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Kappa Mu Epsilon, national honorary mathematics fraternity,
was founded in 1931. The object of the fraternity is four-fold: to
further the interests of mathematics in those schools which place their
primary emphasis on the undergraduate program; to help the under-
graduate realize the important role that mathematics has played in
the development of western civilization; to develop an appreciation of
the power and beauty possessed by mathematics, due, mainly, to its
demands for logical and rigorous modes of thought; and to provide
a society for the recognition of outstanding achievement in the study
of mathematics in the undergraduate level. The official journal,
THE PENTAGON, is designed to assist in achieving these objectives
as well as to aid in establishing fraternal ties between the chapters.
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THE INFLUENCE OF MATHEMATICS
ON THE PHILOSOPHY OF PLATO

R. H. MOORMAN
Professor, Tennessee Polylechnic Institule

1. Introduction. For several years the writer has
been trying to study the influences of mathematics on
philosophy by studying the most outstanding men who have
been famous both as mathematicians and as philosophers.
The present paper deals with Plato, who is more famous
in philosophy than in mathematics, but who was an out-
standing mathematician. Plato is difficult to study be-
cause he wrote dialogues and put most of his own views into
the mouth of Socrates. It is difficult to tell whether it was
Socrates or Plato speaking, since Socrates never wrote any-
thing, or at least nothing has come down to us. Plato had
seen Socrates executed and this fact made him cautious in
expressing his views. Another difficulty is the fact that
Plato’s disciples nearly always interpreted Plato in the light
of their own points of view. Plato might have exclaimed,
along with Immanuel Kant, “God spare me from my dis-
ciples.”

2. Life (c. 427 B.C. - ¢. 347 B.C.). Plato was of noble
birth and excellent education. His ancestors on both sides
were of the most distinguished families of Athens. Plato
studied under Socrates and spent most of his life in Athens,
though he traveled extensively. About 387 B.C. he founded
his Academy over the door of which he is said to have
placed the inseription, “Let none but geometers enter here.”
Presiding over the Academy for the rest of his life, he ac-
cepted no pay for his work since he did not believe in pay
for teachers. Plato wrote some fifty-five dialogues, among
the most famous of which are: Republic, Laws, Politics,
Timaeus, Sophista, Critias, Apology of Socrates, Thealetus,
Meno, Phaedo, Philebus, Protagoras, and Euthypre. It was
only in his Epistles that Plato used his own name in any-
thing that he wrote.

3. Mathematics. Plato was not primarily a mathema-
51
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tician and wrote no books on mathematics, but his Academy
was the connecting link between the mathematics of the
fifth century Pythagoreans and that of the first Alexan-
drian School. Plato studied mathematics under the direc-
tion of the Pythagoreans and also perhaps under Egyptian
mathematicians. All of the most important mathematical
work of the fourth century B.C. was done by friends or
pupils of Plato. For example, Theatetus, the inventor of
solid geometry, and the first men to study the conic sections
were members of the Academy.

Plato made a number of specific contributions to math-
ematics. He introduced the analytic approach to the solu-
tion of problems in geometry and he gave a list of defini-
tions, axioms, and postulates for plane geometry. Insisting
upon accurate definitions, clear assumptions, and logical
proof, he laid the foundation for the work of Euclid, who
came about a century later. For example, Plato urged the
examination of hypotheses in the Republic, declaring:

« » . 08 to the mathematical arts . . . never can they behold
the waking reality so long as they leave the hypotheses
which they use undisturbed, and are unable to give an account
of them. For when a man knows not his own principle, and
when the conclusion and intermediate steps ave also con-
structed out of he knows not what, how can he imagine that
such arbitrary agreement can ever become science?:

Plato formulated the rule that constructions should be
made only with compasses and unmarked ‘straightedge, a
rule which led to the three famous problems of antiquity.
He made some contributions to the theory of irrational
numbers. Plato had an excellent idea of what we now call
the function concept. In the Meno there is to be found
a discussion of the variation of the area of a rectangle as
its length and width varied. This would do justice to any

twentieth century teacher trying to explain the function
concept.?

4. Philosophy.. .Plato suggested all the problems
known to philosophy even today. He was the first to give
¥The Dialogues of Plato, translated into lEninth by B. Jowett, New York: Charles

Scribner’s Sons, 1908, Vel. I, p. 36
tbid., Vol. 1. pp. 256-259
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a complete treatment of all the problems of philosophy. He
esteemed philosophy, for he declared in the Republic that
philosophy was “the noblest pursuit of all.”?

Plato had no definite system of philosophy since he
did not believe in the necessity of systems of philosophy.
His philosophy, however, may be described by the term
idealism, which is merely a euphonious expression of idea-
ism. For his ultimate realities were ideas. Man was like
a person chained in a cave with his back to the opening.
All that he could know about the world was learned by
studying the flickering shadows reflected on the back of
the cave. He held that there were three worlds: The
World of Ideas, the World of Phenomena, and the Mental
World. Man lived in the Mental World which lay between
the other two worlds, partaking of the nature of both.
Plato declared that ultimate reality was in Mind rather than
Matter.

5. The Influence of Mathematics on the Philosophy of
Plato. Mathematicians who philosophize usually deal with
what might be called universal mathematics, which is the
theoretical application of mathematics to every phase of
life. Thus Plato believed that order and measure could be
applied to everything in life. In the Republic he declared
that “. . . The arts of measuring and numbering and weigh-
ing come to the rescue of the human understanding—that
is the beauty of them—and the apparent greater or less,
or more or heavier, no longer have the mastery over us,
but give way before calculations and measure . . . * Plato
believed that order and measure were the key to health and
to the practice of medicine, stating in the Republic: “And
the creation of health is the creation of natural order and
government of one another in the parts of the body; and
the creation of disease is the production of a state of things
at variance with this natural order.”?

In following out his universal mathematics, Plato was
led to what might be called number mysticism. This was
probably due to the influence of the Pythogoreans who be-
Meid,, Vel. 11, p. 316 ’

pid., Vol 1I, pp. 433434
¥bid., Vol I, p. 271
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lieved that integers held the secret of everything in life.
In the Republic Plato gave an absurd jumble of numbers
as a rule to determine the best time for the procreation of
children. He declared that the gods had a period which was
contained in perfect numbers, while the period of humans
was very complex.! According to Fite, * . . . the Pytha-
goreans undertook to derive all of the universe from rela-
tions of numbers; Plato’s mind works in the same direction
only less crudely, more cautiously. But at times his imagin-
ation outruns his caution.”®

6. The Problem of Method. Consider first the in-
fluence of mathematics on Plato’s treatment of the problem
of the best method to use in his philosophy. Every philos-
opher seeks a logical method to find the truth. Plato’s logi-
cal method was influenced by the mathematical method of
caleulation.

...this ... is a case where present ideas serve better for

a characterization of Plato than those of only a generation
ago. For it is not so long since we should have thought it

a sufficient account of mathematics to say that it dealt with

numbers and geometrical forms. Recently a distinguished
mathematician rather startled me by saying flatly, mathe-
maties is logic. But that reminded me that on the other
hand for a generation past logic has been moving in the
direction of mathematics along the line of symbolic logic.?

According to Fite, in Plato’s Gorgias, as in his Prota-

goras the logic is the logic of calculation.*

7. Epistemology: the Problem of Knowledge. Math-
ematics seems to have been related to Plato’s treatment of
the problem of getting correct knowledge. He thought that
order and measure were the key to true and accurate knowl-

edge. In the Republic Plato declared:
Then this is the sort of knowledge of which we are in search,
having a double use, military and philosophical; for the
man of war must learn the art of number that he may know
how to array his troops, and the philosopher, also, because
he has to rise out of the sea of change and lay hold of true
being, ... 8

t6id., Vol. I, p. 373

*Wataes Fite. The Platonic Legend, New York: Charles Scribner’s Sons. 1934, p- 247,

*1bid., p. 232

*16id., p. 199
Jowett, op. cit., Vol. I, p. 352
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In the Protagoras, Plato declared:
Would the art of measuring be the saving principle, or would
the power of appearance? Is not the latter that deceiving art
which makes us wander up and down and take the things
at one time of which we repent at another, both in our
actions and in our choice of things great and small? But
the art of measurement is that which would do away with
the effect of appearances, and showing the truth, would fain
teach the soul at last to find rest in the truth, and would
save our life.?
There were two phases of Plato’s epistemology which
seemed to show best the influence of mathematics. The
first was his “dialectic,” the key to true knowledge, and

the second was his “divided line.”

The term dialectic meant knowledge by means of defi-
nitions. Plato insisted that the dialectician must have
mathematical training. In the Republic he declared that
calculation and geometry were the proper preparation for
the dialectic philosopher-statesman:

The special training of the dialectician is then ex-
clusively mathematical. It will be a graded course consisting

of (1) arithmetic, (2) plane geometry, (3) solid geometry

{this science, Plato explains is yet to be created], (4) . . .

mathematical astronomy . . . with the eyes averted from the

starry firmament above us, and (5) mathematical harmonics.

And Plato finds it unfortunate that arithmetic is useful for

trade. The real purpose of mathematics was to draw the soul

upward.2

Consider next Plato’s “divided line.” He expressed
many relationships in terms of proportions, and in the
Republic he gave his entire scheme of things in terms of
ratios of line segments.* The segments of the line were
divided in the same ratio as the whole line. On the basis
of these line segments he gave the following proportions:

Perception : belief : : understanding : science.
Being : becoming : : pure intellect : science.
Intellect : opinion : : science : belief : : under-
standing : perception of shadows.
“Today we learn our arithmetic first, but from the be-
ginning it seems that Greek arithmetic was closely con-
Ybid.,, Vol. 1. p. 156

*Fite, op. cit., p. 239
3Jowett, op. cit., Vol. IL, pp. 337-340
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nected with geometry and that it borrowed from geometry
its symbolism and its nomenclature. This helps us see
why Plato put his metaphysical scheme in the form of a
line.™

Plato believed in what has since been called “mental
discipline,” holding that mathematics could train the mind.
Thus he declared in the Republic.

And have you further remarked that those who have a
natural talent for caleulation are generally quick at every
other kind of knowledge, and even the dull, if they have had
an arithmetical training, gain in quickness, if not in any
other way?2

8. Metaphysics: the Problem of Ultimate Reality.
In dealing with Plato’s metaphysics, we may consider the
influence of mathematics on his treatment of ideas, and on
his treatment of god.

For Plato, ideas were superior to the objects of sense
in the same way that the concept of a circle was superior
to any circle that one could draw. According to Aristotle,
the Platonic Ideas were nothing but numbers.? This was
brought out in the Republic when he tried to show that in
dealing with phenomena, he was not dealing with reality,
just as in geometry the diagram was not the reality. He
declared:

And do you not know also that although they [the mathe-
maticians] use and reason about the vigible forms, they are
thinking not of these, but of the ideas which they resemble;
not of the figures which they draw but of the absolute
squares and the absolute diameter and so on; and, while
using as images these very forms which they draw or make,
- « . they are really seeking for the things themselves, which
can only be seen with the eye of the mind7?+
Then Plato went on from mathematics to philosophy.

Consider next Plato’s treatment of the problem of god.
According to Felix Klein, Plato stated that “God eternally
geometrizes,” and it seems that mathematics was related
to his concept of god. Plato thought of god as being a
IFite, op. cit., pp. 237-238
2Jowett, op. cit., Vol 11, 4"' 353.354
’Edward_Zeller, Plato and the Older Academy, transtated by Sarah Alleyne and Alfred

Goodwin, London: Longmans, Green. and Company, 1888, p, 255.

*R. E. Moritz, Memorabilia Mathematics New York: The Macmillan Company, 1914, °
pp. 269-270.
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perfect circle on a perfect sphere. Fite paraphrased the
New Testament to show Plato’s concept; *“Be ye how-
ever geometrically perfect, even as the perfect circle is
perfect; or as the perfect sphere; or perfect with the in-
finitely subtle and complex perfection of a perfect number-
set.”

9. Natural Philosophy: the Problem of the External
World. In dealing with the external world, Plato over-
emphasized the importance of mathematics in scientific in-
vestigation. He failed to understand the importance of
empirical observation, induction, and experimentation. Ac-
cording to Taylor:
The result is thus that Timaeus, in the spirit of Descartes,
offers us an anatomy and physiology in which the organism
appears as an elaborate kinematical system; natural science
is thus reduced in principle, as Descartes and Spinoza held
it ought to be, to geometry. Plato is not, of course, very
strictly committed by the details of speculations which he
repeatedly says are provisional, but it is clear that he is
in sympathy with the general attitude known today in
biology as mechanistic.?

Fite made the following statement in regard to Plato’s

natural philosophy:

Plato’s “chemistry,” all of it to be found in Timaeus . . .

is geometry simple and pure. It is an attempt to explain
the four elements: fire, air, water, earth, as so many com-
binations of triangles into geometrical solids, on the basis of

the theorem of the “five solids” discovered either by Plato

or by some other member of the academy.®
Demos described Plato’s natural philosophy in the follow-
ing way:

* In transforming the primordial chaos into an orderly world
God has recourse to the Pattern. God makes the so-called
elements, fire, water, air, and earth, by arranging space
according to certain geometrical figures and solids. The
actual world comes about through the introduction of mathe-
matical relations of number and proportion into the “Re-
ceptacle.”

In the Timaeus, Plato predicted mathematical physics
and astronomy and advocated the endowment of research

Fite, op. cit., pp. 262-263 !
SA. E. Tl!'l;tq. Plato, The Man and His Wock New York: The Dial Press, Inc. 1936,

P
$Pite, op. cit.. p. 222.
$Raphael Demos. The Philotophy of Plato, New York: Charles Scribner’s Sons, 1939, p. 5
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work. In the Epinomis, Plato gave his views on astronomy:

The study we need to lead us to true piety, the greatest of
the virtues, is thus astronomy, knowledge of the true orbits
and periods of the heavenly bodies, pursued in the spirit of
pure science . . . But since such a study is concerned with
the difficult task of the computation of the relative pe-
riods of the sun, moon, and other planets (and thus has to
reckon with highly complicated arithmetical problems), it
must have its foundation in a thoroughly scientific theory
of numbers.t

10. Practical Philosophy: the Problem of Ethics,
Esthetics, and Politics.. Descartes thought that practical
philosophy could not be treated mathematically and there-
fore should not be treated at all. But not Plato. He as-
serted the importance of mathematics in all of these fields.
For example, ethics was to be a matter of calculation.
From a statement of Aristotle we learn that most of those
who attended Plato’s lecture on the “The Good” were per-
plexed by hearing a lecture not on ethics but on mathe-
matics. Nothing was said about the conerete human goods;
the good was the determinate “One” as against the “Inde-
terminate” and “Infinite.” “Good” and “Bad” should be
determined by calculations. In the dialogue Euthypro,
Plato made Socrates explain how disputes could be settled
if everything could be dealt with in the same way that
numbers are handled:

SOCRATES. And what sort of difference creates en-
mity and anger Suppose for example, that you and I,
my good friend, differ about a number; do differences of
this sort make us enemies and set us at variance with one
another? Do we not go at once to calculation, and end them
by a sum?

EUTHYPRO. True.

SOCRATES. Or suppose that we differ about magni-
tudes, do we not quickly put an end to that difference by
measuring?

EUTHYPRO. That is true.

SOCRATES. But what differences are those, which
because they can not be thus decided, make us angry and
set up at enmity with one another? . . . this happens when
the matters of difference are just and unjust, good and evil,
honorable and dishonorable,2

¥Taylot, op. ¢it., pp. 500-501.
2Jowett, op. cit. Vol. L pp. 290.291.
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Another point to be considered under ethics is Plato’s
“calculus of pleasure” or “hedonistic calculus.” He said
that one should find the “maximum” of pleasure. In the
Protagoras, “It is the pleasure story of morals that Socrates
is here defending, variously described as utilitarianism,
hedonism, Epicureanism. His standard of good is pleasure
and his method is that of the “hedonistic caleulus!” -

Next, consider Plato’s “Moral calculus” in which can
be seen the antecedent of Aristotle’s “golden mean.”

For Plato the moral life presupposes an eternally uniform
order in the universe which is marked by the stars in
their courses, an eternal mean between too fast and too
slow from which we mortals are being ever and again dis-
lodged by passion and ignorance. The task of life is then
forever a matter of getting back again to the norm of re-
ducing the sum of our human sins and aberrations to the
slightest possible mean variation from the mathematical
point that marks the eternal order.?

In the Republic Plato declared that moral degeneration
was a calculable quantity, taking place in accordance with
a definite law, which could be expressed by geometrical
progressions. This statement of Plato bore an amazing
similarity to the laws of Weber and Fechner, which have
been hailed as important steps in the beginning of modern
scientific psychology.

Plato’s treatment of esthetics showed once again the
importance of order and measure in all of his thinking. By
getting proportions correct, beauty could be made absolute.
In Philebus Plato declared:

I do not mean by the beauty of form such beauty as that

of animals or pictures, which the many would suppose to

be my meaning; but, says the argument, understand me to
mean straight lines and circles, and the plane or solid figures
which are formed out of them by turning lathes and rulers
and measurers of angles; for these I affirm to be not
only relatively beautiful, like other things, but they are
eternally and absolutely beautiful . ., .3

Finally, consider the influence of mathematics on

Plato’s political philosophy. He regarded mathematics as

Fite, op. cit.. p. 186
*Fite, op. cit.. p. 259
Jowett, op. cir., Val. III, p. 191
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being very important in training for leadership in govern-
ment, Thus Plato declared in the Republic:

Then this is a kind of knowledge which legislation may fitly
prescribe; and we must endeavor to persuade those who are
to be the principal men of our State to go and learn arith-
metic, not as amateurs, but they must carry on the study
until they see the nature of numbers with the mind only;
nor again, like merchants or retail traders, with a view to
buying or selling, but for the sake of military use, and the
soul herself; and because this will be the easiest way for
her to pass from becoming to being.
That is excellent, he said.

Yes, I said, and now having spoken of it, I must add
how charming the science is! And in how many ways
it conduces to our desired end, if pursued in the spirit of
a philosopher, and not a shopkeeper.

How do you mean?

I mean, as I was saying, that arithmetic has a very
great and elevating effect, compelling the soul to reason
about abstract number, and rebelling against the introduction
of visible or tangible objects into the argument.t

In the Epinomis, according to Taylor:

We ought to give the name sophia only to studies
which make 2 man wise and good citizen, capable of exer-
cising or obeying righteous rule. Now there is a branch
of science which, more than any other, has this tendency
and may be said to be a gift of a god to man, being in fact
the gift of Heaven itself. This gift is the knowledge of
number, which brings all other good things along with itself.
Without knowledge of number we should be unintelligent and
unmoral. How divine a thing it is we see from the considera-
tion that where there is number there i3 order; where there
is no number, there is nothing but confusion, formlessness,
disorder. To be able to count is the prerogative which marks
men off from the animals.?

There is to be found absurd number mysticism in
Plato’s contrast of kings and tyrants in the Republic:

And if you raise the power and make the plane a solid,
there is no difficulty in seeing how vast is the interval by
which the tyrant is parted from the king.

Yes, the arithmetician will easily do the sum.

Or if some person begins at the other end and measures
the interval by which the king is parted from the tyrant

Jowett, op. ¢ir., Vol. II, p. 353,
“Taylos; op. cit., pp. 498.499,
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. . . he will find him; when the multiplication is completed,
living 729 more pleasantly and the tyrant more painfully by
the same interval.

11. Summary and Conclusions: The following sum-
mary and conclusions seem to be valid:

1. Plato is usually thought of as being merely poetical
and mystical, but he seemed to try to apply mathematical
order and measure to all the problems of philosophy with
which he dealt. '

2. The type of analysis which Plato introduced into
geometry was introduced into philosphy by Descartes.

8. The type of analysis which Descartes introduced
into geometry has been used successfully in- philosophy
only in the twentieth century in the field of symbolic logic.

1Jowett, op. cit,, Vol. II, p. 419.

©

“The student who has thus far taken the system of real
numbers for granted, and worked with them, may continue
to do so to the end of his life without detriment to his
mathematical thought. On the other hand, most mathe-
maticians are curious, at one time or another in their lives,
to see how the system of real numbers can be evolved from

the natural numbers.”
—W. F. 0sGooD

“I do not know what I may appear to the world, but
to myself I seem to have been only a boy playing on the
seashore, and diverting myself in now and then finding a
smoother pebble or a prettier shell than ordinary, whilst
the great ocean of truth lay all undiscovered before me.”

—I. NEWTON

“Every new body of discovery is mathematical in form,
because there is no other guidance we can have.”
—C. G. DARWIN



SOME ELEMENTARY MATHEMATICS
OF SPACE FLIGHT

FLoyp F. HELTON
Faculty, Central College

With all the current interest in rockets, guided mis-
siles, and space travel, there is considerable confusion in
the popular mind between fact and fiction. It is well to
distinguish between the known mathematics and astronomy
involved and the still-undeveloped engineering necessary
for attaining space travel. It is possible to calculate the
orbits, velocities, and times required for such trips, re-
gardless of the engineering techniques that may be used to
obtain them. Hence it may be of interest to students of
mathematics to see that much of this calculation involves
nothing more complicated than the elementary integral eal-
culus.

First, we need to recall Newton’s laws of motion and
his law of universal gravitation. The second law of motion
states that the acceleration produced on a body is propor-
tional to the force producing it. With proper choice of units
this becomes, for a mass M, the familiar formula

(1) F = Ma.
The law of gravitation is described by the formula
(2) F = kMm/d?,

where I is the force of attraction between two bodies of
mass M and m, respectively, separated by a distance d.
The third law of motion states that to each force there is
an equal force, oppositely directed. Combining this with
formulas (1) and (2), we get
(8) Ma = F = kMm/d?, or
(4) e = km/d? ie., the gravitational acceleration on
a body is independent of its own mass. This was essentially
what Galileo demonstrated by his famous experiments with
falling bodies. '
At or near the earth’s surface, d = R = 4000 miles
(approximately) and experiment shows the acceleration

62
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due t(; gravity to be ¢ = g = 32.2 ft./sec.’. Substituting
in (4),

g = km/R?,
or km = gR: and (4) then becomes
(5) a = gR*/d

From the calculus we have that the work done by a
variable force F(x) exerted in a straight line from 2 =
a tox = bis given by

work W = [b% (z) dx.
Applying this to the work done in projecting a unit mass
vertically from the earth’s surface to a distance » from
the center of the earth, we get
(6) W = fi(gR:/r*)dr = gR:(1/R—1/r).
The work in moving the mass to “infinity” is similarly
(7) W = f@ (gR*/r*)dr=gR,
the units, of course, being appropriately chosen. This re-
sult also ignores air resistance, as is done in all the sub-
sequent developments. Interestingly enough, the above
derivation shows that to project a body completely away
from the earth requires exactly the same amount of energy
as would lifting its weight a distance of 4000 miles under
gravity at sea-level value. The relation (6) may be written
W = gR—gR?/r. For the moon, » = 240,000 miles, so
that relative to energy requirements the moon is practically
at “infinity.” If a body is projected to “infinity” from a
point distance r from the earth’s center, formula (7) is
replaced by
(8) W = {2 (gR*/r*)dr = gR*/r,
i.e., the energy required is inversely proportional to the
distance of the projection point from the center of the earth.
This becomes significant in consideration of projection
from a “space station” located at a considerable distance
from the earth.

Having developed the necessary energy requirements,
let us investigate the corresponding velocity requirements.
For the most efficient use of energy, it is necessary to give
the projected body the necessary velocity practically at the
time of projection (to avoid loss to gravitational decelera-
tion while the body is near the earth). Then the kinetic
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energy of motion from the initial velocity must equal the
work to be done. Hence, since K.E. = 14MV?, the “escape
velocity” for a unit mass is derived from (7), i.e.

14V? = gR, or
(9) V = v2gE = 7 mps or 25,000 mph (approximately).

The corresponding escape velocity from a point at
distance r from the earth’s center is given by (8), i.e.

1V:* = gR¢/r
(10) Ve = V2gR*/r.

Escape velocity is important in consideration of the
atmosphere of planets and satellites. If the velocities of
the molecules of the atmospheric gases have values com-
parable to the escape velocity of the celestial body in
question, the atmosphere gradually “leaks” into space.
This accounts for the complete lack of an atmosphere sur-
rounding the moon and very little atmosphere on Mars,
for example. The earth’s escape velocity of 7 mps is quite
adequate for holding an atmosphere. However, considera-
tion of formula (10) shows that at great distances from
the earth, gases of relatively high molecular velocities
(notably hydrogen) would be lost. For the giant planet
Jupiter the veolcity of escape is 37 mps, and J upiter has
a heavy blanket of atmosphere.

A body projected upward from the earth’s surface at
less than escape velocity would reach a certain height and
then fall back. To get the relation between the initial velo-
city and the height reached, we use (6) to get

(11) % V* = gR*(1/R—1/r), from which
r = 2gR*/(2gR—V?) or
(12) h = r—R = V:R/(2gR—V?).

Note that & = e for V2 = 2¢gR, as is to be expected from

(9). Also an interesting fact results from calculating the .
value of ¥ from (11) with » = 240,000 miles (the distance
of the moon). It turns out to be about 6.9 mps, only slightly
less than the velocity of escape for the earth. This is con-
sistent with the remark just preceding formula (8).

The relation (11) also gives the impact velocity of a
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body falling freely from a distance r (ignoring air re-
sistance, of course). It should be compared with the fa-
miliar formula from elementary physics, V2 = 2gk, which
is valid only for distances relatively small, considered as
space distances. The latter is derived on the assumption
that gravitational acceleration is constant (=g), rather
than varying as the inverse square. In fact, if in (6) we
replace gR*/r* by simply g, we get .
W = (&g dr = g(r—R) = gh,
and 14 V2 = gh, or V* = 2gh.

A very interesting consideration is that of a circular
orbital motion (the moon is an example). Here the centri-
fugal force must exactly counteract the gravitational at-
traction. From elementary physics, a body having a linear
velocity V, in a circle of radius r is subject to a centrifugal
acceleration of V,2/r. Then from (5) we will have the
orbital (circular) velocity given by

V.2/r = gR*/r?, or

(13) Ve = VgR*/T.

Comparison of (13) with (10) shows that the velocity re-
quired to project a body to “infinity” from any distance 7
is just v2 times the circular velocity at that distance. This
result is independent of the particular bodies involved.
Two consequences will be mentioned here and others later.
A “space station” will likely be realized long before com-
plete escape flight, because initial velocity for the latter is
about 114 times that for the former. Since the earth’s
motion about the sun is very nearly circular, at a linear
speed of about 181% miles per second, this is the circular
velocity relative to the sun at the earth’s distance from
the sun. The corresponding velocity of escape relative to the

sun is then 18.5 2 = 26 mps (approx.). Hence any mete-
orite in the earth’s vicinity cannot have a speed of greater
than 26 mps and still remain a part of the solar system.
Then the range of speeds of meteorites relative to the earth
is 2618145 = Tl4 to 441% miles per second. This wide
range of speeds is one factor in the great range in bril-
lance of meteors seen.
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From (13) we may derive a formula for the period of

motion in a circular orbit:

(14) P = 2xr/V, = (2wr/R)V7]g.

Near the earth’s surface, i.e., for » = R, the circular veloc-
ity turns out to be about 56 mps = 18,000 mph. Hence a
satellite just outside the earth would revolve around the
earth in about 134 hrs. A space station in such an orbit
passing over the poles of the earth would view every part
of the earth once every twelve hours. A calculation with
formula (14) for r = 26,000 miles (i.e., 22,000 miles above
the earth’s surface) gives P = 24 hours. Hence a body
directly above the earth’s equator at this distance and re-
volving in the equatorial plane would remain permanently
directly above the same point on the earth. The possibilities
for variety in periods of circular revolution has very inter-
esting implications relative to “space stations.”

The cases considered thus far are special ones—motion
either radially away from the earth or else in a circular
orbit about the earth. Also all of them have been developed
on the assumption of no atmospheric resistance to motion,
i.e,, they are strictly valid only from outside the earth’s
effective atmosphere.

Now let us consider the more general case of initial
motion in a tangential direction from a point distance r
from the center of the earth. If the body be given an
initial velocity less than the circular velocity for that
distance, it will eventually fall back to the earth, even though
it may go a considerable way around the earth before
doing so. If the initial velocity is greater than the circular
velocity the body will move outwards along some conic
curve, as first proved by Newton as an implication of the
law of gravitation. The particular comic is determined by
the initial velocity, the distance », and the gravitational
field (of the earth in the present case). Descriptively,
this is to be expected from the fact that the curvature of
the orbit will depend upon the deflection of the moving
body in the direction of the attracting force and its motion
in its orbit meanwhile.

It is shown in celestial mechanics® that for an initial
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velocity V at distance r the following relation (for an
elliptic orbit,) holds:

(15) V: = gR*(2/r—1/a),

where @ is the semi-major axis of the ellipse. In the case
of a central body other than the earth, the factor gR:
would be replaced with the appropriate constant, depend-
ing upon the gravitational field involved. In the case of
a circular orbit, @ = 7, and equation (15) reduces to (18):
V* = gR?/r, ie., circular velocity. In case the initial
velocity is somewhat greater than circular velocity, the
body will move out along an ellipse. As the value of V is
increased, a increases and, as
will be shown presently, the
eccentricity of the ellipse in-
creases until in the limiting
case @ = o, (15) reduces to
(10) : V= = 2gR?/r, i.e. escape
velocity. The orbit is now a
parabola and for this reason
escape velocity is often re-
ferred to as parabolic velocity.
For values of V greater than
escape velocity, the orbit is
hyperbolic and in formula
(15) the negative sign is re-
placed by a positive sign. If
V is increased indefinitely the
path of motion approaches a
straight line.

For the elliptic orbit shown in the figure we have
r = PE = a(l—e)
and V: = gR*(2/r—1/a),
from which it is clear that the semi-major axis e and the
eccentricity e can be determined. It can be shown that
for a given distance r the particular type of conic orbit de-
pends only upon initial velocity V and not upon the initial

1See, for Moaul Celestial Mechanics, § d Revised Edition, Chapter V.

¢
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direction. It can also be shown that the period in an elliptic
orbit is the same as for a circle whose diameter equals the
major axis of the ellipse, and hence it can be computed from
(14) with » replaced by a.

As one example of the relations holding for time re-
quired for space trips, let us consider the case of a flight
to the moon from near the earth. Ignore the relatively
small contribution of the moon’s gravitational field and
suppose the initial velocity to be such that the body will
just reach the moon with zero velocity. If the distance
from the center of the earth to that of the moon is S, the
velocity v at any point on the journey will be just that
required to go from » = rto » = 5. Then from (11) we get
(16) V: = 2gR® (1/r—1/8),
or dr/dt = v = ey1/r—1/S, where ¢* = 2gR:.

To integrate, make the substitution » = S cos®¢, whence
—28 cos 9 sin ¢ d9/dt = tan §/S12,
28%2d6/dt = —c sec?d,
and ¢ dt = —28%2cos%9 do.
When r = R, cos*d = R/S and when» = S, § = 0. Inte-
grating and using these limits, we get
t =8*2/c (¢’ + sin ¢’ cos ¢°), where ¢ = arc cos VE/S.
The initial velocity required for the body just to reach
the moon, as given earlier, is about 6.9 mps, and for this
value of V, we get ¢ = 116 hours, or about 5 days. This
is the maximum time required for the earth-moon journey,
since a greater initial speed would reduce the time needed.
In fact, an increase of one mile per second in the initial
velocity would reduce the time to less than 20 hours.

For an initial velocity equal to the velocity of escape,
the above development is greatly simplified. Then in (16)
we replace S by « and get
dr/dt = v = 2gR%*/r = e\/1/r,
dt = evr dr,
and t = 2/8c(S¥:—R32)
is obtained by integration between the limits » = R and
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r = S. Since S§ = 240,000 miles is so large as compared
with R = 4000 miles, a very good approximation to the time
is given by

t = 25%2/3¢ = kS*2.

These are just a few of the mathematical relations
which can be derived relative to this topic. Anyone inter-
ested in pursuing the subject further is referred to the
very readable little book by Arthur C. Clarke, Interplane-
tary Flight, which is the source of most of the material
presented here.
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“Mathematics is the science in which we never know
what we are talking about nmor whether what we say is
true.”

—BERTRAND RUSSELL



FROM GREEK TO GERSHWIN:
THE MATHEMATICAL BACKGROUND
OF MUSIC’

ZELIA ZULAUF
Student, Central Missowri State College

Perhaps because of innate intellectual laziness, man
often attributes something which he does not understand to
that mystical quality “genius.” This has proved noticeably
true in the arts of music, sculpture, and painting. As
music developed and some men showed skill in composing
music which proved to be enjoyable to others, this ability
was written off as “genius” and few musical laymen en-
deavored to discover the reason that this musie pleased its
listeners while other music did not. Those who did at-
tempt to find a logical reason for the permanence of some
music failed in their investigations by looking into the past,
" and overlooking the possibility of future developments.

To many modern educators and students, music and
mathematics seem widely separated. This assumption is
quite wrong, however, as the very basis of music and
musical instruments as we know them today depends di-
rectly on developments and discoveries in the field of math-
ematics and its closely related science, physics.

Pythagoras, the Greek musician-mathematician, and
his followers held that music was applied mathematics.
Their insistence upon this point almost removed from
music the pleasurable portions of playing, singing, and
dancing, causing it to be used as a mere mathematical
exercise. When the use of music in actual life was lessened
by the Romans, they still retained the Greek theory of
music as applied mathematics with its tetrochordal scale
and lack of harmony. In order to make progress, musi-
cians were forced to break away from the restrictions
placed upon them by rules developed in earlier times. As
the earlier developed rules did not hold true for the “mod-
ern” music written by the Christians for their church

A paper ¢ d to the Mi i Academy of Sci at its Spring meeting in 1952,
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musie, musicians soon drifted away from the emphasis on
the mathematical aspects which had been established
earlier.

Mathematical concepts remained in the development of
music as the technical developments in resonators for tonal
quality, instruments, accoustical tempering in scales, and
manuscript writing progressed toward their present forms.
Perhaps mathematics in instrumental development is most
evident in the development of organ stops, where for every
doubling in length of the pipe the pitch of the organ is
lowered an octave. However, actual pitch of the organ is
not altogether determined by the length of the pipe; for,
as the diameter of the pipe increases, the total pitch is
lowered. Another outstanding example of mathematical in-
fluence in the development of musical instruments is in
our present use of overtones. Most students are aware of
the fact that when an open string is plucked the vibrations
or sound waves which make that tone are not the only
ones one hears. This same string vibrates in halves, mak-
ing a tone which sounds an octave higher; vibrates in
thirds, making a tone which in musical terms sounds a
fifth higher than the original; and so on, with con-
tinued redivisions causing as many as sixteen or eighteen
audible overtones. Fingerholes and valves have been
added to make it possible for an instrument to play several
fundamental tones; and by using this principle of over-
tones, first established by Pythagoras, man has gradually
built up a system of musical instruments of varying sizes
and tonal qualities which can play each half-tone of the
scale; and men are today experimenting with instruments
which can play the quarter-tones of the scale.

Musicians often confuse their public, and themselves,
by their references to three-quarter time, four-four time,
or three-eight time. These strange-sounding terms refer
merely to the mathematical developments which have oc-
curred in manuscript writing, in which one composer, in
an attempt to have musicians play his music as he intended
it, began a practice of rhythmical division, where a triple
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figure having a pulse on the first beat was designated by
placing a three at the beginning of the manuscript. In
order to determine the approximate speed of the com-
position a basic note, such as a quarter note, half note,
whole note, was designated, and then the rhythmic pat-
tern was designated by the various divisions of this basic
time value. Placing the figure representing the approx-
imate speed at the beginning of the manuscript as the de-
nominator of a fraction, composers have gradually devel-
oped the time signature as it appears in most music today.

Gradually, as music became a more vital part of the
social life of man, it was discovered that certain tones and
combinations of tones were more pleasing to the ear and
that many people derived greater satisfaction when they
heard these tones in combinations. In attempting to con-
struet a stringed instrument such as the piano, it was found
to be impossible to use all the various shadings and pitches
which could be used in vocal music; so, as the piano was
developed, those tones were chosen which in combination
were most pleasing to the listener. These pitches are in
mathematical ratio to one another. Other instruments
have been constructed to conform to the tempering of the
keyboard instrument, with the result that many mathe-
matical and physical problems must be considered in ob-
taining the same vibrations from instruments of varying
shapes and sizes. ‘

While developing instruments in various shapes and
sizes, it was soon discovered that a different tonal quality
was attained, although one instrument sounded the same
pitch as another. To enlarge the tone of an instrument,
a resonator must be provided. These resonators in turn
give tonal color by adding more overtones, previously men-
tioned in the mathematical developments of instruments, or
by skipping some of the tones in the series which can be
obtained from the open string. As a result, one can tell
the difference between a clarinet, cornet, flute, and trom-
bone, though they all may sound in the same pitch. In the
early 17th century composers began to call for the in-



The Pentagon 73

struments which would give their music the tonal color
as well as the rhythm and melodic line they desired. To
preserve similarity of tonal color in an instrument it is
necessary that its proportions be the same as those of the
original instrument. Many times musicians have tried to
play music written by earlier composers, only to find great
- changes made in the tonal quality of the instruments, and
thus the quality of the music has been changed. Even in
the natural instrument, the voice, changed mathematical
ratios in the resonator make a change in the tonal quality
of the individual voice. '

These reasons have not explained why the ancient
Greeks considered music applied mathematics other than
in the mechanical phases connected with instrumental de-
velopment, but the Greek musicians of centuries ago have
found a modern counterpart in the person of Joseph
Schillinger. Dr. Schillinger has made widespread contri-
butions to music, mathematics, and art, and at one time
lectured in classes of all three at Columbia University.
After making a study of Einstein’s theory of relativity,
Dr. Schillinger developed the premise that all the sciences
and arts are originally based on mathematics. Thus, cer-
tain mathematical ratios are found to be pleasing whether
they are found in the range of visual perception or within
the range of hearing. He thinks that in viewing scenic
beauty there is present a certain mathematical ratio which
makes a special scene particularly pleasing to the eye.
Artists, in reproducing this scene on the canvas, merely
present the same mathematical ratio of time and space
which was found in the original. Furthermore, composers,
in their use of sound, use a similarly pleasing mathematical
ratio based on the same elements of time and space. With
these premises as a basis Dr. Schillinger has developed a
theory of harmony which not only considers music which
has been written but presents a method for writing music
in the future. Until Dr. Schillinger's system made its
appearance, theories of harmony had been based on rules
established by previous music and made no explanation for
musie which was to follow—music which, though pleasing
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to the listener and satisfactory to the composer and per-
former, did not conform to the previously established rules,
nor did primitive music and music from the Orient. How-
ever Dr. Schillinger has given us the formulas for music
written for many different cultures, including the music
to which European and American man is accustomed, and
vet has provided a system whereby one can develop a new
formula and a new form of music, based on the mathe-
matical premises followed by the theory of relativity of
time and space.

In spite of its complex roots, this theory can be and has
been taught to many musicians, who, following Dr. Schill-
inger’s theory of musical composition, have achieved much
in music. Some familiar names among these composers are
those of Albino Rey, George Gershwin, perhaps the greatest
of Schillinger’s students, and Paul Lavalle. These men
have developed new rhythmical patterns, new tonal se-
quences, and new harmonic progressions which have pleased
and interested those who listen to these newest develop-
ments in musie.

Music and mathematics, widely separated though they
are in the thinking of the uninitiated person, are thus
actually quite closely interlaced in development and in con-
struction. Noted mathematicians, such as Albert Schweit-
zer, Albert Einstien, and Joseph Schillinger, are also well
known musicians, the first as an organist, the second as a
violinist, and the third as a student of harmony and com-
position.

And thus modern man returns to the ideas of the
ancient Greeks and uses mathematical concepts to give
precision to the complexities of music.

®

A scientist worthy of the name, above all 2 mathe-
matician, experiences in his work the same impressions as
an artist; his pleasure is as great and of the same nature.

—H. POINCARE



CHAINS OF INTEGRAL TRIANGLES

H. T. R. AUubE
Faculty, Colgate University

This paper is about integral triangles and certain
transformations by which two or more integral triangles
may be associated. The integral triangles are denoted by
the sets of three integers which represent their sides. A
set of three relatively prime integers of which the sum of
any two is greater than the third, will be named a triad.
For every triad there exists a primitive integral triangle.
It is known that the cosines of the angles of an integral
triangle are rational numbers. The converse is also true.
This means that whenever the three angles of a certain tri-
angle have rational cosines, then there exists an integral
triangle similar to it.

In this paper the word, triangle, will refer to an in-
tegral triangle unless it is otherwise stated.

The transformations are derived by considering two
triangles of which one is assumed to be derived from the
other. By passing from one triangle to the other certain
changes in the angles are assumed. Thereupon the cor-
responding changes in the sides are noted. These changes
—Dby which one triad may be said to pass into another—
are the transformations.

It seems natural to expect that if a transformation will
change a Triangle T, into a triangle T;, then there should be
a transformation that can change T, back into T,. This
is the case. For each of the basic transformations there is
also an inverse,

When one triangle, or its triad, has been transformed
into another the two triangles so associated are linked to-
gether. In some cases a triad can be linked to two or more
triads; and then a chain of triangles is formed.

Along with the applications, chains of triangles will
be exhibited. Thereupon will follow transformations of
right triangles and isosceles triangles. While the first group
deserves notice, it is the second that merits more attention.
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This latter group will separate into two parts. The one
will show symmetrical chains of triangles; while from the
second general formulas will evolve which—for a specified
range—can give all those triangles where two angles A
and B are so related that B = n-A forn = 2, 8,4, ... as
long as (n+1)-A is less than 180°. Thereupon some special
transformations are developed by which related triangles
may be combined. Finally, it is shown that for each chain
of triangles there exists a characteristic isosceles triangle
which a properly selected Cevian will divide into two tri-
angles similar to any two successive links of the chain.

The Transformations
Consider the triangle T, with the sides a, b, ¢, and the
angles A, B, C to correspond. Assume, for the moment,
that T, is neither equilateral nor isosceles and take
A<B<C. The transformation, or the changes that are
made in the angles by passing the triangle T, to its trans-
form triangle T,, will be of three types according as the
angles A, B, C of T, are made to correspond to the follow-
ing sets of angles of the transform:
(1) A, B+A, C—A
(2) A,B—A, C+A
(3) A+B, B, C-B
That the three angles in (1) can belong to an integral
triangle will be seen by the following argument:
Since the sides of the triangle T, are integers it fol-
lows that the cosines of the angles A, B, C are rational

numbers. Assume that the area of the triangle T, is VN,
then N is a rational number. It follows that the sines of

the angles A, B, C are rational multiples of \/N. This
assures that the number for cos (B+A) which is equal to
cos B cos A — sin B sin A is a rational number; and like-
wise for cos (C—A). The three angles in (1) add up to
180° and since the cosines of these angles are rational they
can and do belong to one primitive integral triangle T,. A
similar argument holds for the triangles which have the
angles given in (2) and (3).

To derive the transformation that will give the tri-
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angle in (1) draw a figure of the triangle T, (a,b,¢,A,B,C).
Lay off from the side of CB an angle CBD equal to A 80
that the angle ABD is equal to B+A. Locate the point D
on the side AC extended. Assume that the triangle T, has
been transformed into the integral triangle T, which is
similar to the triangle ABD. Then the angles of T, will
be A, B+A, and C—A. The ratios of the sides of the tri-
angle T, are found from the similar triangles BCD and
ABD. It turns out that
BD:DA:AB = ab:be:c*—&

When the ratios of the sides a,b,c of the triangle T, are re-
placed by the ratios of the sides a,b,c, of the triangle T,
then the triangle T, is transformed into the triangle T..
This transformation is denoted

(1.1) ab:c: ¥ ab:becicci—a? :
It gives the changes in the sides from T, to T, by which the
three angles of T, are respectively changed to the angles
given in (1).

The transformation that belongs to (2) can be found
in a similar manner. The angle CBD is laid off equal to
A so that the angle ABD is equal to B—A. The point D
is located on AC. The transformed triangle T., will be
similar to triangle ABD of which the angles are A, B—A,
and C+A. From the similar triangles it will be found that

BD:DA:AB = ac:b*—a?:be
The symbolic form of this transformation is

(2.1) a:b:c > ac:b*—a:be

It should be noted that the transformations (1.1) and (2.1)
are inverses of each other. To illustrate: The transfor-
mation (1.1) will change the triad (6,7,8) into the triad
(8,4,2) ; and the transformation (2.1) will return the triad
(3,4,2) to (6,7,8). Also, (2.1) will transform the triad
(6,7,8) into the triad (48,13,56); and (1.1) will change
(48,13,56) back to (6,7,8). Two triangles of triads are
linked together when a transformation will change one
into the other. In this example these three triangles or
triads are linked together to form the chain of three:
triangles

(48,13,56) , (6,7,8) , (3,4,2)
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The transformation (1.1) can be reapplied to the transform
when its third side is greater than the first. Similarly,
the transformation (2.1) is applicable as long as the second
side is greater than the first.

To derive the transformation associated with (3) again
draw the triangle T, and make the angle CAD equal to B
so that the point D falls on BC extended. The transformed
triangle T" will be similar to the triangle ABD which has
the angles A+B, B, and C—B. From the similar triangles
ACD and ABD it will be found that

BD:DA:AB = ac:ab:c3—b?

This gives the transformation

(3.1) a:b:e ¥ qgc:ab:cr—b?
The result will be a triad of which the first number is
greater than the second. This points the way to a fourth
transformation by which the angles A, B, C with A>B of
one certain triangle can be changed so that the angles of
its transform are

(4) A-B, B, C+B
By steps which are similar to those used in the preceding
derivations the corresponding transformation is

(4.1) a:b:c ¥ g*—b2:beiac
The transformations (8.1) and (4.1) are inverses of each
other. The transformation (3.1) can be applied to a triad
(a,b,c) when ¢>b, while (4.1) is applicable only when
@ > b. In the example previously given the transformation
(3.1) applied to the triad (6,7,8) will yield the set
(16,14,5). And the transformation (4.1) will send this
latter back to the triad (6, 7, 8).

At this point the reader may choose to form the two
chains which can be based on the triangle (4,5,7). Label
the angles of the triangle so that A < B < C. The trans-
formations (1.1) and (2.1) will give a chain of four tri-
angles. This will be the chain that preserves the angle A,
Next, the transformation (3.1) applied to this same basic
triangle will give a chain of three links. In this chain the
angle B is preserved. The result will be the two chains:

(28, 9, 35), (4, 5, 7), (20, 35, 83), (700, 1155, 689)
(5) and
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(4’ 5: 7)r (7: 59 6)1 (42’ 351 11)'

It may be noted that one or more of the four trans-
formations could have been applied to the other triads of
these two chains as they appear. However, it seems best
to agree to limit the expansion so that from one basic tri-
angle there will be only two chains: one, which will pre-
serve the smallest angle; the other, which will preserve the
angle second in size. Otherwise, since from each new triad
another chain could be formed, there would ensue a net-
work of triangles. This would unduly complicate the scope
of this inquiry.

The Right Triangle

For the right triangle the arrangement A < B < C will
make A+B = C. It follows that the transformations (1.1)
and (3.1) will present two triangles which have, respec-
tively, the angles A, B+ A, C—A and A+B, B, C—B and
which therefore in both cases are the basic right triangle,
though its elements are in a different order. The recur-
rence of forms is the main feature of the transformations
on right triangles.

Consider the right triangle (8, 4, 5). The transforma-
tions (1.1) and (2.1) give the chain of triangles:

(15, 7, 20), (3, 4, 5), (8, 5, 4), (15, 20, 7)
The triad (5, 4, 3) obtained by applying (3.1) to the basic
triangle (3, 4, 5) will give a second chain of two links.

The Isosceles Triangle

There is ony one equilateral triangle, but an infinite
number of isosceles triangles. The equilateral triangle is
given by the triad (1, 1, 1) and to it none of the transfor-
mations given can be applied. The isosceles triangles fall
into two groups which can be represented by the triads
(a, b, b) and (a, a, ¢), where a is the smallest side. To
the group given by (e, b, b) only the transformations (1.1)
and (2.1) can be applied. The result will be one sym-
metric chain of triangles. Thus the triad (1, 2, 2) will
give the chain:

(8, 5, 12), (2, 3, 4), (1, 2, 2), (2, 4, 3), (8, 12, 5)
The triad (1, 3, 8) belongs to a chain of nine triangles.
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The second group represented by the triad (a, a, ¢)
will have @ < ¢ < 2a. Only the transformations (1.1) and
(3.1) are applicable. Since these two transformations will
give essentially the same results use only (1.1) on the
basic triangle denoted ¢, (a,a,c) which has the angles A, A,
and C. This transformation will change ¢, into a triangle
t.. The ratios of its sides are

(6) ¢, e*ac:c?—a?
Two of the angles of ¢, are A and 2A. This formula state-
ment in (6) will—for all allowable relatively prime num-
ber pairs (a, ¢)—give all of that class of integral triangles
t. which have one angle equal to twice another.

If the third number of t. in (6) is greater than the
first then the transformation (1.1) can be repeated. The
result will be a triangle ¢, The ratios of its sides are

(7 a*:a(c*—a?) :c(c*—2a?)

If in ¢; or (7) the third number is greater than the
first the transformation (1.1) can again be applied. The
result will be a formula statement which, in similarity to
the preceding results, will represent the class of triangles
¢, which have one angle equal to four times another. And
so on, as long as the transformation (1.1) can be applied.

To illustrate the preceding start with the isosceles
triangle (4, 4, 7). Repeated use of the transformation
(1.1) gives the chain of five triangles:

(4,4, 7), (16, 28, 33), (64, 132, 119), (256, 476, 305),

(1024, 1220, 281)

These five triads represent triangles which, respectively,
belong to the classes ¢, n = 1, 2, 8, 4, 5, where a triangle
of class ¢, will have one angle equal to » times another.

From the preceding there can be many interesting de-
velopments. But to bring this paper to a close there is
still one additional topic to be considered. It is the com-
binations of a triangle and its transforms.

When a triangle T, (a, b, ¢; A, B, C) is transformed by
(1.1) into the Triangle T, then the angles of the latter are
A, B+A, and C—A and the ratio of its sides are ab: be:
c?—a’. Place these two triangles side by side with the
vertices A upward, the transform T, on the right, to form an
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angle 2A. If the triangles have been lettered counterclock-
wise, then the sides opposite to the two angles A will be
parallel. By the use of suitable factors on the triads T, and
T, two triangles similar to T, and T, can be formed so that
the two sides which coincide in part will coincide for their
whole length. Thereby one triangle is formed of which the
angles are 2A, B, and C—A. The ratios of the gides of
this triangle are:
(8) a(b*+c*—a?) :b2c:c(c—a?)

For an example when the triangle (2, 3, 4) is com-
bined with its transform (1, 2, 2) as described in the pre-
ceding paragraph, then these two triangles will combine to
form the triangle (7, 6, 8). If A, B, C are the angles of
(2, 8, 4), then A, B+A, C—A are the angles of (1, 2, 2)
and 2A, B, and C—A are the angles of (7, 6, 8). By
application of (8) to the triangle (7, 6, 8) it turns out that
the triangle (119, 96, 40) will have the angles 44, B, and
C—3A. .

In a similar manner the triangle T, can be transformed
by (2.1) into a triangle T_,. Then with T, placed at the
left of T, so than an angle 2A is formed two triangles
similar to T., and T, can be found and combined into one
triangle with the angles 2A, B—A, and C. The ratios of
the sides of this triangle are:

9) a(b*+c*—a?) :b(b*—a?) :be?

Also, place side by side in this order the three triangles
T.,, T, and T, so that an angle 3A is formed. Thereupon
three triangles similar to these three can be found and com-
bined into one triangle which will have the angles 34, B—A,
and C—A. The ratios of the three sides can then be found.
For an example of this development consider the triad
T, (2, 3, 4). The two adjoining transforms are:
T., (8,5, 12) on the left, and T, (1,2,2) on the right. By the
use of suitable common factors these three are combined
to form the triad (83, 10, 32). This will represent a tri-
angle with the angles 3A, B—A, and C—A where A, B, C,
are the angles of the triangle T,.

If the triad for the isoscles triangle T, is (a, b, b)
b > @, then the ratios of the sides of the triangle which has
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the angles 3A, B—A, B—A will turn out to be
a(3b*—a2) :b3:b*
Thus, the isosceles triangle (1, 2, 2), where A is the odd
angle, will yield the isosceles triangle (11, 8, 8) where 3A
is the odd angle.
Two Characteristic Isosceles Triangles

Finally, it will be shown that for each chain of triangles
there is one characteristic isosceles triangle.

Consider a chain of triangles which preserves the angle
A. Represent any three successive triangles of the chain
by the symbols T,, T,, and T,. If the sides and angles of T,
are g, b, c and A, B, C to correspond, then the corresponding
sides and angles of T, and T. are:

(To) ac, b*—az, cb; A, B—A, C+A;

(T:) abd, be, c>—a?; A, B+A, C—A.
Combine the triangle T, and T,. This can be done by using
the factor ¢ so that the sides of T, become ac, be, ¢2. There-
upon turn the triangle T, and place it adjacent to the tri-
angle T, so that the angles B of T, and C+A of T, form
a straight angle. The two sides which are opposite to the
angles A are equal and coincide. Thereby an isosceles tri-
angle is formed with the sides be, be, b*—az+¢? and the
angles A, A, B~A+C. In a similar manner the triangles
T, and T, can be combined. Since the angles C of T, and
B+A of T, form a straight angle and both triangles have
the angle A, the same isosceles triangle is formed. Thus
any two successive triangles of the A-chain can be joined
to form the A,A—isosceles triangle.

Furthermore, if a chain of triangles has been formed
from a basic triangle to preserve the angle B, then any two
successive links of this chain can be combined to form the
isosceles triangle with the sides ac, ac, a*+-c*~—b? and the
angles B, B, C+A—B. This is the B,B—isosceles triangle.

Conversely, it follows that the A,A—isosceles triangle,
by a properly selected Cevian drawn from the center of the
odd angle, can be separated into two triangles similar to
any two successive triangles of the A-chain; and similarly,
the B,B—isosceles triangle can be separated into two tri-
angles similar to any two successive links of the B—chain,



AN ODE TO PARALLEL LINES

Geometry’s a science—
Pure reasoning, they say.
It's .pure, all right—and holy—
A sacrifice each day!
But reason? Well, I doubt it;
Foolproof’s a better word;
And I got it from a speech
Which, last night, I overheard.
Two parallel lines were talking
And discussing their complaint
And telling all their troubles—
Quite a picture they could paint!
I'll try to tell you what I heard,
As I listened to their wail;
The first did all the talking;
The second listened—pale.

“I'm getting awful lonesome!”
He shouted ‘cross the plane;
“I haven’t got an honest friend—
It causes me much pain!
Man’s getting to be such a boss—
We lines can’t meet in room or den;
We meet out in infinity,
A place I’ve never been.
And when a line does come along,
A new friend I could make—
It’s some old mean transversal,
To cut me like a rake.
Oh, yes, I have points up and down
My back;-but just the same
I never get to know them well—
They so often change their name.
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I love the funny student
Who draws a line awry—

So I meet a friend or brother;
But all we do is cry,

‘Cause in a second, one of us
Will be erased away

While someone says we're out of place!—
And so on through the day.”

The second nodded knowingly
And was about to speak,

When a teacher called, “Stop dreaming!”
And chalk began to squeak.

I drew my mean transversal
And cut the lines clean through;

And it hurt me so I winced, as you
Would wince if 1 cut you.

The lines just lay there limp and still
Upon their slate and wood;

But one smiled at me faintly.
He knew I understood.

—JOAN DALEY
Mount Mary College

®

“For an easy way to reach the mountain top, many a

traveller buys his ticket and takes the funicular. But some
like a stiff climb over rocks and across streams, and such an
ascent has its advantages if the heart is good and the
muscles are strong!”

—W. F. 0sGooDp



WHAT IS THE HEIGHT OF A SIX-FOOT MAN?

DanNA R. SUDBOROUGH
Faculty, Central Michigan College of Education

Or, as a certain radio celebrity might ask, “Who is
buried in Grant’s Tomb?” .

As elementary and simple as these questions may seem,
it is still true that they ask a type of question which is
frequently answered either incorrectly or, if correctly, by
cumbersome methods. Examples are the following:

I V7-VvVT=2 IV. log,l0r = ?
I v=2:vy-2=21 V. eins =17
III. (v4) = ? VI. tan(arctan 1) = ?

In Example 1, of course, there is no real harm in the

following analysis:

Vi eVvi=va =1
But the alert student will recognize the fact that 7 is tl\le
answer by definition of /7. That is,

VT -VTi=(v):=T

And, in Example II, this latter type of thinking is necessary,
for it is erroneous to write

v—2-v—2 = v4
Correct is the following:

V=2+v—2=(v=2) = -2

(We define /—2 to be a root of the equation, 2*+2 = 0,
rather than as an ordered pair of real numbers, as in
Function Theory.)

The analogy between the title of this article and the
question asked in Example III should be immediately obvi-
ous. In other words, this example asks, “What is the cube
of that number whose cube root is 47"

By taking into account the definition of common
logarithms, we note that Example IV asks, “To what ex-
ponent must 10 be raised to yield 1072 Example V asks,
«“What is the result of raising e to that power to which e
must be raised to yield 57 And Example VI, of course,
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asks the question, “What is the tangent of that angle whose
tangent is 17"

Now the reader of this article, being a member of
Kappa Mu Epsilon or a person particularly interested in
mathematics, may have found nothing new in the above.
The reason for submitting it is that the author has been sur-
prised occasionally to find that some quite competent
“mathematicians” overlook the inherent simplicity in ques-
tions of the type considered here. Also, the author would
be glad to hear from any reader who knows a better analo-
gous question than “What is the height of a six-foot man?”
for helping beginners in reaching an understanding of such
concepts as were considered in the examples.

®

“Every word mathematicians use conveys a determinate
idea and by accurate definitions they excite the same ideas
in the mind of the reader that were in the mind of the
writer . . . then they premise a few principles . . . and
from these plain, simple principles they have raised more
astonishing speculations.”

—JOHN ADAMS



TOPICS FOR CHAPTER PROGRAMS—XV
H. D. LARSEN

43. MATHEMATICIANS AND PHILATELY

A description of postage stamps which carry portraits
of mathematicians was published in 1949 by C. B. Boyer
(“Mathematicians and Philately,” Scripta Mathematica,
Vol. 15, pp. 105-114, June, 1949.) A revised list of 34
mathematicians has been published recently by the writer
(American Mathematical Monthly, Vol. 60, pp. 141-3,
February, 1953.) An interesting series of club programs
can be built around biographies of many of these mathe-
maticians.

Niels Hendrik Abel, 1802-1829, (Norway, 4 stamps, 1929.)

E. T. Bell, Men of Mathematics. New York, Simon and Schuster,
1937.

E. T. Bell, “Niels Hendrik Abel,” Encyclopuedia Britannice.

G. Prasard, Some Great Mathematicians of the Ninetaenth Century;
Their Lives and Their Works; Vol. 1. Bevares, India, The
Bevares Mathematical Society, 1933.

Farkas Bolyai, 1775-1856. (Hungary, 1 stamp, 1932.)

E. T. Bell, “Father and Son: Wolfgang and Johann Bolyai,”
Scripta Mathematica, Vol. 5, pp. 37-44, (January, 1938), pp.
95-100 (April, 1938).

E. T. Bell, “Wolfgang Bolyai,” Encyclopaedia Britannica.

G. B. Halsted, “Biography: Bolyai Farkas,” American Mathema-
tical Monthly, Vol. 8, pp. 1-5 (1896).

Pafnutiy Lvovich Chebychev, 1821-1894. (Russia, 2 stamps, 1946).

Anonymous, “Pafnutiy Lvovich Chebychev,” Encyclopaedia Bri-
tannica. LL

G. B. Halstead, “Biography: Pafnutiy Lvovitsch Tchehychev,"”
American Mathematical Monthly, Vol. 2, pp 61-63 (1895).

G. B. Halsted, “Biography: Tchebychev,” American Mathematical
Monthly, Vol. 5, pp. 285-288 (1898).

D. E. Smith, Portraits of Eminent Mathematicians with Brief
Biographical Sketches, 1I. New York, Scripta Mathematica,
1938.

Nicolaus Copernicus, 1473-1543. (Poland, 4 stamps, 1923 and 1942-
43.)

Anonymous, “Sketch of Nicolaus Copernicus, “Popular Science
Monthly, Vol. 89, pp. 266-61 (June, 1891).

A. Armitage, Copernicus, the Founder of Modern Astronomy.
London, 1938.
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A. M. Clerke, “Nicolaus Copernicus,” Encyclopaedia Britannica.

J. L. E. Dreyer, History of the Planetary Systems from Thales to
Kepler. Cambridge, England, 1906.

L. C. Karpinski, “Copernicus, Representative of Polish Science and
Learning,” National Mathematics Magazine, Vol. 19, pp. 8428
(April, 1945).

L. C. Karpinski, “The Progress of the Copernican Theory,” Seripta
Mathematica, Vol. 9, pp. 139-164 (1948).

0. J. Lodge, Pioneers of Science. London, 1919.

S. P, Mizwa, ed., Nicholas Copernicus, a Tribute of Nations. New
York, 1945.

D. E. Smith, Portraits of Eminent Mathematicians with Brief Bio-
graphical Sketches, II. New York, Scripta Mathematica, 1938.

Rene Descartes, 1596-1650. (France, 2 stamps, 1937.)

Anonymous, “Sketch of René Descartes” Popular Science Monthly,
Vol. 37, pp. 838-40 (October, 1890).

E. T. Bell, Men of Mathematics, New York, Simon and Schuster,
19817.

H. Dingle, “René Descartes (1596-1650),” Nature, Vol. 166, pp.
218-14 (February 11, 1950).

B. F. Finkel, “Biography: René Descartes,” American Mathematical
Monthly, Vol. 5, pp. 191-5 (1898).

E. S. Haldane, Descartes: Hiz Life and Times. New York, 1925.

I. B. Hart, Makers of Science: Mathematics, Physics, Astronomy.
‘London, Oxford University Press, 1928.

F. H. Heineman, “René Descartes : the Tercentenary of His Death,

11 February 1950,” Hibbert Journal, Vol. 48, p. 295 (April,
1950).

A. Hooper, Makers of Mathematics. New York, Random House,
1948.

C. J. Keyser, Portraits of Famous Philosophers Who Were Also
Mathematicians, with Biographical Accounts, New York,
Seripta Mathematica, 1939,

* C. J. Keyser, “Symposium on the Life and Work of René Descartes.”
Scientific Monthly, Vol. 44, pp. 477-80 (May, 1937).

R. E. Langer, “René Descartes,” American Mathematical Monthly,
Vol. 44, pp. 495-512 (October, 1987).

P. Lenard, Great Men of Science, tr. by H. S. Hatfield. New York,
the Macmillan Company, 1933.

J. P. Mahaffey, Descartes. Philadelphia, J. P. Lippincott and Com-
pany, 1881.

. V. Sanford (?), “Descartes,” Mathematics Teacher, Vol. 25, pp.
173-56 (May, 1932).

D. E. Smith, Portraits of Eminent Mathematicians, with Brief Bio-
graphical Sketches, I. New York, Scripta Mathematica, 1936.

H. W. Turnbull, The Great Mathematicians, London, Methuen and
Co., 1941,
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A. Wolf, “René Descartes,” Encyclopaedia Britannica.

Leonard Euler, 1707-1783. (Germany, 1 stamp, 1950).

Anonymous, “Leonhard Euler,” Encyclopaedie Britennica.

W. W. R. Ball, “Euler’s Output, a Historical Note,” American
Mathematical Monthly, Vol. 31, pp. 83-84 (February, 1924).

E. TI'Q?;“' Men of Mathematics. New York, Simon and Schuster,

B. H. Brown, “The Euler-Diderot Anecdote,” Amertcan Mathematical
Monthly, Vol. 49, pp. 302-3 (May, 1942).

A. Brykezynski, “The Life and Work of Euler,” American Mathe-
matical Monthly, Vol. 44, pp. 456-46 (January, 1937).

B. F. Finkel, “Biography : Leonhard Euler,” American Mathe-
matical Monthly, Vol. 4, pp. 297-302 (1897).

A. Ho:ls)er, Makers of Mathematics. New York, Random House,
1948,

R, E. Langer, “The Life of Leonard Euler,” Scripte Mathematicsa,
Vol. 3, pp. 66-71, 131-138 (19856).

V. Sanford, “Leonard Euler,” Mathematics Teacher, Vol. 27, pp.
205-7 (April, 1934).

D. E. Smith, Portraits of Eminent Mathematicians, with Brief Bio-
graphical Sketches, 1I. New York, Seripte Mathematica, 1938.

H. V% Tur;x';)ull. The Great Mathematicians. London, Methuen and

0., 1941,

Galileo Galilei, 1564-1642, (Italy, 7 stamps, 1933, 1942, 1945.)

G. Abetti, “Galileo, the Astronomer,” Popular Astronomy, Vol. 59,
pp. 138-48 (March, 1951).

A. M. Clerke, “Galileo Galilei,” Encyclopaedia Britannica.

I. B. Cohen, “Galileo,” Scientific American, Vol. 181, pp. 40-47
(August, 1949).

L. Cogper, Aristotle, Galileo, and the Tower of Pisa. Ithaca, N. Y.,
1986.

Henry Crew, Portraits of Famous Physicists, with Biographical
Accounts. New York, Scripta Mathematica, 1942.

A. S. Eve, “Galileo and Scientific History. The Leaning Tower and
Other Stories,” Nature, Vol. 187, pp. 8-19 (1937).

J. J. Fahie, Galileo, His Life and Work. New York, 1903.

C. R. Gibson, Heroes of the Scientific World. London, Seely,
Service, and Co., 1930.

H. F;.gGsirven, A Historical Appraisal of Mechanics. Scranton, Pa.,

48,

R. T. Gunther, “Galileo and the Leaning Tower of Pisa,” Vol. 136,
pp. 6-7 (1936).

1. B. Harti Makers of Science: Mathematics, Physics, Astronomy.
London, Oxford University Press, 1923.
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E. 8. Holden, “Galileo,” Popular Seience Monthly, Vol. 66, pp. 260-6

(January, 1905), 343-356 (February, 1905); Vol. 67, pp. 66-75
(May, 1905), 127-142 (June, 1905).

A. Hooper, Makers of Mathematics. New York, Random House,
1948,

E. R. Kiely, “Pisa, Galileo, Rome,” Mathematics Teacher, Vol. 45,
PP. 178-82 (April 1952).

A, Koyré, “Galileo and the Scientific Revolution of the Seventeenth
Century,” Philosophical Review, Vol. 52, Pp. 383-348 (1948).

P. Lenard, Great Men of Science, Tr. by H. 8. Hatfield, New York,
The Macmillan Company, 1988,

E. Rosen, “Galileo and the Telescope,” Scientific Monthly, Vol. 72,
pp. 180-2 (March, 1951).

V. Sanford (?), “Galileo,” Mathematics Teacher, Vol. 24, pp. 118-20
(February, 1931).

C. Singer, Studies in the History of Science, Vol. 2. Oxford, 1921.

D. E. Smith, Portraits of Eminent Mathematiciana, with Brief Bio-
graphical Sketches, I, New York, Seripta Mathematica, 1938,

(Continued next Issue)

®

EDITORIAL NOTE: Professor Aude’s paper may be
used as a basis for club programs. The reading and study
of it may suggest developments which can be carried on
by students for presentation to club meetings.



THE PROBLEM CORNER
EDITED BY FRANK C. GENTRY

The Problem Corner invites questions of interest to undergraduate
students. As a rule the solution should not demand any tools be-
yond calculus. Although new problems are preferred, old problems
of particular interest or charm are welcome provided the source is
given, Solutions of the following problerns should be submitted on
separate sheets before November 1, 1953. The best solutions sub-
mitted by students will be published in the Fall 1953 number of
THE PENTAGON, with credit being given for other solutions re-
ceived. To obtain credit a solver should affirm that he is a student
and give the name of his school. Address all communications to
Frank C. Gentry, Department of Mathematics, University of New
Mexico, Albuquerque, New Mexico,

PROBLEMS PROPOSED

56. Proposed by C. E. Denny, Central College, Fayette,
Missouri.

A stu_dent in Analytic Giometry obtained the equation
x(8—4y8) +y(8v3+4) +v3—82 = 0 for a certain line.
His book gave the answer x (48—25v/8) —11y—137+100v/3
= 0. Show that the two equations represent the same line.
57. Proposed by Harold Skelton, Southwest Missourt State
College, Springfield, Missourt.

If N = n,4+n,+ny +. ..+ n, where n; is a positive
integer, show that N! is an in-

MmN (n.) (ns!) . .. (ne))

teger.

58. Proposed by Victor L. Osgood, Oceanport, New Jersey.

Given three concentric circles of radii a, b, and ¢
respectively where a < b<e¢. If the radii do not differ
too widely, it is possible to construct a fourth circle which
will intersect the three concentric circles at such points
that two equilateral triangles may be formed by connect-
ing properly chosen points of intersection. In terms of
a, b and ¢ what is the distance from the common center
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to the center of the fourth circle and what is the radius of
the fourth circle?

69. Proposed by John. R. Green, University of New Meaico,
Albuquerque, New Mezico.

A man lives on a river bank one mile below a bridge.
On one occasion he started upstream in his motorboat. As
he passed under the bridge, his hat fell overboard and
floated downstream. After continuing upstream a way he
missed the hat, turned about and overtook it in five minutes
at a point just opposite his house. What was the speed
of the river current?

SOLUTIONS

51. Proposed by Harold Larsen, Albion College, Albion,
Michigan. (From The Mathematical Gazette.)

Find the last 13 digits of 52!

Solution by Henry Beersman, Southwest Misgouri
State College, Springfield, Missouri.

Since there are factors of 10 in 52! some of the digits
on the extreme right are zeros. The factors of 10 are 2
and 5. There are 12 factors 5 in 52!. There is at least
one factor 2 in each of the even numbers just less than the
multiples of 5 and at least one factor of 4 in 24 and also
in 48, the even numbers just less than 25 and 50, each
of which contains two factors 5. Multiplying each multiple
of 5 by the even number just less than it we obtain the
products: 20, 50, 210, 360, 600, 840, 1190, 1520, 1980
and 2400. It is evident then that the last twelve digits are
all zeros. To determine the thirteenth digit, multiply the
unit’s digit of each of the numbers not used in the above
products and the last non-zero digit of each of those prod-
ucts together, retaining only the last digit in each product,.
We thus find the last 13 digits of 52! to be a 4 followed by
12 zeros.

Also solved by Harvey Fiola, Forman, North Dakota.



The Pentagon 93

52. Proposed by J. E. Allen, Phillips High School, Birming-
ham, Alabama.

In a certain corporation 20 per cent of the employees
are women, 40 per cent of the unmarried employees are
women, and 1214 per cent of the married employees are
women, What per cent of all employees are married?
What per cent of the men employees are married. What
percent of the women employees are married?

Solution by Harvey Fiola, Forman, North Dakota.

Let x be the number of married employees and y the
number of unmarried employees. Then %/8+2y/6 =
(z+y)/5 so that y = 8z/8. Then z/(z+y) = 8/11 or
72.7%. Since 1/8 of the married employees are women,
7/8 of them are men. Hence (7/8) (8/11)/ (4/5) = 85/44 or
79.5% of the men are married. Also (1/8)(8/11)/(1/6) =
5/11 or 45.4% of the women are married.

Also solved by Henry Beersman, Southwest Missouri
State College, Springfield, Missouri.
52. Proposed by Judson Foust, Central Michigan College of
Education, Mt. Pleasant, Michigan.

B tells C that A said, “I went to town today.” A tells
the truth only half the time and B tells the truth only
two-thirds of the time. What is the probability that A did
go to town, assuming that he made a statement with refer-
ence to going to town?

Solution by Henry Beersman, Southwest Missourt
State College, Springfield, Missouri.

A could only have gone to town if both he and B had
told the truth or if both of them had lied. The probability
that they both told the truth is (1/2) (2/8) = 1/8. The prob-
ability that they both lied is (1/2(1/3) = 1/6. The proba-
bility that one or the other of these things took place is
1/6 + 1/3 = 1/2. This is then the probability that A went
to town.

Also solved by Harvey Fiola, Forman, North Dakota.
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54. Proposed by the Problem Corner Editor. (From School
Science and Mathematics).

A candy dish contains 25 vanilla creams, 10 maple
creams, and 10 raspberry creams. What is the least num-
ber of pieces one must take out of the bowl to be sure of
having a) two with the same flavor? b) two with different
flavors? c) three with different flavors? d) three with
the same flavor? '

Solution by Pawl Howthorne, 7th grade, California
Avenue School, Hempstead, New York.

a) The first three could be all different. Any four
must contain two with the same flavor. b) The first 25
could be all vanilla, any 26 must contain two with different
flavors. c¢) The first 35 could be all vanilla and either
maple or raspberry. Any 36 must contain three with
different flavors. d) The first 6 could be 2 of each flavor.
Any 7 must contain three with the same flavor.

®



THE MATHEMATICAL SCRAPBOOK
EpITep BY H. D. LARSEN

And see how Mathematik rideth as a queen,
Cheer’d on her royal progress thrw’ out nature’s realm.
—ROBERT BRIDGES
=V =
“In [Choice and Chance] Whitworth defines gambling
as the ‘act of exchanging something small and certain for
something large and uncertain’ This, of course, would
include divorcing your present wife in the hope of
marrying a fatter one of uncertain age and temper.”—W.
HoOPE-JONES in the Mathematical Gazette.
=V =
It is said that, when only six years of age, James Watt
was discovered solving a geometrical problem on the
hearth with a piece of chalk.
=V =
== (3 + 1/7) (1 — .0004), to four decimal places.
=V =
PROBLEM: Given the area of a circle, to find that
of another circle, which being described from a point as
center on the circumference of the given circle, shall have
that portion of its area outside the given circle equal to
the area of the given circle—Nature, May 2, 1878, p. 22.
=V =
RULE FOR EXTRACTING THE CUBE ROOT:
“Twice the nearest cube, added to the given number, is to
the difference between the given number and the nearest
cube, as the root of the nearest cube, to the correction;
which must be added to the root of the nearest cube, if
the nearest cube is less than the given number, otherwise
subtracted.” — REUBEN BURROW, The Theory of Gunnery,
1779 (as quoted in the Mathematical Gazette.)
=V =
WHY WORRY ABOUT METHOD?
Solve: 5/(x—6) + 4/(x—9) = 8/(x—17) + 1/(x—10).
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Solution:
Then (2—6)/6 + (z—9)/4 = (x—7)/8 + (z—10)/1
82—48+102—90 = 5x—85+-40x—400
297 = 27x
z=11
—MATH. TEACHER
=V =
Can you solve this eryptarithm?
TWENTY
FIFTY
NINE
ONE
EIGHTY
. —AMER. MATH. MONTH.
=V =
Gauss looked upon mathmatics as the principal means
for developing human knowledge. A short time before his
death he spoke to a celebrated psychologist on the possi-

bility of putting psychology on a mathematical basis. —
Nature, April 19, 1877.

=V =
8824332 = 8833
=V =
If the ratio of the Profit to the Cost is a:b, then the
ratio of the Profit to the Selling Price is a:(a+b). If the

ratio of the Profit to the Selling Price is c:d, then the
ratio of the Profit to the Cost is ¢:(d—e¢).
= v =
“Another system [of complex numbers] has recently
been used by Eddington in developing his theory of the
universe. In Eddington’s system there are no fewer than
sixteen square roots of minus one. This system was used
by Eddington, not all for fun, but because it appeared to
be the best method of representing certain aspects of the
physical world.”
—E. C. TICHMARSH
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“In 1627 Descartes published an epoch making treatise
on analytical geometry. At one step the whole race of
mathemalicians strode far ahead of the Greek geometers.”

—E. T. BELL
=V =
. =V =

The abbreviations sin, tan, sec are due to Girard
(1626) and cos and cot to Oughtred, but they were for-
gotten till Euler revived them and brought them into gen-
eral use.

—BooON
=V =

The folowing convenient notation has been suggested
recently. -
1:85: ... (2n—1) (2n+1)
2446 . . . (2n—2) (2n)

— v —1

TO FACTOR A TRINOMIAL: An example will suf-
fice to indicate the method. In 12z*—11x—35, note that
(12) (—5) = —60. Two factors of —60 whose sum is
—11 are —15 and 4. Then 122?—112—5 = 12z*—162+
4x—b = 8z (4z—5)+ (42—5) = (4z—5) (3z+1).

=V =

“The contour-lines of a column or tower, all of whose
horizontal cross-sections are subject to constant specific
stresses, are geometrically defined by cubic parabolas. This
form results from the law of stresses under the given con-
ditions, and may be seen in the contour of heavily sup-
porting bridge piers, the Eiffel tower in Paris, and num-
erous other structures. Precisely the same problem nature
has solved in building the trunks of tall trees. The famous
coniferous trees of California offer the best illustration

for this principle.”—A. EMCH in Popular Science Monthly,
May, 1911.

(2n+1) 1!
(2n) 1!

=V =
“Professor Heaviside was our Mathematical Pro. ‘Old
Heavy,’ as he was called, was a big man, and very popular.
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At his lectures he used to be so engrossed in his subject
that he never noticed the pranks that some of the men
played, however noisy they might be; so one of them made
a bet that he would drive some sheep into Heavy's lecture-
room while he was lecturing, without his knowing any-
thing about it, and he won the bet. He tipped a shepherd
to let him have two or three sheep for half an hour; they
were brought to the door of the lecture-room and driven in
and out again, Old Heavy going on with his lecture as if
nothing had happened.”—SIR HASTINGS DOYLE, Tales Re-
taled, as quoted in the Mathematical Gazette.

TO FIND THE DAY OF THE WEEK FOR ANY
GIVEN DATE. Having hit upon the following method of
mentally computing the day of the week for any given date,
I send it to you in the hope that it may interest some of
your readers. I am not a rapid computer myself, and as
I find my average time for doing any such question is about
20 seconds, I have little doubt that a rapid computer would
not need 15.

Take the given date in 4 positions, viz. the number of
centuries, the number of years over, the month, the day
of the month.

Compute the following 4 items, adding each, when
found, to the total of the previous items. When an item or
total exceeds 7, divide by 7, and keep the remainder only.

The Century -Item.—For Old Style (which ended Sep-
tember 2, 1752) subtract from 18. For New Style (which
began September 14) divide by 4, take overplus from 3, mul-
tiplying remainder by 2.

The Year-Item.—Add together the number of dozens,
the overplus, and the number of 4's in the overplus.

The Month-Item.—If it begins or ends with a vowel,
subtract the number, denoting its place in the year, from
10. This, plus its number of days, gives the item for the
following month. The item for January is “0”; for Feb-
ruary or March (the 3rd meonth) is “3”; for December
(the 12th month), “12.”
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The Day-Item is the day of the month.

The total, thus reached, must be corrected by deduct-
ing “1” (first adding 7, if the total be “0”), if the date
be January or February in a Leap Year; remembering that
every year, divisible by 4, is a Leap Year, excepting only
the century-years, in New Style, when the number of
centuries is not so divisible (e.g. 1800).

The final result gives the day of the week, “0” mean-
ing Sunday, “1” Monday, and so on.

EXAMPLES
1783, September 18: 17 divided by 4 leaves “1” over; 1
from 3 gives “2”; twice 2 is “4.”

83 is 6 dozen and 11, giving 17; plus 2 gives 19, i.e.
(dividing by 7) “5.” Total 9, i.e. “2.”

The item for August is “8 from 10,” i.e. “2”; so, for
September, it is “2 plus 3,” i.e. “56” Total 7, i.e. “0,” which
goes out.

18 gives “4.” Answer, “Thursday.”

1676, February 23: 16 from 18 gives “2.”

76 is 6 dozen and 4, giving 10; plus 1 gives 11, i.e., “4.”
Total “6.”

The item for February is “8.” Total 9, i.e., “2.”
23 gives “2.” Total “4.”
Correction for Leap Year gives “3.”
Answer, “Wednesday.”
—LEWIS CARROL, Nature, March 31, 1887.

=V =
HENKLE'S NAMES OF THE PERIODS IN NUMBERS

Millions (1), Billions (2), Trillions (3), Quadrillions
(4), Quintillions (5), Sextillions (6), Septillions (7), Octil-
lions (8), Nonillions (9), Decillions (10), Undecillions
(11), Duodecillions (12), Tertiodecillions (13), Quarto-de-
cillions (14), Quinto-decillions (15), Sexto-decillions (16),
Octo-decillions (18), Nono-decillions (19), Vigillions (20),
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Primo-vigillions (21), Secundo-vigillions (22), Tertio-vigil-
lions (23), Quarto-vigillions (24), Quinto-vigillions (25),
Sexto-vigillions (26), Septo-vigillions (27), Octo-vigillions
(28), Nono-vigillions (29), Trigillions (30), Quadragil-
lions (40), Quinquagillions (50), Sexagillions (60), Sep-
tuagillions (70), Octogillions (80), Nonagillions (90), Cen-
tillions (100), Primo-centillions (101), Decomo-centillions
(110), TUndecimocentilions (111), Duodecimo-centillions
(112), Tertio-decimo-centillions (113), Qu a r t o-decimo-
centillions (114), Vigesimo-centillions (120), Primo-vige-
simo-centillions (121), Trigesimo-centillions (180), Quad-
ragesimo-centillions (140), Quinquagesimo-centillions
(150), Sexagesimo-centillions (160), Septuagesimo-centil-
lions (170), Octogesimo-centillions (180), Nonagesimo-
centillions (190), Ducentillions (200), Trecentillions (300),
Quadringentillions (400), Quingentillions (500), Sexcentil-
lions (600), Septingentillions (700), Octingentillions (800),
Nongentillions (900), Millillions (1000), . . . , Deci-mil-
lillions (10,000), Undeci-millillions (11,000), Duocdeci-mil-
lillions (12,000), . . . , Quinqui-vici-millillions (25,000),
.+ ., Centi-millillions (100,000), ..., Milli-millillions
(1,000,000).

It should be observed that words ending in “o” rep-
resent numbers to be added, and those ending in “i” rep-
resent multipliers. When two words end in “i,” the sum
of the numbers indicated is to be taken as the multiplier.
In each, the last word indicates the number to be increased
or multiplied.—Edward Brooks, Philosophy of Arithmetic,
1880. '

=V =



THE BOOK SHELF
EDITED BY FRANK HAWTHORNE

From time to time there are published books of common interest
to all students of mathematics. It is the object of this department
to bring these books to the attention of readers of THE PENTAGON.
In general, textbooks will not be reviewed and preference will be
given to books written in English. When space permits, older books
of proven value and interest will be described. Please send books
for review to Professor Frank Hawthorne, Hofstra College, Hemp-
stead, New York. '

Introduction to the Foundations of Mathematics. By Ray-
mond L. Wilder. John Wiley and Sons (440 Fowrth
Avenue; New York 16, N.Y.), 1952. 14+ 305 pages.
$5.75.

The “Foundations” should appeal to those undergradu-
ate mathematics majors, who in their senior year begin
to augment their background prior to pursuing graduate
work or begin a teaching career. It is a unique presentation,
in that a careful, detailed treatment of the source and
nature of the basic foundations of modern mathematics is
brought to the undergraduate level.

It is suggested by the author that the book should
normally require two semesters in classroom study. The
material represents the result of more than 20 years ex-
perience in teaching these and similar topics in the Founda-
tions of Mathematics course at the University of Michigan.

In arrangement of material the book is divided into
two parts, the first including seven chapters which treat
the axiomatic method, the theory of sets, foundations of
analysis (linear continuum and real numbers) and the
significance of group theory. Part II develops the origins
and momentum which certain aspects of analysis and logic
contributed to the growth of mathematics. Symbolic logic
is particularly stressed. The numerous formal aspects con-
cerning what mathematics is and existence concepts are
perhaps too restrictive for mathematical applications; nev-
ertheless such study will add greatly to the maturity of the
undergraduate’s appraisal of mathematics.

101
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Physically the book is of high quality and the type

of notation contributes to facility in study. There is a

rather extensive bibliography of source material, indices

of symbols, topics and technical terms, and names included
with the content, )

—J. HAROLD SKELTON

An Introduction to Mathematical Thought. By E. R. Stab-
ler. Addison-Wesley Publishing Company, Inc. (Cam-
bridge 42, Massachusetts), 1953. 18+268 pages.
$4.50.

The author states in the preface of this stimulating
book that his chief aim in the preparation of the text was
to present a unified and substantial approach to the logical
structure of mathematics and to develop a philosophical
point of view toward mathematical knowledge. He further
states that, by a suitable choice of chapters, the book is
suitable as a text for the following courses:

1. A one-semester general education course.

2. A one-semester course for prospective teachers.

3. A one-semester course for specialists in mathe-
‘maties.

4. A two-semester general education course.

5. A two-semester course for specialists in pure mathe-
matics.

Part I, which is composed of the first five chapters, is
devoted to the philosophical aspects, historical background,
elementary symbolic logic, and to the use of logical reason-
ing in the formulation of mathematical and scientific
knowledge.

In Chapter 1, the reader is introduced to the relative
nature of mathematical truth by means of a discussion of
modulo arithmetic, number bases, Euclidean and non-
Euclidean geometries, and the historical unsolved problems
of mathematics. Chapter 2 is historical and discusses the
origin and influence of logical systems, with particular at-
tention to Euclid. Chapters 3 and 4 deal with the es-
sentials of logical reasoning and contain explanations of the
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rules of inference, propositional functions, general propo-
sitions, and classes. Chapter 5 considers the applications
of logical reasoning to the formulation of scientific theories
and illustrates the ideas by discussing the work of Newton
and Einstein.

Part II, Chapters 6-11, deals with modern postulational
methods, abstract postulational systems, foundations, and
some foundational points of view. The method is illustrated
by developing a part of elementary algebra as a logical sys-
tem and by presenting an abstract system in the form of
a finite geometry. Then, after a more detailed presentation
of modern postulational concepts and methods, the author
discusses groups, rings, Boolian algebras, relations, order
systems, and lattices. The final chapter presents a survey
of mathematical foundations covering geometry, algebra,
natural numbers, and logic.

Throughout the book, at suitable intervals, interesting
and well-chosen exercises are provided. A comprehensive
bibliography will be found in the final pages of the book.

In the opinion of this reviewer, the author has indeed
achieved his aim in writing the book. Futhermore, he is
justified in his claim that the text is suitable for the courses
mentioned above. Certainly, the content of the first five
chapters should be a part of any general cultural cur-
riculum. By all means, prospective teachers of mathe-
matics should become acquainted with the major portion
of the text. Furthermore, any student who contemplates
entering the graduate field in mathematics would do well
to master the entire volume.

The book is remarkably free of the tedium that is so
frequently found in texts dealing with formal logic and
mathematical foundations. The author avoids the use of
long and involved sentences and the use of unusual and
ponderous words. When a technical term is introduced, it
is clearly and briefly defined and illustrated. The illus-
trations are interesting, pertinent, and deal with familiar
situations and ideas. The author further facilitates the
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reading of the book by frequent repetitions of the basic
notions, thus making is unnecessary for the reader to turn
back in the midst of a discussion to bring himself up to
date. This reviewer found the perusal of the book a
pleasant and stimulating experience.

—FRED W. SPARKS

Mathematics, Its Magic and Mastery. By Aaron Bakst.

Second Edition. D. Van Nostrand Company. (250
Fourth Avenue, New York 38, N. Y.), 1952, 144790
pages. $6.00.

This thick and handsomely bound book concerns itself
with what the layman usually regards as mathematics;
namely arithmetic, the algebra, geometry, and trigonometry
of high school, and some elementary mechanics. Its thirty-
seven chapters are written in a somewhat facetious but
adult style. An appendix of almost 80 pages contains a
collection of processes from algebra, facts from geometry,
formulas from trigonometry, and several useful tables. The
book closes with an index and a collection of answers to
the 244 problems which appear at the ends of the various
cliapters. The typography is excellent and there are many
figures and drawings accompanying the text.

The purpose of the book is to exhibit the recreational
and applied phases of elementary mathematics; the magic
being illustrated by many well chosen applications and
tricks. It is an excellent book for the shelf of a teacher
in either elementary school or high school, and it contains
much material useful to a high school mathematies club.
The book is not intended as a classroom text, but its gradual
and detailed explanations make it easy reading for an
interested student or layman.

This second edition is essentially the same as the first
edition published in 1941. The effort to correct the mis-
prints of the first edition was not entirely successful, and
a few mathematical errors still remain undetected, such as
that on page 381, where the author writes: “In the case
of a perfectly circular object, a Flatlander may see this
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circular object as a straight line of the same length. On
the other hand, in the case of any other round object, these
lengths are not the same.” As with everything else, prices
of books have greatly increased over the past ten years; a
copy of the first edition sold for $3.95.

—HowARrD EVES

Numerical Solution of Differential Equations. By William
Edmund Milne. John Wiley and Sons, Inc. (440
Fourth Avenue, New York 16, N.Y.), 1953. 11 +275
pages. $6.50.

The author states in the preface that his beok is in-
tended to acquaint the reader with some of the principal
methods for the solution of ordinary and partial differential
equations. The manner of presentation is to be elementary,
with clarity and simplicity rather than completeness and
rigor as primary objectives, making the book suitable as a
guide for computers. Part I (Chapters 1-7) deals with or-
dinary and part II (Chapters 8-11) deals primarily with
partial differential equations.

Chapter 1 contains a brief discussion of differential
equations and their solutions. Elementary methods based
on polygonal approximations together with estimates of er-
rors are discussed in chapter 2. Methods involving numer-
ical integration and successive approximations as well as
the existence theorems on which they are based are pre-
sented in chapters 3 and 4. Kutta’s and similar methods
are treated in chapter 5. Systems of equations are dis-
cussed in chapter 6 and metheds for two point boundary
problems are presented in chapter 7. Chapter 8 treats the
heat and wave equations as examples of more general
partial differential equations. Matrices, their characteristic
values and relaxation methods are discussed in chapter 9.
Chapter 10 presents methods for solving Laplace’s Poisson’s
and the biharmonic equation. Characteristic value problems
are treated in chapter 11. A short appendix, an index and
.an excellent bibliography are included. The usefulness of
the book is enhanced by carefully worked out examples
‘which abound throughout.
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It seems to this reviewer that the author’s primary ob-
jectives have been successfully realized, and that he has
produced a readable and easily understandable book. It
seems to present, in reasonably good balance, well chosen
representatives of the myriad of methods of existence. It
might be argued, however, that partial differential equa-
tions might have been treated more fully, even at the ex-
pense of omitting a few methods for ordinary differential
equations.

The elegant and useful methods for hyperbolic equa-
tions based on nets of characteristic curves, should have
been given more prominence. In view of their importance
in theoretical physics and engineering problems, non-linear
and quasi-linear problems in partial differential equations
might have been treated more fully. This reviewer realizes,
however, that probably any omission would draw criticism.
On the whole, it is a very useful book, which seems likely
to contribute substantially to the clarification of this sub-
ject.

—H. WoLF

BOOKS RECEIVED BY THE BOOK SHELF EDITOR

The Rational and the Superrational. By C. J. Keyser.
Scripta Mathematica. (186th St. New York 33, N.Y.),
1952, 84259 pages. $4.25.

A School Course in Mechanics, Part I. By A.J. Bull. Cam-
bridge University Press (32 E. 57th St., New York 22,
N. Y.), 1953. 6+156 pages. $1.75.

Logic for Mathematicians. By J. Barkley Rosser. Mec-
Graw-Hill Book Company, Inc. (830 West 42nd St.,
New York 36, N.Y.), 1953. 144530 pages. $10.00,

®



INSTALLATION OF NEW CHAPTER
EpiTED BY J. M. SACHS

THE PENTAGON is pleased to report the installation
of Kansas Epsilon Chapter of Kappa Mu Epsilon. With the
addition of Kansas Epsilon there are now forty-seven active
chapters.

KANSAS EPSILON CHAPTER
Fort Hays Kansas State College, Hays

Kansas Epsilon Chapter was installed and the twenty-
three charter members of that chapter initiated in a
morning ceremony at Fort Hays Kansas State College on
December 6, 1952. Professor Charles B. Tucker, national
president of Kappa Mu Epsilon, served as installing offi-
cer.

A banquet for members, guests, and faculty followed
the ceremony. Douglas Sellers was toastmaster. Dr. Cun-
ningham, President of Fort Hays Kansas State College,
welcomed the group and extended to them the support of
the college. Professor Charles B. Tucker talked on, “The
History and Purposes of Kappa Mu Epsilon.” Professor
Eugene Etter of Kansas Epsilon spoke on, “The Language
of Mathematics.”

The following officers of Kansas Epsilon were in-
stalled. President, Douglas Sellers; Vice-President, Royce
Rasmussen; Secretary-Treasurer, Kenneth Werth; Corre-
sponding Secretary and Faculty Sponsor, Professor Eugene
Etter.

We all welcome Kansas Epsilon into our fellowship.
The staff of THE PENTAGON wishes to join with the
national officers in extending congratulations and heartiest
best wishes to our newest chapter.
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KAPPA MU EPSILON NEWS
EDITED BY LAURA Z. GREENE, Historian

Alabama Beta sponsored Homecoming activities for
the former members of Kappa Mu Epsilon in connection
with the Homecoming for the College.

- + —

Joseph Mueller was elected president and Raymond
Cowan was chosen secretary of Indiana Beta. The former
president and secretary were graduated in January.

— + -

Kansas Beta arranged mathematical demonstrations
and an exhibit for the Science Open House at Kansas State
Teachers College. .

— + —
Kansas Delta recently made a survey of all of the
members of Kappa Mu Epsilon who have been initiated

since the chapter was installed in 1947. The study revealed
that the membership is divided as follows:

Teachers ......... 25%
Doctors .......... 10%
Lawyers .......... 1%
Statistics ......... 10%
Engineering ...... 5%
Business ......... 19%
Service ........... 3%
Meteorology ...... 1%

University and
Graduate School ...16%

The members of Louisiana Beta held open house for
alumni on homecoming November 1. Two members of
Louisiana Betd attended an address given by Professor R.
H. Bing of the University of Wisconsin at the Louisiana

State University in Baton Rouge. Several members of
Louisiana Beta attended the Louisiana Education Associa-
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tion convention in New Orleans during the Thanksgiving
holidays.

-— + —,
Missouri Beta published a most interesting Christmas
letter which was sent to all interested alumni and friends
of the college who have attended Central Missouri State

College since World War II and who were either members
of Kappa Mu Epsilon or majored in mathematics.

—_—t -

New York Alpha members saw “Cinerama,” the movie
with the new dimensions, December 6. Professor Carl B.
Boyer of Brooklyn College was the guest speaker at the
annual initiation banquet of New York Alpha.

- + —

Ohio Gamma members chose as their project for the
year a statistical study of the results of a traffic survey
for the city of Berea, Ohio. The purpose of the study
was to determine the most desirable location for a new
bridge. Another focal point of the year’s program was
the study of the research being conducted at the Lewis
Flight Propulsion Laboratory of NACA.

—_ 4 -

Mr. and Mrs. L. P. Woods and Mr. and Mrs. Ray
Carpenter entertained Oklahoma Alpha members and
pledges of Kappa Mu Epsilon December 4, 1952, Claude
Berry, a World War II and Korean veteran gave an un-
usually interesting program on “Codes.”

—_ -

Tennessee Alpha has adopted the following require-
ments for new members: 3.1 quality quotient in mathe-
matics and 2.6 in general scholarship, or 3.0 quality quotient
in mathematics and 2.8 in general scholarship. This is
based on 4.0 as a possible maximum. All initiates must
have had at least one quarter of calculus.



PROGRAM TOPICS, SPRING SEMESTER, 1952-1953

Alabama Beta, Alabama State Teachers College
Radio Quiz Program, by J. D, Clanton
Requivements for Ph.D, Degree, by Dr. Ralph C. Boles
Fun with Numbers, by Tom Williams

Colorado Alpha, Colorado A and M College
Codes and Coding Methods, by Professor Butz
Basic Concepts of Mathematics, by Professor Madison

Illinois Delta, College of St. Francis
Astronomical Instruments, by Sister Rita Clare
Astronomical Terminology, by Sister Noel
Neptune and its Satellite, by Irene Regan '
The Planet Mars, by Geraldine Knowles and Patricia Kasak

Indiana Beta, Butler University
Equations Solveble with a Slide Rule, by Joseph Mueller
The Universe and Dr. Einstein, by Austin Werner
The Origin and Meaning of the Symbols of the KME Crest,

by Donald Cassady
The Philosophy of Mathematics, by Robert Simon
Electronic Computers, by Chester Rector

Iowa Alpha, Iowa State Teachers College
Mathematical Fallacies, by Donald Licktenberg
Fermat's Last Theorem, by Thomas Yoger
Lumsal Arithmetic, by E. W. Hamilton
Reverse Notation of Numbers, by Clyde Dilley

Iowa Beta, Drake University
Cardan’s Solution of the Cubie, by Art England
Number Systems to Various Bases, by Gary Drown

Kansas Alpha, Kansas State Teachers College )

The Philosophy of Mathematics, by Bill England
Quality Control, by John Herring
Kansas Beta, Kansas State Teachers College
Higtory of K. M. E., by Charles B. Tucker
Job Opportunities in Mathematics, by W. T. Stratton
Mathkematical Games, by Morgan Kramm
Kansas Delta, Washburn Municipal University
Gauss’ Derivation, by Loren R. McMurray
Operation Analysis, by G. Baley Price
The Measurement of Molecular Diameter by the Surface Pressure
Balance Method, by Harlan B. Johnson

Application of Mathematics after Graduation, by Mr. Terry
McAdam, Mrs. John Erdman, Mr. Milton Rubottom, and Mr.
Robert Pooler.

Louisiana Beta, Southwestern Louisiana Institute
Some Properties of Vector Spaces, by Margaret LaSalle
The Chinese Game, Nim, by Merlin M. Ohmer
Dimensional Analysis, by Peter Bernays
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Michigan Beta, Central Michigan College o
A Year's Sojourn at Columbia, by Josephine Montague

Michigan Gamma, Wayne University
Analog Computers, by Arvid Jacobson

Missouri Beta, Central Missouri State College
Pythagorean Number Triples, by Richard L. Smith
Non-Euclidean Geomstries, by Billy P. Mudd
Denumerable and Non Denwmerable Infinities, by Richard G.
Laatsch
Inversion, by William W, Varderan
Geometric Designs by Paper Folding, by Bess Rickman
Jokes and Puzzles, by Gilbert Lee

Missouri Epsilon, Central College
Hypercomplex Numbers, by George Koonce
Relativity, by Tom Hahs
Fibonacei’s Series, by Carl Dulgeroff
Mathematics of Poker, by Bob Zey
Non-Euclidean Geometry, by Dave Morrison
Pascal, by Glenn Bowmann
History of Keppe Mu Epsilon, by George Koonce and Dave
Morrison
Mathematics of Symbolic Logic, by Dave Morrison
Applications of Symbolic Logic, by George Koonce
New Jersey Alpha, Upsala College :
Mathematical Analysis of Logic, by Gordon Fulcher
Meaning and Functions of K. M. E., by Ellis Fuls
Graphical Solution of Cubic Equations, by Ellis Fuls
New Jersey Beta, New Jersey State Teachers College
Mathematical Definitions, by John Manning
What an Actuary is and the Opportunitics tn the Actuarial Field,
by Paul Rotter
The Binomial Theorem, by Dr. Howard Fehr
Quality Control in Industry, by Charles Sensale
New York Alpha, Hofstra College )
The Qualifications and Duties of an Actuary, by Kenneth
Feldman
Dimensions, by Geoffrey B. Charlesworth
Quaternions, by Sharon Murnick
The Golden Rectamgle, by Walder Old
The Four Color Problem, by Dr. L. F. Ollmann
Axiomatic Development of Logic, by Richard Lamm
North Carolina Alpha, Wake Forrest College
Aims of Kappa Mu Epsilon Problems, by Evelyn Blackwell
Law of Estates, by Jack Herring
Foundations of Geometry, by John Ivscoe
Taylor's Theorem, by Dr. 1. C. Gentry
Determinants, by Evelyn Blackwell
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Mathematical Games of Baltaire, by Professor Medlin
Square Roots, by Kenneth Byrd -
Ohio Alpha, Bowling Green State University :
An Economist Looks at Mathematics, by Dr. Jacob Cohen
Bachet's Problem of Weights, by Miss Betty Bernhardt
The Derivation of Schrodinger's Wave Eguation, by Donald
Bowman
Buler's Totient Function, by Miles Vance

Ohio Gamma, Baldwin-Wallace College
Field Trip to National Advisory Commitiee on Aeronautics, by
George Diedrich
Machines used in Computing at NACA, by Nancy Hartup
Praffic Survey in Berea, by Nancy Hartup
Wisconsin Alpha, Mount Mary College
What a Mathematics Major Can Do Besides Teach, by Sister
Mary Felice
Who Should Be Called a Mathematician?, by Sister Felice
Whether or not K. M. E. Should Be an Honor Socisty, by Sister
Felice
Oklahoma Alpha, Northeastern State College
Extracting Roots by Arithmetie, by R. Carpenter
Short Cuts in Mathematics, by Pat Scott
Trisecting an Angle, by Barbara Sloan
Trisecting an Angle, by Mary Frye
Proof of I'mpossibility of Trisecting an Angle of Plane Geometry,
by Henry Adair
The Laws of Chance and Applications, by David Morris
Code Making, Breaking and Importance, by Claude Berry
South Carolina Alpha, Coker College
Uses of the Slide Rule, by M. Saunders
An Irrational Uneven Problem, by Mr. Matthews
~ An Inertia Problem, by Mr. Rice
Busginess Machines, by Mr. Brown
The Teaching of Business Mathematics, by Mr. Hobgood
A Problem of Finance, by Mr. Brown
Tennessee Alpha, Tennessee Polytechnic Institute
Perspective Drawings, by Professor F. J. Witt
Texas Epsilon, North Texas State College
Mathematics in Industry, by W. J. Nemerever
A Problem on Irrational Numbers, by Joe R. Ballard and Pete
Reames
Integer Functions, by E. H, Hanson
The Role of Mathematics in the Oil Industry, by T. S. Edrington
Approzimate Integration, by Tom L. Gallaher
Some Problems in the Mathematical Monthly, by Professor Cooke,
grace Simpson, Stanley Wilks, Charlotte Clark, and Ahelino
anchez,



