher Mathematics, by Richard B. Thompson
Nomographs, by Frank E. Tardy
Mathematics and Chemistry, by Jack Bowers

Iowa Alpha, Iowa State Teachers College, Cedar Falls
Lumsal Arithmetic, by E. W. Hamilton
Reverse Notation for Numbers, by Clyde Dilley
Nim, A Chinese Game of Numbers, by Harold Gillman
The Locus of Points from n Foci, by Clyde Dilley
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Iowa Beta, Drake University, Des Moines

Naperian Logarithms, by Harry Drown
Probability of Winning at "Craps," by Paul Gilman
Boolean Algebra, by Theodore Kowalchuck
Solutions of Problems, Candidates for Initiation
Relationships between Derivatives of Arcsin x, by Neal Llewellyn

Kansas Alpha, Kansas State Teachers College, Pittsburg
Non-Euclidean Geometries, by James Patterson
Mathematical Recreations, by Harold Lee Thomas
Experiences ot the University of Chicago While a Carnegie Visit

ing Teacher in Mathematics, by Dr. J. D. Haggard
Kansas Beta, Kansas State Teachers College, Emporia

Topology, by Homer Hackett
Mathematical Tricks, by Lester Laird
Report of the 1953 Convention, by delegates

Kansas Gamma, Mount Scholastica College, Atchison
Mathematics and Business, by Bernadine Law
Budgeting, by Kathleen Feldhousen
Savings, by Mary Ellen Kuhlman
Stocks, Movies: Opportunity UJS.A., What Makes Us Tick
Balance and Symmetry, by Bernadine Law
Proportions versus Dimensions, by Kathleen Feldhousen
Perspective, by Charlotte Raur
Lines in Pictures, by Jo Ann Fellin
Chemistry of Paints, by Mary M. Kuhlman
Fundamentals of Mechanical Drawing, by Lucy Bradley
Job Opportunities for the Student Who Is Trained in Mathe

matics, by Donna Rump
The Works of Raphael, Michaelangelo, and Leonardo da Vinci,

by Rita Moran
Ancient Architecture: Grecian, Roman, and Egyptian, by Su

zanne Swann

Modern Art versus Ancient AH, by Betty Becker and Jo Ann
Fellin

Kansas Delta, Washburn University, Topeka
Mathematics in the Field of Psychology, by Dr. John A. Myers
The Rectangular Coordinate System, Movie
Mathematics at Washburn, by Barbara Bartley
Some Interesting Mathematical Problems, by Dean Gettler
Mathematics, Pure or Otherwise, by Nancy Marsh
Highlights of the National Convention, by Mickey Welty, Nancy

Marsh, Loren McMurray, and Alfred Cheng
Louisiana Beta, Southwestern Louisiana Institute, Lafayette

Htgher Geometry, by Margaret M. LaSalle
Time and Its Measurement, by Dr. Dale M. Delaitech
Empirical Formulae from Experimental Data, by Lloyd D. Vin

cent
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Michigan Beta, Central Michigan State College, Mt. Pleasant
The Measurement of Astronomical Distances, by Donald Poole
Fallacies to Mathematics, by Helena Hayward
The Circular Slide Rule, by Erland Engstrom
Jumping off at Infinity, by Donald Jennings
The Ninth Biennial Convention, by James Bower

Mississippi Gamma, Mississippi College, Hattiesburg
The Solution of First Order Diophantine Equations, by Jewel

Magee
Congruent Integers, by Sybil Kirk
Cauchy-Riemann Conditions, by Charles R. Storey

Missouri Alpha, Southwest Missouri State, Springfield
Curve Tracing, by Robert Grim
Fibonacci Series, by Alice Killingsworth
Geometric Representation of ike Binomial Theorem, by Henry

Beersman
Solitaire with Checkers, by Norma Jones and David Robinette
Some Geometric and Algebraic Tricks, by Harold Skelton

Missouri Beta, Central Missouri State Teachers College, Warrensburg
Puzzles Constructed on Various Number Bases, by William Var-

deman
The Number Pi, by Royce Bradley
Evolutes and Involutes, by Ralph Coleman
A Coordinate System with Oblique Axes, by Jean Crecelius
Life of Geronomo Cardano, by Margaret Ann Handley
Tacit Assumptions, by Richard Laatsch
Love and Mathematics, by Dr. Robert Rothschild

Nebraska Alpha, Nebraska State Teachers College, Wayne
Puzzles and "Pascal," by Charlotte Baker and Donna Miller
Demonstration of Teaching Aids in Mathematics, by Beulah

Bornhoft
Reports of the Papers Presented at the Convention, by the

d6lG£T&teS

The Use of the Slide Rule, by Robert Terry Mansbel
New York Alpha, Hofstra College, Hempstead

Cryptanalysis, by Samuel Session
Some Calculus Without Calculus, by Charles Pearsall
Mathematical Chess, by Helen Dawson and Richard Thorgrimson
Paper Folding, by Mr. Hawthorne
Curve Tracing, by Dorthea Peterson
The National Convention, by the delegates
Magic Squares, by Sue Rae Waldman
Relations of Conies to Higher Plane Curves by Inversion, by John

Cornwell

New Jersey Alpha, Upsala College, East Orange
Graphical Solution of Cubic Equations, by Ellis Fuls
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An Introduction to Modern Geometry, by Dorothy Ross
Theory of Numbers, by Fred Kirtland
The Prime Integers, by Vera Anne Versfelt

New Jersey Beta, New Jersey State Teachers College, Montelair
Quality Control in Industry, by Charles Senoala
The Ninth Biennial Convention, by the delegates

North Carolina Alpha, Wake Forrest College, Wake Forrest
The Atomic Reactor, by Dr. T. J. Turner
Magic Squares, by Sarah Abernethy
History and Purpose of Kappa Mu Epsilon, by Alease Roach
Non-Euclidean Geometries, by Dr. Gene Medlin
Determining Logarithms, by Joe Stokes
Peano's Axioms, by Bob Johnson
Problems Encountered by the Mathematics Teacher, by Dr. Tom

Reynolds
Mathematical Games of Solitaire, by Dr. Nudlin
Square Roots, by Kenneth Byrd
Derivation of Pi, by Audrey Beck

Ohio Alpha, Bowling Green State University, Bowling Green
The Geometry of VanStaudt's Points, by Dr. Frank C. Ogg
Mathematics and the Next Fifty Years in Science and Engineer

ing by Dr. David Dietz, Scripps-Howard Science Editor
Comparison of College Training in Mathematics in England,

Canada, and the United States, by Dr. Gilbert De B. Robin
son, University of Toronto

High Speed Computation on the MIDAC with Applications in
Science and Industry, by Dr. John W. Carr, Willow Run
Research Center

Preparations of Mortality Tables, by Professor Harry Mathias
Some Interesting Triangles, by Dr. Frank C. Ogg
An Introduction to Vectors, by Dr. David Krabil
Cybernetics, by William Elderbrook
Some One-Sided Surfaces, by Dr. Harold Tinnappel

Ohio Beta, College of Wooster, Wooster
Modern Algebra, by Mr. Vockel
History of SymboUc Logic, by Mr. Linnell
Use of LaPlace Transform, by Professor Fobes

Ohio Gamma, Baldwin-Wallace College, Berea
NACA Research, movie
Modern Jet Plane, movie

Oklahoma Alpha, Northeastern State College, Tahlequah
Major and Minor Requirements in Mathematics, by Raymond

Carpenter
Mathematics in Industry, by L. P. Woods
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Pennsylvania Alpha, Westminister College, New Wilmington
Various Proofs of the Pythagorean Theorem, by Lyle Beall, Sam

Shane, and Jane Carbines
Introduction to the Theory of Games, by Merrill Palmer
An Experimental Evaluation of e, by Ralph Eicher
The Problem of the Jeeps, by Sam Shane

Tennessee Alpha, Tennessee Polytechnic Institute, Cookeville
Probability and its Engineering Applications, by James N. Luton,

Clyde Parker Ferguson, and Robert B. Aylor
National Convention, by J. L. Comer and R. H. Moorman

Texas Epsilon, North Texas State College, Denton
Some Problems in the American Mathematical Monthly, by

Glynn St. Clair, Wanda Allen, and Jane Pinkerton
The Conic Sections, Using Complex Numbers, by Joe Ballard
On Gaussian Integers, by Jim Chamblee
The Ninth Biennial Convention, by Pete Reames and Joe Ballard
Transfinite Numbers, by Professor Harlan Miller

Wisconsin Alpha, Mount Mary College, Milwaukee
Report on National Convention, by Ann Meara and Joan Bartelsen
Explanation of Three-Dimensional Tic-tac-toe, by Ruth Renwick
Methods of Thinking and Methods of Reduction Used to Sub

traction by Sister Mary Petronia
Finger and Complementary Multiplication, by Sister Mary Pe

tronia
Number Bases, by Colette Frendries
Introduction of Sigma and Pi Symbols, by Toni Langfeld
Euclidean Algorithm Applied to Integers and Polynomials, by

Kay Cunningham
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