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FQUR SQUARES

NORMAN ANNING
Faculty, University of Michigan

(Reader: Please have pencil and paper; more will be sug-
gested than will be proved.) .

Here is a problem from a textbook' nearly eighty years
old: “The lines which join the mean points of three equi-
lateral triangles described outwards on the three sides
of any triangle form an equilateral triangle whose mean
point is the same as that of the given triangle.” Students
still challenge one another with this problem, and every
teacher has to see it. Someone may bring it to you tomorrow
and I think I hear him say, “We have a senior engineer in
our house; he couldn’t do it either.” So you prod him gently
in the direction of vectors or of some other method which
seems to you better. The figure of three equilateral triangles
which lead rather surprisingly to a fourth has been called
the figure of Torricelli. He and Cavalieri used it in 1647.
It is likely that by now most of its implications and ramifi-
cations have been explored.?

This may be the first time the student has met a situa-
tion where he starts from an irregular triangle and arrives
by easy steps at a regular triangle. If he shows any sign
of being thrilled by this discovery, you will do mathematics
a service by directing him to the Morley theorem and to the
fact that the envelope of the Simson (Wallace) lines of any
triangle is a Steiner hypocycloid. To read about the intimate
connection between these latter facts, see pages 845-349 of
H. F. Baker’s Introduction to Plane Geometry; this is not
a text for beginners. .

Is there some combination of four squares which is
equally worthy of study? Yes, here is one; it is not claimed
that it is the only-one or the most exciting one.

1 P. Kelland aed P. G. Tait, Introductions to Q: ions, 2nd ed. Loadon, Micamillian scd
Co., 1882, pg. 42.
2 See, fcrl;xza;nnlc. R. Johascn, Modern Geometey. New York, Houghton Mifflin Compaay,
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68 The Pentagon
Euclid’s Stoicheia is not so:much the elements of geom-
etry as the elements of mathematics treated geometrically.
In proving that (a+b)? = a?+2ab+ b2, Euclid in the fourth
proposmon of his second book used the same figure as we
use today in illustrating the same identity. Let us keep
the two squares, allowing one to be rotated about their
common corner, and add a pair-of congruent parallelograms
asin the figure. This simple
v . 6 figure is a part of the one
' about to be described. It has
Finteresting geometric proper-
ties in its own right. For in-
D c stance, the centers of the
. four figures -are the vertices
of- a square; EVFU is a
square, ¢
-‘Directions will now be giv-
E A en:for drawing the more gen-
‘ eral figure. Squares will be
V' named by naming the corners
counEerclockw:se, and plopertles will. be stated without

proo

Start with any triangle ABC and construct the squares
ACDE and BFGC. Construct also the squares AHBK and
DLGM.

Then

1. Kand L comclde

2. L is the midpoint of EF.

8. C is the midpoint of HM.

4. EF is equal to HM.

b. EF is perpendicular to HM.

6. If O, P, Q, R, S are the midpoints of AB BG, GD, DA,
CL, then OPQR is a square whose center is S. This square
is homothetic to EVFU mentioned: earlier.

7. A median of tnangle ABC is in lme thh an altitude of
triangle CGD, and vice versa. =

8. The sum of areas ACDE and BFGC is equal to the sum of
areas AHBK and DLGM.

9. And so on.
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It is hard to imagine that any property of this figure
can be new, but that fact need not spoil the fun of looking
for properties new to us. Remember the words of Des-
cartes?’: “But I shall not stop to explain this in more de-
tail, because I should deprive you of the pleasure of master-
ing it yourself, as well as of the advantage of training your
mind by working over it, which is in my opinion the princi-
pal benefit to be derived from this science.”

Suppose that i(CB) means. “turn CB about C through
plus 90°.” Observe the round trip: #(CB) = CG, i(LG) =
LD, 1(CD) = CA, i(LA) = LB. This property was used
in 1908 by Netto* in giving a geometric representation of
a group whose operators are defined by S¢ = T¢ = STST
=1,

As recently as 1948, a part of the flgure was used by
G. Gamow?® in illustrating the usefulness of the number i.
Treasure buried on an island by pirates is found after
time has erased certain apparently essential evidence. But
you must see for yourself. Gamow, now an American, is -
one of our best students of the origin, career, and destiny
of stellar universes. In about three sentences he can yank
you across three billion years of space-time and make you
- see what must have been happening in the first twenty
minutes.

Do not shrink away from taking an occasional mental
excursion. Francis Bacon says, “The universe is not to be
narrowed down to the limits of the understanding, which
has been men’s practice up to now, but the understanding
must be stretched and enlarged to take in the image of the
universe as it is discovered.”

The game is by no means ended. If you discover
other interesting properties in the figure or other outcrops
in the literature, please report them to the PENTAGON.

EDITOR’S NOTE—The PENTAGON will be happy to pub-
lish student reports describing further properties of the
Four Squares of Professor Ann_ing.

a2 D. B. Smith, A Source Book in Mathematics, New York, McGraw-Hill Book Compaany.
1929, . 400-1.

4 Netto, Grupp theoris.

8 G. Gamow, One, Two. Thtu + « « Infinltg. New York, Viking Press, 1947,




THE DEVELOPMENT OF
CALCULATING MACHINES

JaMES D. IpoL, JR.
Student, William Jewell College

The calculating machine has surely contributed as
much to the advancement of scientific research and general
knowledge as any one device I can think of at this time.
Yet it has been given as little credit for being one of modern
society’s revolutionary developments as its contributions
have been great. Imagine a bank without adding machines
or an engineer without his slide rule. The statement is
practically a paradox in itself. Without doubt, civilization
could not have advanced to its present degree without a
machine which could take over where our resources are
at an end. This is what the calculating machine in its
various forms does, much to our good fortune, and it has
had a long and honorable history in so doing.

We might imagine that ten or twelve centuries ag'o
Fu-Yen or one of his anonymous Chinese relations ran
out of fingers adding up the family grocery bill and de-
cided that a machine which could do his adding for him
wouldn't be a bad gadget to have around. This setting
is, of course, fictitious, but from similar necessity came
the abacus, an Oriental adding machine that still finds use
in Chinese banks and business houses. It consists of a
rectangular framework con-

(T 1} taining several rows of wood-
ﬁsﬁg?&????? en balls strung on wires; the
balls on each wire are divided

into groups of five and two by
a partition running parallel to
two of the sides of the frame.
To register a number on the

abacus the following system
is observed. The balls in
each group of five represent the digits one to five when
the two balls in the group of two are against the outer

1
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frame away from the inner partition. When one of the
two is moved next to the inner partition the five on the
other side of the partition now assume values of six to
ten. The extra ball in the group of two is also worth five.
When any combination of ten is obtained on any row, that
row is cleared of ten units and one unit is added to the
next row, the succeeding rows denoting units, tens, hun-
dreds, etc. Using this system of carrying tens, addition
is automatic as also is subtraction if the reverse process
is employed. Amazingly rapid computations can be made
with the abacus by one familiar with its operation.

The next development of note was made by John Napier
of Scotland. Known in the slang of the time (1617) as
Napier's bones, his invention was a multiplying device
which consisted of several wooden or ivory sticks (hence
the name) each of which had an integer at the top with
its integral multiples listed ver-

4|1 51| 9 tically downward. Where the
multiple was of more than one

al 5| 79| || digit, the digits were divided by

| ) o a diagonal line such as we use

8 0 8 in writing fractions. Also part

| | 2 3 of the device was a rack in
2l /51 7 which the sticks could be laid

| 2 3 4 side by side. The rack had the
6 0 6 numbers one to nine graduated
2412%14%| 5| regularly down one side so that
each number on the frame was

241261534 6| opposite its multiple of a num-
2 3 o ber whose stick was laid in the
8 5 3| 7| rack. The rule for multiplying

3 4 7 8 is: Select the multiplicand as
2 0 2 the topmost integers of the re-
3.4 4 . 8 19 quired sti.cks and lay therp in
the rack in the order the inte-

gers occur in the number. Select the single dlglt multiplier
from the scale on the rack and add the digits in the short
diagonal intervals in the row horizontal to the multiplier
on the rack. The addition is from right to left. Multipli-
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cation of a poly-figured number by a poly-figured number
is accomplished by summing the products of the components
of the multiplier, these being first resolved into units,
tens, ete.?

The slide rule had an humble begmmng In 1620
Edmund Gunter, an Englishman, conceived the idea of list-
ing the numbers one to ten on a scale of suitable material,
separating these numbers from each other, not according
to their algebraic differences, but according to the differ-
ences of their logarithms. By the use of dividers, distances
on such a scale were added and subtracted which resulted
in multiplication and division. If the addition of a length
corresponding to a certain value caused one to run off
the scale, it could be merely added to the other end with
the same effect since in that position it had the same
quality as a cologarithm. A few years later, another Eng-
lishman, William Qughtred, had the thought of using two
of Gunter’s scales opposite each other, one sliding back
and forth past its mate. This achieved the same end as
the use of dividers, and it was more convenient to use.
After Lieutenant Mannheim of the French Artillery had
added a glass indicator to the instrument for more accu-
racy in reading results, we were given the slide rule in
one of its present forms, known as the Mannheim type.

"~ Newton was among the first to recognize the value
of the slide rule; after making some improvements on it
to suit his purpose, he used it for solving cubic equations.
Many other people contributed to the development of the
slide rule, and of these I must mention Peter Roget, a
London physician. To Roget occurred the idea of using
another scale the values of which were graduated in the
proportions of logarithms of their logarithms. Now, since
the other scales on the instrument are logarithmie to the
first degree, and the log-log scale is logarithmic to the
second degree, there is a difference in character of unit
logarithmacy between the log-log scale and the other scales.
Consequently, any operation between the log-log scale and
any other scales on the slide rule will necessarily involve

3 Se¢ THE PENTAGON, Spring 1949, pp. 98-100,—Ed.
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powers and roots of numbers. The invention of the log-
log scale is probably the most important improvement to
be added to the slide rule since its invention. Equipped
with the log-log scale and various others including the
sine, tangent, and inverted scales, the slide rule has be-
come an indispensable tool to physicists, chemists, engi-
neers, and scientists in many fields. It is, in my opinion,
the most important single device thus far contributed to
the family of calculating machines owing to its enormously
~wide applicability to all types of problems and its versatility.
in the hands of one who understands its operation.

The first real calculating machine as we customarily
picture it (some type of metal case enclosing machinery)
was invented by the French physicist and mathematician,
Blaise Pascal (1642). This machine was in the form of
a flat, rectangular box; on the surface of the box were
six dials on which were inscribed the numerals zero to
nine. A pointer fixed to the case indicated the starting
or zero position for each dial. Beneath the surface of the
case the shaft from the dial above was terminated by a
gear which was in turn geared equally in ratio to a wheel
on the edges of which were numerals from zero to nine.
The topmost figure on the wheel was read through a win-
dow in the case; hence, when a dial was turned through
a distance corresponding to the value of, say six, the num-
bered wheel below was also turned so that the numeral
six appeared in the window above the wheel. Each wheel
was geared to the wheel immediately next on the left in
a ratio of one-tenth, so that when one wheel made one
revolution its next higher neighbor made one-tenth of a
revolution. Thus, the carrying of tens was accomplished.
The only disadvantage was that the mechanical advantage
was also one-tenth with each succeeding wheel. As a re-
sult, it required one thousand times as much energy to add
one to ten-thousand as it did to add one to ten, and only
a superman could operate a five-place machine. This same
fault was common with other machines of the time and for
awhile it looked as if all calculating machines were des-
tined to become museum pieces. The shorteoming of most
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of the machines was that the actual operations were per-
formed at the same time numbers were registered into
their mechanism, and both operations simply called for too
much force to be supplied by the keys at one time. Charles
Thomas, also a Frenchman, had this in mind when he con-
structed his machine a number of years later. This ma-
chine proved to be highly successful, and today’s calculat-
ing machines are very similar in design to his. The actual
operation of Thomas’ machine is too complex to describe
here; however, a very important improvement he made was
the operating lever, which made the device physically
much easier to operate. The small number levers of his
machine, in the place which would correspond to the key-
board of our present machines, were used only for register-
ing the quantities to be operated on with the computor.
Thomas’ machine would add or subtract, multiply or divide,
and was actually the forerunner of our present day comp-
tometers, although the name was patented by another man
whose first invention differed considerably’ in principle
and operation from Thomas’ machine.

Thomas’ invention was made about the middle of the
last century and from that time on improvements and
developments came rapidly. An Austrian firm, the Braun-
swiga Company, immediately perfected and marketed a
multiplying machine which was readily adopted by many
European business houses. In America, W. W, Bourroughs
and D. E. Felt perfected their machine and in a short
time every large business house in the country was equipped
with calculating machines of some type. The common add-
ing machine with which all of us are familiar was invented
by Bourroughs and is a lever operated machine. On the
keyboard of such a machine are found several rows of
keys, each of which is connected underneath the keyboard
to a regulating device which governs how far a number-
bearing wheel will be turned when the operating lever
of the machine is worked. The numbers on the wheels are
viewed through small apertures and with the system of tens
carrying automatic with the operation, the sum of the
numbers registered in the device may be read at any time.
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Some of these machines are equipped with printing attach-
ments and are employed in book-keeping and similar occu-
pations. -

Calculating machines are becoming increasingly com-
plex with each advancement. The “punched card type”
used by the Bureau of Census is a good example. This
machine is “fed” sheets containing 240 questions with an
average of fifteen questions answered on each page, the
answer being in the form of a hole punched in the sheet.
On the operating panel of the machine are 240 keys, one
corresponding to each space for an answer on the question
sheet. The operator, to classify all answers of a certain
type, merely punches the necessary combination of keys,
and, after flipping a starting switch, is then free to finish
his detective novel. Meanwhile, the faithful machine, elec-
trically operated, sorts and classifies all the material given
to it, tabulates the results into neatly printed columns,
and, if told to, goes a step further and computes the number
of people in a certain block in the city who own their home,
and the number of houses on that block in the city in which
the report was taken. The inventor reputedly guarantees
the labor saver fo solve any statistical problem except in-
come tax returns (which are clearly ambiguous cases in-
volving extraneous roots and imaginary numbers, and are
thus unsolvable by logical and mathematical means.)

There recently have come onto the scene several types
of calculators operating on an entirely different principle
than that of any of the varieties I have thus far described.
These are the relatively new electronic instruments per- -
fected during the war at several of the larger institutions
in the East. For sheer complexity of design, they probably
head the list of all manufactured products in America
which are produced as a unit. Some of these behemoths
are over fifty feet long and others include as many as
18,000 electron tubes, although the tendency in their manu-
facture is away from so many small unit attachments, due,
of course, to the never-ending maintenance tasks. Some
almost comical names have been assigned to them, includ-
ing “ENIAC” (which stands for Electronic Numerical and
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Integral Calculator) and “MANIAC” (standing for Me-
chanical and Numerical Integrator and Calculator.)

As far as the principles of operation are concerned,
there are two types of electronic calculators, the “analogue”
type and the “digital” type. In the analogue type, values
are designated by physical quantities such as lengths or
charges of electricity. This type of calculator has the main
disadvantage of possible errors from inaccuracy in measur-
ing distances if numbers be designated by lengths, or by
condenser and wire leakage if charges of electrical energy
be employed in the same capacity. However, offsetfing this
shortcoming, the analogue computors are unbelievably
rapid. In fact, they operate at the speed of light since
that is approximately the speed with which electric im-
pulses travel. The percent of error can also be reduced
to a negligible amount. A mechanical monster of the ana-
logue variety was made at Harvard during the war, and
it went to work for Uncle Sam as soon as completed. For
days on end it digested weighty calculus problems, dealing
chiefly with projectile trajectories, supplied by the Artillery
Division. Mark II, as it was known, spewed out answers
on a punched tape which usually gave a nice smooth curve
when plotted. One day, while working on a particularly
involved problem supplied by a government office, Mark II
apparently went beserk. The answers it gave were com-
pletely out of proportion with what would have been ex-
pected from a hasty review of the problem and some of
them reached mountain-top proportions. The experts at
once went to the task of giving their charge a mechanical
aspirin, but nothing appeared to be wrong; so, the answers
were turned into the war office with the advice that they
should not be depended on too heavily. Some time later
the first atomic bomb exploded in New Mexico and the
learned professors got an idea of what their mathematical
robot had been figuring.

Machines of the digital type employ a counting mech-
anism such as toothed wheels to register numbers. There
is not the slightest possibility of error with this type as
you can readily see. Its capacity is limited only by the
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extent of its facilities. Some of the later models of the
digital type do not use the decimal system of counting,
but employ a binary system in.which the only two figures
used are 1 and 0. This adds to speed in operation and
also to simpler construction. Instruments of the ENIAC
and MANIAC variety complain when they are “ill,” inform
the attendants when they are ready for another job, and
have to be “psychoanalyzed” periodically by experts to see
if they are in good “mental health”, for ENIAC can blow
a tube just like a twenty-five dollar radio. Incidentally,
ENIACs cost around $500,000 and are so fast that they
can compute the exact path of a shell while it is in flight.
MANIACS (as would be expected!) work even faster than
this. “In ENIAC, immediate results are stored in boxes
known as accumulators. They are left there until called
for. ... Thus equipped, the electronic machine is now
ready to receive orders of the following kind: °‘Add the
numbers in the first seven boxes and put the result away
in the eighth box; add the numbers in the thirteen boxes
and divide the sum by the number in box eighty-five; sub-
tract from this quotient the product of the numbers in
boxes one-twelve, one-thirteen, and one-fourteen; square
the remainder, add this to the sum you left in box eight;
put the result away in box 8442; and let us know when you
are finished’ Chances are the machine will finish the
job in one-eightieth of a second.” *

8 Secil Digest Magazine, September, 1947,

®

“I am sure that no subject loses more than mathematics
by any attempt to dissociate it from its history.”—J. W. L.
‘Glaisher.



PYTHAGORAS AND PTOLEMY
. -MUST HAVE LOOKED AT THE CONCLUSION

EpwIN EAGLE
Faculty, San Diego State College

“Yes, the solution seems to work, it appears to be
correct, but how is it possible to invent such a solution?
Yes, this experiment seems to work, this appears to be a
fact; but how can people discover such facts? And how
could I invent or discover such things by myself?” !

Such, says Dr. Polya, author of How to Solve It, were
the questions that occurred to him as a “young and rather
eager student of mathematics.” No doubt every thoughtful
student time and again, when presented with some neat
solution of an apparently difficult problem, has asked
questions such as the above. Often, after completing a
problem, as we look back on the procedures used we can
see how we might have proceeded in a more direct and
sengible manner. Sometimes we may even say, “I should
have seen in advance that this last procedure would have
been more simple and direct than the others I tried.” It
is through looking back and analyzing, through searching
for better procedures that we might have used, through
detecting how we might have avoided the pitfalls that be-
set us that we become more efficient problem solvers. All
too often this highly valuable, interesting, and rewarding
activity is omitted. To gain in mathematical skill and
power of analysis we must deliberately and systematically
endeavor to apply the lessons of experience to make for
more effective methods of attack on future problems.

Tt is true that in nearly all cases the concise, orderly
form of the final solution of a problem is far different
from the devious path with many false turnings and re-
tractions, corrections and renewed attacks, which ultimately
leads to the final form in which the solution is presented.
Nevertheless, it is usually true, particularly in the “to
prove” type of problems, that careful analysis and repeated

1 G. Pelys, How to Solve It, Princeton, N. J., Princeton University Press, 1948,
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attention, or continuous attention, to the conclusion to be
proved gives definite clues regarding procedures that will
lead most directly to the proof. One of Dr. Polya’s fre-
quent admonitions to his students is “Look at the coneclu-
gion.”

The proof of the theorem of Pythagoras by means of
the similar triangles formed when the altitude to the hy-
potenuse is drawn is an example of a proof in which atten-
tion to the conclusion leads directly to the proof. Of the
hundreds of relationships that exist it is possible to de-
tect almost at once the ones which directly yield the proof.
Of course, sufficient familiarity with relevant background
material is necessary. One must have as a part of his
thinking equipment the fact that two right triangles are
similar if an acute angle of one is equal to an acute angle
of the other, and that as a consequence of this the two tri-
angles formed when the altitude is drawn to the hypotenuse
are similar to the original triangle.

It is suggested at this point that the reader sketch a
right triangle, label the hypotenuse ¢, the short leg a, and
the long leg b, and test for himself the fact that the con-
clusion to be proved, namely ¢* = a® + b? has within it the
definite clues which if carefully considered point directly
to the proper steps to be taken.

If the above suggestion has been followed seriously,
the reader should have gone through a thinking process
somewhat as follows:

1. To get the “squared” terms which appear in the
conclusion, mean proportions might be used.

2. In this problem the most promising way of setting
up proportions would be through the use of similar tri-
angles.

8. The need for similar triangles
suggests constructing the altitude
to the hypotenuse and introducing
suitable notation as indicated in the
figure.

4, A proportion that we could write which would yield
the desired a? is ¢/a = a/s, this directly from “large hy-
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potenuse is to small hypotenuse as large short leg is to
small short leg.”

5. In the conclusion and also in the figure, ¢ and b
appear in much the same manner. Therefore, in the steps
of the proof we may expect @ and b to be used in much
the same way. This suggests the use of the proportion
¢/b = b/t, which can be established on the basis of similar
triangles as above. From this we get ¢t = b2

6. The a?+b* in the conclusion indicates the addition
of the above equations, giving ¢s+ct = a*+ b

7. To obtain the ¢? in the conclusion, the obvious pro-
cedure is to write es-t-ct as ¢(s+t), and substituting ¢ for
its equal (s+t) to get ¢ = @ 4 b Q.E.D.

Possibly the discussion of the above systematic steps
leading directly to the proof indicates more than anything
else that hindsight is clearer than foresight. However,
it remains true that the steps taken at each stage are
probably a bit more justifiable logically than any others
that might be suggested, and that concentration on the
conclusion to be proved would lead to these steps. Whether
or not it is reasonable to expect immediate success in arriv-
ing directly at this particular proof without first getting
into a few blind alleys and trying other approaches, never-
theless greater efficiency and the elimination of much
fruitless effort will result from keeping the conclusion
clearly in mind.

A somewhat more difficult problem which illustrates
the point equally well is the proposition: If a quadrilateral
is inscribed in a circle, the product of its diagonals is equal
to the sum of the products of its opposite sides. This
proposition is of considerable historical interest as Ptolemy
proved it about 150 A.D. as a preliminary step in develop-
ing procedures for calculating a “table of chords” which
he used somewhat as trigonometry tables are used today. ?
The thought processes and the steps of a proof which can
be used bear a most remarkable similarity to those dis-
cussed above in connection with the theorem of Pythag-

2V, Sanford.z 9A4 Short History of Mathematics. Boston, Houghton Mifflia Compaay, 1930.
Pe o
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oras. Again it is suggested that the reader stop at this
point and attempt to carry out the proof. It should be a
real thrill to prove for one’s self what Ptolemy proved some
1800 years ago. In a circle inscribe a quadrilateral with
sides @, b, ¢, and d, and with diagonals m and n. Then
prove that mn = ac 4+ bd. The clues that have been given
and again the admonition to “look at the conclusion” should
enable a careful student to introduce the needed auxiliary
line and proceed rather directly with the proof.

If the above suggestion has been sufficiently tested,
a process-somewhat as follows has probably developed. In

order to prove that mn =
ac+bd, one proportion in
which a and ¢ appear as means
and another proportion in
which b and d appear as means
could be used. The diagonals

» m and n should also enter into
the proportions in some man-

ner. The use of proportions
a suggests the use of similar
trlangles Using the most ob-
vidus pairs of similar triangles,

namely the two pairs of similar triangles which include
the pairs of vertical angles formed at the intersection of
the diagonals, introduces @ and ¢, or b and d, as correspond-
ing sides; thus, they do not appear as the means of a pro-
portion as required in the conclusion. It therefore seems
necessary to draw an auxiliary line to introduce similar
triangles where a and ¢ appear but not as corresponding
sides. Now a is a side of triangle abn. Angle na of this
triangle® is equal to angle e¢m, as both of these inscribed
angles have the same intercepted arc. A triangle similar
to triangle abn could be formed by drawing & as indicated,
dividing m into segments ¢ and s, k being drawn so that
angle ht = angle ba. The similar triangles the and abn

3 This unorthodox maaner of [odicatiag an angle is not anb!gum Its use makes ft
unnecessary o label the intersections of the figure. Siace it is the length of the lae
segments with which we are concerned the use of a single letter to represeat
esch llne ssgment Dus comsidensbls pepchelogical advantage over the use of
letters at each end of the segment.
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yield the proportion ¢/a = e/n, from which tn =
ac. A proportion is now needed in which b and
d appear as means. Also we have used diagonal =
and the long part of diagonal m. The short part of diagonal
m must also be used. This suggests the use of triangle
bhs which can readily be proved similar to triangle ned.
Using these triangles, the proportion which includes the
most of the required elements and which uses b and d as
means is n/b = d/s. This gives ns = bd. Carrying out
the addition indicated in the conclusion results in nt+ns =
-ac+bd; n(t+s) = act+bd; mn = ac+bd. QE.D.

In this second illustration, due to the greater com-
plexity of the figure, there are other equally logical possi-
bilities that could be used and which would lead to a proof
just as directly. There are, of course, also many other
relationships which can be expressed which do not lead
to a proof. But it is true that in most cases careful atten-
tion to the conclusion to be proved would enable a student
to reject those false leads which do not help in the proof.

To examine interesting relationships without focusing
on the conclusion may be compared to manipulating the
mechanisms of a rifle without keeping an eye on the target.
There are times when this is most interesting and reward-
ing, with mathematics as well as with mechancial gadgets
such as a rifle,. But when we are target shooting we must
focus on the target. If we have only a vague notion of
its location, we may fire in the right general direction,
but to score a direct hit we must draw a fine bead on the
bull's eye.

Pythagoras and Ptolemy must have looked at the
conclusion.



A FUTURE IN THE FIELD OF COMPUTATION

RuTH E. MAYER ,
International Business Machines Corporation

Through the years mathematicians have expressed
formulas and equations for practical application but the
arithmetic solution of these have often been approximated
instead of completed because the amount of time and labor
required for calculation was prohibitive. Since the turn of
the century and especially since the last war, the field of
computing these arithmetic solutions has grown rapidly
and, therefore, the number of computers is large and con-
tinually increasing. They are employed by private in-
dustries, universities, and the national government. The
computers work with several basic types of machines.
This article will describe briefly these basic types and the
requirements for positions using each.

The most well-known and widely used machine is the
desk calculator. Most people think of these machines in
connection with accounting and bookkeeping departments
in offices, but since they do the basic operations of addi-
tion, subtraction, multiplication, and division, they are
convenient for the computer, Those persons who operate
these shall hereafter be referred to as hand computers.
The hand computer’s position may vary from a single to a
complex one depending on where he is employed. He may
be given examples like this,

(1) 2384567X890197

(2) (1)+965310

(3) (2)+-—335791
etc., where he has only to follow instructions prepared by
someone else (e.g., an engineer, a research mathematician,
a physicist), or he may be given a problem where he
must form the equation, plan the method of numerical
solution, and then carry this solution to completion. He
may have to solve differential, polynomial, transcendental,
or linear algebraic equations. One hand computer may

84
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carry out a single job,. or if it is long and involved, more
than one may work on the same job.

Most positions of hand computer require a bachelor’s
degree, while senior membeérs of the staff hold advanced
degrees. A major in mathematics is usually preferable,
but some of the less complex positions require only a few
courses in mathematics. As in other computing fields,
courses in engineering, physical sciences, and statistics
also are considered good background and often are re-
quired for advancement. A position as a hand computer
is considered excellent training for positions involving
more complicated methods of computation. The operator
learns to handle numerical solutions and to check the re-
sults. If it is possible to secure such a position for a sum-
mer job, it would be rewarding to a math major interested
in computing. '

The invention of the punched card by Hollerith in
1890 brought about another form of computing, larger in
scope than that of the desk calculator. Initial data is
punched in the columns of the cards and recorded by holes,
and “standard machines will automatically read these holes
and perform a wide variety of operations, such as rear-
ranging the cards in any required order, transferring
data from one card to another, printing the information
on the cards or on a sheet of paper, consulting tables of
tabular data, and performing the arithmetical operations
of addition, subtraction, multiplication, and division.”
Pluggable connections permit the operator to direct the
operations of the machines with speed and flexibility. Al-
though these machines are widely used commercially, it
can be seen how readily adaptable they are to computing.
Laboratories where the standard punched card machines
are used for computation have been set up by the Federal
government, by private industries engaged in research,
and by colleges and universities. These laboratories per-
form the computations-either for their own use or for
others who do not have their own installations. The Wat-
son Scientific Computing Laboratory at Columbia Univer-

1 Bckert, W. J., “Punched Card Teubniques ¥ Their Applications to Scieatific Problems™.
J ! of Chemical Educaticn, XX1V, Februsry, 1947. .
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sity is an important one and the following is a partial list

of problems it has completed :*

1. Astronomy: integration of orbits of planets and
asteroids.

. Geophysics: tracing of paths of sound waves under
water for various depths and directions.

. Optics: calculations embodying the method of ray
tracing.

. Chemistry: computation of quantum mechanical
resonance energies of aromatic compounds.

. Engineering: building of Spring & Gear tables
and computing stress calculation associated with
earthquake loads.

6. Economics: estimates of certain coefficients in
the equations of economic models, using matrix
multiplication and inversion.

7. Physics: calculations of calcium transitional proba-
bilities. :

8. Crystallography : evaluation of a Fourier Transform
for the structure of insulin.

The list of problems covered by industry and government
would be just about the same.

Positions in these laboratories require a minimum of
a bachelor’s degree in mathematics or in a physical science
with a mathematics minor. Most of these computers take
. additional courses in pure and applied mathematics regard-
less of whether or not they hold advanced degrees. As can be
seen from the list of topics covered above, a knowledge
and background of science are necessary to complete under-
standing of the problems required to be solved. As in the
case of the hand computer, one operator usually carries a
problem from its very beginning to its completion. This
means securing the numerical method of solution, deciding
which available machines can best be used, planning the
program of the machines operations, wiring the necessary
boards, punching the initial cards, running the machines,
compiling the results, and checking and interpreting these

2 Keawitz, Eleanor, *"The Watson Scientific Computing Laboratory, a Center for Scleatific
l'!;s‘e;uh Usiag Calcalating Machines™, Columbis Engineering Quartesly, November,
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results. However, if the problem is particularly large or
arduous, more than one person may be assigned to it.

The necessity of handling data manually between steps
of calculations and the inherent retarded speed limit the
ability of desk computers and even business machines to
solve more complex problems. These limitations have led
to the development of large-scale high-speed computers
where the machines, directed beforehand as to what to do
with intermediate results, proceed automatically until the
final answer is obtained. These machines have improved
man’s opportunity to calculate arithmetic solutions more
accurately because sequences of operations that would
have required hundreds of man-years of desk computing or
business machine work can now be accomplished in minutes.

There are two forms of these large-scale computers.
The analog computers, first placed in service in 1930, are
used to solve differential equations. This type of computer
consists of apparatus in which some chosen physical quan-
tities such as length, electrical voltage, shaft rotation, etc.
are set up to vary in a manner mathematically
analogous to the variation of the numbers in the
problem under consideration. Variables are repre-
sented in terms of voltages and currents, can be
added or subtracted by connecting equivalent voltages in
series, multiplied or divided by the use of circuits, etc.,
The analog computer is sufficiently flexible to be adapted
to a wide variety of engineering problems. It is suitable
only where the usual engineering accuracy is sufficient,
the accuracy being limited by the initial data and the in-
herent mechanical and electrical components of the com-
puter.® An analog computer is handled by a staff of engi-
neers, many of whom take advanced work in applied mathe-
matics since an understanding of both engineering and
mathematics is necessary to run such a computer. -

The other form of large-scale computers is the digital
calculator. The first large general-purpose, digital calcu-
lator was built by International Business Machines Corpor-

8 Harder, E. L. % G. D. McCann, “Computer-Mathematical Meslin, Westinghouse Engineer.
November, 1948.
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ation and was presented to Harvard University in 1944,
It is known as the IBM Automatic Sequence Controlled
~Calculator. It was followed in 1946 by the ENIAC (built
by the University of Pennsylvania and now located at Aber-
deen Proving Ground, Maryland), in 1948 by the IBM
Selective Sequence Electronic Calculator in New York,
and since then by several more, including the new SEAC
at the National Bureau of Standards in Washington, D. C.
The digital calculators solve complex problems requiring
high accuracy and operate with discreet digits. They con-
tain arithmetic units which add, multiply, divide, take
square roots, etc., depending on the particular machine.
Their high-speed memory units are made of relays, mercury
delay lines, or magnetic drums, wires, or tapes. They
have a slower-speed memory consisting of punched cards
or tapes. Mathematical tables or functions are stored simi-
larly. Most of these calculators operate in the binary sys-
tem or a combination of the binary and decimal systems.
Therefore, a knowledge of this is helpful.

The computers who operate these calculators usually
work in teams and are responsible for a problem from the
time that it arrives at the office of the calculator to its
completion. The degree of preparation of the problem when
it is brought to the calculator staff varies from the mere
physical statement of the problem to a complete mathe-
matical analysis of it. The job of the computer is to plan
the instructions for the machine he operates, and to do all
the necessary background work such as punching cards,
tapes, and wiring boards. After these are completed he
must operate the problem on the machine and produce the
results for the customer in a form useful to him.

The IBM Selective Sequence Electronic Calculator,
operated by a staff of twelve mathematicians and seven
electronic engineers, is one of the major large-scale digital
computing activities in the United States. Its large storage
capacity, unusual degree of selectivity, and high speed
have enabled it to successfully complete numerical problems
of widely different types. A substantial portion of these
problems have been of a classified nature, but the non-
classified problems have been in the following fields:
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Astronomy ,

(1)

(2)

Optics

(1)

Lunar Ephemeris—computing position of Moon

_according to basic theory of Professor E. W.

Brown. This problem involved the evaluation
of a Fourier series of 1,679 terms and required
only 2,340 coded arithmetical operations¢ In
computing one position, which required about 7
minutes, 21,000 arithmetical operations were
performed (including 1,870 searches of tables of
sines and cosines).

Planetary Orbits—computing the precise orbits
in rectangular coordinates of the five major
planets from 1653 to 2060 in intervals of 40 days
as a six-body problem. This problem involved
a set of simultaneous non-linear differential
equations of the 80th order, which were inte-
grated by a step-by-step process employing 9th
differences. The final tables consisted of 1%
million digits, which were less than 1% of the
total number of digits computed in the 12,000,000
arithmetical operations.

Ray Tracing—tracing 586 rays of light, each of
two colors, through a complex Sonar type lens
system of 10 surfaces with various angles of
incidence. Rays leaving the system were auto-
matically rejected according to certain trigono-
metric criteria. The whole problem required
about 10,000,000 arithmetical operations.

(2) Lens Design—expressing all possible aberrations

up to and including the 13th order as a triple
power series to obtain 1,172 equations of con-
ditions in 112 unknowns. These equations were
then reduced by “least squares” method to ob-
tain 112 normal equations. This required about
60,000,000 arithmetical operations.

4 For the po
atien

rposes of this description, aa ‘“‘arithmetical operation™ is defined s sa oper-

consisting of (1) the combination of two factors A, B by the process of

sdditicn, subtraction, multiplication or divisica, to yield 3 m;cnlt .C: (2) the
a3

complete transmissions of A, B and C; (c) the

A

executioa

of the necessary instructions.
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Basic Physics

(1)

(2)

Nuclea,r P
(1)

Analysis of the stability of the free laminar
boundary layer between parallel streams for
.an incompressible fluid. The solution was based
on a step-by-step integration in a complex plane
and required about 5,000,000 arithmetical opera-
tions. :
Computation of Statistical Fields for Atoms and
Ions—solution of the statistical equation for an
approximate field (a 2nd order non-linear or-
dinary differential equation) including the cor-
rection term for exchange. Investigation of
about 30 of the 92 elements for the neutral,
single, double and triple ionized cases required
about 20,000,000 arithmetical operations.

hysics

Dynamical Analysis of Nuclear Fission—verify-
ing the validity of the liquid drop model for ex-
plaining the asymmetrical case of nuclear fis-
sion; 1st and 2nd derivatives of the surface cur-
vature were obtained' by an eleven-point La-
grangian formula. The acceleration potential was
expressed in terms of solid harmonics of degree
zero through seven giving an 8X8 system of
simultaneous linear equations. Investigation of
the symmetrical and asymmetrical fission of
Uranium and Cosmium required nearly 20,000,-
000 arithmetical operations.

Applied Physics

(1)

Oil Field Exploitation—solution of the oil flow
and oil-gas ratio in an idealized two dimensional
case. This was solved as a system of simultan-
eous second order non-linear partial differential
equations and required about 2,000,000 arith-
metical operations.

Aeronautical Engineering

(1)

Guided Missile (Beam Rider)—computation of
68 seconds of actual flight time. The problem
involved a 14th order non-linear ordinary dif-
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ferential equation, which was solved as a system

of fourteen simultaneous 1st order non-linear

differential equations. The solution required

nearly 5,000,000 arithmetical operations.
Ballistics ,

(1) Computation of the reflection and refraction of
a shock wave in passing from one medium to
another. The formulation of the problem, in-
volving five independent parameters, resulted
in a system of complicated algebraic equations
equivalent to a 12th order polynomial equation.
The solution required about 10,000,000 arith-
metical operations.

Naval Architecture

(1) Analysis of coupled torsional and horizontal
flexural vibration for design of ship hulls. The
solution was effected by the Holtzer recurrence
method involving a series of matrix vector mul-
tiplications. One “problem” (i.e., class of ves-
sels) required about 1,000,000 arithmetical op-
erations.

This work is comparatively new and fascinating; there
is always more to learn. The computers are in close con-
tact with well known personages in the scientific field.
Since more and more of these large scale calculators are
being built here and abroad, interesting symposiums are
held during the year to discuss new advances in the designs
- and operations of the calculators. '

Positions on the staffs of digital computers require
bachelor of arts degrees. Most of these degrees are in
mathematics, with a few in engineering and the physical
sciences. About one third of the computers hold advanced
degrees, and most of the rest attend school either for special
courses or for credit toward a higher degree. The research
mathematicians hold doctors degrees in most cases. The
importance of a background in science cannot be overstress-
ed since without it there can be little understanding of the
problems brought to the .calculator and with it discussion
with the researcher is more readily conducted. Courses
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in applied mathematics, including statistics, form a firm
background of knowledge. When the calculator makes an
error, it is necessary for the operator to determine what
has happened, and therefore initiative, alertness, and diag-
nostic abilities are necessary for the computer.

It is difficult for the prospective computer to obtain
proper training for the position, because few colleges and
universities offer much work in numerical methods. Co-
lumbia University, Harvard University, the University of
Pennsylvania, New York University, the University of
Illinois, and Massachusetts Institute of Technology are a
few of those that do offer extensive work along these lines.
The Computing Laboratory for the ENIAC and the EDVAC
at Aberdeen conducts classes for their computers in these
methods. The best training would include the following
mathematics courses:

Calculus (214 years)

Differential Equations

Finite Differences

Function Theory

Theory of Equations

Matrix Algebra

Interpolation and Iteration Methods

Prominent computers recommend that more colleges give
courses in numerical methods that could be based on the
books by Milne, Scarborough, or Whittaker and Robinson.

In closing, it should be emphasized that there is a severe
shortage of people trained for the field of computation
and that in the next decade or two this condition shall be
aggravated as more and more high-speed computers are
put in operation. Consequently, this is one of the best
fields for intelligent young students to enter.t

5 Milne, Wm. B., Numerical Calculcus, Princeton, N. J., .Princeton Urivmity Press, 1949.
I3 b y ] 1. 2 s =

Scarborongh, James, Ni ical M Y Baltimere: Jokn Hopkins
Press, 1950,
Wittaker, E. T., and G. Robi The Caleulus of Observaic Glasgow:

Blackic ¥ Son, Led., 1944,
@ Author's Note:

‘The avthor would be pleased to send material on the IBM Selective Seq El

Calculator to those who are interested in large-seale digital calculators. This infor-

mation may be obtained by writing the author in care of Integnational Business

Machizes Corp., Pare Science Department, 530 Madisca Aveaue,.New York 22, N.Y,




TOPICS FOR CHAPTER PROGRAMS—XI

- 81. THE ABACUS.

“In Tokyo the army newspaper The Stars and Stripes
took up the mathematical challenge of Kiyoshi Matsuzoki,
an employee of the Ministry of Communications. The paper
sponsored a contest between the centuries-old abacus of
the Japanese clerk and a modern calculating machine run
by Private Thomas N. Woed, of Deering, Missouri. Mr.
Matsuzoki triumphed in addition, division, and subtraction.
. .. Private Wood and his calculating machine were bettered
in everything but the simple multiplication problem.”
— Current History, ns Vol. 18, p. 87 (August, 1947).

“'l.‘lfle2 ;\lﬁcus) in Europe and the East,” Nature, Vol. 34, p. 93 (May

, 1886).

“Abacus Is Here to Stay,” Science Illustrated, October, 1947, p. 49.

“Addition on the Abacus, Japanese Style,” Time, Vol. 48, p. 35
(November 25, 1946). .

D. Arthur, “Ancient and Modern Abacus,” Scientific American Sup-
plement, Vol. 69, pp. 276-277 (April 30, 1910). -

A. Bakst, Mathematics Its Magic and Mastery. New York, D. Van
Nostrand Company, 1941.

F. P. Barnard, The Casting Counter and the Counting Board. Ox-
ford, Clarendon Press, 1916,

E. Brooks, The Philosophy of Arithmetic. Lancaster, Pa., Normal
Publishing Company, 1880, .

David Chin-Te Ching, “The Use of Computing Rods in China,” Ameri-
can Mathematical Monthly, Vol. 32, pp. 492-499 (December, 1925).

Encyclopedia Britannica: “Abacus,”

S. Gandy, “Did the Arabs Know the Abacus?” American Mathemati-
cal Monthly, Vol. 84, pp. 808-816 (June-July, 1927).

L. C. Goodrich, “Abacus in China,” Isis, Vol. 89, Part 4, p. 239 (1948).

“Hands Down,” Readers Digest, Vol. 60, p, 47 (March, 1947).

L. Hogben, Mathematics for the Million. New York, W. W. Norton
and Co., 1987. ‘

A. Hooper, Makers of Mathematics, New York, Random House, 1948.

L, C. Karpinski, The History of Arithmetic. Chicago, Rand McNally
and Co., 1926,

C. G. Knott, “The Calculating Machine of the East: the Abacus,”
in Horsburgh, Modern Instruments and_ Methods of Calculation,
(: Igcm)dbook of the Napier Tercentary. London, Bell, pp. 186-164

1911).

H. D, Larsen, An Arithmetic for Colleges. New York, The Macmillan
Company, 1960..

D. H. Leavens, “The Chinese Suan P’'an,” American Mathematical
Monthly, Vol. 27, pp. 180-184 (April, 1920),
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J. Leslie, Philosophy of An‘thmeti;:. Edinburgh, William and Charles
Tait, 1820.

W. D. Loy, “How to Use an Abacus,” Popular Science, Vol. 163, pp.
86-89 (August, 1948).

V. Sanford, “Counters; Computing If You Can Count to Five”
Mathematics Teacher, Vol. 43, pp. 368-370 (November, 1950).

D. E. Smith and J. Ginsberg, Numbers and Numerals. New York,
Buareuu of Publications, Tcachers College, Columbia University,
1937.

D. E. Smith, History of Mathematics, Vol. II. New York, Ginn and
Co., 1925,

D. E. Smith and Y. Mikami, A History of Japanese Mathemaiics.
Chicago, Open Court Publishing Co., 1914.

H. F. Spitzer, “Abacus in the Teaching of Arithmetic,” Elementary
Schovl Journal, Vol. 42, pp, 448-451 (February, 1942).

8. Myers, “An Improved Abacus,” School Science and Mathematics,
Vol. 7, pp. 601-603 (October, 1907).

F. Ai Yeldman, The Story of Reokoning in the Middle Ages. London,
926,

Yen Yi-Yiin, “The Chinese Abacus,” Mathematics Teacher, Vol, 43,
pp. 402-404 (December, 1950).

T. 8. Young, “Abacus, One of Chinese Wonders,” China Weekly Re-
view, Vol. 88, p. 802 (February 12, 1938).

32. LA COURBE DU DIABLE

“Ever since the middle of the eighteenth century the

equation :
y*—2*—96a%y*+- 10022z = 0

has been extensively employed to test the ability of students
in curve tracing. The origin of the name courbe du digble
we do not know, but in all probability the curve was sum-
marily christened by some exasperated youth who felt
strongly and expressed himself thus forcibly on the subject.” -

—B. H. BRowN

E. Borel, “The Origin of the Name of the Devil's Curve,” American
Mathematical Monthly, Vol. 84, p. 365 {August-September, 1927),

B. H. Brown, “La Courbe du Diable,” American Mathematical Monthly,
Vol. 83, pp. 278-274 (May, 1926).

P, Frost, Elementary Treatise on Curve Tracing, 2ud ed. London,
%ﬂ[acnllisll)an and Company, 1802. (Cf. pp. 26-26 and Plate II,

ig. 16.

A. J. Kempner, “The Devil's Curve Again,” American Mathematical
Monthly, Vol. 84, pp. 262-268 (May, 1927).

P. R, Rider, “The Devil’s Curve and Abelian Integrals,” American
Mathematical Monthly, Vol, 84, pp. 199-208 (April, 1927).
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33. REPEATING DECIMAL FRACTIONS.

Repeating, or circulating, decimal fractions possess
many curious if not amazing properties. The study of
these properties affords a delightful chapter in arithmetic.

F. E. Andrews, “Revolving Numbers,” Atlantic Monthly, Vol. 155,
pp. 208-211 (February, 1935).

E. R. Bennett, “Periodic Decimal Fractions,” American Mathematical.
Monthly, Vol. 16, p. 79.

E. Brooks, Philosophy of Arithmetic. Lancaster, Pa., Normal Pub-
lishing Co., 1880.

R. Chartres, “On Repeating Decimals,” Nature, Vol. 18, p. 291 (July
11, 1878).

J. W. L. Glaisher, “Circulating Decimals,” Nature, Vol 19, pp. 208-209
(January 2, 1879).

S. Guttman, “On Cyclic Numbers,” Americun Mathematical Monthly,
Vol. 41, pp. 169-166 (March, 1934).

H. D. Larsen, An Arithmetic for Colleges. New York, The Mac-
millan Co., 1950.

P. H. Nygaard, “Repeating Decimals,” Mathematics Teacher, Vol. 31,
pp. 816-821 (November, 1938).

0. Ore, Number Theory and Its History. New York, McGraw-Hill
Book Co., 1948.

Prob}egr;lea;‘l& American Mathematical Monthly, Vol. 23, p. 212 (June,

Problem 2030, American Mathematical Monthly, Vol. 30, p. 82 (Feb-
ruary, 1923).

“Remarks on Repeating Decimal Fractions,” American Mathematical
Monthly, Vol. 49, p. 511 (October, 1942).

E. P. Toy, “Note on Circulating Decimals,” Nature, Vol, 18, p. 541
(September 19, 1878).

M. O. Tripp, “Periodic Decimal Fractions,” School Science and Mathe-
matics, Vol. 19 pp. 110-113 (February, 1919).

W. F. White, Scrapbook of Elementary Mathematics. Chicago, Open
Court Publishing Co., 1910.

®

Washington definition: “A Statistician is 2 man who
draws a mathematical precise line from an unwarranted
assumption to a foregone conclusion.”



THE PROBLEM CORNER
EDITED BY JUDSON W. FousT

The Problem Corner invites questions of interest to undergradu-
ate students. As a rule, the solutions should not demand any tools
beyond the calculus. Although new problems are preferred, old
problems of particular interest or charm are welcome provided
the source is given. Solutions of the following problems should be
submitted on separate sheets before October 1, 1951. The best
solutions submitted by students will be published in the Fall 1951
number of THE PENTAGON, with credit being given for other
solutions received. To obtain credit, a solver should affirm that
he is a student and give the name of his school. Address all com-
munications to Dr. Judson Foust, Central Michigan College of Edu-
cation, Mt. Pleasant, Michigan.

PROBLEMS PROPOSED

36. Proposed by Norman Anning, University of Michigan,
Ann Arbor, Michigan.

The number ¢ is greater than 1. The sides of a tri-
angle are 2{—1,2¢ and 2¢+1. Show, without using tables,
that the intermediate angle is less than 60°.

87. Proposed by H. D, Larsen, Albion College, Albion, Mich-
igan. (From Journal de Mathematiques Elementaires.)
If @, b, ¢ are three numbers in arithmetic progression,
¢, d, ¢ three numbers in harmonic progression, show that
a, ¢, e are in geometric progression. : ’

38. Proposed by H. D. Larsen, Albion College, Albion, Mich-
igan. (From Journal de Mathematiques Elementaires.)

Given the equation mx*— (1+8m)z+4(dm+1) = 0,
determine the two values of m for which the ratio of the
roots is equal to —1.

39. Proposed by Leo Moser, Texas Technological College,
Lubbock, Texas.

In how many ways can a King go from the left lower
corner of a chess board to the right upper corner, if the
permissible moves are single steps horizontally to the right,
vertically up, and diagonally up to the right? :

96
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40. Proposed by Norman Anning, University of Michigan,
Ann Arbor, Michigan. : ,

. What number (or numbers) has its digits reversed
when it is multiplied by 97 :

UNSOLVED PROBLEMS

33. Selected from the tenth annual William Lowell Pulnam
Mathematical Competition, March 25, 1950.

In each of n houses on a straight street are one or
“more boys. At what point should all the boys meet 80
that the sum of .the distances they walk is as small as
possible?

34. Proposed by Frank Moseley, State Teachers College,
Florence, Alabama.

Substantiate the assertion made by Nathan Altshiller-
Court in his College Geometry (page 66) that a triangle
may have equal external bisectors and yet not be isoceles.

SOLUTIONS

81. Proposed by William Douglas, Courtenay, British Co-
lumbia. -
" Given any three parallel lines; construct an equilateral
triangle with one vertex on each of the three lines.
Solution by Robert P. Robinson, Towa State Teachers
College, Cedar Falls, Iowa.

A A

Assume the problem solved as in the figure on the
left. Draw the circumcircle of triangle ABC meeting the
middle parallel at B and P. Draw AP and CP. Then
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<CPB = <CAB and <APB = <ACB. (Inscribed angles
measured by the same arc.) Since angles CABR and ACB
are each 60°, it follows that angles CPB and ACB are 60°
also. In the figure at the right, choose any point P in the
middle parallel. Construct 60° angles at P on each side
of the middle parallel with sides meeting the other parallels
at C and A. Draw CA. With A as a center and AC as a
radius, strike an arc meeting the middle parallel at B. Then
ACB is the required triangle.

32. Proposed by the Problem Corner Editor.

Two ladders lean in opposite directions across an alley-
way between vertical buildings. The foot of each ladder is
at the intersection of a building and the ground. If the
ladders are thirty feet and forty feet long respectively
and cross at a point ten feet above the ground, how wide
is the alley?

Solution by S. T. Vaughn, Central Missouri State Col-
lege, Warensburg, Missouri.

From the figure, 10/y =
a/e, 10(c—y) = b/e. Elim-
inating ¥ we get b = 10a/

' (a—10). Again, a*+¢* =40?

and ¢*+b* = 302 Eliminat-

ing ¢ we get a:—b* = 700.

%o Substituting for b and sim-

plifying, there results

a'*—20a*—700a®+ 14000a—

) 70000 = 0.
10 b Solving, we find, approxi-
¢-y y mately, a = 30.36 and ¢ =
c 26.04. :

Also solved by Sharon Murnick, Hofstra College,
Hempstead, L.I. Murnick called attention to a solution for
the general case given in the January 1945 number of the
National Mathematics Magazine, Vol. 19, pp. 260-207. Fur-
ther reference is given to the American Mathematical
Monthly, Vol. 48, p. 268 (April, 1941).
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35. Proposed by Dr. Alfred Moessner, Gunzenhausen, Ger-
many-Bayern.

Can you submit a mathematical problem without num-
bers, which, however, leads to a solution with definite
numbers?

Solution by Harvey Fiala, High School Student, For-
man, North Dakota.

Bill who has more pennies than Bob uses the number
of coins he has as a factor the number of times that Bob
has coins, and Bob uses the number of coins he has as a
factor the number of times that Bill has coins. The results
are equal. Furthermore, the number of coins Bill has is
the square of the number of coins Bob has. How many
coins has each?

Here 27 = y*and y exp 2y = y exp ¥*. So 2y = ¥* and
y=2,z=4.

Solution by C. Stanley Ogilvy, Columbia University,
New York City.

This solution was suggested by Problem E-776, Ameri-
can Mathematical Monthly, Vol. 54, p. 339 (June-July,
1947). The solution requires knowledge of the fact that
New York City house numbers do not run to five digits.

“My children’s parents, grandparents, and great-
grand-parents are all still living,” said Mr. Jones to his
friend Mr. Smith, a visitor at the Jones’ New York home.

“How many children have you?” asked Mr. Smith.

“More than the number of parents they have, but
fewer than their great grand-parents. Also, the number of
digits in our house number is a divisor of the number of
children.”
be ?"Well, how many digits are there in your house num-

r 11

“If 1 told you, you would then have enough informa-
tion to deduce the number of children.”

Mr. Smith thought about this for a moment and then
he said, “I have enough information already,” whereupon
he correctly stated the number of children. Can you?
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Solution: If the number of children is z, then 8=z
=7. The number of digits in the house number cannot
be 1, 2, or 8 because knowledge of the number must uniquely
determine x. But New York City house numbers do not
run to five digits. Therefore the number of children is 4.

Note on Problem 29. Fenton R. Isaacson, Drake Univer-
sity, Des Moines, Iowa sent in an interesting variation to
the solution of this problem published in the Fall 1950
number. His approach is to change the annuity into a
regular one with no terms missing by discounting the 9
monthly payments and then spreading them back over the
twelve months with the function Wa,/a,, (at 14%). This
then leaves a regular annuity of 48 terms to handle. -

®
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THE MATHEMATICAL SCRAPBOOK

It is the perennial youthfulness of mathematics itself
which marks it off with a disconcerting immortality from
the Sciences.

‘ —E. T. BELL

Some more “Freshman mathematics’ :
1. “An ellipse is a comic section.”
9. “Arctan ¥ = arcsin z/arccos z.”
The following cryptarithm has a unique solution. The
2's represent digits not necessarily equal.
zxx) cx8xx (x2

z3x

XL

zx3x

—MATH. GAZETTE

Fermat himself published nothing, though he deserves
a prominent place among those of the founders of analytic
geometry, infinitesimal caleulus, and the theory of probabil-
ity.
T = 3.141592653589793238462643383279

Now, O hero, a great advancing in method

Which you would proclaim wonderful, worketh uni-
versal;

Yet in our memories your labour is rooted;

Unto the end should’st you be amongst immortals.
—R. D. CARMICHAEL

- “Music is the pleasu;e the human soul experiences

from counting without being aware that it is counting.”
—LEIBNITZ

«Architecture is geometry made vigible in the same

sense that music is number made audible.”
: —CLAUDE BRAGDON
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QUARTER SQUARES

The multiplication of two numbers may be reduced
to simple operations of addition and subtraction by means
of quarter squares. The theory is based on the identity

ab = Y (a-+b)? — 14 (a—b)*

To apply this identity it is convenient to have available g
table of 14n* for integral values of n. If » is even, 14n?
is a whole number; if # is odd, 4n* = (integer) + 14.
Now for integral values of @ and b, either a+b and
a — b are both odd or they are both even; if they are both
odd, the fraction 14 occurs in both 14(a+b)? and 14 (a—b)*
and disappears from their difference. Hence, we may
safely ignore the fraction in constructing the table, We
shall denote the tabulated values by Q(n). Since Q(2k) —
Q(2k—1) = k*— (k*—k) = k and Q(2k+1)—Q(2k) = (k°
+k) — (k*) = k, the table may be formed in a simple man-
ner by adding successively the numbers 1,1, 2,2, 3, 8, ete.
The table below listing the quarter squares from n =0 to n
= 199 permits the multiplication of all numbers of two sig-
nificant figures.

Example 1. (950) X (890) = (95)X (89) X10*. Let ¢ =
95, b = 89. Then a+b = 184, a~b = 6. From the table,
Q(184) = 8,464 and Q(6) = 9, whence (950) X (890) =
(8,464—9) X10* = 845,500,

Example 2. (2.8) X (0.47) = (28) X (47) X10°. Let ¢ =
47, b = 28. Thena+b = 75, a—b = 19. From the table,
Q(75) = 1,406 and Q(19) = 90. Thus, (2.8) X (0.47) =
(1,406—90) X10- = 1.816.

The first practical application of the method of quarter
squares was made in 1817 by Antoine Voisin who published
a table of Q(n) for all integers from 1 to 20,000. It is
interesting to note that Voisin referred to his quarter
squares as “logarithms.” A more extensive table was pub-
lished by Joseph Blater in 1888. Blater’s “Table of Quar-
ter Squares of all Whole Numbers from 1 to 200,000” per-
mits the multiplication of all numbers of five significant
figures.
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SHORT TABLE OF Q(n)

0 1. 2 3 4 6 6 1 8 9
0 0 1 2 4 6 g 12 16 20
25 80 8 42 49 56 64 T2 81 90

100 110 121 132 144 156 169 182 196 210

225 240 266 272 289 306 3824 342 361 880

400 420 441 462 484 /506 529 652 676 600

625 650 676 702 729 756 784 812 841 870

900 930 961 892 1024 1056 1089 1122 1166 1190

1225 1260 1206 1332 1369 1406 1444 1482 1521 1560

1600 1640 1681 1722 1764 1806 1849 1892 1938 1980

2025 2070 2116 2162 2209 2256 2304 2362 2401 2450

2500 2550 2601 2652 2704 2766 2809 2862 2916 2970

3025 3080 3136 3192 3249 3806 3364 3422 3481 3540

3600 3660 3721 3782 3844 3906 3969 4032 4096 4160

4225 4290 4356 4422 4489 4566 4624 4692 4761 4830

4900 4970 5041 5112 5184 5266 5329 5402 5476 5550

5625 5700 5776 5862 5929 6006 6084 6162 6241 6320

6400 6480 6561 G642 6724 €806 6889 6972 7056 7140

7225 7310 7896 7482 7569 7656 7744 7832 7921 8010

8100 8190 8281 8372 8464 8556 8649 8742 8836 8930

9026 9120 0216 9312 94090 9500 9604 9702 9801 9900

=V =
“One of Euler’s papers contains the formula
. +1/z2 41 /21222t ... = 0.
This is a series infinite in both directions. The ‘proof’
consists of combining the formulae
zt+a+ ... = z2/(1—2x)

Y o e e N el
BN LB HOLRIASARWLN=O

and
1+1/z+1/2%+ ... = x/(xz—1)."
—E. C. TICHMARSCH

A horse is tied to a stag(e at the edge of a circular
pond. The radius of the pond is 200 ft. and has no fence
around it. How long must the rope be so that the horse
may graze over one acre? (Ans. 154+ f£t.)

In addition to computing = to 707 places, Shanks also
obtained the values of e, M, and the natural Jogarithms of
2, 8, 5, and 10 to 205 places.

=V =
Why did Farmer Jones build his pig pen b feet long,
10 feet wide, and 6 feet high? (Ans. To put his pigs in.)
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Here is a figure illustrating geo-
metric progressions. For the suc-
cessive equilateral triangles, the ra-
tio of the sides is 2 and the ratio of
the areas is 4.

=V =
1/= = 1/3-1/100—1/200, approximately.
=V =
A Quaker once, we understand,
For his three sons laid off his land,
And made three equal circles meet
So as to bound an acre neat.
Now in the center of the acres
Was found the dwelling of the Quaker;
In centers of the circles round,
A dwelling for each son was found.
Now can you tell by skill or art
How many rods they live apart? :
—AM. MaTH. Mo. (January, 1900).
The centers of the circles three .
With straight lines let united be.
The distance, in rods, will two decimals run
In one-eighth of two hundred ninety-one.
Now we've told by skill and rhyming art
The number of rods they live apare.
—AM. MATH. Mo. (April, 1900).
One of the last publications of Charles L. Dodgson
(Lewis Carroll) was a note in the Oct. 14, 1897 issue of
Nature entitled, “Brief method of dividing a given number
by 9 or 11.” Dodgson considered the short methods he
proposed to be more than mere curiosities for he writes,
“[These two new rules}] effect such a saving of time and
trouble that I think they ought to be regularly taught in
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schools.” The rules presuppose a knowledge of casting out
nines and elevens, a topic which is sadly neglected in our
modern schools.
Rule for dividing by 9:
1) Find the remainder by casting out nines and place
it over the unit digit.
2) Subtract, placing the difference over the next digit,
and continue the subtraction.
3) Mark off the remainder at the right-hand end; the
other digits form the quotient.
Example. 6521 2(8
9)5686916 R =28 Q = 65212
Explanation: Cast out nines from 586,916 and obtain R
— 8. Set this number over the right-hand digit of the
dividend. Then, subtracting, 8—6 = 2; set 2 over the
next digit of the divident; etc.
Rule for dividing by 11: ,
1) Find the remainder by casting out elevens and
place it under the unit digit.
2) Subtract, placing the remainder under the next
digit, and continue the subtraction.
_ 8) Mark off the remainder at the right-hand end; the
other digits form the quotient.
Example. 11)586916
53356(0 R=0, Q = 53,356
Dodgson points out that these methods not only effect
a saving of time and trouble but also provide an automatic
test of the correctness of the computation: the ‘last step
in the subtraction necessarily gives a remainder 0. He
shows further that the rules can be extended to division
by a:10°b. As often happens in mathematics, Dodgson
was not the first to discover these short methods. In fact,
the rules for dividing by 9 and 11 were given by Adolph
Steen in a book published in Copenhagen in 1847.

— —

Herr Valentin, of Berlin, who has been working on a
general mathematical bibliography for more than twenty
years, estimates that the total number of different mathe-
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matical works is about 85,000 and that about 95,000 mathe-
matical articles have appeared in the various periodicals,

—G. A. MiLLER (Oct., 1908).
=V =
The following mode of multiplying is an extension of

the Russian Peasant Method.
In column 1, multiply by 3;

39 35 in column 2, divide by 8, ig-
117 12 noring remainders. The prod-
351 4 uct is the sum of all numbers

1058 1 in column 1 opposite numbers
= of the form 3n+1 in column .
B = 1aiS+3B1) 3 fiminished by the sum of al

numbers in column 1 opposite
numbers of the form 8n—1.

=V =
“Gentlemen, that is surely true, it is absolutely para-
doxical, we cannot understand it, and we don’t know what
it means, but we have proved it, and therefore we know
it must be the truth.” —BENJAMIN PEIRCE (after estab-
lishing the relation ¢ exp »/2 ='{ exp 1/4.) ‘

=V =

From Arithmetic in Nine Sections (date unknown;
maybe as early as 218 B.C.): “A square city of unknown
side is crossed by a street which joins the centers of the
north and south sides; at a distance of 20 paces north of
the north gate is a tree which is visible from a point reached
by going 14 paces south of the south gate and then 1775
paces west. What is the length of each side?”



THE BOOK SHELF

EDITED BY CARL V. FRONABARGER
Southwest Missouri State College

From time to time there are published books of common interest
to all students of mathematics. It is the object of this department
to bring these books to the attention of readers of THE PENTAGON.
In general, textbooks will not be reviewed and preference will be
given to books written in English. When space permits, older
books of proven value and interest will be described. Please send
books for review to Professor Carl V. Fronabarger, Southwest
Missouri State College, Springfield, Missouri.

Makers of Mathematics.

By Alfred Hooper. Random House (457 Madison
Avenue, New York 22, New York), 1948. 9 + 402
pages. $3.75.

This is a history of mathematics which is quite differ-
ent from other books on the same subject. Most histories
of mathematics assume that the reader is an accomplished
mathematician. Hooper assumes that the reader knows
only how to add, subtract, multiply, and divide integers.
In the spirit of A Mathematics Refresher, he traces the
history of mathematics from prehistoric times to the time
of Gauss. Not only does he give the history of mathe-
matics, but he goes to great pains to explain the meaning
of mathematics to the reader. In his effort to be clear
to the non-mathematical reader, he calls vertices “corners,”
elements of a cone “edges,” and progressions “geries.” While
some mathematicians might be irritated by such things,
the prospective teacher of mathematics needs to learn to
explain mathematics as simply as possible and can profit
greatly from seeing Hooper’s methods. No other history
of mathematics gives as many etymological meanings as
does this book. Professors who are struggling to teach
and students who are struggling to learn the meaning of
increments and differentials can profit by the author’s
discussion of the efforts of Wallis to understand these
matters.

107
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Most histories of mathematics present mathematical
facts as isolated from history in general, but Hooper does
not make this mistake. The book lacks the footnotes which
add scholarship and tedium to most histories of mathe-
matics, but no book combines better the history and teach-
ing of mathematics. Although the book is written simply,
it discusses important modern concepts, as when Hooper
says that number theory merges into philosophy in the
same way that Archimedes’ polygons would blend into a
circle if the number of the sides were increased indefinitely.

—R. H. MOORMAN

Mathematics for the General Reader..

By E. C. Titchmarsh. Longmans, Green and Co., Inc.
(656 Fifth Avenue, New York, New York), 1948. 4 +
156 pages. $2.00.

The author-has been unusually successful, within the
scope of 156 pages, in giving elementary introductions to
various branches of mathematics all under the general
heading of analysis, including the development of the
number system, trigonometry, and the ecalculus. The
reader’s interest is maintained by rather frequent refer-
ences to the history of mathematics, notable examples of
which are Minoan arithmetic, page 45, and the three un-
solved problems of antiquity, pages 90-93.

One characteristic of the author’s writing is his apt
use of similes to illustrate his ideas. In his discussion of
a one dimensional world he writes, “The inhabitants would
be situated like beads on a wire ...... The behavior of
one’s next door neighbors would be even more important
than it is in ordinary life. Again, “One can think of the
f() as a machine into which the value of z is to be fed,
and from which will then emerge the corresponding value
of . Another characteristic of his writing is his homely
way of expressing himself, illustrated on one instance by:
“This curious symbol, v/, was once an ‘r’, but it has become
worn down by constant use.”

The final chapter entitled “Aftermath,” which title
may be taken facetiously or seriously, states that it is the
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first of a series of volumes to appear in the future among
which will be one on algebra and one on geometry.

Not only will this book do much to give the serious
general reader an understanding of the nature and objec-
tives of mathematics, but college students will find it in-
teresting and illuminating and their teachers will profit
by observing how skillfully the author introduces the
reader to a multitude of concepts all of which are made
to appear reasonable and acceptable. It should do much
to cultivate a taste for and an appreciation of mathematics,
as well as whet the appetite for the remaining books of
the series.

—FLoYD G. HARPER

Elementary Concepts of Mathematics.

By Burton W. Jones. The Macmillan Company (60
Fifth Avenue, New York 11, New York), 1947. 13 +
294 pages. $4.2b.

In the preface to this very interesting textbook, Profes-
sor Jones states that this book was written as a result of
a realization that there existed a need for a course designed
for students who have had a minimum of mathematical
training, who did not plan to take further courses in the
field, but who wanted firmer grounding in what useful
mathematics they had studied and such additional training
which they, as nonmathematicians, might find useful in
later life. With the needs of these students in mind, it
is further stated that the aims of the book might be summed
up in six statements: first, to cultivate an understanding
of the material; second, to clarify certain mathematical
concepts encountered in everyday life; third, to cultivate
an appreciation of mathematics rather than to engender
an awe of same; fourth, to emphasize the logical develop-
ment of mathematics; fifth, to bring about a realization
that pencil and paper are as important in developing
an understanding of the subject as is the laboratory to an
understanding of science; sixth, to provide much useful
material for the prospective teacher of secondary school
mathematics. Professor Jones further explains that the
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book is the cumulative effort of several of the members
of the department at Cornell and the published edition is
his thorough revision of the lithoprinted edition used at
the university.

The nine chapters which comprise the book include
such topics as Logic; The Positive Integers and Zero;
Negative Integers, Rational and Irrational Numbers; Alge-
bra; Graphs and Averages; Permutations, Combinations,
and Probability ; Mirror Geometry ; Lorentz Geometry; and
Topology. ‘

It is the opinion of the reviewer that the purposes of
the book have been achieved, and other accomplishments
have been brought about as well. Modesty must have
prevented Professor Jones from commenting on the enter-
taining manner of presentation. While pencil and paper
are certainly necessary for a thorough reading of the book,
the first reading is both easy and difficult. Easy because
of the previously mentioned manner of writing, and dif-
ficult because of the temptation to grasp pencil and paper
and investigate the stimulating exercises. One definite
appeal that impressed the reviewer was the wealth of ma-
terial for interesting and “different” programs for mathe-
matics clubs. Thus, in addition to being a textbook, this
volume offers the reader much material for mathematical
recreation. :

—L. T. SHIFLETT.

A Manual for the Slide Rule.

By Paul E. Machovina. MecGraw-Hill Book Company,
Inc. (830 West 42nd Street, New York 18, New York),
1960. 78 pages. $.75.

Anyone who has taught the use of the slide rule will
welcome the opportunity to look over the excellent manual
by Paul E. Machovina. This manual may be used to ad-
vantage both by students attending formal classes and by
students learning on their own. An appropriate short
history of the slide rule from the use of a pair of dividers
with “Gunter’s line” to the modern slide rule makes an
interesting introduction. Different modern types of slide



The Pentagon 111

rules are described along with their uses and construction.
For those not acquainted with the theory of logarithms,
a brief explanation of this theory as it underlies the slide
rule is given.

Students using this manual should find it easy to
understand the basic ideas underlying slide-rule opera-
tions. For example, in the explanation of simple multiplica-
tion using the C and D scales, it could hardly escape the
student that the slide rule is simply a most efficient device
for adding logarithms, Similar explanations which are
given throughout the manual should help the student to
become an intelligent and efficient user of the slide rule.
Of course, the author gives the student the excellent advice
in the Preface that “Proficiency in operating the slide rule,
like typewriting or playing a musical instrument, is gain-
ed and maintained only by practice and continued use.”

The explanations given should be readily understood
by the serious student. The manual covers the usual ground
such as multiplying and dividing and related topics, the
use of the trigonometric scales, the log, and the log log
scales.

The material in the manual may be covered adequately
in a short course. In addition there are six detachable
problem sheets—twelve pages in all. More problems would
be needed for student drill work, but the problems given
cover a wide range. They can be used for tests or drill
work, and they will suggest to the instructor other problem
possibilities.

—LESTER V. WHITNEY

®

The advance and perfecting of mathematics are closely
joined to the prosperity of the nation. )
—NAPOLEON.



INSTALLATION .OF NEW CHAPTER
EDITED BY LAURA GREENE

The PENTAGON is pleased to report the installation
of another chapter of Kappa Mu Epsilon. There are now
forty-five chapters on the roll.

NORTH CAROLINA ALPHA
Wake Forest College, Wake Forest

Kappa Mu Epsilon welcomes North Carolina Alpha,
the first chapter from North Carolina. Twenty-five stu-
dents and six members of the faculty were initiated Janu-
ary 12, 1951, in the Little Chapel of the Music-Religion
Building on the Campus of Wake Forest College. The
installation ceremony was conducted by Dr. E. R. Sleight,
Past-President of Kappa Mu Epsilon.

Following the installation, the charter members and
their guests attended a banquet in Raleigh, North Carolina.
At that time Dr. Sleight spoke on the history of Kappa
Mu Epsilon, and Harry T. Wright, Jr., president of North
Carolina Alpha, reviewed the history of the Wake Forest
Mathematics Club.

The following officers of North Carolina Alpha were
installed: President, Harry T. Wright, Jr.; Vice-President,
Bill Alexander; Secretary, Dorothy Hilburn; Treasurer,
Conrad Warlick; Corresponding Secretary, Professor J. N.
Bond; Faculty Sponsor, Professor R. L. Gay.

Other charter members of North Carolina Alpha are
Daisy Jacquelin Beard, Francis Earl Beaudry, Jr., Loraine
Bennett, J. G. Carroll, George P. Edwards, Avis Anne El-
liott, Ivey C. Gentry, Walter Thomas Hall, Jr., David F.
Herring, Julia Ann Higdon, David S. Humphries, Hubert
A. Jones, Stan J. Najeway, LeRoy B. Martin, Jr., Mrs.
Margaret E. Parker, Janice A. Parsley, John W. Person,
Freddy Poston, Lee Rhodes, K. T. Raynor, Jean Scholar,
Virginia Smith, Carolyn M. VonCannon, and William
Young.

112



EAPPA MU EPSILON NEWS
EbITED BY CLEON C. RICHTMEYER, Historian

A panel discussion on jobs for mathematics graduates
was held by California Alpha. Participants included three
alumni, Eugenia Houg, Ruth Engvall, and Wayne Smith,
now employed by Rand Corporation, and A. H. Schluefer
and David Livingstone from the Naval Ordnance Training
Station. The chapter members also made a field trip to
California Institute of Technology to see the analog com-
puter.

— + —

Iinois Beta reports the loss of six mathematics majors
to the Air Forces via enlistment.

At the January initiation of Jowa Alpha seven new
members were initiated. Wander Ponder, one of the initi-
ates, presented a paper on Trisection of the Angle.

-— + —

Early in the Fall semester Kansas Gamma held a big
sister-little sister party for the pledges. In December the
chapter held its traditional Wassail Bowl Festivity. Last
Spring, Kansas Gamma sent two delegates to Chicago to
the NCTM convention. At the KME section of the con-
vention Miss Frances Donlon read a paper on Geometrical
Constructions with Straight Edge and Compass, and Miss
Jeanne Culivan presented a paper on The Mathematical
Method in the Light of a Philosophical System. The tenth
anniversary of the founding of Kansas Gamma was cele-
brated by a Founders Day dinner. The Hypatian Award
was granted to Jeanne Culivan and Frances Donlon. Anne
Robben won the Underclassmen Scholarship Award.

_— i —

Missouri Alpha is devoting most of its time this year
to preparations for the National Convention of which it is
the host chapter.

An open house meeting, to which all students were in-
vited, was held by Missouri Beta. The chapter has pur-
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chased a $5.00 Tuberculosis Seal Bond. Among the fall
initiates was a pre-engineering student, Kyriakos Lypirides,
whose home is in Panorama, Salonica, Greece.
o — 4 —
~ Instead of the usual Christmas party, New Jersey
Alpha used the funds for gifts to underprivileged children.
— + -—
-~ New York Alpha is making big plans for its initiation
banquet on March 2. The speaker will be Preston R. Bas-
sett, President of Sperry Gyroscope Company, who will
talk on The Inventor Discovers Mathematics. The chapter
plans to initiate Mr. Bassett as an honorary member. Other
guests for the evening will be many of the leaders of in-
dustry from Long Island. All alumni of New York Alpha
- and members of other KME chapters in the vicinity have
been invited also.
-— + —

Past President E. R. Sleight reports a most enjoyable
and inspiring ceremony at the installation of North Carolina
Alpha,

— + .

The meetings of Ohio Gamma are held in the Burrell
Memorial Observatory, of which Professor Paul Annear is
the director, '

— + -—

As a part of their pre-initiation procedure, pledges of
Oklahoma Alpha were given problems in Analytic Geometry
- and Calculus. Don Swanson, a former member of the chap-

ter, is now in the U. S. Air Force at Warren Base in Wyom-
ing. Mr. Swanson writes that he was afforded a great
"deal of pleasure by working some of the problems in the
last issue of the PENTAGON.

Dr. R. O. Hutchinson, one of the charter members of
Tennessee Alpha and head of the Department of Mathe-
matics at Tennessee Polytechnic Institute, died suddenly
on October 22, 1950.
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PROGRAM TOPICS, SPRING SEMESTER, 1950-51

Alabama Alpha, Athens College
History of Analytic Geometry, by M. F. Scoggin
Development of Modern Geometry, by F. L. Barksdale
Converse of Miquel's Theorem and Applications, by T. J. Carter
Problems in Analytic Geometry Checked by Trigonomelric Formu-
’ - lae, by James Parks
California Alpha, Pomona College
The Four-Color Problem, by Professor Elmer Tolsted
Geometric Constructions, by Walter Rosenorv
Series and Sums, by Professor Hugh Hamilton
Colorado Alpha, Colorado A & M College
Geometrical Constructions, by Hans Stetter
Paper Folding, by Don Tucker
Mathematical Puz=les and Paradoxzes, by Don Allen
Ilinois Beta, Eastern Illinois State College
Interesting Problems, by Cora Coombes and George Swenford
Probabilities in Games of Chance, by L. A. Ringenberg
Group Theory Fundamentals, by L. R. VanDeventer
Ilinois Gamma, Chicago Teachers College
Computational Methods, by Mr. Marvin Burack
Mathematics in Cartography, by Mr. J. M. Sachs
Indiana Alpha, Manchester College
Some FFamous Unsolved Problems in Mathematics, by Prof. H. D.

Larsen
Mathematical Induction as a Means of Proof, by Prof. J. E. Dotter-

er
A Discussion of Available Material in the Library, by Prof. J. E.
Dotterer
Mathematics in European Universities, Especially the University
of Latvia, by Prof. Earnest Abele
The élpplication of Mathematics in Ecomomics, by Dr. Earl S.
arver
Towa Alpha, Jowa State Teachers College
The Number System, by Jack Wilson
Transfinite Cardinal Numbers, by Mr. Lott
Iowa Beta, Drake University
Number Systems, by Waid Davidson
Great Men of Mathematics, by Bruce Workman
Kansas Alpha, State Teachers College, Pittsburg
History of Calendar Forms, by Joe Butler
Muthematical Recreations, by Tom Clark
Magic Squares, by 1. G. Wilson
Kansas Beta, State Teachers College, Emporia
The 200-inch Telescope, by Brooks Becker
Short Cuts in Arithmetic, by George Crumley
Mechanical Brains, by Richard Shur
Electronic Computers, by Robert Klotz
Similar Triangles, by Elva Libben
History of Negative Numbers, by Richard McAlister
History and Development of KME, by Dr. O. J, Peterson
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Galaxies and Nebulae, by Raymond Eccles
Structure of the Universe, by Billy Burgert
Famous Caleulus Problems, by Don Allison
Probability, by Dale Smith
Kansas Gamma, Mount St. Scholastica College
Mathematics in the Orient, by Frances Donlon and Jeanne Culivan
Greelc Mathematics, by Ruth Link and Theresita Breitenbach
Hindu Arabic and Persian Developments, by Ann Robben and
Jill Sullivan
ImpoArtant Mathematical Figures of the Middle Ages, by Margaret
cree
Matli;ematical High-Lights in Renaissance Period, by Elaine
arnes

(The following topics were presented in the Spring Semester of 1950
but not reported in the Fall issue of the Pentagon)
Korean Mathematics, by Peter Kim ’
Geometric Construction with Straight Edge and Compass, by
Frances Donlon
Frequency Distributions, by Frances Walsh
Various Number Systems, by Victoria Fritton
Our Mathematical Heritage, by Margot Acree, Terry Breiten-
bach, and Dorothy Ripley
Michigan Alpha, Albion College
Arithmetic Revisited, by Dr, H. D. Larsen
Wolfgang and Johann Bolyai, by Vinod Doshi
Gotifried Wilhelm Leibniz, by Robert Hooper
Neils Hendrick Abel, by James Young
Linkworks, by Richard Burrows
A Day of Practice Tecaching, by Patricia Colling
Michigan Beta, Central Michigan College
Probability Theory and Games of Chance, by Lloyd Trinklein
Michigan Gamma, Wayne University
Four Color Map Problem, by James Barry
Boolean Algebra, by Bert Eisenstat
Unique Factorization, by Dr, Harvey Cohn
Mississippi Gamma, Mississippi Southern College
The Determinant, by Mary Frances Sasser and Patsy Munn
Hyperbolic Functions, by William Gay
Curve Fitting, by Professor Edward Thomas
Missouri Alpha, Southwest Missouri State College
Mathematical Recreations, by Joe and Bob Wommack
Missouri Beta, Central Missouri State College
Proofs for lim (sinx/z) = 1, by Donald Jones
Congruences, by Leonard Molotsky
The Tower of Hanoi; Integral Values from Four Fours, by Loren
W. Akers :
Trigonometric Funcitions Expressed in Terms of Exponential
Functions, by Wendell McGuire
Numbers That Mean Too Much, by Margaret Honn
Pythagorean Number Triples, by Kyriakos Lypirides
History and Methods of Computing Pi, by Martin Tempel
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Missouri Epsilon, Central College
A P?ézldatw Approach to the Rational Integers, by Dr. Floyd
ton
Boolean Algebra, by John Blattner
Non-Euclidean Geometry, by Paul Calvert
Kinematics, by Dana Chenoweth
Diophantine Equations, by Merle Cartwright
Topology, by David Morrison
History of Caleulus, by George Koonce
New Jersey Alpha, Upsala College
Theory of Least Squares, by M. Netzler
The Mathematics of Astronomy, by W. Stachel
New Jersey Beta, New Jersey State Teachers College
The College and Mathematics, by Professor Mallory
The International Congress of Mathematicians, by Prof. Humph-

rey
Use of Visual Aids in Teaching High School Mathematics, by
Prof. Kays
New York Alpha, Hofstra College
International Mathematies Congress, by Dr. Stabler
Probabilities, by Peter Hinrichs
The Wineglass Problem, by Mr. Hawthorne
Continued Fractions, by Peter Marshall
The Normal Law of Ervor, by Dr. Mildred Dean
The Trisection Problem, by Richard Jaeger
The LaPlace Transform, by Sam Reynolds
Paradox, by Mr. W. L. Marshall
Selective Sequence Electronic Calculator, by Ruth Mayer
Mathematics and the Field of Teaching, by Gertrude Decker
Ohio Alpha, Bowling Green State University
Harvard Congress of Mathematicians, by Dr. Ogg
Nomography, by Dr. Atkins
Calculating Machines, by Beverly Feiner and Marion Goodnight
Ohio Beta, College of Wooster
Napier and His Logarithms, by Dorothy Renzema
Mathematics in Physical Chemisiry, Prof. W. F. Kieffer
Ohio Gamma, Baldwin-Wallace College
Engineering Education in England, by Prof. Phillip Clyne
The Mathematics of Democracy, by Prof. John Wilson
Some kafxlnpplicatiom of the Laws of Chance, by Mr. Jack Hoffer-
p
Oklahoma Alpha, Northeastern State College
Extracting Roots by Arithmetic, by R. Carpenter
Atomic Structure, Lake Murray, by R. Zenor
De Moivre's Theorem, by Monte York
Tyigsection of an Angle, by Buran ‘Woods
Annuities and Compound Interest, by Mike Reagan
Binary and Other Number Scales, by Willa Dean Place
Ratio and Proportion, by Ed Whinery
Criteria for Divisibility, by Roy Coombes
Mathematical Induction, by James Reeves
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Lim (sinz/z) = 1, by James Clingenpoo] .- - .. . Lo
, Hwtory,te Demonstration and Discussion of Puzzles, by Ray Car-
penter oo
Pennsylvania Alpha, Westminster College . ‘
Topography, by John Hodges o . .
Mathematics in Building Musical Chords, by Wm. Dembaugh .
South Carolina Alpha, Coker College .
Highlights in the Development of Modern Mathematics and How
'hese Developments” have Influenced Physics, Chemistry,
Philosophy and Other Ficlds, by Frank Saunders : ..
Tennessee Alpha, Tennessee Polytechnic Insgtitute
Repol‘rit on the International Congress of Mathematicians, by R. H,
oorman .
Relaxq’t:':ln Methods of Solving Differential Equations, by Ray

ow

Texas Alpha, Texas Technological College

New Methods of Puzzle Construction, by Dr. L. Moser

Lewis Carroll, by Marvin Kitten and Cynthia Armbruster

The Dual Nature of Waves and Particles, by Dr. McKinney
Wisconsin Alpha, Mount Mary College i

Work of an Actuary — Requisites for Becoming an Actuary, by

Mary Hunt

Women tn Actuarial Work, by Mr. V. Henningston

Introduction to Topology, by Ann Sanifelippo

Special Theorems and Ideas of Topology, by Janet Haig

Teaching Arithmetic in the Primary Grades, by Marilyn Brigge-

man
Chinese Abacus, by Adeline Madritsch
Mathematics and Design, by Audrey Reiff

®

“We do not listen with the best regards to the verses of
the man who is only a poet, nor to his problems if only
an algebraist; but if a man is at once acquainted with the
geometric foundation of things and with their festal splen-
dor, his poetry is exact, and his arithmetic musical.”—Em-
erson
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ARTICLE INDEX BY AUTHORS

Actuarial Society of America, “A Career as Actuary,” VII, 69-78, S48.

Norman Anning, “Four Squares,” X, 67-70, S61.

Donald Meeker Brown, “Numerical Double-Angle Triangles,” VII,
74-80, S48.

Civil Service Commission, “The Mathematician in Civil Service,”
VIII, 25-30, F48,

Dorothy C. Dahlberg, “Mystical Significance of Numbers,” IX, 98-101,
S60.

Dept. of Math., Okla, A & M College, “Types of Jobs Open to College
Graduates,” X,19-27, F51,

Edwin Eagle, “Pythagoras and Ptolemy Must Have Looked at the
Conclusion,” X, 79-83, 851,

Editor, “Books for Chapter Programs,” IV, 36-39, F44--846.

Clifford Firestone, “A Semantical Approach to the Study of Mathe-
matics,” II, 653-68, S43.

Mary Jane Fox, “The Nature of Mathematical Reasoning,” VII,
3-9, F47.

J. 8. F’rame, “Finding Extremes by Algebraic Means,” VIII, 14-18,
48,

Victoria Fritton, “A Plea for Non-Isolationism in Mathematics,”
V1, 56-61, S47.

Carl Gabriel and Edward Rykowski, “A Finite Geometry of Twenty-
Five Points,” IX, 21-25, F49,

Franklee Gilbert. “Little-Known Contributors to Mathematics,” VII,
10-19, F47.

Raymond H. Gillespie, “Solutions of the Quadratic Equation,” IX,
59-84, S50.

Ramona Goldblatt, “Ramifications in Cryptography,” IX, 11-14, F49.

R. F. Graesser, “The Golden Section,” III, 7-19, F43--S44.

Ken Hancock, “An Insoluble Exponential Code,” IX, 94-97, S50.

William L. Hart, “Mathematics and National Defense,” 1, 7-18, F41,

Rodney T. Hood, “A Historical Introduction to the Calculus of Var-
iations,” V, 61-65, S46.

Mar{a Lou Hodor and Nan Hutchings, “A Step Forward,” X, 11-16,

61.

Charles A. Hutchinson, “Morals in Arithmetic,” I, 73-79, S42,

Jam?zsl 11)8 Iggll, Jr., “The Development of Calculating Machines,” X,

Dorothy i{arnér, “Geometric Inversion,” X. 8-10, F51.

Lester E. Laird, “Transfinite Numbers,” VIII, 9-18, F48,

Frank Lane, “Magic Squares,” VI, 10-16, F46.

Harold D. Larsen, “Dyadic Arithmetie,” I, 14-29, F41,

Davig4A. Lawson, “The History of the Number Pi,” IV, 15-24, F44 -

5.

Mary Lo; Maloney, “The Hypatia of the Nineteenth Century,” VI,
5-8, F46.

W. L. Marshall, “Some Properties of. Prime Numbers,” VIII, 5-8, F48.
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Ruth E. Mayer, “A Future in the Field of Computing,” X, 84-92, S51.

Virginia Meyers, “Brief History of General Solutions of Algebraic
Equations,” 1V, 81-35, F44-}- 845,

Merle Mitchell, “An Interesting Algorithm,” II, 69-73, S43.

Harriet M _ntague,"‘E'ccehtricity and Slope,” IX, 27-29, F49.

R. H. Moorman, “Pythagoras: Mathematician and Philosopher,”

- VIII, 79-84, S49. ) ' :

C. V. Newsom, “The Mathematical Method,” VI, 37-46, S46.

C. Stanley Ogilvy, “Ethiopean Multiplication,” X, 17-18, Fb1.

William L. Pillinger, “Galileo Galilei,” VII, 24-26, F41.

William F. Powlison, “Pythagoras,” VII, 27, F41.

Dorothea Reiffel, “Elements of Lewis Carroll,” IX, 15-20, F49.
11, 7-13, F42.

Cleon C. Richtmeyer, “How Can We Help High-School Counselors
Understand the Values of Mathematics?” V, 11-18, F45.

Jane Rourke, “Properties of the Number Nine,” VII, 20-21, F47.

Betty Irene Rudebock, “Finite Differences,” 1V, 25-30, F'44-]-S45.

Edward Rykowski and Carl Gabriel, “A Finite Geometry of Twenty-
Five Points,” IX, 21-25, F49.

Shirley Searles, “Mathematies in Scotland, 1717-1838,” VI, 47-55, S47.

Thomas Selby, “Computation of Firing Data for Field Artillery,”
V1, 62-65, S47.

J. A. G. Shirk, “The Early Years of Kappa Mu Epsilon,” I, 80-83, S42.

Norrg:i1 9Sleight, “What About High School Teaching?” VIII, 74-78,

E. R. Sleight, “Robert Record’s Whetstone of Witte,” I, 30-41, F'41.

Fred W. Sparks, “The Theory of Numbers,” I, 84-100, S42.

Sister Helen Sullivan, “Opportunities for Women Trained in Mathe-
matics,” 1V, 5-16, F44]-845.

Muriel Thomas, “The Newton-Leibniz Controversy,” III, 28-36,
F43--S44.

Virginia Tripp, “Lesser Known Applications of Mathematics,” V,
5-10, F46.

R. 8. Underwood, “A Simple and Unbreakable Code,” VIII, 3-4, F48.

George C. Vedova, “Pythagorean Doctrine,” IX, 85-93, S50.

Helena Weigand, “A Brief History of the Fourth Dimension,” VI,
20-24, F46.

H. C. Whitener, “The Number System of Three Southwestern Indian
Tribes,” 1I, 16-19, F42, :
Forbes B. Wiley, “Teaching Mathematics in College,” IX, 3-10, F49.
Women’s Bureau, U. S. Dept. of Labor, “The Outlock for Women

~in Mathematics and Statistics, VIII, 51-78, 549,

Walter D. Wood, “An Historical Outline of the Development of

: Mathematics in the United States During the Last Fifty Years,”

. VII, 62-68, S48. o : .

Robert C. Yates, “Trisection,” III, 20-27, F43-}-844.

James H. Zant, “Guidance in the Field of Mathematics for High
School and College Students,” V, 46-60, S46.. . L ‘
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ARTICLE INDEX BY TITLES

*“Books for Chapter Programs,” Editor, IV, 36-89, F44 - S45,

“Brief History of General Solutions of Algebraic Equations.” Vir-
ginia Meyers, IV, 31-85, F444-S46.

“A B;'ief I%istory of the Fourth Dimension.” Helena Weigand, VI,
20-24, F46.

“A Career as Actuary.” Actuarial Society of America, VII, 69-78, S48,

“Computation of Firing Data for Field Artillery.” Thomas Selby,
V1, 62-65, S47.

“The Development of Calculating Machines.” James D. Idol, Jr.,
X, 71-78, Sb1,

“Dyadic Arithmetic.,” Harold D. Larsen, I, 14-29, F41,

“The Early Years of Kappa Mu Epsilon.” J. A, G. Shirk, I, 80-83, S42.

“Eccentricity and Slope.” Harriet Montague, IX, 27-29, F49,

“Ethiopean Multiplication.” C. Stanley Ogilvy, X, 17-18, F51.

“Fingi%g Extremes by Algebraic Means.” J. S. Frame, VIII, 14-18,

48,

“Finite Differences.” Betty Irene Rudebock, IV, 25-30, F44+S45.

“A Finite Geometry of Twenty-Five Points.” Carl Gabriel and
Edward Ryowski, IX, 21-25, F49.

“Four Squares.,” Norman Anning, X, 67-70, S51.

“A Future in the Field of Computing.” Ruth E. Mayer, X, 84-92, S51.

“Galileo Galilei.” William L. Pillinger, VII, 24-26, F47.

“Geometric Inversion.” Dorothy Karner, X, 3-10, F51.

“The Golden Section.” R. F. Graesser, 111, 7-19, F43 S44,

“Guidance in the Field of Mathematies for High School and College
Students.” James H. Zant, V, 45-50, S46.

“A Historical Outline of the Development of Mathematics in the
United States During the Last Fifty Years.” Walter D. Wood,
VII, 52-68, S48.

“The Hsistsory of the Number Pi.” David A. Lawson, IV, 15-24, Fd4

45.

+ :
“'l‘heF History and Use of Counting Boards.” Dorothy Rafter, II, 7-13,
2

4
“How Can We Help High-School Counselors Understand the Values
of Mathematics?” Cleon C. Richtmeyer, V, 11-18, F45.

“Hypatia.” Walter J. Parker, Jr., VII, 22-23, F47.

“The Hypatia of the Nineteenth Century.” Mary Lou Maloney, VI,
6-8, F4e.

“An Insoluble Exponential Code.” Ken Hancock, IX, 94-97, S50.
“An Interesting Algorithm.” Merle Mitchell, 11, 69-78, 843,

“Lesser Known Applications of Mathematics,” Virginia Tripp, V,
5-10, F45,

“Little Known Contributors to Mathematics.” Franklee Gilbert, VII,
10-19, F417. ’

“Magic Squares.” Frank Lane, V1, 10-16, F46.

“The Mathematical Method.” C. V. Newsom, V1, 87-46, S46.
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“The Mathematician in Civil Service.” Civil Service Commission,
VIII, 25-30, F'48.

“Mathematics and National Defense.” William L. Hart, I, 7-13, F41.

«Mathematics in Scotland, 1717-1838.” Shirley Searles, VI, 47-65, S47.

«“Morals in Arithmetic.” Charles A. Hutchinson, 1, 73-79, S42.

“Mysstécal Significance of Numbers.” Dorothy C. Dahlberg, IX, 98-101,

0.

“The Na;ure of Mathematical Reasoning.” Mary Jane Fox, VII,
8-9, F47.

“The Newton-Leibniz Controversy.” BMuriel Thomas, 111, 28-36,
F48-}-S44.

«The Number System of Three Southwestern Indian Tribes.” H. C.
Whitener, II, 15-19, F42. .

«Numerical Double-Angle Triangles.” Donald Meeker Brown, VII,
74-80, S48.

“Qpportunities for Women Trained in Mathematics.” Sister Helen
Sullivan, 1V, 5-14, F44--S46.

“The Outlook for Women in Mathematics and Statistics.” Women’s
Bureau, U.S. Dept. of Labor, VIII, 51-78, S49.

A Plea for Non-Isolationism in Mathematics.” Victoria Fritton,
VI, 656-61, S47.

“Properties of the Number Nine.” Jane Rourke, VII, 20-21, F47.

“Pythagoras.” William F. Powlinson, VII, 27, F47.

“Pythagoras and Ptolemy Must Have Looked at the Conclusion.”
Edwin Eagle, X, 79-83, 861.

“Pythagoras: Mathematician and Philosopher.” R. H. Moorman,
VIII, 79-84, S49. :

“Pythagorean Doctrine.” George C. Vedova, IX, 86-93, S50.

#Ramifications in Cryptography.” Ramona Goldblatt, IX, 11-14, F48.

“Robert Record’s Whetstone of Witte.” E. R. Sleight, I, 30-41, F4l.

a4 Semantical Approach to the Study of Mathematics.” Clifford
Firestone, II, 63-68, S43.

«A Simple and Unbreakable Code.” R. S. Underwood, VIII, 3-4, F48.

“Solustggns of the Quadratic Equation.” Raymond Gillespie, IX, 59-84,

“Some Properties of Prime Numbers.” W. L. Marshall, VIII, 5-8, Fd8.

“A %t‘g;l) Forward.” Mary Lou Hodor and Nan Hutchings, X, 11-186,

“Peaching Mathematics in College.” Forbes B. Wiley, IX, 3-10, F49.

“The Theory of Numbers.” Fred W. Sparks, I, 84-100, S42.

whransfinite Numbers.” Lester E. Laird, VIII, 9-13, F48.

«Trisection.” Robert C. Yates, III, 20-27, F43--S44. .

“Types of Jobs Open to College Graduates.” Dept. of Math. Okla. A.
& M College, X, 19-27, F61. -

“Whg&aAbout High School Teaching?” Norma Sleight, VIII, 74-78,
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KAPPA MU EPSILON NEWS

Alabama Alpha: I, 65, Fd1; 1, 118-114, S42;-11I, 86, F42; III, 51,
F43-S44; 1V, 55-56, F44-845; vV, 79, S46; VII, 110, S48; VIII,
43, 44, F48; VIII, 108, S49; IX, 48, F49; X, 59, F50; X, 116, S61.

Alabama Beta: I, 57, F41; I, 116, S42; II, 87-38, F42; II, 87, S43;
III, 52-58, F43-844; 1v, 57, F44-8S45; V, 80, S46.

Alabama Gamma: I, 58, F41; I, 116, 842; II, 89, F42; 111, 54, F43-
S44;1V, 57-68, F44-S45; V, 81, S46; VII, 110, S48; VIII, 44, F48;
VIII, 103, 849; IX, 50, F49; X, 59, F50.

California Alpha: VIII, 101, 103, S49; IX, 48, 50, F49; IX, 128,
130, S50; X, 59, F50; X, 118, 115, Sb1.

Colorado Alpha: VIII, 108, S49; IX, 51, F49; X, 115, S51.

Illinois Alpha: I, 58-64, F41; I, 112-118, S42; II, 34-36, F42; 11, 85,
S43; 111, 60, F43-S44; 1V, 55, F44-845; IX, 48, 51, F49.

lllinois Beta: I, 56, F41; I, 116-116, S42; II, 37, F42; II1, 62, F43-
S44; 1V, 56-51, F44-845; V, 80, S46; VIII, 43, F48 ; VIII, 104, S49;
IX, 61, F49; IX, 128, 130, S60; X, 57, 59, F50; X, 113, 115, S51.

INlinois Gamma: II, 47-48, F42; II, 91-92, S43; I11, 61, F48-S44;
1V, 33, F45; IV, 36, F45; V, 86-87, S46; VII, 110, $48; VIII, 43,
34{4-«;?,5 FS458f VIII, 101, 104, S49; IX, 48, 51, F49; X, 57, 59, F50;

» s .

Ilinois Delta: V, 83, F45; V, 88, 546; VII, 110, S48; VIII, 101, 104,
849; IX, 48, b1, F49; IX, 130, S60; X, 67, 59, F50. '

Indiana Alpha: X, 115, S51.

Iowa Alpha: 1, 60-61, F41; II, 31, F42; III, 47, F43-S44; IV, 52,
F44-845; VII, 110, S48; VIII, 101, 104, S49; IX, 48, 51, F49;
IX, 128, 130, S50; X, 57, b9, F50; X, 118, 115, S51.

Towa Beta: I, 64, F41; 1, 118-119, S42; 1I, 438-44, F42; III, 59,
F43-S44; VIII, 45, F48; VIII, 101, 104, S49 ; IX, 48, F49;
IX, 130, S60; X, 59, F50; X, 115, Sb1.

Kansas Alpha: I, 51, F41; I, 111, 842; 11, 81-32, F42; II, 82-83, S43;
III, 47-48, F43-S44 s IV, 52-58, F44-S45; V, 35-36, F45; V, 77-78,
846; VII, 108, S48; IX, 128, 181, S50; X, 115, S51.

Kansas Beta: I, 54-66, F41; I, 113, S42; II, 85, F42; II, 86, S43;
III, 50-51, F43-S44; VII, 108, 110, S48; VIII, 45, F48; VIII, 101,
lé%‘i, 849; IX, 48, 51, F49; IX, 128, 181, S50; X, 60, F50; X, 115,

Kansas Gamma: I, 62-64, F41; I, 117-118, S42; II, 42-43, P42;
II, 80, S43; III, 67-68, I'43-S44; 1V, 60-61, F44-S4b; V, 36, F4b;
V, 83-84, S46; VII, 108, 111, 548; VIII, 43, 45, F48; VIII, 101-
‘104, S49; IX, 49, 52, F49; IX, 128, 131, Sb0; X, 118, 116, S51.

Kansas Delta: VII, 111, 548; IX, 49, 62, F49; IX, 128, 131, S50;
X, 67, 60, F50. .

Louisiana Alpha: I, 57-58, F41; II, 38-89, F42; II, 88, S43; III,
63-54, F43-844. N

Michigan Alpha: 1, 58-60, F41; II, 40, F42; ITI, 65, F43-S44; 1V,
68-59, F44-845; 1V, 34-35, F45; V, 82, S46; VII, 108, 111, S48;
VII1, 43, 45, F48; VIII, 105, 849; IX, 49, 52, F49; IX, 181, S50;
X, 67, 60, F50; X, 116, Sb1.
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Michigan Beta: I, 121, S42; II, 46-47, F42; ‘111, 61, FP43-S44;

IV, 63, F44-S46; V, 86, S46; VII, 108, 111, S48; VIII, 45, F48;

VIII, 101, 105, S49; IX, 49, 52, F49; IX, 128, 131, S50; X, b7, 60,
Fb60; X, 116, S51.

Michigan' Gamma:. VII, 111, S48; VIII, 43, 45-48, F48; IX, 52, F49;
IX, 181, 860; X, 67, F60; X, 116, S51.

Mississippi Alpha: I, 51-62, F41; II, 32-33, F42; 111, 48-49, F43-S44;
IV, 36-317, F45; X, 68, F50; X, 113, S51.

Mississippi Beta: I, 62, F41; II, 83, S43; IX, 129, S50; X, 114, Sb1.

Mississippi Gamma: IX, 131, 850; X, 60, F50; X, 116, S51.

Missouri Alpha: I, 51, F41; I, 111-112, S42; 11, 32, F42; III, 48, F43-
S44; 1V, 53-564, F44-845; V, 78, S46; VII, 108, S48; VIII, 46, F48;
VIII, 105, S49; 1X, 49, 52, F49; IX, 129, 132, S50; X, 58, 60, F50.
X, 116, Sb1.

Missourn Beta: I, 60, F41; II, 40, F42; 1II, 88, S43; VII, 109, S48;
VIII, 46, F48; VIII, 102, 105, S49; 1X, 49, 53, F49; IX, 129, 182,
850; X, 68, 60, F50; X, 116, S61. .

Missouri Gamma: VII, 111, S48; IX, 132, S50.

Missouri Epsilon: 1X, 132, S50; X, 68, 61, F50; X, 117, S51.

Nebraska Alpha: I, 52-53, F41; I, 112, S42; II, 33-34, F42; II, 84-85,
S43; III, 49, F43-S44. 1V, 54, F44-S45; V, 34, F45; V, 78, S46;
‘S,glll’ 109, 111, S48; VIII, 46, F48; IX, 49, 53, F49; IX, 128, 132,

- New Jersey Alpha: I, 64-65, F41; I, 119, 842; II, 44, F42; 11, 90-91,
$48; 111, 69, F43-S44; 1V, 61-62, F44-S45; V, 36, ¥45; VII, 109,
111, 848; VIII, 48, 46, F48; VIII, 102, 105, S49; 1X, 49-50, b3,
F49; 1X, 129, Sb0; X, 58, 61, F560; X, 114, 117, $51,

New Jersey Beta: 1V, 34, F45; V, 87, S46; VII, 112,848, VIII, 44,
46, F48; IX, 128, 132, S60; X, 58, F'50; X, 117, S561.

New Mexico Alpha: I, 56-56, F41; I, 114-116, S42; II, 36-37, F42;
II, 86-87, S43; III, 51-62, F43-844; 1V, 56, F44-S45; V, 85, F45;
V, 79-80, S46; VIII, 46, F48; IX, 53, F49; 1X,-129, 133, S60.

New York Alpha: I, 120, S42; II, 45-46, F42; III, 60, F43-S44; 1V,
62-63, F44-846; V, 85, F46; VII, 109, S48; VIII, 44, 47, F48;
VIII, 102, 106, S49; IX, 50, 53, F49; IX, 129, 133, S50; X, 58, 61,
F50; X, 114, 117, S61.

Ohio Alpha: I, 68, F41; II, 89-40, F42; III, 54, F43-544; IV, B8,
F44-S45; V, 81-82, S46; VII, 112, S48; VIII, 47, F48; VIII, 106,
S49; IX, b4, F49; IX, 1383, S50; X, 61, F50; X, 117, S61.

Ohio Beta: I, 65-66, Fd1; II, 44, F42; IV, 62, F44-845; V, 33-34, F45;
V, 84, S46; VII, 109, 112, S48; VIII, 102, 106, S49; IX, 54, F49;
IX, 138, S50; X, 61, F50; X, 117, Sb1.

Ohio Gamma: VII, 112, S48; VIII, 47, F48; VIII, 102, 106, S49;
1X, 50, 54, F49; IX, 183, S50; X, 61, F50; X, 114, 117, S61.

Oklahoma Alpha: I, 60, F41; 1, 110, S42; II, 30-31, F42; II1, 46-417,
F43-S44; 1V, 62, F44-S46; V, 76-77, S46; VII, 109, 112, S48;
\SWI}I, 44, 47, F48; VIII, 102, 106, S49; IX, 183, Sb0; X, 114, 117,
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Pennsylvania Alpha: X, 118, S51.

South Carolina Alpha: 1, 61, F41; II, 40-41, F42; II, 89, 843; III, 55-
56, F43-S44; IV, 69, F44-8456; IX, 60, F49; IX, 180, 133, S60;
X, 118, Sb61.

Tennessee Alpha: I, 66-67, F4d1; I, 120, S42; II, 44-45, F42; 1I, 91,
843; III, 59-60, F'48-S44; IV, 62, F44-S46; V, 84, F45; V, 85, S46;
VIII, 44, 47-48, F48; VIII, 103, 106, S49; IX, b4, F49; IX, 130,
138, Sb60; X, 58, 61, F50; X, 114, 118, S61.

Texas Alpha: I, 61-62, F41; I, 116-117, 842; II, 41, F42; III, 56,
F43-844; IV, 60, F44-845; V, 36, F'46; V, 82-83, S46; VII, 109-110,
$48; VIII, 48, F48; VIII, 106, 849; IX, 188, S60; X, 59, 61, F50;
X, 118, Sb61.

Texas Beta: I, 62, F41; I, 117, S42; II, 41-42, F42; 11, 89, S43; III,
67, F43-844; VIII, 44, 48, F48; VIII, 108, S49. .

Texas Delta: VII, 112, S48.

Wisconsin Alpha: VII, 112, S48; VIII, 48, F48; VIII, 107, 849; IX,
50, 64, F49; IX, 1383, 850; X, 69, 62, F50; X, 118, S51.

COMMUNICATIONS FROM NATIONAL OFFICERS

E. Marie Hove: III, 44-45, F43-S44; IV, 51, F44-845.

Harold D. Larsen: VI, 86-88, S47.

C. V. Newsom: I, 5-6, F41; II, 14, F42,

Loyal F, Ollmann: III, 45, F438-844; IV, 51, F44-845; V, 82, F45;
VI, 85, S47. ‘

0. J. Peterson: 1, 4, F4l.

E. R. Sleight: 1III, 5-6, F438-S44; IV, 49-50, F'44-845; VI, 84, S417.

Henry Van Engen: VII, 98-99, S48; VIII, 113-117, S49; IX, 184-135,
S50; X, 68, F50.

MISCELLANY

Actulg:isal Society, “Preliminary Actuarial Examinations,” VIII, 24,

“The Constitution of Kappa Mu Epsilon,” VII, 100-107, 848.

E. Marie Hove, “A Numerical Test,” VII, 83-85, F47,

“Information for Veterans,” V, 38-39, F46.

“The Math Student Blues,” (song) IX, 26, F49.

“The Mathematical Romance of Poly — and Ray —,” VI, 25-26, F46.
“The Mathematical Saga of Linnie R. E. Quashun,” V, 19-21, F45.
Alfred Moessner, “Some Curious Identities,” IX, 80, F49.

C. V. Newsom, “Emily Kathryn Wyant,” II, 5-6, F42.

“Sixth Biennial Convention,” VI, 78-88, S47.

“Seventh Biennial Convention,” VIII, 108-112, S49.

Barbara Steinberg, “On Trisecting an Angle,”” (poem) VI, 9, F46,
Henry Van Engen, “Ira Shields Condit,” VII, 51, S48.
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TOPICS FOR CHAPTER PROGRAMS

1. Women as Mathematicians. V, 67, S46.

2, The Cattle Problem of Archimedes. V, 67-68, S46.
8. Paper Folding, V. 68, S46.

4, Mathematical Prodigies. VI, 17-18, F46.

5. Calculating Machines. VI, 18-19, F46.

6. The Bee as a Mathematician. VI, 19, F46.

7. Solutions of the Quadratic Equation. VI, 66-67, S47.
8. Scales of Notation. VI, 67-68, S47.

9. The Planimeter. VI, 69, S47.

10. Proofs of the Pythagorean Theorem. VII, 28-29, F47,
11, Constructions with Limited Means, VII, 29-80, F4T.
12. Calendar Problems. VII, 30-31, F47.

18. Mathematics and Music. VII, 31-32, F47.

14, Codes and Ciphers, VII, 81-84, S48.

16. Linkages. VII, 84-85, S48.

16, Apportionment in Congress, VII, 85-86, S48.

17, The Construction of Sundials, VIII, 19-20, F48.
18. Fibonacci Series. VIII, 20-21, F48,

19. Trisection of an Angle. VIII, 21-23, F48.

20. Amicable Numbers. VIII, 85, S49.

21, Ptolemy’s Theorem. VIII, 85-86, S49.

22, The Four-Color Problem. VIII, 86-88, S49.

28. Non-Euclidean Geometry. IX, 88-34, F'49.

24. Fermat's Last Theorem. IX, 33-34, F49.

26. Rational-Sided Triangles. IX, 102-104, Sb0.

26, The “Fifteen” Puzzle. IX, 104-105, S50.

27. Squaring the Circle. IX, 105-107, S50.

28. Magic Squares. X, 28-81, F50.

29, Duplication of the Cube. X, 31-32, F&0.

80. History of Mathematics in the United States. X, 83-84, FG0.
81, The Abacus. X, 93-94, S51.

82. La Courbe du Deable. X, 94, S51

88. Repeating Decimal Fractions. X, 95, S51.

THE MATHEMATICAL SCRAPBOOK

I: 42-49, F41; 101-109, S42.
II: 20-29, F42; 74-81, S43.
III:  37-48, F484S44,

IV:  40-48, F44--845.

\& 22-28, F456; 69-75, S46.
VI: 27-30, F46; 71-76, S47.
VII: 38-43, F47; 91-97, S48.
VIII: 36-39, F48; 95-100, S49.
IX:  41-46, F49; 128-127, S60.
X: 44-47, F50; 101-106, S61.
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INSTALLATIONS OF NEW CHAPTERS

California Alpha, Pomona College, Claremont. VIII, 41-42, 148,
ColoxF'gdo Alpha, Colorado A & M College, Fort Collins, VIII, 40-41,.
48, ade A : 2
Indiana Alpha, Manchester College, North Manchester. X, 66, F50.
Kansas Delta, Washburn Municipal University, Topeka. VI, 70, 847.°
Mississippi Gamma, Mississippi Southern College, Hatticsburg. IX,
46-47, F49, N :
Missouri Gamma, William Jewell College, Liberty, VII, 44-45, F47..
Missouri Delta, University of Kansas City, Kansas City. VIII, 41, F48.
Missouri Epsilon, Central College, Fayette. 1X, 46, F49,
North Carolina Alpha, Wake Forest College, Wake Forest. X, 112, S61.
Ohio Gamma, Baldwin-Wallace College, Berea. VII, 47, F47.
Penns?lwgm{: oAlpha, Westminster College, New Wilmington, X,
-56, F50.
Texas Gamma, Texas State College for Women, Denton. VII, 46, F49.
Texas Delta, Texas Christian University, Fort Worth. VII, 46-47, F47.
Wisconsin Alpha, Mount Mary College, Milwaukee, VII, 45-46, F4T.

THE BOOK SHELF

(Names of authors are in ordinary type; names of reviewers are

in capitals.) ’

Erneszt Es Blanche, You Can’t Win. PAUL EBERHART, IX, 121-
122, S50. -

Carl B. Boyer, The Concepts of the Calcudus. R. S, UNDERWOOD,
X, 49-51, F50. :

Julian Lowell Coolidge, The Mathematics of Great Amatenrs. MAR-
GARET OWCHAR, X, 52-53, F50. -

Jacques Hadamard, The Psychology of Invention in the Mathematical
Field. THOMAS H. SOUTHARD, IX, 118-120, S50.

Alfrigsﬂg%lier, Makers of Mathematics. R. H. MOORMAN, X, 107-

» . . .

Burton W. Jones, Elementary Concepts of Mathematics. L. T. SHIF-:
LETT, X, 109-110, S51.

Oliver Justin Lee, Measuring Our Universe. ALEXANDER W.
BOLDYREFF, X, 53, F50. o

Paul E. Machovina, A Manual for the Slide Rule. LESTER V.
WHITNEY, X, 110-111, S51. »

Oystein Ore, Number Theory and Its History. J. HAROLD SKEL-
TON, IX, 116-117, S50.

G. Polya, How to Solve It. CLAUDE H. BROWN, IX, 117-118, S50.

William L. Schaaf, Mathematics Qur Great Heritage. C. N. MILLS,
IX, 117, S50. :

M. E. Stark, tr., Jacob Steiner’s Geometrical Constructions With a
Ruler. M. L. MADISON, X, 51-52, F50.

E. C. Titchmarsh, Mathematics for the General Reader. FLOYD G.
HARPER, X, 108-109, S51, .

Robert C. Yates, A Mathematical Sketch and Model Book. H. VAN
ENGEN, X, 48-49, F50,



