
THE PENTAGON
Volume XH FALL 1952 Number 1

CONTENTS

Page

Who's Who in Kappa Mu Epsilon 2

On the Rotation of Axes
By Chester Snedeker and Donald Kreider 3

The Prytz Planimeter
By Dr. A. R. Crathorne 4

A Note on Rational Cosines
By H. T. R. Aude 7

The Work of a Century in a Few Minutes
By Dr. S. Lilley 8

Characteristics Common to Number Systems with
Different Bases, By Alexander Lincoln 17

Topics for Chapter Programs — XTV 21

The Problem Corner 24

The Mathematical Scrapbook 29

The Book Shelf 35

Installation of New Chapter 40

K. M. E. News 41



WHO'S WHO IN KAPPA MU EPSILON

Charles B. Tucker President
Kansas State Teachers College, Emporia, Kansas

C. C. Richtmeyer Vice-President
Central Michigan College of Education

Mt. Pleasant, Michigan

E. Marie Hove Secretary
Hofstra College, Hempstead, L.I., New York

Loyal F. Ollman Treasurer
Hofstra College, Hempstead, L.I., New York

Laura Z. Greene Historian
Washburn Municipal University, Topeka, Kansas

Henry Van Engen Past President
Iowa State Teachers College, Cedar Falls, Iowa

Harold D. Larsen Pentagon Editor
Albion College, Albion, Michigan

L. G. Balfour Company Jeweler
Attleboro, Massachusetts

Kappa Mu Epsilon, national honorary mathematics fraternity,
•was founded in 1931. The object of the fraternity is four-fold: to
further the interests of mathematics in those schools which place their
primary emphasis' on the undergraduate program; to help the under
graduate realize the important role that mathematics has played in
the development of western civilization; to develop an appreciation of
the power and beauty possessed by mathematics, due, mainly, to its
demands for logical and rigorous modes of thought; and to provide
a society for the recognition of outstandingachievement in the study
of mathematics in the undergraduate level. The official journal,
THE PENTAGON, is designed to assist in achieving these objectives
as well as to aid in establishing fraternal ties between the chapters.



ON THE ROTATION OF AXES*

Chester Snedeker and Donald Kreider

Students, Lebonon Valley College

In the study of Analytic Geometry, methods are de
veloped for simplifying the general equation of the conic
section,

(1) Ax3+Bxy+Cy*+Dx+Ey+F = 0,
by a transformation of the coordinates. Thus, the xy-term
may be removed by rotating the axes through an angle 0,
where tan 20 = B/(A—C), the equations for the rotation
being

(2) x = XiCOsfl—2/iSinff, y = XiSinO+y^osO.
Unless the given equation is "hand-picked," the alge

braic manipulation in determining the new equation be
comes very cumbersome. This paper presents a relatively
simple formula for the new equation, its coefficients being
expressed in terms of the coefficients of the original
equation.

If tan 2$ = B/(A-C), then cos20 = (A-C)/R,
where

R = y/(A2+B2+C*-2AC).
Consequently,

sin20 = i/2(l-cos20) = (R-A+C)/2R,
cos20 = i/2(l+cos20) = (R+A-C)/2R.

Substituting the resulting values of sin 0 and cos 0 in (2)
and then applying that transformation to (1), we obtain
as the new equation,

A'x\+C'y\+D'x ,+E'yt+F = O,
where

A' = i/2 (A+C+R)
C = y2 (A+C+R)
D' = \pyJ(R+A-C)+Ey/{R-A+C)1W(2R)
E' = lEy/(R+A-C)+Dy/(R-A+C)-}/y/(2R)
R = y/(Aa+B2+C"-2AC).

* Condensed and adapted by the Editor from a longer paper submitted by the authors,
for whom tbeie resold represent original, creative work-



THE PRYTZ PLANIMETER*

Dr. A. R. Crathorne
University of Illinois

The object of this article is to call attention to a
little known but very interesting and simple mathematical
instrument, the Prytz planimeter, or to give its more
common name — the hatchet planimeter. It is easily made
from a piece of stiff wire which is bent into the form
shown in Fig. 1. One end of the wire is ground to a point
and the other end is flattened into a chisel edge. The
sharp point and this edge should be in the same plane.
For a given area a planimeter which is longer than the
longest diameter should be used.

To obtain the area of a closed curve with this plani
meter, a straight line of indefinite length is drawn from
the approximate center of gravity in any direction (Fig.
2). The pointed end of the instrument is placed on the
center of gravity and the chisel edge on the straight
line (at A in the figure). The legs of the planimeter must
at all times be perpendicular to the plane of the area.
From its position B, the tracing point is now moved along
the straight line to the intersection with the boundary
curve and then around the area in the direction indicated
and back to B. The edged end of the instrument, upon
which a slight pressure is brought to bear, traces out the
curve ADEFHIK and when the tracing point has returned
to B, will take the position K. The product of the length
AK into the length of the planimeter will be the approx
imate area of the given curve. (See equation (7) )
• Reprinted from the Amman Afrtktnraricol Monthly. Vol. 15. pp. $5-57 (Match. 1908).



The Pentagon 5

This instrument was invented some fifteen years ago
by Captain Prytz of the Danish Army, who published an
account of his invention in the English magazine, Engi
neering, Vol. 72, page 818. A detailed analytical discussion
of its theory was given by M. F. W. Hill in the Philosophical
Magazine for 1894. In the Bulletin de VAcadhnie Imperiale
des Sciences de St. Petersbourg, 1903, Professor Kriloff
of the Russian Naval Academy discussed the instrument
from the geometrical standpoint and gave a very elemen
tary and simple explanation of its theory.

This theory depends on the well known theorem1:
The total area Z swept out by a straight line AB moving
in a plane is given by the formula

(1) z = fe+(i/2*2-aO(02-0i),
where I is the length of the moving line; s, the total
normal displacement of a point P of the line; a, the dis
tance AP; and 6U 62 are the initial and final values of
0, the angle made by the moving line with some fixed line.
If, in particular, the point A moves around a closed curve
C, while at the same time B makes a complete circuit of
the curve C which lies entirely outside of C, then 0t = 0U
and we have
(2) z = C-C = Is.

The usual conventions as to the signs of the areas in
question hold. Areas covered twice in opposite directions
by the line are zero, and an area described counter clock
wise is positive. If a small wheel with its axis in the
moving line be attached at P, the arc through which it
turns will give us the normal displacement s. We will
call this wheel the measuring wheel. It should be noticed
that the position of the point P does not enter into
equation (2). In measuring areas with most planimeters
the area of the curve C is a constant of the instrument.
In the case where the point corresponding to A moves
backwards and forwards on a curve this constant is zero.
In the well known Amsler polar planimeter the curve C
is a circle, and in some other instruments it is a straight
line. The area C is the area to be measured.

I Sec duplet XIV. Gibson's Ca/rafcu.
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In the Prytz planimeter there is no fixed curve C,
but instead we have a curve which depends upon the
curve whose area we are measuring. Referring to Figure
2, we see that as the point B moves in its path, the edge
A moves in its curve of pursuit from A to K. Now turn
the planimeter horizontally about the point B until it is in
the initial position AB. The curve corresponding to the
curve C" is now a closed curve ADEFHIKA. The total
area swept out by the line AB is equal to the algebraic
sum of the area C and the areas ADE, EFH, and HIK.
The other parts of the plane swept by the line are covered
twice in opposite directions and hence do not enter into
the algebraic sum. Putting in the proper signs we have
(3) Total area swept out = C-ADE+EFH-HIK.

From equation (2) the total area swept out is meas
ured by the product of the length I of AB into the length
of arc s through which a measuring wheel at A on the
line AB would have turned. During the motion of the
tracing point this wheel does not turn at all, for the
direction of motion is perpendicular to the edge of the
wheel. But in turning the instrument about B from the
position KB into AB, this wheel will turn through an arc
which is equal in length to J* where * is the angle KBA.
Or we have
(4) s = to.
The total area swept out by AB is Is or P*. This gives
the exact equation,
(5) J2* = C-ADE+EFH-HIK.

If the starting point for tracing the figure be taken
as above (i.e., at the center of gravity of the area), the
algebraic sum of the three areas enclosed by the curve
of pursuit and the arc KA will be very nearly zero and
we have the approximate equation
(6) C = J2* = I'&rcKA.
If the angle * be small, say less than 20°, the arc KA
can be replaced by its chord, and we have
(7) C = l-KA.
If the area whose longest diameter is four inches or less,
be measured with a ten-inch planimeter, the error is very
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small and is about equal to the error made in finding
the area of an equivalent rectangle by measuring the sides
with a scale. The error due to the non-alignment of the
edge and tracing point can be eliminated by tracing the
curve in opposite directions and finding the mean of the
two results.

An improved plainimeter of this type has a small
chisel-edged wheel instead of the chisel edge.

H

A NOTE ON RATIONAL COSINES

H. T. R. Aude

Faculty, Colgate University

We prove the following theorem:
THEOREM. If cos A is a rational number, then

cos nA (n = 2, 3, . . . ) also is rational.
Proof: The symbols F< and /t(t = 1, 2, 3, ... ) will

denote polynomial functions of cos A. Write cos %A = Ft
and sin iA = /jsin A. Using this notation, the expressions
for cos 2.4 and sin 2^4 can be written

cos2A = F2 = fiCO&tA+FiCOsA—fi
sin2A = f4sinA = (AcosA+FJsinA.

It will be seen that the corresponding expressions for
cos SA and sin 3A are

cos 3A = Fa = /2cos2A+F2cosA—/s
sin3A = /jSinA = (/2cosA+Fa)sin A.

The pattern of the successive functional dependence is now
evident. Thus, we assume that cos kA = Fk and sin kA =
/kSinA. It will be seen readily that the expressions for
cos(fc+l)A and sin(fc+l)A turn out to be

cos (k+\) A = Fkn= fhcos"A+FkcoaA—fk
sin(ft+l)A = /*+1sinA = (/*cos A+Fk)sin A,

and the induction is complete. It follows that cos nA is a
polynomial function of cos A which is rational if cos A is
rational.



THE WORK OF A CENTURY
—IN A FEW MINUTES*

Dr. S. Lilley

University of Birmingham

"How much. . .?" "How many. . .?" A surprisingly
large number of important questions of modern life be
gin with those words. How many skilled mechanics can
India rely on for building much-needed machinery? How
much will a sixpence-in-the-pound increase in income tax
yield? How much energy can you get from a pound of
uranium 235?

Some of the most important questions of all do not,
at first sight, take this form:—For instance, can India
avoid a famine in 1956? But to answer it, we have to ask:
How many mouths will there be to feed? How much food
can India's own agriculture produce? How much of her
manufactures can she export to make up for the defi
ciency? . . . and so back to that first question about
skilled mechanics. Without "How much?" and "How
many?" we should not make our modern world work.

In science, more than anything else, these two ques
tions are of vital importance. There is scarcely any
major scientific problem—from the nature of the universe
to the workings of the endocrine glands, from the utilisa
tion of atomic energy to the assessment of an adequate
diet—whose solution does not depend essentially on count
ing and measuring, and then making calculations.

Making calculations—that is the important point. To
answer "How much?" and "How many?" it is usually not
good enough to measure, weigh and count. We must also
do immense calculations to deduce facts about a whole
population in 1956 from a few thousand answers to a
sample survey in 1951, or to calculate the energy obtain
able from a uranium pile on the basis of data produced
from small-scale experiments with cyclotrons.

It is with this process of calculation and the inge-

• Reprinted (ram (be Unnco Conner. Fcbturr, 1952.

8
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nuity that has gone into making machines to do it for
us that this article is concerned.

"How much?" and "How many?" have not always
been so important. They are characteristically modern
questions. Until some 350 or 400 years ago they mattered
rather little. The small peasant communities that made up
most of the world till then could get along very well
with a minimum of calculation.

Even the cities of Greece or the Empire of Rome
needed less in the way of statistics than a town council
does today. And in science before the 16th century,
the characteristic questions were not "How much?" and
"How many?" but "What sort?" and "Why?"

Calculation played so small a part in ancient life
that most people were content with cumbersome systems
of arithmetical notation, of which Roman numerals is
only one of the worst examples. It is hard enough to
add with these old systems; it is almost impossible to
multiply. And so calculations were commonly done with
an abacus—by moving beads on wires or counters on a
marked board.

In a sense, the abacus was the first calculating
machine. But it does not count for much in our story.
Though it can be extremely quick, it is less efficient than
calculation on paper. And the first step towards our
modern arithmetical world was the development, mostly
in the later Middle Ages, of our familiar methods of add
ing, substracting, multiplying and dividing, so that cal
culations could conveniently be done on paper without
the help of an abacus.

Towards the end of the 16th century the modern
world was fast emerging. The local, almost self-suffi
cient units of feudalism were being bound together to
form truly national states—which needed statistics of
taxability and military resources. Large-scale commerce
was growing; custom or guild rules no longer served to
guide the businessman, but had to be replaced by exten
sive and accurate calculations of cost, selling price and
profit.
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Surveying, mining engineering, military engineering,
and a host of other techniques were coming to rely more
and more on mathematical accuracy. Science was taking
on its characteristically modern form with its emphasis
on "How much" and "How many." Men grew very inter
ested in saving time and trouble in their calculations.
In 1585 the Dutchman Simon Stevin published his little
book advocating the use of decimal fractions and so
inaugurated a new era in arithmetic. And in 1614 John
Napier of Scotland made logarithms known to the world.

In this atmosphere it could not long be before some
genius or other would invent a calculating machine. In
fact two of the really outstanding scientists of the 17th
century—Blaise Pascal and G. W. Leibnitz—besides nu
merous minor men of science, devised such machines.
Pascal's father, as a Government superintendent in the
French dspartement of Haute-Normandie, had to check
an enormous number of accounts, and it was to aid him
in this work that his 18-year old son designed the first
machine for adding and substracting, and constructed it
in 1642 with the aid of a Rouen blacksmith.

Several other similar machines were invented. In
1694, Leibniz produced the first machine that could do
all the ordinary processes of arithmetic: add, substract,
multiply and divide.

During the 18th century many more inventors tried
their hands at calculating machines, and before 1800
they had created practically all the devices that go to
make up a modern "general purposes" (adding, subtract
ing, multiplying and dividing) machine.

But none of these instruments was a practical suc
cess. Some would work well enough when handled care
fully by experts, but the engineering technique was not
available to turn out calculators good enough and reli
able enough for day-to-day use.

However, with the gradual improvement of engineer
ing techniques, practical machines came during the 19th
century. The first was that of the Frenchman Thomas
de Colmar, which appeared in 1820.
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In 1892 came the best known of all calculating
machines, the Brunsviga, which was such a success that
some 20,000 were sold within 20 years. By now the
general purpose machine had reached the end of its
basic evolution—though many improvements have been
added since, the most important being the electrical drive,
to relieve the computer of the labour of churning away
at a handle.

The machines we have so far been describing are
called "digital machines," because they work with the
actual digits with which numbers are written. The later
19th and especially the 20th century have also witnessed
the development of a wide variety of machines of a
different class—"analogue machines," as they are called.

The basic idea behind all these is very simple. The
behaviour of any machine can be represented by a set
of mathematical equations and their solution. Converse
ly, given a set of mathematical equations, one can con
struct a machine whose behaviour would be represented
by them; if one, then, sets the machine working and
observes the motions of its various parts, one has the
solution of the equations. A speedometer, for example,
is an analogue machine which calculates speed from the
relation between distance travelled and time (mathemat
ically, it differentiates).

A very important class of mathematical problem de
pends for its solution on the reverse of this process
(integration.) For instance, if you know the relations
between the rates at which various quantities are chang
ing (differential equations), and their starting value,
where will they get to in a given time? Or, to give an
easier example: given the motorist's speed at every point,
how far will he go in an hour?

As early as 1876 Lord Kelvin sketched a plan for
a "differential analyser"—an analogue machine for solv

ing problems of this type. However, he was not able
to overcome the mechanical problems involved, and the
development of the differential analyser had to wait till
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1931, when Dr. Vannevar Bush hit on a very simple way
of dealing with the difficulties. Since then differential
analysers have been in constant use at dozens of com
puting laboratories, while many other types of analogue
machines have been developed.

Analogue machines have one great advantage over
the digital machines we described earlier—they will solve
a complete problem at one fell swoop, whereas the digi
tal machine will only do elementary additions, subtrac
tions, multiplications, and divisions, and the computer
must arrange to combine thousands of these elementary
steps to solve the complete problem.

Against that, analogue machines have several dis
advantages. Their accuracy tends to be rather low, and
they are not flexible—each machine will solve one type
of problem only, whereas the computer and digital ma
chine between them can solve any problem, if given time.

Would it be possible to make a machine with the
advantages of both—a machine that would solve com
plete problems without the minute-to-minute guidance of
a computer as the analogue machines do, but which will
tackle any problem and give results to any desirable
accuracy? The answer is Yes.

In the last few years, remarkable machines (of the
digital type) with just these powers have been built
and put into use. One starts by feeding the machine with
a list of instructions and a few initial numbers, and
then it gets on with the calculations, adding this pair
of numbers, dividing that pair, storing results in a "mem
ory," picking out of the store the numbers it wants for
the next step—and so on until the whole complex cal
culation is finished without any human help.

This is not quite the miracle that it seems at first
sight. The duties of a computer using an ordinary digital
machine to solve a typical problem can be reduced to a
series of instructions which read: "At such-and-such a
stage, take the two numbers that are written in such-
and-such places in the first column on the paper before
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you, add them (or subtract, multiply or divide), and
write the answer in such-and-such a place in the second
column." There may be a few dozen of these instruc
tions—and then will come the order "Repeat all this,
but using the numbers in the second column," and so
on. Obviously a process like this can be mechanised.

The machine will have to have units which will add,
substract, multiply or divide any two numbers supplied
to them; it will have to have a "memory" in which it
can- store the results of calculations until they are wanted
again; and it will have to have some means of receiving
instructions about the routine it is to follow and of trans
mitting these instructions to its various parts. It needs
a few other elements too, which we need not bother
about now. The point is that each of these units is
simple in itself and the only complication arises in con
necting them together to make one very complex and
highly integrated organism.

In 1833 Charles Babbage, a Cambridge mathemati
cian, proposed the construction of a machine on just
these lines. His plans included in principle practically
every device that is used hy the modern machines, but
he never succeeded in putting them into practice. It is
probable that such a machine built entirely in mechan
ical terms—of gears, levers and the like—would have been
unworkable in practice, and no other form was possible in
the 19th century.

But in the 20th century we have two types of de
vices which alter the picture completely—electro-mechan
ical relays (in everyday use in automatic telephone ex
changes) and electronic devices such as radio valves,
photo cells and cathode ray tubes. By using these, instead
of mechanical elements like gear wheels, practical prob
lems become manageable and in addition much higher
speeds are obtainable. Machines that do all that Babbage
planned have within the last seven years become almost
common.

The first of these giant calculators, the Automatic



14 The Pentagon

Sequence Controlled Calculator at Harvard, brain-child
of Professor H. H. Aiken, started work in 1944. It was
an electro-magnetic relay type. By the standards that
have since been reached it was a slow machine—taking
about a third of a second to add two 23-figure numbers
or about six seconds to multiply them—yet even at those
speeds it could work about 100 times faster than a com
puter using an ordinary calculating machine.

The Harvard machine was of momentous import
ance as the first proof that the idea of a fully automatic
calculating machine would work, but the future lay not
with relay machines, but with those using electronic ele
ments. The first of these, the Electronic Numerical
Integrator and Calculator, designed by John W. Mauchly
and J. Presper Eckert, Jr., went into action in 1946.
Intended specifically for ballistic calculations, it was lim
ited to a rather narrow range of problems, but the speed
had now gone up to 5,000 additions a second.

Since then a dozen or more of these machines have
been built in several countries. There is no,point in de
scribing them in detail here, and instead it will be
better to note briefly what the general abilities of a
fully automatic digital calculating machine are. Such a
machine can work at a rate of anything from 15,000
average operations a minute upwards—that is, 10,000 or
more times faster than a good computer with an ordi
nary calculating machine.

Given appropriate instructions at the beginning of
a run, it can carry out a long series of calculations
without further human intervention, and so solve in min
utes or hours mathematical problems that would have
needed years with earlier methods. Though most of the
applications have been mathematical, these machines are
by no means confined to mathematics—they can deal with
any type of information that can be precisely stated, and
deduce its logical consequences.

These calculating giants open up vast new possi
bilities for humanity. There are very many scientific
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problems—in such fields as aerodynamics and nuclear
physics—in which the theoretician can write down a set
of equations and say "Solve these equations and your
scientific problem is solved." But in many cases, the
process of solution would be so long that with the older
methods it could not be carried out in a lifetime, and
so experiments—often costly ones—had to be done in
stead. Now the speed of the new machines enables us
to get practical results from the theory.

Again, in using X-ray crystallography to find out
how the atoms are arranged in various solids, a process
of trial and error is involved. If the scientist can make
certain initial guesses correctly, then the data on the
X-ray photographs can be used to calculate the positions
of the atoms. But there are often so many choices for
the first guess that the solution is in practice beyond
us; the crystallographer usually confines himself to cases
in which some other sort of evidence gives a strong hint
on how to start.

Now, an electronic calculator could be set to try out
all the possibilities one after another and to stop and
give a signal when it finds the right one. In this way it
could run through many thousands of guesses in a day,
and give answers in cases which previously could not be
tackled. In these and many other ways the new machines
should help enormously to accelerate scientific advance,
and particularly to facilitate the application of theory to
practice.

There will probably be a comparable revolution in
the handling of social and economic statistics. One of
these machines (on a larger scale than the present ones)
could be fed with all the available information about the
economy of a country, and then in a few hours it would
tell us what would be the effect of increasing a particular
tax or introducing new machinery to cheapen the pro
duction of steel screws, taking into account all the com
plex ways in which such a simple change would react
on all parts of the economy. All sorts of economic prob-
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lems which are at present tackled by hit-or-miss methods
would be brought within the sphere of reason.

But to see the full long-term implications of these
machines we need to set them in a broader historical
perspective. For some 6,000 years or so—ever since
the first cart was harnessed to an ox or the first sailing
ship launched—men have been developing more and more
machinery for relieving them from physical drudgery.
But until very recently no machine has done much to
relieve us from mental drudgery—and, let us make no
mistake, the "brainwork" of an office routine or even
the more skilled work of a computer is just as much
drudgery as the manual work of a navvy.

Now machines are beginning to take over our brain-
work too—only our second-class brainwork, of course,
the parts we can reduce to a routine, not the creative
effort of the painter, research scientist, poet or philos
opher. As this new trend develops, we can foresee a
world in which all uncreative routine work, all drudg
ery, whether manual or mental, has been taken over by
machines, and men and women are liberated to develop
to the highest degree their creative faculties.

To end on a more sober note, it is necessary to say
that the development of these calculating monsters does
not mean that the earlier types of calculating machines
will become useless. One does not use a steam-hammer
to crack nuts (although it will do so). And similarly
there will be plenty of work still to be done by our
humbler mathematical servants, the Brunsviga, the slide-
rule, the differential analyser—and even pencil and paper.

IS

To Euler is due the notation a, b, c, A, B, C in trigo
nometrical formulae for the elements of a triangle.

—Boon



CHARACTERISTICS COMMON
TO NUMBER SYSTEMS

WITH DIFFERENT BASES

Alexander Lincoln
Lawyer, Boston

The so-called Arabic system of notation, the basis of
modern arithmetic, is a place-value system with a base of
ten, involving the use of nine different digits and zero.
With this system and base, the processes of multiplication
and division display certain elementary characteristics.
Since ten is a purely fortuitous number, the selection of
which is attributable to the primitive use of the ten fingers
in counting, the inquiry is of interest whether, or to what
extent, these characteristics are independent of the scale of
notation and may be found in other place-value systems
with different bases.

I. MULTIPLICATION

For the base ten, the primary multiplication combin
ations may be arranged in a square array as shown in
Table 1. The corresponding facts for the bases nine and
twelve are shown in Tables 2 and 3, respectively. A study
of these three tables reveals many common characteristics.
To what extent are these characteristics common to all
such tables? In answer to this question, we enumerate a
number of propositions. '

1. The ith column is identical to the ith row. By
virtue of this fact, any proposition concerning columns is
likewise true for rows.

2. The first-place numerals of numbers in the tth col
umn, read down, are the same as the first- place numerals
of corresponding numbers in the (B—i)th column, read
up, B denoting the base.

3. Let B=kp, i=kq, where p and g are relatively
prime. Then the first-place numerals of the numbers in
the ith column consist of p distinct numerals arranged cy-

1 Mt. Lincoln's proofs of time propositions have been omitted in the spirit of
Descatte*: "Bat I shall not stop to explain this in mote detail, became I
should depriTt yon of the pleasure of mastetiog it Tonttelf."—EDITOR.
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Let us think of the table as a square. Then the diag
onal of the square running down from left to right will be
called the principal diagonal line, the other being called the
secondary diagonal line. Diagonals of numbers parallel to
these lines will be designated as positive and negative diag
onals, respectively.

5. The numbers in each negative diagonal are dis
tributed symmetrically about the principal diagonal line.

6. If a negative diagonal has a center number, num
bers on each side of it diminish according to the series,
1, 3, 5, etc.

7. If a negative diagonal has no center number, num
bers on each side of the principal diagonal line diminish
according to the series 2,4, 6, etc

8. The secondary diagonal line divides each positive
diagonal into halves for which numbers symmetrically situ
ated have the same first-place numerals.

9. If a positive diagonal has a center number, the
first-place numerals of numbers on each side of the center
increase according to the series 1, 3, 5, etc

10. If a positive diagonal has no center number, the
first-place numerals of numbers on each side of the sec
ondary diagonal line increase according to the series 2,
4, 6, etc.

II. DIVISION

For the base ten, there are a number of well-known
tests for determining whether particular numbers are divi
sors of a given number N. The following tests are the
more important:

10 is a divisor if the last digit is 0.
5 is a divisor if the last digit is 0 or 5.
2 is a divisor if the last digit is even.
9 is a divisor if the sum of the digits is divisible by 9.

11 is a divisor if the difference between the sum of
the digits in the odd-numbered positions and the sum of
those in the even positions is zero or divisible by 11.

7, 11, or 13 are divisors if they are respectively divi-
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sors of a number determined by arranging the numbers
in groups of three digits beginning from the end, treating
each group as a separate number, and taking the differ
ence between the sum of the odd-numbered groups and
the sum of the even-numbered groups.

Are there similar tests of divisibility in other place-
value systems with different bases? The answer is yes.
Indeed, in the base B, where a number N is represented
by the form

N = p+qB+rB2+sBa+...,
the following tests of divisibility can be established.

1) J? is a divisor of N if p = 0.
2) When B is even, y^B is a divisor of N if p = 0

or % B.
3) When B is even, 2 is a divisor of N if p is even.
4) B—1 is a divisor of N if the sum of the numerals

p+q+r+ ... is divisible by B—l.
5) B+l is a divisor of N if the difference between

the sum of the numerals in the odd-numbered
places and the sum of the numerals in the even-
numbered places is zero or divisible by B+l.

6) If (p+qB+rB2) - (s+tB+uB2) + ... is divisible
by B+l or by B3—B+l, then these numbers are
respectively divisors of N.

NOTE: For the base 10 = 32+l, 1001 = 11«7-13,
that is, £8+l = (B+l) (B*-B+l) = (B+l) (B-Z)
(B+S). More generally, for the base B = r2+l, B*+l =
(B+l) (B-r) (B+r).

From the foregoing it appears that there are several
characteristics which are independent of the scale of nota
tion and not peculiar to the scale of ten. But there is
also a curiously fundamental distinction to be made be
tween even and odd values of the base, which suggests the
existence of some underlying law.



TOPICS FOR CHAPTER PROGRAMS—XIV

40. MINIATURE GEOMETRIES.

Miniature, or finite, geometries have been used to
illustrate the logidal structure of mathematics. In a finite
geometry we have a simple abstract situation involving
defined and undefined elements, a set of postulates which
are demonstrably consistent and independent, and a body
of theorems which follow by logical deduction from the
definitions and postulates. Moreover, the resulting ab
stract science is categorical.

A. A. Bennett, "Modular Geometry," American Mathematical Monthly,
Vol. 27, pp. 357-361 (October, 1920).

W. H. Bussey, "A Note on the problem of the Eight Queens," Ameri
can Mathematical Monthly, Vol. 29, pp. 252-253 (August, 1922).

M. R. Cohen and E. Nagel, An Introduction to Logic and Scientific
Method. New York, Harcourt, Brace and Co., 1934 (Chapter VII).

H. M. Cudy, "25-Point Geometry," Mathematical Gazette, Vol. 36,
pp. 158-166 (September, 1952).

C. Gabriel and E. Rykowski, "A Finite Geometry of Twenty-five
Points, THE PENTAGON, Vol. 9, pp. 21-25 (Fall, 1949).

L. R. Lieber, The Education of T. C. Mits. New York, W. W. Norton
and Co., 1944 (pp. 153-167).

H. F. MacNeish, "Four Finite Geometries," American Mathematical
Monthly, Vol. 49, pp. 15-23 (January, 1942).

H. H. Mitchell, "Linear Groups and Finite Geometries," American
Mathematical Monthly, Vol. 42, pp. 592-603 (December, 1936).

U. G. Mitchell, "Finite Geometries," American Mathematical Monthly,
Vol. 28, pp. 85-87 (February, 1921).

E. R. Ott, "Finite Projective Geometries PG (k,pn)," American Mathe
matical Monthly, Vol. 44, pp. 86-92 (February, 1937).

M. Richardson, Fundamentals of Mathematics. New York, The
Macmillan Co., 1941 (pp. 448-453).

C. E. Rickart, "The Pascal Configuration in a Finite Projejctive
Plane," American Mathematical Monthly, Vol. 47, p. 89 (February,
1940).

0. Veblen and W. H. Bussey, "Finite Projective Geometries.'Trans-
actions of the American Mathematical Society, Vol. 7, pp. 241-259
(1906).

O. Veblen and J. W. Young, Projective Geometry, Vol. I. Ginn and
Co., 1910.

J. W. Young, Lectures on Fundamental Concepts of Algebra and
Geometry, New York, The Macmillan Co., 1911 (pp. 38-51).
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42. THE EQUIANGULAR SPIRAL.

The equiangular, or logarithmic, spiral was first dis
cussed by Descartes. He observed that the length of the
spiral from 0 to P(r,0) is equal to the polar tangent,
thus becoming the first to rectify a curve. James Bernoul
li was delighted by many of the properties of the equi
angular spiral which he discovered, and requested that
the curve be engraved on his tomb. The equiangular
spiral is observed in Nature in the septa of the Nautilus,
the arrangement of seeds in the sunflower, the formation
of pine cones, etc. It also is the basis of dynamic sym
metry in art.
R. C. Archibald, "The Logarithmic Spiral,' American Mathematical

Monthly, Vol. 25, pp. 189-193 (April, 1918).
R. C. Archibald, "Special Curves in Nature and in Practical Appli

cations," Scripta Mathematica, Vol. 3, p. 366f (October, 1935).
C. Bragdon, The Frozen Fountain. New York, Alfred A. Knopf, 1932.
T. A. Cook, The Curves of Life. London, Constable, 1914.
T. A. Cook, Spirals in Nature and AH. London, Murray, 1903.
J. Edwards, Elementary Treatise on the Differential Calculus.

London, Macmillan and Co., 1892 (pp. 360-361).
Encyclopedia Britannicai See "Curves, Special."
J. Hambidge, Dynamic Symmetry. New Haven, Yale University

Press, 1920.
J. Hambidge, The Elements of Dynamic Symmetry- New York,

Brentano's, 1926.
W. C. Risselman, "On the Equiangular Spiral," School Science and

Mathematics, Vol. 35, pp. 55-62 (January, 1935).
D. W. Thompson, On Growth and Form, New York, The Macmillan

Co., 1943 (Chapter XI).
W. A. Whitworth, "The Equiangular Spiral, Its Chief Properties

Proved Geometrically," Messenger of Mathematica, Vol. 1, p. 5
(1862).

R. C. Yates, A Handbook on Curves and their Properties. Ann Arbor,
J. W. Edwards, 1947 (pp. 206-216).

42. GAMBLING.

The very respectable theory of probability had its
origin in certain problems connected with games of chance,
and today we draw upon those same games (dice, cards,
roulette, etc) to illustrate fundamental propositions of
probability. However, the mathematician knows the fu
tility of gambling, for "the true moral is this, that poor



The Pentagon 23

men should not gamble and that millionaires should do
nothing else."

"Applied Mathematics," Time, Vol. 60, p. 64 (December 1, 1947).
E. E. Blanche, "Is There a Foolproof Gambling System?" Science

Digest, September, 1949, pp. 7-9.
E. E. Banche, "The Mathematica of Gambling," School Science and

Mathematics, Vol. 46, pp. 217-227 (March, 1946).
E. E. Blanche, "A Night with Probability," American Mathematical

Monthly, Vol. 49, pp. 64-60 (January, 1942).
E. E. Blanche, You Can't Win. Washington, Public Affairs Press,

1949, (This book contains a lengthy bibliography.)
B. H. Brown, "Probabilities in the Game of 'Shooting Craps',"

American Mathematical Monthly, Vol. 26, pp. 351-352 (October,
1919).

"Calculation of Probabilities in Roulette at Monte Carlo," Nature,
Vol. 78, pp. 147-148 (June, 1918). The same article condensed:
Current Literature, Vol. 45, p. 839 (September, 1918).

"Craps Manual," Time, Vol. 43, p. 76 (March 6, 1944).
E. B. Dagobert, "Mathematical Probabilities in Games of Chance:

The Game of Sevens," "The Mathematics Teacher, Vol. 39, pp.
155-158 (1946).

"Gambling at Monte Carlo; Systems and Why They Fail," Scientific
American Supplement, Vol. 72, pp. 46-47 (July 75, 1911).

W. Hope-Jones, "Gambling," Mathematical Gazette, Vol. 15, pp.
347-358 (March, 1931).

D. Hyatt, "Poker Permutations and Combinations," "Literary Digest,
Vol. 118, p. 33 (July 21, 1934).

H. D. Larsen, "A Note on Hedging," American Mathematical Monthly,
Vol. 45, pp. 458-460 (August-September, 1988); also, THE
PENTAGON, Vol. 7, pp. 94-97 (Spring, 1948).

H. C. Levinson, Your Chance to Win. New York, Farrar and
Rinehart, 1939.

J. McDonald, "Poker, an American Game," Fortune, Vol. 37, pp.
128-131, 181-187 (March, 1948).

R. E. Moritz, "Some Curious Fallacies in the Study of Probability,"
American Mathematical Monthly, Vol. 30, pp. 14-18, 58.

"Now You Call It," World's Work, December, 1931, p. 43.
A. P. Peck, "You Can't Beat 'em," Scientific American, Vol. 147,

pp. 350f (December, 1932).
J. S. Redding, "Playing the Numbers," North American Review, Vol.

238, pp. 533-542 (December, 1934).
"Scientific Argument Against Gambling," Scientific American Sup

plement, Vol. 66, p. 317 (November 14, 1908).
G. B. Snyder, "Let's Figure on Probability," The Scholastic, Vol. 27,

pp. 17-18 (October 26, 1935).

(Concluded on page 40)



THE PROBLEM CORNER

Edited B-y Judson W. Foust

The Problem Comer invites questions of interest to undergradu
ate students. As a rule, the solution should not demand any tools
beyond the calculus. Although new problems are preferred, old
problems of particular interest or charm are welcome provided the
source is given. Solutions of the following problems should be
submitted on separate sheets before March 1, 1953. The best
solutions submitted by students will be published in the Spring 1953
number of THE PENTAGON, with credit being given for other
solutions received. To obtain credit, a solver should affirm that
he is a student and give the name of his school. Address all com
munications to Dr. Judson Foust, Central Michigan College of
Education, Mt. Pleasant, Michigan.

PROBLEMS PROPOSED

51. Proposed by Harold Larsen, Albion College, Albion,
Michigan. (From The Mathematical Gazette.)

Find the last 13 digits in 52!
52. Proposed by J. E. Allen, Phillips High School, Birming
ham, Ala.

In a certain corporation 20 per cent of the employees
are women, 40 per cent of the unmarried employees are
women and 12 1/2 per cent of the married employees are
women. What per cent of all employees are married?
What per cent of the men employees are married? What
per cent of the women employees are married?
53. Proposed by Judson Foust, Central Michigan College
of Education, Mt. Pleasant, Michigan.

B tells C that A said, "I went to town today." A tells
the truth only half the time and B tells the truth only
two-thirds of the time. What is the probability that A did
go to town, assuming that he made a statement with refer
ence to going to town?
54. Proposed by the Problem Corner Editor. (From School
Science and Mathematics.)

A candy dish contains 25 vanilla creams, 10 maple
creams, and 10 raspberry creams. What is the least num
ber one must take out of the bowl to be sure of having a)
two with the same flavor? b) two with different flavor?

24
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c) three with different flavor? d) three with the same
flavor?

55 Proposed by Norman Anning, University of Michigan,
Ann Arbor, Michigan,

Show that a triangle given at random is three times as
likely to have an obtuse angle as not to have one.

UNSOLVED PROBLEM

No solution has been received for Problem 34: Sub
stantiate the assertion made by Nathan Altshiller-Court in
his College Geometry (page 66) that a triangle may have
equal external bisectors and yet not be isosceles.

SOLUTIONS

41. Proposed by the Problem Corner Editor. (From The
American Mathematical Monthly, Volume 23, page 304.)

Show that the locus of the intersection of a pair of
perpendicular normals to a parabola y2 = Apx is the para
bola y2 = p(x—3p).

Solution by Dale Schlueter, Drake University, Des
Moines, Iowa.

The equation of all lines tangent to the parabola is
y = mx+p/m. Thus, the equations of any two perpen
dicular tangents are y = mx+p/m and y = —x/m—pm.
These intersect the parabola at (p/m2, 2p/m) and
(pm2, —2pm), respectively. The equations of lines per
pendicular to these tangents are y = —x/m + k and
y = mx+k, where k is determined in each case for the
normal through the point of contact. That is, 2p/m =
-(P/m?) /m+k or k = (p/m) (2+1/m2) for the first
point, and —2pm = pm?+k or k = -pm(2+m2) for the
second point. The equations of the two normals therefore
are y = —x/m+p(2+1/m2) /m and y = mx—pm(m2+2).
Eliminating y and x in turn, we get x = p(l + l/m)2—p
And y = p(l/m-m). Then y2 = p2(m+l/m)2-Ap2 =
px—Zp2.

Also solved by Charles Grosch, Illinois State Normal
University, Normal, Illinois.
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46. Proposed by Harold Larsen, Albion College, Albion,
Michigan.

Find all five-digit numbers xV such that the cube root
of N is exactly equal to the sum of the digits of N.

Solution by Donald Boothroyd, Albion College.
For convenience, set xV = n3, where n = Zp+R, and

R = 0,1, or 2. Then it is easily shown that ns = 9q+R\
Since the sum of the digits of any number divisible by 9
is also divisible by 9, and 9q obviously is divisible by 9,
the digit-sum of n3 can be expressed as 9m+R3, where
R3 is 0, 1, or 8. Now 10,000 <n'<100,000, whence 21<n
<47. We list all possibilities:

m'9+.R3 = n n3 Digit-Sum
2«9+8 = 26 17,576 26

3*9+0 = 27 19,683 27

+1 = 28 21,952 19

+8 = 35 42,875 26

4*9+0 = 36 46,656 27

+ 1 = 37 50,653 19

+8 = 44 85,184 26
5-9+0 = 45 91,125 18

+ 1 = 46 97,336 28

Thus N = n3 is 17,576 or 19,683.

Also solved by Paul Hawthorne, California Avenue
School, Hempstead, New York, and Harvey E. Fiola,
Forman, North Dakota.

47. From The American Mathematical Monthly, October,
1951.

Derive a formula for the sum of the first n terms of a
progression in which the first term is a, each even-placed
term is obtained from its preceding term by multiplying
by the constant u, and each odd-placed term (after the
first) is obtained from its preceding term by multiplying-
by the constant v.

Solution by Charles Grosch, Illinois State Normal Uni
versity, Normal, Illinois.

Let Si be the sum of the odd terms, s2 the sum of the



The Pentagon 27

even terms, p the number of odd terms, and q the number
of even terms. Then p+q = n and

s, = a+auv+a(uv)2+ . . . +a(uv)9-1 =
a[(uv)*—l]/(uv-l).

s2 = au+au2v+au3v2+ . . . +auV-1 =
au[(uv)"—1] /(ttv-1).

If n is even, p = q = y%n. If n is odd, p—1 = g, or p =
y2(»+l), 9 = %(»—!)• Then if w is even, we obtain

Sn = Si+s2 = a(tt+l) [(«vn/8-l]/(«v-l)
and if n is odd,

Sn = si+s2 = a(«+l) [(ttt,)»/,-l]/(«t*-l)
Also solved by Walter Old, Hofstra College, Hemp

stead, New York.

48 Proposed by James P. Bradford, Laurel, Mississippi.
A man cashed a check and found he had received twice

the amount of the check plus $3.50, or he received in dol
lars what the check read in cents and he received in cents
what the check read in dollars. What was the actual value
of the check?

Solution by Walter Old, Hofstra College, Hempstead,
New York.

Let V be the value of the check in x dollars and y
cents. Then V = lOOx+y. Now 2(100+y)+350 =
lOOy+x, whence 98j/-199a: = 350. Since 33-199-67«98 =
1, we have 98y-199x = 350(33*199-67-98) or 98 (y+
350-67) = 199(«+350«33). Thus y+350'67 = 199i and
x+350-33 = 98*; that is, y = -67*350+199* and x =
—33.350+98*. A meaningful answer is obtained upon set
ting * = 118, whence y = 32, x = 14, and V = $14.32.

Also solved by Charles Grosch, Illinois State Normal
University, Normal, Illinois; Roger Hilleary, Pomona Col
lege, Claremont, Calif.; and Harvey Fiola, Forman, North
Dakota.

49. Proposed by the Problem Corner Editor.
Three men — Arthur, Bernard, and Charles — with

their wives — Ann, Barbara, and Cynthia — made some
purchases. When their shopping was finished each found
that the average cost in dollars of the articles he or she



28 The Pentagon

had purchased was equal to the number of his or her
purchases. Arthur had bought 23 more articles than Bar
bara, and Bernard had bought 11 more than Ann. Each
husband spent $63 more than his wife. Who is the hus
band of whom?

Solution by Charles Grosch, Illinois State Normal Uni
versity, Normal, Illinois.

Let m = the number of articles bought by a man and
w = the number of articles bought by a woman. Then
mi2 = the dollars spent by a man and w2 = the dollars
spent by a woman. Now for a married couple, m?—w2 =
63, whence (m—w) (m+w) = 63 with possible factors
(1,63), (3,21), and (7,9). Therefore m-w = 1, 3, 7 and
m+w = 63, 21, 9, respectively. Solving the three simul
taneous systems, m = 32, 12, 8 and w = 31, 9, 1 respec
tively. Since Arthur bought 23 more articles than Barbara,
he bought 32 articles and Barbara bought 9. Also, Bernard
bought 11 more than Ann, so he bought 12 and Ann bought
1. This leaves Charles with 8 and Cynthia with 31. Thus
the married couples are Arthur and Cynthia, Bernard and
Barbara, and Charles and Ann.

Also solved by J. E. Allen, Birmingham, Alabama.

50. Proposed by the Problem Corner Editor.
A roll of paper tape is 6 inches in diameter and has

a center core of 1 inch diameter. How many feet of tape
is contained in the roll if the tape is 1/250 inch in thick
ness?

Solution by Harvey E. Fiola, Forman, North Dakota.
The area of the cross-section of the tape is given by

A = w(32-.52) = 35ir/4 Then L = A-M/250 = 572.7 ft.
Also solved by Donald Boothroyd, Albion College, Al

bion, Michigan, and Richard V. Lane, Hofstra College,
Hempstead, New York.



THE MATHEMATICAL SCRAPBOOK
Tricks to show the stretch of human brain,
Mere curious pleasure or ingenious pain.

—POPE

= V =
A shop assistant is paid on a profit-sharing basis,

getting as part of his wages every year one-fifth of the
total profits of the shop for the preceding year. He broke
a window worth $200 in 1930. How much poorer is he
now as a result of the accident?

= V =
The mathematical term eliminate is derived from the

Latin e (out ) + limen (a threshold), and literally means
to kick out of doors. The word limit comes from the same
root.

= V=
To integrate sec a;:
Let sees = coshy.

Then tan2* = sec2»—1 = cosh2^—1 = sinh2i;,
whence tana = sinht?.
Also, sec x tan x dx = sinh v dv,
so that sec a; dx = dv.
Therefore, /sec x dx — v

= cosh-1 (sec x)
= log(seca?+tana;).

=V=
Euclid gave constructions for regular polygons of 3,

4, 5, 6, 8, 10, 12, and 15 sides.
=V=

WHY WORRY ABOUT METHOD?
Solve: log (4»-l) +log(3a;+2) = 2log 11.
Answer: . 4a:—l+3x+2 = 2*11

lx+1 = 22

x = 3.

=V =
"The ellipse was studied for centuries before it was

found to be the orbit of a planet. To express astonishment
at this is to mistake the nature of mathematics."

—E. C. TlCHMARSH

29
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M = .43429448190325182765
Base ten: best in practical work. Can't evaluate a

logarithm? Nothing can be nicer! A constant is clearly
needed first.

—W. Hope-Jones

= V=

On a scale in which the radius of the earth's orbit
round the sun is represented by one inch, the light-year
is very closely represented by one mile.

—N. M. GlBBINS

=v=

Charles Dodgson suggested symbols to replace the ex
pressions, sin, cos, tan, etc. Note that each of his- symbols
requires but two strokes, one being the same in each.

sin /T\ cos ^""N tan T^T

esc ^O sec C7( cot \J
=V=

"At nine and a half, to the amazement of all Germany,
(Karl Witte) entered the University of Leipzig. In 1914,
before he had passed his fourteenth birthday, he was
granted the degree of Ph.D. for a thesis on the 'Conchoid
of Nicomedes' a curve of the fourth degree."

—Bruce, Psychology and Parenthood

91* = 8281
9901' = 98029801

999001s = 998002998001

= V=

From Arithmetic in Nine Sections (date unknown;
maybe as early as 213 B.C.): "A square city of unknown
side is crossed by a street which joins the centers of the
north and south sides; at a distance of 20 paces north of
the north gate is a tree which is visible from a point
reached by going 14 paces south of the south gate and
then 1775 paces west. What is the length of each side?"
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The mathematician lives long and lives young; the
wings of his soul do not early drop off, nor do its pores
become clogged with the earthy particles blown from the
dusty highways of vulgar life.

J. Sylvester

Circles A, B, C, and
D, are mutually tan
gent, with radii 3 in.,
2 in., 1 in., and x in.,
respectively. Show
that x is 6/7 in.

=V=

THE RELATIVE VALUES OF PIECES OF CHESS

"[H. M Taylor] found by a mathematical process that
if a knight and king of different colors were placed on
a chessboard at random, the odds against the king being
in check were 11 to 1; if a bishop and a king, 31 to 5; if
a rook and a king, 7 to 2; and if a queen and a king, 23 to
13. If, however, we consider only safe check (i.e. check
in which the king is unable to take the piece), the odds are
respectively 11 to 1, 131 to 3, 5 to 1, 107 to 37. From
these numbers we can obtain a fair theoretical measure of
the relative values of the pieces. Thus, if we take as our
measure the chance of safe check, the values of the knight,
bishop, rook, and queen are in the ratio 12, 13, 24, 37,
while the values of these pieces in the same order as given
by Staunton are 3.05, 3.50, 5.48, and 9.94, the value of the
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pawn being taken as unity. Mr. Taylor remarks that the
value of a pawn depends so much on the fact that it is
possible to convert it into a queen, that the method does
not appear applicable to it."

—Nature (Oct. 14, 1875)

= V =

PROBLEM IN PROJECTILES

By Prof. Longfellow and William Walton
Swift of foot was Hiawatha;
He could shoot an arrow from him,
And run forward with such fleetness,
That the arrow fell behind him!
Strong of arm was Hiawatha;
He could shoot ten arrows upward,
Shoot them with such strength and swiftness,
That the tenth had left the bowstring
Ere the first to earth had fallen.
Supposing Hiawatha to have been able to shoot an

arrow every second, and, when not shooting vertically,
to have aimed so that the flight of the arrow might have
the longest range, prove that it would have been safe to
bet long odds on him if entered in the Derby.—The Mathe
matical Monthly (January 1859). Contributed by Frank
Hawthorne.

=V =
The sum of the tenth powers of the first thousand

natural numbers is

91,409,924,241,424,243,424,241,924,242,500.
James Bernoulli mentions that it took him rather less than
seven and a half minutes to obtain this result.

=V=
Let Si, S2, S3, .... be the sums of successive groups

of n terms of any arithmetic progression. Then
oi : 02 : *js : etc. = l : *> : o : etc.

=V=
"It remains only to add a study which exemplifies

reasoning in its clearest and most precise form. That
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study is of course mathematics, and of the mathematical
studies, chiefly those that use the type of exposition that
Euclid employed. In such studies the pure operation of
reason is made manifest. The subject matter depends on
the universal and necessary processes of human thought.
It is not affected by differences in taste, disposition, or
prejudices. It refutes the common answer of students,
who, conformably to the temper of the times, wish to
accept the principles and deny the conclusions. Correct
ness in thinking may be more directly and impressively
taught through mathematics than in any other way. —
Robert M. Hutchins, Harper's Magazine, (Nov. 1936).

=V =
"Everyone knows Lewis Carroll as the creator of the

immortal Alice. His nom de plume was derived by trans
lating his given name Charles Lutwidge into Latin —
Carolus Ludovicus — and then reversing and anglicizing
the result. As straight-forward Charles Lutwidge Dodg-
son he was a mathematics teacher and a writer on mathe
matical subjects. His dual personality gave rise to many
legends. One story, denied by Carroll, claimed that Queen
Victoria delighted with Alice in Wonderland, ordered that
Carroll's next book be delivered to her as soon as released.
She was somewhat taken aback to receive The Elements of
Determinants." — E. E. Kramer, The Main Stream of
Mathematics.

"I take the opportunity of giving what publicity I
can to my contradiction of a silly story, which has been
going the round of the papers, about my having presented
certain books to her Majesty the Queen. It is so constantly
repeated, and is such absolute fiction, that I think it worth
while to state, once for all, that it is utterly false in every
particular: nothing even resembling it has ever occurred."
— Lewis Carroll in his third edition of Symbolic Logic.

=V=
The first mention of determinants was made in 1693

by Leibnitz in a letter to L'Hopital. In his attempts to
simplify the expressions which arose in the elimination of
the unknown quantities from a set of linear equations,
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he used symbols nearly identical with our present deter
minant notation. Although he believed that the functions
would develop remarkable and very important properties,
he did not pursue the subject himself; and it was not
until the middle of the eighteenth century that deter
minants were mentioned again.

In 1750 Gabriel Cramer, while working upon a par
ticular problem on the analysis of curves, had to solve sets
of linear equations. This famed geometer encountered
the same functions which had attracted the attention of
Leibnitz. Cramer is credited with the general rule for the
solution of n simultaneous equations (non-homogeneous)
containing as many unknown quantities.

Important advances have been made since Cramer's
time, and with the aid of many celebrated mathematicians,
a theory of determinants has evolved. A few of the
most important mathematicians are Vandermonde, Gauss,
Cauchy, and Jacobi — the latter two contributing most
to the development of the subject. Cauchy adopted the
name "determinant" from Gauss, and in 1841 Jacobi estab
lished the foundation of a treatise on the theory of
determinants. —Margaret E. Martinson

"[The Royal Mathematician) pulled a long scroll of
parchment out of a pocket and looked at it. 'Now let
me see. I have figured out for you the distance between
the horns of a dilemma, night and day, and A and Z.
I have computed how far is Up, how long it takes to get
Away, and what becomes of Gone. I have discovered the
length of the sea serpent, the price of the priceless, and
the square of the hippopotamus. I know where you are
at Sixes and Sevens, how much Is you have to have to
make an Are, and how many birds you can catch with
the salt in the ocean — 187,798,132, if it would interest
you to know.'

'There aren't that many birds,' said the King.
'I didn't say there were,' said the Royal Mathemati

cian. 'I said if there were.' " — James Thurber, Many
Moons (Contributed by Henry Van Engen.)



THE BOOK SHELF

Edited by Carl V. Fronabarger
Southwest Missouri State College

From time to time there are published books of common interest
to all students of mathematics. It is the object of this department
to bring these books to the attention of readers of THE PENTAGON.
In general, textbooks will not be reviewed and preference will be
given to books written in English. When space permits, older books
of proven value and interest will be described. Please send books
for review to Professor Frank Hawthorne, Hofstra College, Hemp-
sted, New York.

Mathematics at the Fireside. By G. L. S. Shackle. Cam
bridge University Press (32 East 57 Street, New
York 22, N. Y.), 1952. 12+156 pages. $3.25.
This book is unique in its simplicity of approach to

the mathematical ideas presented. Two very precocious
children, a boy and a girl, supervised by the boy's father
discover much of our school-book mathematics without
the aid of any printed materials.

The entire book is made up of conversation and dia
logue carried on while the three are at the home of the
boy, the home of the girl, or on picnic and boating trips.

Through their intellectual recreations they delve into
the fields of real and complex numbers, algebra, geome
try, and calculus.

Each mathematical law is approached through the
discussion of facts and situations that the children can
understand and appreciate. The quadratic equation comes
from the discussion of the fall of a rain drop; rational
numbers by the cutting of a cake; the calculus by the
secrets of a fountain and the measurement of a lawn
with a curved side; mathematical induction by the build
ing of taller and taller towers. Some fundamental law is
approached in each of the twenty-four chapters of the
book.

The author gives a brief table of contents at the
beginning and an analytical table at the end which shows
in more detail the materials covered.

To most readers the book will seem too difficult to
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have been developed by the thinking of this little girl
and little boy who are not more than ten or eleven years
of age.

It is a book that college students interested in mathe
matics could read with profit. They would receive new
and clever ideas and unusual methods of approach, to
some of the fundamental bases of mathematical knowl
edge. It would be a useful addition to the mathematical
library of any college.

—L. E. Pummill

Mits, Wits, and Logic. By Hugh G. and Lillian Lieber.
W. W. Norton and Company, Inc. (101 Fifth Avenue,
New York 3, New York), 1947. 7+240 pages. $3.00.
That Mits (Man in the Street) and Wits (Woman

in the Street) need lessons from SAM (the essence of
what is best in Science, Art, Mathematics), if they are
to lead a truly happy life, is Lillian Lieber's theme in this
book. Her "free verse" style of writing and the illustra
tions by Hugh Lieber contribute much to the develop
ment of the theme.

The author has divided the material into three parts.
The first is devoted to "The Emergency" in which the
author introduces SAM, gives Mits and Wits his message
of warning, asks them to be modern Paul Reveres in
spreading the word that war must be eliminated here and
now, and explains to them that if they wish to survive
they must accept "modern realism." The second is given
over wholly to showing what is meant by "modern re
alism" in science, in art, and in mathematics.

The last division is concerned chiefly with logic.
The author defines logic, and then explains, in detail
and with examples, what is meant by Aristotelian Logic
or Traditional Logic, which she considers to be only a
part of Modern Symbolic Logic. She then points out
some illogical arguments, suggests being alert to logical
"boners"—such as those used in advertising and in quot
ing references and statistics which no one ever bothers
to check; and interestingly enough shows that problems
which at first sight appear illogical and unsolvable be-
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cause they involve "circular reasoning" are actually log
ical and can be solved by the use of a little element
ary algebra. A study of classes, postulational thinking,
Boolean Algebra, and demonstrations showing that the
Algebra of Propositions is analogous to a two-valued
Boolean Algebra and that Aristotelian Logic can be
streamlined to five lines of Boolean Algebra closes the
longest of the three divisions.

Mits, Wits, and Logic is a book that every under
graduate who is interested in mathematics and has com
pleted a course in logic would enjoy reading. It is full
of happy wit, sound mathematics, and good logic.

—Sister Mary Petronia, s.s.n.d.
Nomography and Empirical Equations. By Lee H. John

son. John Wiley and Sons, Inc. (440 Fourth Avenue,
New York 16, N. Y.), 1952. 9+150 pages. $3.75.
The usefulness of nomographs in engineering, in

dustry, and research is emphasized, and various methods
of curve fitting are discussed in rather careful detail in
this treatise. The author points out the time-saving fea
ture of nomographs or alignment charts in routine, day-
after-day, calculations, along with the fact that graphi
cal solutions, where numerical data are substituted into
formulae, do not require skill in mathematics by the user.

The introductory chapter gives excellent material with
regard to plotting scales in clear, concise steps of pro
cedure. The size of paper involved, the basic unit of
measurement, and the range of values of the variables
are all factors that are considered in the presentation.

The author's discussion of the various types of nomo
graph construction is fundamental, and he gives contin
uous attention to the actual steps involved in analyzing
a problem for adaptation to a particular type of nomo
graph using an approach based on plane geometry and
logarithms. Advantages and limitations of procedures are
carefully presented and discussion of errors concerned
with a specific type of nomograph is included.

Throughout the book, both the work in nomography
and in empirical equations are related to the fundamental
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mathematical ideas involved. In curve fitting the method
of selected points, the method of averages, and the meth
od of least squares are presented in elementary fashion.
Chapters are included that discuss curves of two, three,
and four constants, respectively. Throughout the mate
rial, tests are suggested for determining the suitability
of a particular type of equation.

The attention to detail and the emphasis on prac
tical procedure should make this a valuable book for one
dealing with experimental and operational data.

—Earle L. Canfield

Geometry and the Imagination. By D. Hilbert and S. Cohn-
Vossen as translated by P. Nemenyi. Chelsea Publish
ing Company (Washington Bridge Station, New York
33, New York), 1952. 9+357 pages. $5.00.
This book is the recent translation of the reformula

tion and written presentation by S. Cohn-Vossen of D.
Hilbert's course of lectures, called Ansckauliche Geometric,
which he gave at Gottingen in the winter of 1920-21.

The world-famous mathematician and lecturer in this
course sought to foster "a more inmmediate grasp" of
geometry by developing "the tendency toward intuitive
understanding" with the aid of "visual imagination." As
suming this perspective, he states, "We can illuminate
the manifold facts and problems of geometry, and beyond
this, it is possible in many cases to depict the geometric
outline of the methods of investigation and proof, with
out necessarily entering into the details connected with
the strict definition of concepts and with actual cal
culations."

"In this manner, geometry being as many-faceted
as it is and being related to the most diverse branches
of mathematics, we may even obtain a summarizing sur
vey of mathematics as a whole, and a valid idea of the
variety of its problems and the wealth of the ideas it
contains. Thus, a presentation of geometry in large
brush-strokes, so to speak, and based on the approach
through visual intuition, should contribute to a more
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just appreciation of mathematics by a larger range of
people than just the specialists."

Having thus stated his intent, he proceeds to dis
cuss the following general topics: The Simplest Curves
and Surfaces, Regular System of Points, Projective
Configurations, Differential Geometry, Kinematics, and
Topology.

The reviewer found that the book is expository in
nature and each section is largely complete in itself.
The proofs that are given are synthetic in type and are
marked by a directness indicative of the thorough under
standing of the logical issues at stake in each.

This book will make enjoyable reading for a mature
undergraduate student of mathematics, but as the author
warns, he should expect at time to find himself con
fronted with investigations intended for a reader with
more specialized training. However, he should profit
much by being lead to perceive the "Gestalt" of the
subject as it is so aptly presented by the author.

—Robert E. Hogan

%

ANNOUNCEMENT

With this number of THE PENTAGON, the present
editor steps down to assume the position of Business
Manager. I wish to thank all who have cooperated and
assisted in making our journal such an outstanding
success.

I am happy to announce that the new editor is
Dr. Carl Fronabager, with his Editorial Office at South
west Missouri State College, Springfield, Missouri. Dr.
Fronabarger already is at work on the Spring 1953 num
ber, and will appreciate the same loyal support you have
given me.

—H. D. Larsen



INSTALLATION OF NEW CHAPTER
Edited by J. M. Sachs

The PENTAGON is pleased to report the installation
of Indiana Beta Chapter of Kappa Mu Epsilon. There are
now forty-eight active chapters on the roll.

INDIANA BETA CHAPTER
Butler University, Indianapolis

Eighteen student and faculty members were initiated
as charter members of Indiana Beta at the installation
ceremony held at Atherton Center on the campus of Butler
University on May 16, 1952. Professor H. D. Larsen of
Michigan Alpha, Editor of the PENTAGON, served as
installing officer. Professor J. E. Dotterer of Indiana
Alpha assisted.

A banquet in the faculty dining room of Atherton
Center preceded the installation. Following the ceremony
Professor Larsen spoke on, "Some Famous Unsolved Prob
lems of Mathematics."

The following officers of Indiana Beta were installed:
President, Donald R. Cassady; Vice-President, Mary Alice
Evans; Recording Secretary, Austin J. Werner; Treasurer,
Dean H. Morrow; Corresponding Secretary, Mrs. Juna L.
Beal; Faculty Sponsor, Dr. Harry E. Crull.

Other charter members of Indiana Beta are Earl L.
Dickey, JosephM. Gillaspy, George D. Goodnight, Jr., Alice
A Hopkins, Alan C. Levenson, Joseph E. Mueller, Vincent
M. Myer, Frank A. Rexroth, Jane A. Uhrhan, John B.
Walls, Robert C. White, and David F. Woodward.

(Concluded from page 28)

M. Tyman, "The Dark Mystery of Race-Track Betting," Literary
Digest, VoL 119,p. 38 (April 27, 1935).

C. N. Williamson, "Systems and System Players at Monte Carlo,"
McClure, VoL 40, pp. 78-91 (February, 1913).
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KAPPA MU EPSILON NEWS
Edited by Laura Z. Greene, Historian

Alabama Beta is making plans to be co-hosts with the
College for the meeting of the Alabama Teachers of College
Mathematics which will be held this year at the Alabama
State Teachers College. Members of the chapter who
plan to teach secondary mathematics are studying ways to
make mathematics more meaningful to the high school
student.

- + -

Indiana Alpha prepared an exhibit of mathematical
equipment and models which was on display in the depart
ment of Mathematics on May 12-14.

- + -

Kansas Alpha and Missouri Alpha have arranged an
exchange of programs. Four student papers were given
on April 17 at Springfield by members of Kansas Alpha.
A similar program will be given by Missouri Alpha for
the Kansas Alpha chapter this Fall.

- + -

Pledges of Kansas Gamma sponsored an Open House,
at which time the mathematics department received visitors
for the entire College. Various mathematical concessions
were arranged to amuse the guests. These consisted of
optical illusions; brain teasers; identification of mathe
matical tools, figures, solids; famous men of mathematics.
Prizes were awarded to the most successful contestants.

- + -

The Vantage Press announces the publication of a
textbook by Sister Helen Sullivan, former National Histor
ian of Kappa Mu Epislon. Sister Helen's book, which in
terprets the physical sciences in terms of the Christian
ideal, is entitled, An Introduction to the Philosophy of
Natural and Mathematical Sciences.

- + -

Terry McAdam, first president of Kansas Delta, is
back in his office now after a year's leave of absence
necessitated by a serious automobile accident in May,
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1951. He serves as the Executive Secretary of the Alumni
Association of Washburn University.

- + -

Michigan Beta awards E. T. Bell's Men of Mathe
matics to the freshman who makes the highest score on
a standardized, objective test which is open to all freshmen.

- + -

Members of Michigan Gamma who received Mathe
matics Awards on the basis of a two and one-half hour
examination were Richard Pauley, first place; Joseph Ger-
rity, second place; Duane Morrow, third place; Robert
Reibel and David Morrison, honorable mention. William
Shulevitz and Max Krolik were awarded student member
ships in the Mathematical Association of America.

- + -
Miss Zelia Zulauf of Missouri Beta presented her

paper, Mathematics and Music, at the college section of the
Missouri Academy of Science in St. Louis. Her paper was
ranked among the three top papers given at the meeting.

. - + -
Professor M. A. Nordgaard of New Jersey Alpha,

founder of the chapter, passed away on October 18.
- + -

Miss E. Marie Hove, National Secretary of Kappa Mu
Epsilon, was invited by New Jersey Beta to be their guest
speaker at the annual spring banquet. She spoke on the
history of Kappa Mu Epsilon.

- + -

Morris Rosen was the winner of the award given by
New York Alpha to the student ranking highest in the
first year of mathematics. The winner is selected on the
basis of grades earned in the courses and a two-hour
examination. A book and a certificate were presented
to Mr. Rosen, and his name was engraved on a permanent
plaque which is kept in the mathematics department.

Members of the chapter assisted by serving as guides
and helping to register the visitors on the occasion of
the meeting at Hofstra College on May 3 of the Metro-
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politan Section of the Mathematical Association of Amer
ica.

- + -

Ruth Rickloff of Pennsylvania Alpha was awarded the
Kappa Mu Epsilon prize this year. The award, a book in
mathematics, is presented each year to a second-year
student in mathematics on the basis of his previous aca
demic record, in mathematics as well as other courses.

- + -

DIRECTIONS FOR PAPERS TO BE PRESENTED

AT THE

KAPPA MU EPSILON CONVENTION

ST. MARY'S LAKE CAMP

April 17 & 18, 1953

Who may submit papers: One chapter may submit more thlan one
paper for use on the convention program. Papers may be
given by both graduates and undergraduates.

Subject: The material should be within the scope of understanding of
undergraduates. The program committee will naturally favor
papers that are within this limitation and which can be pre
sented with reasonable completeness within the time limit
prescribed.

Time limit: The average time should be 20 minutes, but the time may
be extended to 30 minutes if the material warrants it

Abstract: The abstract should be accompanied by a description of
charts, models, or visual aids that are to be used in presenting
the paper. A carbon capy of the complete paper may be sub
mitted in place of an abstract if desired.

Abstract due: The abstract or a carbon copy of the paper should be
submitted before February 1,1953, at the office of the National
President.

Selection of papers: A program committee will select about eight
papers of the group submitted. All others will be read by title.

Prizes: Three prizes will be awarded for the best papers presented
according to the judgment of a combined faculty and student
committee.

Here is an opportunity for your chapter and its members to present
a paper and probably have it printed in the Pentagon. Let's all try!

Charles B. Tucker,

National President



PROGRAM TOPICS. SPRING SEMESTER. 1951-52
Alabama Gamma, Alabama College

Professional Opportunities of the Statistician, by Joyce Caraway
Professional Opportunities of the Mathematician, by Elizabeth

Cauley and Lillian Lindstrom
California Alpha, Pomona College

How Much Ya Wanna Bet? by Professor C. G. Jaeger
Number Mysticism, by Barbara Jobbins
The Normal Probability Curve, by Richard Hill
The Number Continuum, by Joe Seewerker
Mapping, by Ernest Kimme
Vectors, by Jon Mathews
History of Mathematical Notation, by Edward Coughran ..
Plausable Reasoning, by Professor Elmer B. Tolsted

Colorado Alpha, Colorado A and M College
Vibratory Motion and Waves, by Stephen Luchter
History of Mathematics, by Raoul Pettai
On the Use of Computing Machines, by Professor Harris T.

Guard
Illinois Beta, Eastern Illinois State College

Adventures in Measurement, by Miss Hendrix
Historical Aspects of Mathematics, by a Student Panel
The ProfessionaUzation of Subject Matter for Teachers of

Mathematics, by Dr. H. F. Fehr
Illinois Delta, College of St. Francis

A Great Physicist, R. A. MUUkan, by Sister Rita Clare O.S.F.
Mathematics and Religion, by Patricia Kasak
The Scientific Method, by Jeanne Schwinn
Continued Fractions, by Doreen Loiselle
The Gamma Function, by Irene Ragan

Indiana Alpha, Manchester College
Relativity, by Philip Kensey
The History and Development of KME, by Professor J. E.

Dotterer
Ethiopian Multiplication, by David E. Neuhouser
Mathematics in the High School Curriculum, by Don Bright
Rockets, by Robert Beack

Iowa Beta, Drake University
The Locus of Intersections of Normals to a Given Parabola Is

a Parabola, by Raymond Schlueter
Careers in Mathematics, by Edward Oscarson
Mathematics in Education, by Rex Morrison
Evolution of Logarithms, by James Baldridge

Kansas Alpha, Kansas State Teachers College, Pittsburg
The Fundamental Theorem, of Arithmetic, by Phil Doty
Mathematical Fallacies, by Richard Dale
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Mathematics in Iranian Schools, by Youness Hakimi
Minimum Distance to Three Points, by Richard Slinkman
Thomas Jefferson and Mathematics, by Virginia Adams
Take a Chance, by Tom Needham
Theories on the Evolution of the Solar System, by Dick Blancett

Kansas Beta, Kansas State Teachers College
Telescopic Observation, by Dr. 0. J. Peterson
History and Purposes of KME, by Dr. O. J. Peterson
Pythagorean Numbers, by Vernie Witten

Kansas Gamma, Mount St. Scholostica College
Careers for Mathematics Majors and Minors, by Jo Ann Fellin,

Becky Becker, and Suzanne Swann
To Determine the Excellent Mathematical KaUculators, by Donna

Rump and Charlotte Raur
Mathematics Essential to Economics, by Professor Edward Henry
Mathematical Training Required for Positions with the American

Telephone and Telegraph Company, by Miss Ruth Link,
Engineering Assistant with A.T.T.

Kansas Delta, Washburn University of Topeka
Mathematical Puzzles, by Richard Fisher
Mathematics in China, by Alfred Cheng
Mathematics in College, by Margaret Moore
Mathematics of Chance, by George Ladner
Non-Euclidean Geometry, by Terry D. McAdam

Louisiana Beta, Southwestern Louisiana Institute
The Education of T. C. Mitts, by Ann Ryder
The Hydrogen Bomb, by Tuney Arceneaux

Michigan Beta, Central Michigan College
On Trisecting the Angle, by Cleon C. Richtmeyer

Michigan Gamma, Wayne University
The Game of Nim, by Dr. Bertram Eisenstadt
Inscribing a Regular Polygon in a Circle, by Max Krolik
Radar Curves, by Dr. J. D. Bell, Michigan State College

Mississippi Gamma, Mississippi Southern College
Teaching in the Demonstration School, by Eddie Miley

Missouri Beta, Central Missouri State College
Discovery Method of Teaching Mathematics, by Mary Edna

Schupp
Mathematics and Music, by Zelia Zulauf
Vectors, by George Hutton
The Slide Rule, by Charles Edwards
Proofs of the Pythagorean Theorem, by Sherralyn Denning
A Minister Looks at Mathematics, by Rev. Herbert Woodruff

Missouri Epsilon, Central College
Mechanical Brains, by Wallace Jacobs
History of Format, by Glenn Bowman
Pythagoras, by Walter Weinard
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Pythagorean Theorem, by John Maurer
Mathematical Puzzles, by Dr. W. R. Utz, University of Missouri

Nebraska Alpha, Nebraska State Teachers College
The Development of Mathematics, by Ardyce Stevens
The Mainstream of Mathematics, by Mrs. Elizabeth Wooldridge

New Jersey Beta, New Jersey State Teachers College
Einstein's Theory of Relativity, by John Loughlin
The Use of Mathematics in Astronomy, by Donald Bunger
Mathematics in Science, by Dr. D. Davis
History of Kappa Mu Epsilon, by E. Marie Hove

New York Alpha, Hofstra College
Stability and Laplace Transform, by Dr. Henry Wolf
Mathematics in Communications, by David B. Jordan
Switching Algebra, by Richard J. Jaeger, Jr.

Ohio Beta, College of Wooster
Solutions of the Cubic, by Gerald Colome

Ohio Gamma, Baldwin-Wallace College
Powdered Metalurgy, by Mr. Francis Lowey
Art and Mathematics, by Dr. Sam Greenwood
Mathematics in Music, by Dick Winter

Oklahoma Alpha, Northeastern State College
Fallacies in Mathematics, by Juanita Van Cleve
Short Cuts in Mathematics, by Joe Galey
Timely Suggestion to New Teachers, by Miss Frazee
Why Make Any Guesses (from the Paper This is a Mathematical

World), by Dr. Wesley Deneke, Dean of Personnel
Stringed Solids in Plastic, by Mike Reagan

Pennsylvania Alpha, Westminster College
Revolving Numbers, by Jon Valentine
Numerology, by Donald Pritchard
A Proof of Eider's Formula V E+F = 2, by Mary McKnight
History of the Regular Polyhedra and Proof That There Can Be

Only Five, by William Pherson
Tennessee Alpha, Tennessee Polytechnic Institute

Magic Squares by Robert W. Glahe
A Puzzle Based on Logic, by David B. Soloff
Theory of Numbers, by Ira F. Grissom

Texas Alpha, Texas Technological College
The Hydrogen Bomb, by Dr. C. C. Schmidt

Texas Epsilon, North Texas State College
The Circle, Using Complex Numbers, by Richard Barham
A Probability Problem: Jacks or Better, by Donnie B. Alexander
Extraction of Roots, by Jane Pinkerton
The Straight Line, Using Compex Numbers, by Laroy R. Carry
Errors of Interpolation by Finite Differences, by C. T. Cadenhead
Some Mathematical Nuts, by Charlotte Clark and Carol Jenkins



The Pentagon 47

The Mathematician as a Problem Solver, by Linnie Ross and
Everett Bailey

An Application of Algebra, by Abelina Sanchez
Wisconsin Alpha, Mount Mary College

Mathematical Puzzles
Money at Work and Fair Exchange, films, by Mr. Robert J.

Cunningham
It Can't Happen Here, play

°2

THE 1953 CONVENTION

On Friday and Saturday, April 17th and 18th, we
will gather at St. Mary's Lake Camp, five miles north of
Battle Creek, Michigan, for our ninth Biennial Convention.
Our hosts are the three Michigan chapters: Michigan
Alpha, Albion College, Albion; Michigan Beta, Central
Michigan College, Mount Pleasant; and Michigan Gamma,
Wayne University, Detroit.

St. Mary's Lake Camp is operated by the Michigan
Education Association. It boasts of good food, good sin
gle beds with innerspring mattresses, and opportunities
for quiet recreation. The camp can house 140 delegates
at $6.00 per person per day for board and room plus a
$0.50 blanket charge. Those delegates who commute or
who stay at Battle Creek may secure meals at the rate of
$0.75 for breakfast, $1.25 for luncheon, and $1.50 for
dinner.

Those members who attended the Eighth Annual
Convention at Springfield, Missouri, will recall their most
enjoyable and profitable experience. The National Coun
cil and your hosts want this convention to maintain, and,
if possible, surpass the high standards and quality of our
earlier conventions. They sincerely hope that every chap
ter will be well represented at this outstanding event in
the activities of Kappa Mu Epsilon.

Local chapter officers should start making their plans
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to send as many delegates as possible, and to have at least
one delegate on the program. Directions for preparing
papers for the program have been sent to all chapter spon
sors and coresponding secretaries. Please send all ab
stracts of papers to the office of the National President
on or before February 1, 1953.

Our biennial conventions are an outstanding feature
of Kappa Mu Epsilon. They provide a delightful oppor
tunity for the faculty and student members of the various
chapters to become acquainted. They provide an enjoy
able stimulus and experience for both the individuals and
the chapters. So start your planning now to have your
chapter represented at the convention both in attendance
and on the program.

Charles B. Tucker, National President


