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SOLUTIONS OF THE QUADRATIC EQUATION*
Raymond H. Gillespie

Student, Albion College

1. Historical Survey

The origin of the solution of the quadratic equation has
not been traced definitely to any one person or to any one
race. It is a known fact that the geometric solution of the
quadratic equation was invented long before the analytic
method. Equations of the second degree were solved arith
metically by the Egyptians, geometrically by Euclid and
his followers, and algebraically by the Hindus.

Al-Khowarizmi, an Arabian writer of the ninth century,
gave rules the validity of which was demonstrated by
geometric methods. The use of these rules was followed in
Europe until near the end of the sixteenth century. At that
time writers began to consider the solution of general equa
tions with literal coefficients. However, even then zero and
negative roots were neglected and the complete solution of
the quadratic equation was not given until positive, nega
tive, irrational, and complex numbers came into general use
around the middle of the seventeenth century.

Before the seventeenth century geometric constructions
were devised which employed intersections of straight lines
and conic sections, or of straight lines and higher degree
curves. Down to the time of Cardan, the geometric methods
of the Greeks predominated among the Arabs and people
of the Occident.

The algebraic solution of quadratic equations was
known to Diophantus, an Alexandrian Greek of the fourth
century A.D., and author of a treatise on arithmetic. How
ever, Diophantus rejected negative roots and failed to recog
nize two roots of a quadratic equation even when both were
positive. To the Greeks, the idea of multiple-valued solu
tions was entirely foreign.

•A thesis presented for Honor, in Mathematics at Albion College, fint semester 1949-1950.
Because of technical difficulties in printing, a brief lection treating the origin, and develop
ment of the mathematical symbolism used in solving quadratic equations hat been omitted
here.—ED.
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The first to observe that a quadratic has two roots and
to recognize the existence of negative quantities were the
Hindus. The earliest complete method of solution of quad
ratic equations, together with their applications to practical
problems, is found in the writings of Brahmagupta, a Hindu
astronomer of the seventh century A.D.

There is a great resemblance between the writings of
Diophantus and of the Hindu mathematicians. We have
reason to believe that Diophantus got his first glimpse of
algebraical knowledge from the Hindus during the time of
commercial trading between Rome and India by way of
Alexandria, while afterwards the Hindus received some of
their knowledge from the writings of the gifted Diophantus
[32, pp. 204-205].*

2. Early Solutions

The first known solution of the quadratic equation is
the one given in the Berlin Papyrus, believed to have been
written between 2160 and 1700 B.C. The problem may be
stated:

Divide 100 square measures into two squares such
that the side of one shall be three fourths the side
of the other. That is,

x* + y* = 100, y = %x.
It might be noted that this example is one of simultaneous
equations, and the solution as given by the Berlin Papyrus
is as follows [28, p.443]:

"Make a square whose side is 1 and another whose
side is 3/4. Square 3/4, giving 9/16, add the
squares, giving 25/16, the square root of which is
5/4. The square root of 100 is 10. Divide 10 by
5/4, giving 8, and 3/4 of 8 is 6. Then 82 + 62 =
100, 6 = 3/4 of 8, so that the roots of the two
implied equations are 6 and 8."

One of the first writers to give a rule for .the solution
of the quadratic equation was Brahmagupta. In an algebra

•Numbers in brackets refer to the references cited at the end of the paper.
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written by him in the early part of the seventh century he
gives this rule for solving ax2+bx=c [21, p. 10]:

"To the absolute number multiplied by the [coef
ficient of the] square, add the square of half the
[coefficient of the] unknown, the square root of
the sum, less half the [coefficient of the] unknown,
being divided by the [coefficient of the] square, is
the unknown."

If we wish, we might put this in a formula,
x = (VCVfco)2 + ac- V2b)/a.

The reader will observe that this is a correct solution for
the quadratic equation ax2 + bx = c.

Another Hindu, Sridhara (1020), gave a solution for
the quadratic equation ax2 + bx = c similar to the one
above. He has been quoted as saying [28, p. 446]:

"Multiply both sides of the equation by a number
equal to four times the [coefficient of the] square,
and add to them a number equal to the square of
the original [coefficient of the] unknown quantity.
[Then extract the root.]"

That is, given ax* + bx = c, we multiply by 4a,
4a2*2 + 4abx = 4oc.

Then adding b2 to each member,
4a2*2 + Aabx + b2 = b2 + Aac,

whence
2ax + b = y/b2 + 4ac,

x = (-6 + vb2+4ac)/2a.

The negative root being rejected, the purpose of multiplying
by Aa was to avoid fractions.

The first systematic treatment of algebra was written
by an Arab, Mohammed ibn Mussa, Al-Khowarizmi. The
word "algebra" is a part of the title of his treatise, aUjebra
W'almuqabula. Al-Khowarizmi considered the quadratic
equations ax2 = bx, ax2 = n, ax2 + bx = n, ax2 + n = bx,
and ax2 = bx + n. He gives the method of solution for
ax2 + bx = n (or essentially the same equation x2 + px =
q) on the basis of geometry as follows [28, p. 446-447]. He
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first constructed the square
as shown in Figure 1. Then
the unshaded part is x2 +
px and therefore equal to q.
In order, however, to make
this a square we must add
the four shaded squares,
each of which is (Vi2»)z
and the sum of which is
14.P2. It will be noted that
since we now have a square
of area x2 + px + y^p2 =
q + i/ip2, the length of one

side must be V? + %P2. But from the diagram one side on
the square is x + y«p. Therefore, we can set these two
values equal; that is,

x + y2p = vq + y4,p'2-
As an example, consider x2 + lOx = 39. To make the left-
hand member a perfect square we must add y^p2 or 25, so
that

x2 + 10* + 25 = 39 + 25,
a; + 5 = V64,

x = -5 + 8 = 3.

For the same problem Al-Khowarizmi gives a second
method of solution which yields results equivalent to the

values obtained from our
quadratic formula. In this
method he proceeds in
much the same manner
as he did in the first
method. In Figure 2 the
unshaded part is x2 + px;
now add the square of y%p.
This gives x2 + px + y±p2
— y^P' + Q> whence, x +
y^P — y/y±Pz + Qof which
he takes but the positive
square root.

P/2

Pig. 1
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Let us now turn from the algebra of Al-Khowarizmi to
the Elements of Euclid. To solve the equation x2 + ax = b2
Euclid proceeds as follows [14, pp. 79-80]. To the segment
AB = a in Figure 3, apply the rectangle DH, of known area
equal to b2, in such a way that CH shall be a square. The

Fig. 3

figure shows that, for CK - y2a, FH = x2 + 2x(y»a) +
(y*a)3 = b2 + W»a)2. But we observe from Figure 3 that
62 + (Vao)2 = c2, where c = EH = y2a + x and x = c -
i/aa- The solution obtained by applying areas, in which the
square root is always considered positive, is nothing more
than a construction of a line representing

x = -y2a + \/b2 + (W = « - Via'
In the same manner, Euclid solved all equations of the

form a;2 ± ax ± b2 = 0. He noted that if y/b2 — (y%a)2 is
involved the condition for a solution is b>y2a. Nowhere in
Euclid's work are negative quantities considered [14, p. 80].

Marco Aurel (1540), a German residing in Spain,
classified the quadratic equations into three classes as
did most of the writers of this period. The three classes
were [17, p. 58]

ax2 + bx = n,ax2 + n= bx, and ax3 — bx 4- n.
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For the first form Aurel gives a method of solution which
we illustrate by an example.

Given: 2x2 4- 12a: = 32.
Divide by the coefficient

of a:2: a;2 + 6x = 16.
Takey2 the coefficient of x: i/2 of 6 = 3.
Square this: 32 = 9.
Add this to the

constant term: 16 + 9 = 25.
Then x = V25 - 3,

x = 5 - 3 = 2.

Aurel's solution for the second form is similar to this, the
addition being replaced by a subtraction. For the third form
he proceeds as in the case of form one. Whenever negative
quantities occur, the equation is reduced to one with all
positive terms by adding the same quantity to both members,
and thus it can be classified under one of the three classes
above.

Aurel made no attempt to avoid irrational numbers as
did the other writers of his time. He also assumed an equa
tion to have two roots if both were positive. One of the prob
lems appearing in his writings was, "Divide a number into
two parts such that one multiplied by the other will give
3 [17, p. 60]." His solution is essentially as follows.

Let x = one part and 10 - x = the other part. Then
(10—x) x = 3, whence a;2 4- 3 = 10a:and x — 5 ± \/22.

Menher De Kempton (1565) demonstrated the solution
of the quadratic equation and accompanied each example
with a very clear geometrical demonstration [17, p. 66].
For example, given

4a:2 + 12a; 4- 10 = 50.
Subtract 1 from both sides:

4a;2 4- 12a; 4- 9 = 49.
Factor: (2a; 4- 3)2 = 72.
Take the root: 2a; 4- 3 = 7.
Thus, x = 2.
This method, in which a certain quantity is added to each
member of the equation thereby making them perfect
squares, was the first of its kind in this period.
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Albert Girard (1629) dealt mostly with cubic equations
but the following example of his solution of a quadratic
equation shows how primitive was the method he used
[17, p. 75].

Given: x2 4- 6a; = 40.
Divide by a;: x 4- 6 = AO/x.
Factors of 40: 2X20, 4X10, 5X8.

If one chooses 2 for x, then 2 4-6 = 8 which is not in
accord with the other factor 20. If one chooses 4, then
4 4- 6 = 10 which does correspond to the other factor 10;
therefore x -• A. Like most of his predecessors, he con
sidered positive roots only.

The first work in which both positive and negative roots
were indicated by plus (4-) and minus (—) was Algebra
ofte Nieuwe Stel-Regel (1639) written by Stampioen. He
gives the following example [17, p. 83]:

x2 + Ax = 60
1/2 of 4 = 2,22 = 4
4 4- 60 = 64, V64 = ±8

a: = 8 - 2 = 6, a; = -8 - 2 = -10.

In the check of this problem as well as in the usual explana
tion accompanying the reduction of the equation, Stampioen
emphasizes the fact that the square root of 64 is 4-8 or —8
because +8 or —8 squared gives 64. Furthermore, in order
to check the solution he substitutes the roots in the equation
to see if they satisfy.

In the works of Vieta (1540-1630), the analytic methods
replaced the geometric and his solutions of the quadratic
equation were therefore a distinct advance over those of his
predecessors [17, p. 89]. For example, to solve
x2 4- ax 4- 6 = 0, he lets x = u + z. Then,

v? 4- (2z+a)u + z2 4- az 4- 6 = 0.
If 2z4-a=0, that is z = —y2a, then

u = ±VWaS — 4&
and x = u+z = —y2a±yty/a2 — 46,
which will be noted is the quadratic formula when the
coefficient of the x2 term is unity.
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Concerning the works of Descartes, D. E. Smith says
[27, p. 375]: "The fundamental idea in Descartes mind was
not the revolutionizing of geometry so much as it was the
elucidating of algebra by means of geometric intuition and
concepts, in a word, the graphic treatment of the equa
tion ..." Descartes gives the following method to solve the
equation x2 = ax + b [17, p. 96]:

"Construct (Fig. 4) the right triangle NLM with one
side LM equal to 6, the square root of the known quantity
b2, and the other side LN, equal to y2a, that is, to half of the
other known quantity which was multiplied by x, which I
suppose to be the unknown line. Then prolong MN, the
hypotenuse of this triangle, to 0, so that NO is equal to NL;
the whole line OM is the required line." From the figure,
x = y2a+ y/y^a2 + b\

Fig. 4

For the equation y2 = —ay 4- b2 Descartes says [17,
p. 96]: "But I have y2 - —ay 4- b2 where y is the quantity
whose value is desired. I construct the same right triangle
NLM, and on the hypotenuse MN lay off NP equal to NL,
and the remainder PM is y, the desired root. Thus I have

y = -y2a + \/yAla2 4- o2.

"Finally, if I have x2 = ax — b2, I make NL equal to
y2a and LM equal to b as before; then, instead of joining
the points M and N, I draw MQR parallel to NL, and with N
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as center describe a circle
through L cutting MQR in
the points Q and R (Fig.
5); then x, the line sought,
is either MQ or MR, for in
this case it can be expressed
in two ways, namely, x =
y2a. 4- yiyja2 - b2, and x =
Vza - y/lAa2 — b2. Since
MRMQ= (LN)2, then if
R = x, we have MQ = a—x,
and so a;(a—x) = b2 or x2
= ax — b2." If instead ofFig. 5

ihisMQ = x,thenMR = a - x, and again x2 = ax - b2.
As for the last method, if MR is tangent to the circle,

that is if b = y2a, the roots will beequal ;.but if b>y2a, the
line MR will not meet the circle and the roots will be
imaginary. It can be noted that Descartes considered only
three types of equations, namely, x2 4- ax — b2 = 0, x2 —
ax —b2 = 0, and x2 - ax + b2 = 0. He dees not consider
the type x2 4- ax + b2 = 0 because it has onlynegativeroots.

3. Derivations of the Quadratic Formula

The preceding pages of this article have dealt with
the history and some of the early solutions of the quad
ratic equation. The discussion has been brief and the num
ber of examples has been limited. However, the examples
are fairly general and show the important steps in the
evolution of a standardized method of solution for the quad
ratic equation. In the remainder of this paper we shall deal
with solutions which are in use at the present time. Some
of these are very similar to those given above, but they gen
erally are of a more scientific nature.

One of the more modern methods for the development
of the quadratic formula, interesting mostly from the stand
point of theory, is the one that follows. This method uses
determinants and is due to Euler (1750) and Bezout (1775),
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but was improved by Sylvester (1840) and Hesse (1844)
[28, p. 450].

Given x2 + px 4- q = 0, let x = u 4- z. Then
x3 4- px2 4- qx = 0,

x2 — (u+z)x = 0,
x3 - (u+z)x2 = 0.

Now the eliminant of this system of equations is the de
terminant

1 p q
0 1 - (u+z) = 0.
1 - (u+z) 0

Expanding, we get
—p(«4-z) — (u+z2) — q = 0,

whence, rewriting,
u* 4- (2z+p)u 4- (224-pz4-«7) = 0.

Since x = u 4- z, we can choose w or z at our convenience;
thus, let 2z4-p = 0, that is, z = p/2. Then

«= 4- p4/4 - p2/2 4- -7 = 0,
« = ± (\/p2-Aq)/2,

and

x = u 4- z = -p/2 ± (y/p2-Aq)/2.

One also can obtain the quadratic formula by solving
the quadratic equation in a manner very similar to that used
by Ferrari in his solution of the biquadratic equation.
Given x8 4- px 4- q = 0, transpose everything but the x2
term to the right-hand side of the equation and complete the
square in y by adding yx 4- y2/A to both members. Then

Xs 4- yx 4- y2/A = —px — q 4- yx 4- y2/A,
that is,

(x 4- y/2)2 = (y-p)x + (y2/A - q).
Now since y can take any value, and for any value of y the
left-hand member will be a perfect square, let us choose
y = p. Then, extracting roots,

(x 4- p/2) = ±(y/p2-Aq)/2,
or x = -p/2 ± (VP2—4o)/2.
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Let us next turn our attention to the solution of the
quadratic equation by a trigonometric method. Given
(1) ax2 + bx + c = 0.
Letx = yfcja tan $. Substituting in (1),

c tan2 6 + by/c/a tan 6 + c = 0,
or c sec2 0 + by/c/a tan $ = 0.
Multiplying by 2 cos215,

2c 4- by/c/a(2 sine? cosfl) = 2c 4- by/c/a sin 20 = 0,
whence

sin20 = -2y/ac/b.
Using the identity tan 0 = (l-cos20)/sin20, we get after
some simplification,

tanfl = (-by/c ± y/b2c - Aac2)/2cy/a.
Since x = y/c/a tan 0, wehave

x = (-& ± yb2-4aC)/2a.
We shall now consider an altogether different method

of deriving the quadratic formula. In this method we let
the roots of ax2 4- bx 4- c - 0 be p and q. Then
(1) P 4- q = -b/a
(2) PQ = c/a-
Squaring (1) and subtracting four times (2) gives

p 2 + 2pq + q2 - 4p</ = b2/a2 —Ac/a,
(p-q)2 = (b2-Aac)/a2,

(3) p-q = ±(y/b2—Aac)/a.
Now if we solve (1) for q and substitute this value in (3),
we get

p = (-b ± Vb2 - 4ac)/2a.
The solution of the quadratic equation by means of

completing the square will be given now as a final develop
ment of the quadratic formula.

Every function of the form x2 + px + q can be madea
complete square in x by the addition of a constant k. That
is,

xi + px + q + k = (x 4- m)2 = x2 4- 2mx 4- m2
where m is a second constant. Now since we have two ex
pressions which are identical, the coefficients of like powers
must be equal; consequently, p = 2m, q + k = m2. Hence,
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m = p/2 and k = m2 - q = (p/2)s — q. Thus we see that
in order to make x2 4- px 4- q = 0 a perfect square in x we
must add the constant (p/2)2 — q to each member of the
equation. This can be extended to the general form ax2 +
bx + c = 0 by first dividing each member by a; then p =
6/a, q = c/a, and k = (b/2a)2 - c/a = (b2 — Aac)/Aa2.
Thus,

(x + 6/2a)2 = (b2 - 4ac)/4a2,
x = -6/2a ± yfb2 — Aac/2a.

A. Methods of Factoring

One of the most common methods of solution of the
quadratic equation, if not the most common, is the method
of factoring. There are four methods of factoring in com
mon practice: (1) trial method, (2) multiplication by the
coefficient of x2, (3) division by the coefficient of x2, and
(4) decomposition. Of these methods probably the trial
method is the one most commonly used. The easiest way of
explaining these methods is by example [15]. We shall
illustrate each of the four methods of factoring with the
equation,

18x2 4- 37x - 20 = 0.

Under the trial method, we know that, in this example,
we must find two numbers which have a product 18, and two
other numbers which have a product —20; however, these
four numbers must be chosen in such a way that their "cross
product" is 37. Now 18 can be factored as 1X18, 2X9, or
3X6. In this method the possibility that 1X18 is the right
combination is rather small, so we save it till last; 3X6 has
the best chance so we will try it first. In a similar manner
20 can be factored into 1X20, 2X10, and 4X5. Here again
4X5 has the best chance, so we will try it first. Setting
down some of the possibilities for the factors of 18x2 4-
37x - 20, we have

(3x-5) (6x4-4), (3x4-4) (6x-5), (3x4-5) (6x-4),
(3x-4) (6x4-5), (3x4-2) (6x-10), (3x-2) (6x4-10),
(3x-10) (6x4-2), (3x4-10) (6x-2), (2x4-4) (9x-5),
(2x-4) (9x4-5), etc.
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We now test the 3X6 and the 4X5 in all possible combina
tions; however, we find that none of these gives the correct
cross product 37 that is required by the equation. We
proceed with the 3X6 and the 2X10 combinations which
again lead us nowhere. Next we try 2X9 and 4X5 (note
that we exhaust all possibilities first in which the numbers
are closest together.) When we come to the combination
(2x4-5) (9x-4) we find that this gives the required terms.
It now is an easy matter to complete the solution; all we
must do is to set each factor equal to zero and solve for x.
Doing this weobtain -5/2 and 4/9 as the rootsof the equa
tion. In most cases that arise it will be found that the fac
tors are moreeasilyobtainedthan they were in this example.

To factor the same example by the method of multipli
cation by the coefficient of x2, we write

18x2 4- 37x - 20 = [18(18x2) 4- 18(37x) - 20(18) 1/18.
Now if we set z = 18x, the right member becomes

(z2 4- 37z - 360)/18 = (z 4- 45) (z - 8)/18,
or

(18x 4- 45)(18x - 8)/18 = 9(2x 4- 5)-2(9x - 4)/18
= (2x 4- 5) (9x - 4).

Muchwork could have been saved by observing the fact that
(18x)2 will always be produced by squaring 18x and we
could just as well have written (18x4- ) (18x- ) and for
the missing terms find two numbers whose sum is 37 and
whose product is —360. It mightalso benoted that wemust
use the trial method for this process. However, since the
coefficient of the second degree term is unity, much labor
ious work is saved.

In the method of division by the coefficient of x2, we
proceed in a manner very similar to that in the preceding
method. Thus,

18x2 4- 37x - 20 = 18 (x2 4- 37x/18 - 20/18)
= 18 (x2 4- 37x/18 - 360/324)
= 18(x 4- 45/18) (x - 8/18)
= 18 (x 4- 5/2) (x - 4/9)
= 2(i + 5/2)-9(x - 4/9)
= (2x 4- 5)(9x - 4).
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In the method of decomposition we assume a solution
of the form (ax4-6)(cx4-ci) = acx2 4- (6c4-ati)x 4- bd. If
the constant term of the trinomial be multiplied by the coef
ficient of x2, the product is bead which has two factors 6c
and ad. These are also components of the x term. Thus, the
product of the first and third terms is a6cdx2 which is to
be factored into 6cx and adx. In our example, multiply
18x2 by -20 giving -360x2. By trial, this may be factored
into the two components of the middle term, namely, 45x
and —8x. Thus,

18x2 4- 37x - 20 = 18x2 4- 45x - 8x - 20
= 9x(2x 4-5) - 4(2x 4- 5)
= (2x4- 5)(9x-4).

The four methods of factoring described above assume
that the roots of the equation are rational. The following
solution by factoring is one which will apply in every case of
the quadratic equation, regardless of the nature of the roots
[12].

Any given quadratic equation can be changed to the
form

(1) x2 - 2px + p2 - q2 = 0,
where —2p is the coefficient of the first power of the un
known, and the constant term is p2 - q2. Then the left-
hand member of (1) can be factored as the difference of two
squares and the solution follows readily. Thus,

(x - p)2 - q2 = 0,
(x-p-q)(x-p + q) =0,

(2) x, = p + q, x2 = p —q.
Since every equation of the second degree can be changed to
the form (1), p can be found, then q can be determined from
p2 — q2, and the roots are determined from (2). As an
example, consider x2 - 4x - 12 = 0. Here p = 2 and
p* - q, = _12f so that q = ±4. Substituting in (2), x, =
2 4- 4 = 6, and xs = 2 - 4 = -2.

If it so happens that the coefficient of the second power
of the unknown is not unity, we divide the equation by this
value and proceed in the manner outlined above.



The Pentagon

5. Graphical Solutions for Real Roots

73

Another important method of solution, but which in
general gives only approximate results, is that of graphing
the quadratic equation. If care is taken, a fairly accurate
result can be obtained. Let us consider the graphical solu
tion of a specific equation, x2 — 3x — 4 = 0. We begin by
setting the left-hand member equal to y,

y = x2 — 3x - 4,
and then compute the following table of values:

x | —2 | —1 | 0] 1 | 2 | 8 | 4[ 5
V 6 | 0

Fig. 6

|-6|-6 I

Plotting these points, we
obtain the graph shown in
Fig. 6. At the points where
the curve crosses the X-axis
the value of y is zero. Hence,
the values of x at these
points are the roots of the
given equation. We note in
our example that the curve
crosses the X-axis at x =
—1 and x = 4, and these
are therefore the roots of
x2 - 3x - 4 = 0.

The following graphical solution is more convenient
than that just described. The quadratic equation ox2 4-
6x 4- c = 0 is equivalent to the system of equations,

y = x2, ay + bx + c = 0.
Now ay + bx + c = 0 representsa straight line and y = x2
represents a parabola with the vertex at the origin. To
illustrate the method, let us consider the equation x2 — x —
2 = 0. We construct the following graphs: y = x2, y — x —
2 = 0. We observe (Fig. 7) that the straight line cuts the
parabola in the points (-1,1) and (2,4). Consequently, the
two roots of the given equation are x, = —1 and x2 = 2. The
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reader will observe that the graphs of all quadratic equa
tions reduce to a straight line and a parabola, and in every
case the parabola is represented by the equation y = x2.

Fig. 7 Fig. 8

If the quadratic equation has the incomplete form
ox2 4- c = 0, we have the system, y = x2, ay + c = 0. If, for
example, the equation is 3x2 — 12 = 0, we construct the
graphs of y = x2 and 3y - 12 = 0. Then from the graph
(Fig. 8) it is clear that the roots are 2 and —2.

If the quadratic equation has equal roots, the graph
takes on only a slightly different form. For the equation
x2 — 4x 4- 4 = 0, we graph y = x2 and y — Ax + A = 0.
From the graph (Fig. 9) we see that the line is tangent to
the parabola at the point where x = 2; thus it is said that
2 is a double root of the equation x2 - 4x 4- 4 = 0.

The case where the quadratic equation has imaginary
roots can be detected very easily by the graphical method.
Consider x2 —2x 4- 5 = 0. From the graph (Fig. 10) we
note that the straight line and the parabola do not touch;
thus, there is no solution in the real plane.

The parabola y = x2 is not the only conic section that
may be used with the straight line for a graphic solution of
the quadraticequation. Thehyperbola y = 1/x gives a very
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Fig. 9 Fig. 10

convenient solution. The equation ox2 4- 6x 4- c = 0 is
equivalent to the system of equations,

y = 1/x, ox 4- 6 4- cy = 0.
The intersection of the hyperbola and straight line will give
the solution of the given quadratic equation. For example,
given x2 4- 2x — 8 = 0, we graph y = 1/x and x 4- 2 — Sy =

0. The two curves are shown
in Fig. 11; the required x
values are —4 and 2. It
might be noted that here
again if the line is tangent
to the hyperbola the roots
are equal, and if the two
curves do not intersect the
roots are imaginary.

Fig. 11

There is yet another graphical method of solution that
uses a straight line and a conic section. In this method we
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assume that the given quadratic equation can be reduced to
the form x2 — px 4- q = 0, where p and q are real numbers.
In Figure 12 the coordinates of the points B and Q are (0,1)
and (p,q), respectively. Now draw the circle having BQ as
a diameter. Its center is [p/2, (qr4-l)/2]. By the distance
formula, the square of the length of BQ is p2 4- (q—l)2.
Thus the equation of the circle is

[x 4- p/2]2 + [y - (o4-l)/2]2 = [p2 4- (g-l)2]/4.

When 2/=0 this reduces to
x2—px4-t7=0. Hence if the
X-axis intersects the circle
in two distinct points N
and M, their abscissas ON
and OM are the two distinct
roots of the equation, x2 —
px + q = 0. If the circle
is tangent to the X-axis the
roots are equal, and if the
circle does not touch the
X-axis the roots are imagi

ng. 12 nary-

As a final graphical solution we will construct an align
ment chart for x2 4- ax 4- 6 = 0 consisting of two straight
lines and a curve between them. The chart will have the
property that, if we locate specific values of a and 6 on
the respective straight lines and draw a straight line be
tween these two points, the point in which this line cuts the
curve will be the required value for x. The theory of the
construction of an alignment diagram is rather complicated
and will not be given here; the interested reader is referred
to books on nomography.

As specifications for our chart, we will let both a and 6
range from —10 to 10, and propose that the completed chart
shall be 15 inches wide and 20 inches high. First we con
struct two parallel lines of length 20 inches and 15 inches
apart. The same uniform scale is marked off from the
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Fig. 13

middle of each of these lines (Fig. 13). The parametric
equations of the curve between the two lines are

x, = 15x/(14-x), yx = -x2/(l+x),
where the origin of the x„z/, coordinate system is the zero
point on the 6 scale [11, p. 192]. Only one root need be
found because of the relation xx + x2 = —a. If the equation
has no negative roots the nomogram appears to be of no
use; however, if we substitute —x for x we will obtain an
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equation with roots of opposite sign than those of the
original equation but of the same numerical value. If the
line does not cut the curve the roots are imaginary.

6. Determination of Imaginary Roots

In the preceding discussion we have been concerned
primarily with quadratic equations having roots that are
real numbers, either rational or irrational. However, this
is not the only type of solution that can be obtained; the
solution may also take the form of complex numbers. What
does one do when he wishes to find the solutions of equa
tions having complex roots? Can the solution be obtained
by a graphical method? These questions and many others
may be raised about complex roots.

First let us consider a proof that the quadratic formula
remains true for complex numbers [9]. We know that any
complex number may be expressed in the equivalent forms
[18, pp. 170,183],

z —r •e exp ie = r(cos 0 + i sin 0).
Also it can be shown that the sum of two complex numbers
is graphically the diagonal drawn from the origin of the
parallelogram whose sides are the given complex numbers;
thus if the sum of three complex numbers is equal to zero,
they must form the sides of a triangle. Let us substitute
r •e exp iB for z in the equation az2 + bz + c = 0, whence

ar2•e exp 2i$ + br-e exp i$ + c = 0.
Since this states that the sum of three complex numbers is
equal to zero, they will form a triangle. If c be taken hori
zontal then br • e exp i6 will make an angle of 0 with c, and
ar2 •e exp 2ie will make an angle 26 with c or an angle 6 with
CB (Fig. 14). It follows that triangle OCB is isosceles,
whence ar2 = c and r = y/c/a. Now cos (180°—0) = rb/2c,
so that cos0 = -(yc7a)(6/2c) = -b/y/Aac. Also,

sin 6 = ±V1 - cos2 0 = ±\/l - b2/4ac.
Substituting these in the equation z = r(cos 0 + i sin 0),
there results

z = y/c7a[-y/b2/4ac ± iy/1 - b2/Aac],
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or

z = (-6±Vb2 - 4ac)/2a.
Thus we have proven that the quadratic formula holds for
complex numbers.

Fig. 14 Fig. 15

The preceding proof with a few slight changes can be
used to solve graphically for the complex roots of a quad
ratic equation with real coefficients. If the equation is of
the form az2 + bz + c = 0, we divide by a and obtain an
equation of the form z2 — pz + q = 0. In Figure 15, CZ is
the axis of real numbers, AB = z2, BC = —pz, CA = q, and
AD = z; A lies on CZ because q is real. Now triangle ABC
is isosceles by the same reasoning that was used in the
preceding proof, and this makes possible the graphical
determination of the roots z. Possibly an example would
help clarify the method. Consider z2 — 2z + 5 = 0. In this
case p = 2 and q = 5. From what has been said, AC = AB
so that q = \z2\, or \z\ = y/q. Now construct AC = AB =
5, BC = |-pz| = 2\/5, and bisect angle BAZ (Fig. 15).
Since AB = \z2\ = 5, construct AD = \z\ = y/5. But AD
represents the vector x = 1 4- 2i; hence the two roots are
z, = 1 4- 2i and z2 = 1 — 2i.

For a second graphical method of finding the complex
roots of az2 + bz + c = 0 consider the following [9].
Let

zx = xx + iyx = —b/2a + iy/Aac — b2/2a,
xa = x2 4- iy3 = —b/2a — i\'Aac — b*/2a.

The moduli of z, and z, are each equal to y/c/a. Hence zx
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and Zi lie on a circle with
its center at the origin and
radius equal to y/c/a.
Furthermore, the real part
of both z, and z2 is x =
—6/2a. Hence the two
complex roots of the equa
tion az2 + bz + c = 0 are

represented in both magni
tude and direction by the
line segments OPx and 0P2
(Fig. 16).

Fig. 16

Still a third graphical method has been devised [33].
If we consider the quadratic equation to have the form z24-
pz4-i?=0 where p2—4«7<0, the two roots are conjugate com
plex numbers of the form

zx = u+iv = r-eexpt'0, z2 = u—iv = r-eexp (—i0),
where

r = y/Hr+~v2, 0 = arctan(tt/t>).
It is known that z,4-z2 = —p and zxz2 = q; also e exp io =
cos 0 + i sin 0. Therefore,
p = —(zx+z2) = —r[eexpi8+eexp (—i0)] = —2rcos0,

q = ZiZ2 = (r • e exp i9) [r • e exp (—i$) ] = r2.
Now substituting these values for p and q in the original
equation, we obtain

z2 — 2rz cos 0 + r2 = 0.

If we wish to determine the two complex roots of this equa
tion by the help of a geometric method, we need only con
struct the radius vector r and the amplitude 0. After we
have done this, the imaginary parts of u+iv and u—iv are
obtained easily from the graph.

To construct Figure 17 we proceed as follows. With a
rectangular coordinate system construct a circle with a
diameter OP = q on the X-asis. At the point E(1,0) erect a
perpendicular which intersects the circle in points S. With
the radius OS construct a circle with its center at 0. Through
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the point W(—p/2, 0)draw a perpendicular which will in
tersect the latter circle in two distinct points, A and B. Then
z, = OA and z2 = OB.

Fig. 17

7. Solutions by Trigonometric Methods

The approximate solutions of all quadratic equations
can be obtained by the use of trigonometry [1]. The roots of
ax24-bx4-c=0 may be written, if c<0, as

x = y-tVa(-b/2V-ac±Vb2-4ac/2V-ac)-
Choose an angle 6 between 0° and 180° such that cot 9 =
—6/2v"-ac. Making this substitution, we obtain

whence

x = V—c/o(cot 9 ± esc 9),

x, = y/-c/a cot(1/20), *
In case c>0, we write _

x = y/c/a(-b/2y/ac ± yfb2

= -yl-c/a tan(Vfc0)'

-4ac/2y«xc).

Now —b/2yjac may be numerically greater than, equal to,
or less than unity. If it is numerically equal to or greater
than unity, we let esc9 = -b/2y/ac, where -90° ^ 0 =? 90°.
The solution then becomes

x = y/c/a(csc0 ± cot0),
whence
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x, = yfc/a cot(i/20), x2 = y/c/a tan(i/20).
If 6 is numerically less than 2y/ac, b2-Aac is negative

and the values of x are imaginary. To provide for this we
rewrite x in the form

x = y/c7a(-b/2y/ac_± iy/Aac - b2/2y/ac).
Here we let cos 0 = -b/2y/ac where 0° < 0 < 180°. Then x
has the values

*i = Vc/a(cos 0 4- i sin 0), x2 = y/c7a(cos 0 —i sin 0).
Example 1. 0.184x2 4- 0.0358x - 1.018 = 0.

Here c<0 and cot 0 is negative.
Log |cot 0| = Log |-6/2V-ac| = 8.6166 - 10, 0 =

92°22'.

Logx, = Log ly-c/acot(V20) | = 0.3533, x, = 2.356.
Log (-x2) = Log |V-c/a tan(i/20)| = 0.3897, x2 =

-2.452.

Example 2. x2 — 5x 4- 6 = 0.
Here c>0,
Log |csc 0\ = Log |-6/2yac| = 00089, 0 = 78°28'.
Logx, = Log |Vc/a cot(y20) | = 0.4771, x, = 3.
Logx2 = Log |Vc/atan(Va0)| = 0.3010, x2 = 2.
The above are not the only substitutions that can be

used to determine a trigonometric solution. The following
substitutions will work just as well. We write the roots
of ax24-bx4-c=0 in the form,

x = (-6/2a) (1 ± VI - 4ac/62),
and shall restrict our attention to the case 62—4ac>0. If
c>0, let sin2 0 = 4ac/62. Then x = (-6/2a) (1 ± cos 0), or

*. = (-6/a) sm2(y20),x.i = (-6/a) cos2(y20).
If c<0, let tan2 0 = -4oc/62. Then x = (-6/2a) (l±sec 0)
and

xt = (6/a) sec0sm2(y20), x., = (-6/a) sec0 cos2(i/20)-
As a final trigonometric method of solution consider

x2—px4-«7=0, where again we restrict our attention to the
case p2-4«7>0. Let xx = p cos2 0, x2 = p sin2 0. Then

Xi + x2 = p(sin2 0 4- cos2 0) = p,
xtx2 = p2 sin2 0 cos2 0 = (p2 sin2 20) /A.

But x,.r2 = q. Therefore,
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sin20 = 2y/q/p.
Example, x2 - 93.7062x 4- 1984.74 = 0.

Here sin20 = 2 V 1984-74/93.7062, 0 = 35°58.9'.
Thus, xx = p cos2 0 = 61.361, x. = p sin2 0 = 32.345.
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THE PYTHAGOREAN DOCTRINE

George C. Vedova

Professor, Newark College of Engineering

The article on "Pythagoras: Mathematician and Phi
losopher" in the Spring issue of this journal1 discussed
philosophy and Pythagoras as a philosopher, made frequent
references to the "Pythagorean Number Philosophy," men
tioned philosophy of mathematics, and seemed to regret the
fact that little has been written on the influence of mathe
matics on philosophy.

The present article is concerned, principally, with re
vealing themathematical natureof Pythagorean philosophy.
It is also concerned with doing justice to Pythagoras. The
thesis to be advanced here is that the Pythagorean Doctrine,
in its arithmo-geometric aspects, was an attempt, perhaps
the first, to bring mathematics to the help of philosophy in
the study of nature. It is pertinent to insert here that the
word mathematics was first used by Pythagoras. It is
derived from mathema, that which is learnt, a lesson.

Consider then, briefly, the views of the cosmogonists
preceding Pythagoras. Anaximander of Miletus (611-547
B.C) held2 that from an endless, boundless, and shapeless
mass, the apeiron, which is subject to a circular move
ment, a flat disc, the earth, is formed at the center, then
rings of water, air, and fire are thrown out,spreading away
from the center in ever thinning layers, but not without
limit for an infinite mass cannot rotate. The universe thus
formed, however, is not stable; the celestial fire devours
and dissipates the center and the outflung layers and thus,
in the course of time, everything returns to the original
state. But there is an end to this period of dissipation and
the same causes that once formed the universe reform it.
There is thus an endless succession of worlds and the only

•R. H. Moorman. "Pythagoras: Mathematician and Philosopher." The Ptnlaacn, Vol. 8.
pp. 79-84 (Spring. 1949).

sPaul Tannery. Pour llliiloirr di fa seitncr htlttne. 2nd ed. Paris. 1930.
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thing that remains immortal and imperishable is the circu
lar movement.

Anaximenes of Miletus, a younger contemporary of
Anaximander and, by report, a pupil and friend of his,
added the elaboration that the boundless air, subject to an
eternal movement, is the source of everything. Expanding
under the influence of heat, or contracting under that of
cold, it has formed all the phases of existence.

In contrast with this we find the Pythagorean Doctrine
proceeding more cautiously, from within the cosmos, and
trying to build up a theory by abstraction, logical construc
tion, and generalization. The geometric point is defined as
"unity in position" and, conversely, the unit of number as
"a point withoutposition."3 This identification of the point
and the unit of number led immediately to the well-known
practice of representing numbers by figures (schemato-
graphein). For if a number is a plurality of units, and a unit
is a point, than a number may be represented by an ag
gregate of points, arranged into such a figure as the nature
of the number might suggest In this practice a method was
developed for the successive generation of numbers of a
given type; this was the use of gnomons.4 Thus Proclus,
Diogenes Laertius,5 and Plutarch" attribute to Pythagoras
the method of forming successive square numbers by the
addition of equilateral gnomons to unity (Fig. 1), while
Lucian and Aristotle mention the formation, by the Pythag
oreans, of the triangular and the oblong numbers by the
addition of the corresponding gnomons (Fig. 2).

That this practicewas not a fruitless pastime is shown
by the many arithmetic discoveries they made by its use.
Thus, from the fact that thegnomons of the squares are the
odd numbers after unity, in succession, and the resulting
figures are the next higher squares, they deduced, by suc
cessive additions,7

sProc!u». Commentary on Euclid't Elements I. «<!. Friedlrin. 1873. p. 95.
Hn geometry, a gnomon is the figure which, added to any figure, preserves the original shape.
"Diogenes Laeetnu. td. Hubner. Leipiic. 1831.
'Pll"m'l °P"* Uo"U'- Srnpotiom «. ed. D. Wyttenbach. Oiford. Claredon Pros. 1795-
'Nicomadras of Gerasa. Introduction to Arithmetic, tr. by M. L. DOogt. with studies in

Greek arthmcuc by F. E. Robbins and L. C. Karpintki. New YorkTMacmiilan. 1926.



The Pentagon 87

oooooo

ooooo oooooo

oooo ooooo oooooo

000 oooo ooooo oooooo

00 000 oooo ooooo oooooo

0 00 000 oooo ooooo oooooo

00 000 oooo ooooo oooooo

0 0 0 0 0

0 0 0 0

0 0 0

0 0

o
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Fig. 2. Triangular and oblong numbers.

1 4- 3 4- 5 + ... 4- (2n-l) = n2,
and from the fact that the gnomon (2n4-l) added to the
square n2 produces the next higher square, n24- (2m4-1) =
(n4-l)2 they found8 that if (2»4-l) = k2, where k is any
odd number, then the numbers k, y2(k2—1), y2(k2+l) are
the sides and hypotenuse of a right triangle or, in present-
day terms, they are Pythagorean numbers. Proclus0 says:

But there are delivered certain methods of finding
triangles of this kind (sc. right-angled triangles

"G. J. Allman. Encyclopaedia Btitannica, Werner Edition. 1900, Vol. XX. p. 141.
'Proclus. op. cir.. p. 428
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whose sides can be expressed by whole numbers)
one of which they refer to Plato, but the other to
Pythagoras, as originating from odd numbers. For
Pythagoras places a given odd number as the lesser
of the sides about the right angle, and when he has
taken the square erected upon it, and diminished
it by unity, he places half the remainder as the
greater of the sides about the right angle; and
when he has added unity to this he gets the hypo
tenuse .... But the Platonic method originates
from even numbers. For when he has taken a given
even number he places it as one of the sides about
the right angle, and when he has divided this into
half, and squared the half, by adding unity to this
square he gets the hypotenuse, but by subtracting
unity from the square he forms the remaining side
about the right angle.
The reader will find that if two successive gnomons

have a sum which is an even square, that is, if (2n—1) 4-
(2n4-l) = m2, m even, then, since (n—l)2 4- (2n—1) 4-
(2n4-l) = (n4-1)2, it follows that the numbers («— 1), m,
and (n-4-1) provide Plato's solution.

These are only a few of the mathematical discoveries of
Pythagoras and his school. A complete list cannot be given
here; it is enough to say that the first two books of Euclid's
Elements (on triangles, rectangles, and areas), part of the
third (on circles), part of the fourth (constructions of poly
gons) , the seventh (theory of proportions), part of the sixth
(applications of proportions), the bulk of the thirteenth (on
the regular solids), and the discovery of the irrationals are
now known to be due to Pythagoras and his school.10 These
form the bulk of their contribution to the subject matter of
mathematics.

But of at least equal importance to these must be
counted certain methodological contributions they made to
mathematics. One of these is the method of definition and
logical proof essentially as we use it today. This finds its
greatest expression in the many and varied uses made of

10G. J. Altaian. GreeA Geometry from Thalei to Euclid. Dublin, Longmans. 1889.
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the theory of proportions as a mathematical tool. This
theory, begun by Pythagoras and brought to its highest
development by his successor, Archytas of Tarentum,11 be
came the chief tool and most striking characteristic of all
later Greek mathematics. It was skillfully used by Euclid,
Aristarchus, Archimedes, ApoUonius, Ptolemy, and many
others; it survived through all later periods and reappeared
as late as the days of Galileo (Two New Sciences, 1638) and
Newton (Principia, 1687).

Latent in this theory lies Pythagoras' deep insight of
the oneness of magnitude. Lengths, numbers, all magnitudes
in fact can, as magnitudes, be represented by the same
symbols. This was a profound abstraction and a broad
generalization. In the theory of proportions lines represent
numbers, and numbers lines. It is then a theory applicable
both to geometry and arithmetic; it effects a fusion of the
two. "In this respect," says Allman, "Pythagoras is com
parable to Descartes to whom is due the combination of
Algebra and Geometry."

We have seen, in the practice of schematographein, the
early attempts to represent numbers by points. In the
theory of proportions this develops into the conception of
the line as a series of juxtaposed points. It was easy to pass
then to the conception of the plane as a series of juxtaposed
lines, and the solid as a series of juxtaposed planes. We
are told by Diogenes Laertius12 that

Pythagoras taught that the principle of all things
is the monad, or unit; arising from this monad is
the infinite dyad . . . from the monad and the in
finite dyad arise numbers; from the numbers
points; from points lines, from lines planes, from
these solid figures and from these sensible
bodies...

One may see in this the attempt to supply to the study
of geometry, and physical bodies, the necessary abstract
background for their study by means of numbers. The
Cantor-Dedekind Axiom, which postulates a one-to-one cor-

"F. Cajori. A Hittecy ot Mathematics. New York. The Macmillan Company, 1938. p. 20.
"Diogenes Laertius. op. tit.: De Vit. Pylh.
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respondence between the points of a line and the real num
bers, is indispensable in present-day geometry. The cor
responding PythagoreanAxiom seems to haveassumed (not
explicitly of course) a one-to-one correspondence between
the points of a line and the rational numbers. And they
seem to have looked upon the physical particle as analogous
to the geometric point. This would make the last sentence
in the quotation from Diogenes Laertius (above) com
prehensible. And since,as wehave seen, points and numbers
were identified, it would also lend meaning to Aristotle's
statement13 that

The Pythagoreans seem to have looked upon num
ber as the principle and, so to speak, the matter of
which beings consist,

and to Philolaus' assertion" that

Number is perfect and omnipotent, and the princi
ple and guide of divine and human life.

For, these utterances of later followers and commentators
express but crudely and sensuously the tenets of the school
and must therefore be taken with a certain degree of free
dom of interpretation. The qualifying phrase, "so to speak,"
in the quotation from Aristotle should be noticed.

It is instructive now to survey briefly the theories of
the cosmogonists after Pythagoras; they are the group of
philosophers now known as "The Atomists."

Anaxagoras of Clazomenae (500-428) held that a
chaotic mass existed from the beginning and con
tained within it, in infinitesimally small frag
ments, the seeds of things.
Leucippus (circa 480 B.C.), pupil and friend of
Zeno of Elea believed in an infinity of atoms
(atoma = indivisibles) as the ultimate constit
uents of things.

Democritus (circa 460 B.C.), pupil and friend of
Philolaus and Leucippus, elaborated the theory of
the latter and applied it to geometry.

"A. Seth. Encyclopaedia Britannica, Werner Edition. 1900, Vol. XX. p. 138.
"Philolaus of Thebes (496-396). the Pythagorean who gave the first written exposition of

the Pythagotean doctrine.
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Epicurus (341-270) adopted the views of Demo-
critus and systematized them into a broader phi
losophy.
Lucretius (94-55) gave the best written exposi
tion of the Epicurean philosophy.
The difference between these views and the earlier

cosmogonies is noticeable. From chaotic, boundless masses
of amorphous substance the emphasis passes to considera
tions of the structure of matter from an infinity of indivisi
ble particles, arranged according to law, and with due re
gard to form, size, internal properties, and numerical rela
tions. The atomic theory of the De Rerum Natura of Lucre
tius" is a far cry indeed from the vague conceptions of the
older cosmogonists. But, whence came it?

We have seen that the Pythagoreans had conceived of
sensible bodies as consisting of particles that corresponded
in a one-to-one way with the geometric points. From this
it would follow that, since points are the indivisibles of space
in the Pythagorean Doctrine, particles would be the indi
visibles of matter. Atomism seems to have been forecast by
Pythagoreanism. Further, it has been pointed out that
Leucippus and Democritus, the founders of the Atomism,
had had contacts with and received instruction from men
acquainted with the Pythagorean Doctrine. For Zeno is
well-known as the propounder of the famous paradoxes
against the Pythagorean Doctrine, and Philolaus was, after
Archytas, the chief exponent of Pythagoreanism. It dis
plays, of course, the fundamental error involved in the
Pythagorean Axiom as to the correspondence of material
points, geometric points, and the rational numbers. Con
sider, for example, the following dilemma to which Demo
critus was led by his adherence to the indivisibles. In the
letter to Eratosthenes prefixed to The Method of Archi
medes10 we find the following statement:

This is a reason why, in the case of the theorem the
proof of which Eudoxus was the first to discover,
namely, that the cone is a third part of the cylinder,

"Lucretius. On the Nature of Things, tr. by H. A. J. Manro. Lonon, 1932.
"T. L. Heath. The Method 0/ Archimedes. Cambridge, University Press. 1932.
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and the pyramid of the prism, having the same base
and equal height, we should give no small share of
the credit to Democritus who was the first to make
the assertion with regard to the said figure though
he did not prove it.

And Plutarch17 presents Democritus as saying:
If a cone were cut by planes parallel to its base,
what must we think of the surfaces of the sections,
that they are equal or unequal? For, if they are
unequal, they will show the cone to be irregular,
as having many indentations like steps, and un-
evennesses; and if they are equal, the sections will
be equal and the cone will appear to have the pro
perty of a cylinder, namely, to be composed of equal
and not unequal circles, which is very absurd.

It appears then that Democritus was led to assert that
the volume of a cone is one third that of a cylinder having
the same base and equal height, but was puzzled by the
dilemma he mentions and could not prove the theorem.

The root of the difficulty lay, of course, in the concep
tion of matter as composed of indivisible and juxtaposed
particles. This difficulty does not arise today (the ir
regularities and unevennesses are smoothed out) because
the Cantor-Dedekind Axiom has replaced the Pythagorean
Axiom. Eudoxus proved the theorem, and others similar to
it, by ignoring the question of the structure of matter, that
is, whether it is discrete or continuous, and using instead the
well-known Eudoxian Axiom (erroneously attributed by
some to Archimedes) which asserts that:18

Of unequal lines, unequal surfaces, and unequal
solids, the greater exceedsthe less by such a magni
tude as, when added to itself, can be made to exceed
any assigned magnitude among those which are
comparable with it and with one another.
This lemma marked the beginning of a new trend in

Greek mathematics. With its help Eudoxus created a new

"Plutarch, De Communibus Notitiit, Vol. IV, ed. by Didot. Paris, p. 1321.
,8T. L. Heath. The Works of Archimedes: On the Sphere and Cylinder: Cambridge. Uni

versity Press. 1897.
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number system (essentially as given in the fifth book of
Euclid) and a new method (the method of exhaustions) for
handlingproblems of the typesthat balked Democritus. The
"indivisibles" were banished from mathematics.

«

"Jacobi states that at various times he had tried to
persuade a young man to begin research in mathematics,
but this young man always excused himself on the ground
that he did not yet know enough. In answer to this state
ment Jacobi asked this man the following question: Suppose
your family would wish you to marry, would you then also
reply that you did not see how you could marry now, as you
had not yet become acquainted with aU the young ladies?"

—G. A. Miller.

«

CURIOSUM

(A + y/B) + (A-y/B) + (A+iy/B) + (A-iy/B) =AA
(A+y/B)2+ (A-y/B)2+ (A+iy/B)2+ (A-iy/B)2=AA2
(A+y/B)2+ (A-y/B)* + (A+iy/B)*+ (A-iy/B)*=AA3

—Dr. Alfred Moessner.1

'Dr. Moessner requests that persons interested in diophantics and problems of theoretical num.
bers correspond with him at the following address: in (13a) Gunztnhausen. All*
Schulhant, Ametikaniscbc Zone. Germany-Baycrn.



AN INSOLUBLE EXPONENTIAL CODE

Ken Hancock

Student, Texas Technological College

Virtually since the beginning of man's existence on
this old sphere of ours, he has found it necessary to com
municate in some manner with his neighbor. Often in fields
of commerce, diplomacy, or war, this communication re
quires a certain degree of secrecy to prevent its falling into
the hands of unwanted would-be sharers of the information.
The universal answer to this problem has been found to lie
in the use of some type of cipher or code. Thus, a coded
message which may fall into the enemy's hands is useless
unless it can be converted to its original form. The develop
ment of "unbreakable codes" in time of war has become
almost as important as life itself, while at the same time an
equally important possession is a means of cracking any
or all enemy ciphers that are intercepted.

Early efforts at cryptography were led by the ancient
Greeks who frequently employed simple substitution of
numbers for letters. A representative example of this type
of substitution is based on the following square array.

12 3 4 5
1 A F L Q V
2 B G M R W
3 C H N S X
AD I O T Y
5 E K P U Z

The use of this diagram involves reading first vertically,
then horizontally. For example, R becomes the intersection
of horizontal row 2 and vertical row 4, or 24 in coded form.
It will be seen that only 25 letters are permitted in such
an arrangement as above. This is easily adjusted to the
conventional alphabet by arbitrarily omitting a letter such
as J. Many different codes result from a permutation of
the letters.
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An analysis of the above typical code reveals several
factors upon which might be based an efficient method for
cracking it. First and foremost is the quite obvious fact
that, regardless of the transposed arrangement of cor
responding numbers or letters in the particular diagram, the
same number always represents one, and only one, letter.
Conversely, the same letter is always represented by one,
and only one, number. Again, in cracking any coded mes
sage of considerable length, the odds are high in favor of the
message having a definite related percentage of letter
content. It has been found from extensive study of charac
teristic languages that each has a pronounced letter fre
quency into which messages chosen at random from that
language will fall. For example, in English the single letter
frequency is in the order, ETOANIRSHDLCWUMFYGPB-
VKXQJZ. Similar orders of frequency are available for
two-, three-, and four-letter combinations, double letters,
initial and final letters, one-, two-, three-, and four-letter
words, and numerous other combinations. We see, then,
that this universally accepted practice of "one number for
one letter" code selection is subject to easy solution by the
experienced, well-equipped cryptanalyst.

It is possible to use certain mathematical processes to
create a code not having the defects common to conventional
substitution codes. Thus, a chosen exponent n may be ap
plied to numbers x to produce, correct to two significant
figures, other numbers xn the sum of whose two significant
digits is some constant k. For example, if n = 0.85 and k =
5, we derive the following table:

x 1.49 2.66 3.93 5.26 6.64
x» 1.4 2.3 3.2 4.1 5.0

Now k, the sum of the digits of xa, may be used as one of the
digits in the number which indicates a particular letter in
the kth row or fcth column of our diagram.

Although the process of raising each number to a power
appears to be somewhat cumbersome, the wide range of
accuracy allowed permits the use of the ten-inch log log slide
rule so familiar to engineering students. The selection of a
value for the exponent n may be based on any convenient
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scheme. However, if the exponent is allowed to vary periodi
cally, a still greater array of different numbers is made
possible; in fact, the same number over two periods can
yield two different letters. It is suggested that n might be
based on the time of transmission of the message. The first
digit in n might represent the day of the week and the
second digit the forenoon or afternoon of the particular day.
For example, an n of 0.51 would be used on Thursday morn
ing, 0.52 on Thursday afternoon, 0.61 on Friday morning,
etc.

Now, summing up our proposed scheme, let us receive a
sample message and carry it through the different processes
to completion. The message, sent on Sunday afternoon,
reads as follows:

(16.4-2.315) - (210.0-0.0252) -(1020-4.56) -
(16,100-488.0) - (0.073-5400) - (0.0018-488.0) -
(0.04-0.0026)-(1020-0.00025)-(0.0006-0.0093)-
(0.00039-0.0026)- (710-2.315)- (5400-0.00039) -
(0.036-0.0093) - (0.091-0.234).

On Sunday afternoon, n = 0.12, which yields the following
table:

X

16.4

2.315

xa

1.4

1.1

k
5

2

210.0
.0252

1.9

.64

1

1

1020

4.56
2.3
1.2

5

3

16,100
488.0

3.2
2.1

5

3

.073

5400
.73
2.8

1

1

.0018

488.0
.47

2.1

2

3

.04

.0026

.68

.49

5

4

52 K

11 A

53 P

53 P

11 A

23 M

54 U
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1020

.00025

2.3

.37

5

1

.0006

.0093

.41

.57

5

3

.00039

.0026

.39

.49

3

4

710.0

2.315

2.2

1.1

4

2

5400

.00039

2.8

.39

1

3

.036

.0093

.67

.57

4

3

.091

.234

.75

.84

3

3

97

51 E

53 P

34 S

42 /

13 L

43 O

33 N

Our message has a very good chance of remaining un
solved by any unsuspecting cryptographer because we have
so jumbled the identical numbers used that they have no
bearing upon one another. In fact, although several combi
nations (such as 2.315 in both K and /) are repeated, they
are unrelated insofar as a final decoded solution is con
cerned. Again, two-number groups representing the same
letter have no similarity; for example,

P = (1020-4.56) = (16,100-488.0) = (0.0006-0.0093).
So, we see, the exponential code has at least two advantages
over the ordinary substitution code: (1) The same letter
can be represented by several different sets of numbers.
(2) The same number can contribute to several unrelated
letters.

It is to be conceded that the enemy cryptographer
would eventually discover certain repetitions of number
combinations if we were forced to send a long message. By
this time, however, the clock would have brought forth a
new half day, and with that new period of time a new
exponent, and, once again, a just-as-bewildered "expert"



MYSTICAL SIGNIFICANCE OF NUMBERS

Dorothy C. Dahlberg

Student, Chicago Teachers College

Certain numbers were employed over and over again
by ancient peoples in mystic and symbolic ways in their
religious ceremonies. Many divergent and geographically
separate i-aces had similar uses for numbers. They all ap
plied abstract numbers to concrete objects and phenomena
in an effort to explain happenings that mystified them.
This universal use of symbolistic numbers developed in three
main ways.

The basic elements in number mysticism came from
nature and happenings in the physical world. In the Rig-
Veda of India the gods were grouped in three classes, the
gods of heaven, air, and earth; the Egyptian god was of
three personalities, morning, noonday, and setting sun;
many races used three with the cycle of man's life—birth,
life, and death. Four had special significance from nature's
four winds and four corners of the world, thus yielding a
god who saw four ways.

Number mysticism also developed from the Baby
lonian culture which influenced the culture and religion in
the pre-Christian world, Old Testament, New Testament,
and thus Christian peoples. It was through Babylonian
astronomy and astrology that the number seven was de
veloped into the most used of all the mystical numbers. The
Babylonians based their astrology on seven moving celestial
bodies (the sun, moon, and five planets visible to the naked
eye), and their navigation on the seven stars of the Pleiades
and other constellations. The four phases of the moon take
2914 days for completion and seven is the integer closest to
the length of one phase. There are, therefore, four weeks
of seven days in a month.

The third area for the development of mystic numbers
was the Greek philosophy that everything in the universe—
beauty, order, music, art—have their origins in numbers.
Pythagoras delved into the make-up of the universe, and by
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experiments in the structure of things observed relation
ships between numbers and happenings in the universe. In
his search for the true philosophy, Pythagoras traced the
origin of all things to numbers. For example, intervals of
an octave, a fifth, and a fourth could be produced by strings
of equal length stretched in a 1/2, 2/3, and 3/4 proportion
by different weights. His conclusion: Harmony depends on
musicalproportion; it is nothing but a mysterious numerical
relation. Where there is number there is also harmony.

Other Greek philosophers gave various numbers certain
characteristics. One was considered the essence of things;
it is an absolute number, hence the origin of all numbers and
so of all things. Four was the most perfect number; in some
mystic way it was conceived to correspond to the human
soul. This connotation for four could have come from the
idea of the composition in man of the four basic elements
(fire, water, air, and earth), and the idea that four is repre
sented geometrically by a solid. (In the Pythagorean
philosophy, one represented a point, two represented a line,
three represented a triangle, and four, placed above the
triangle in space, represented a tetrahedron, the first of the
regular solids.)

Hebrew use of mystic numbers in the Old and New
Testaments, and, consequently, in the Christian world up
to today evolved from these three main sources. It cannot
be said that all numbers used in the Bible have hidden
meanings, but some are definitely mystic and symbolistic.
These are seven, twelve, ten, and three. There is an arith
metical as well as historical basis for the constant use of
these particular numbers. Three is a complete number con
sisting of a beginning, middle, and end; it is the simplest
group of units. Seven is a double group with a central point.
Twelve is four times the group of three; it is also the first
number divisible by four numbers. Ten is the basis of
decimals and comes from the ten fingers of man with five
denoting half the complete ten, and nine falling just short
of completeness.

Seven, the most widely used number, appears in many
of the ancient religions as well as the Bible. It is a sym-
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metric unit composed of not only a central point, but also of
two balanced groups of threes which add greatly to its
harmonic symbolism of completeness. The Chinese emperor
ruled seven provinces, he prayed to seven chief spirits,
seven days after his death he was placed in his coffin, and
he was buried in the seventh month. In the Old Testament
the number seven occurs frequently in connection with reli
gious ceremonies and signs. "... A candlestick all of gold,
with a bowl upon the top of it and his seven lamps thereon
and seven pipes to theseven lamps..." (Zechariah 4:2). In
this verse seven seems to be used to express the completeness
and divineness of light, and possibly knowledge. Seven was
transferred by the people from their religion to daily life.
Job had many blessings with seven sons and three daughters.
In Proverbs 6:16-35, there are listed seven traits of man
that "the Lord hates and these are an abomination unto
Him." The New Testament mentions seven many times in
such groups as seven days, seven parables, and seven peti
tions of the Lord's Prayer. Besides signifying light, omnis
cience, and forethought, in some uses seven expressed com
pleteness in denoting evil. Luke 8:2 relates how seven
devils, signifying total sin and complete wickedness, were
cast out of Mary Magdalene. Today, seven is used in Chris
tian theology and liturgies as the symbol of perfection and
completion in such cases as seven Sundays in Lent, seven
sacraments, seven words of the cross, etc.

Three occurs next to seven in frequency, its arithmetic
absoluteness lending to its popularity. The Christian doc
trine of Trinity follows from three being absolute and the
universe being divided into three parts. With three per
sons in the Godhead, three becomes an especially symbolistic
and mystic number, reaching its peak in the resurrection of
Jesus in three days.

The definite number ten developed from man's fingers.
It represents oneness and its use in the Ten Commandments
as well as the Tenth in the Law of the Tithe is more signifi
cant than mystic. Man has ten fingers which are constantly
with him—good reminders of these rulings which he is to
follow.
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Twelve is the sum of five (half of ten) and seven (the
complete number) which adds to its Biblical popularity.
Jesus had twelve apostles and there were twelve tribes of
Israel. In Revelation, the heavenly city has twelve gates
which gives each of the twelve tribes a part in heaven.

The mysticism of numbers still fascinates man, and the
best challenge left by mystical numbers is found in Reveto-
tion 13:18. St. John says, "Let him that hath understanding
count the number of the beast: for it is the number of a
man; and his number is six hundred three-score and six."
This beast with the number 666 is the symbol of the Anti
christ. Peter Bungus, in Numerorum Mysteria, worked
diligently and with great satisfaction to reduce this number
to the name of the "unholy" Martin Luther. Letting a=l,
b=2,..., k=10,1=11,.... s=90, t=100, u=200, etc., and
using a Latinized spelling, Bungus wrote

(30) (1) (80) (100) (9) (40) (20) (200) (100) (5) (80) (1)
MAR TIN L U TERA

In response, MichaelStifel, a friend of Luther and a German
mathematician, exercised equal ingenuity and showed that
the number referred to Pope Leo X. And the game of beast-
ing has continued unto this day. During World War II it was
pointed out that the number of the beast referred to no one
else but Hitler. Letting A=100, B=101, . . , Z=125, we
find H4-I4-T4-L4E4-R = 1074-1084-1194-1114-104+
117 = 666.

%

"A Bell Laboratories mathematician took a long look
at the cross-section diagram of an early carrier current field
and then showed, by means of a single theorem from
trigonometry, that it could carry twice as many messages
as the engineers had figured."

—Gerard Piel.



TOPICS FOR CHAPTER PROGRAMS—LX

25. RATIONAL-SIDED TRIANGLES.

In the diary of Lewis Carroll there appears the follow
ing note dated Dec. 19,1897: "Sat up last night till 4 P.M.
(sic) over a tempting problem sent me from New York:
to find three equal rational-sided right triangles. I found
two whose sides are 20, 21, 29 and 12, 35, 37 but could not
find three." This is but one of many interesting problems
that have been proposed concerning pythagorean triplets,
that is, rational numbers satisfying the relation x2+y2—z2.
The ancient Egyptians were familiar with the fact that
324-42=52, and a recently deciphered cuneiform tablet of
the ancient Babylonians revealed a table of fifteen triplets,
the largest being (13,500; 12,709; 18,541). Pythagoras,
Plato, Euclid, and Diophantos gave rules for determining
triplets, and the complete solution of x2 + y2 = z2 in rational
numbers is now known. The problem has been generalized
in many ways: an additional condition is introduced as in
Lewis Carroll's problem above, or the restriction to right
triangles is replaced by another restriction such as the re
quirement that the area be rational.
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H. N. Wright, First Course in the Theory of Numbers. New York,
John Wiley and Sons, 1939 (pp. 92-96).

J. W. A. Young, ed., Monographs on Topics of Modern Mathematics.
London, Longmans, Green and Company, 1911 (pp. 316-319).

Also see the following Elementary Problems in the American Mathe
matical Monthly: E1S, Vol. 40, p. 361f (June-July, 1983); E67,
Vol. 41, p. 330 (May, 1934); E7S, Vol. 41, p. 393f (June-July,
1984); E283, Vol. 46, p. 118f (February, 1938); E3U, Vol. 46,
p. 108f (February, 1939); ESS7, Vol. 46, p. 169 (March, 1939);
ES80, Vol. 47, p. 240f (April, 1940); EhlO, Vol. 47, p. 661 (No
vember, 1940); E695,Vol. 53, pp. 334-336 (June-July, 1946). Also
2*7, Vol. 23, p. 211 (June, 1916).

26. THE "FIFTEEN" PUZZLE.

One of the most popular puzzles ever invented is the
Fifteen Puzzle which made its appearance about 1878. The
puzzle consists of a 4X4 matrix of numbers 1, 2, 3,..., 16
mounted on small blocks. The blocks are arranged at
random and number 16 is removed. The puzzle consists of
moving the remaining blocks about so that the numbers
assume their natural order. The puzzle attracted tremendous
interest and huge prizes were announced for the solutions of
certain initial arrangements. Interest in the puzzle subsided
when mathematicians analyzed the various arrangements
and showed that some were impossible of solution. The
puzzlestill is sold in large numbers, a modern version being
attractively made of plastic material.

W. W. R. Ball and H. S. M. Coxeter, Mathematical Recreations and
Essays, eleventh ed. London, Macmillan and Company, 1939
(pp. 299-303).
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W. W. Johnson and W. E. Story, "Notes on the *15' Puzzle," Ameri
can Journal of Mathematics, Vol. 2, pp. 397-404 (1879).

E. Kasner and J. Newman, Mathematics and the Imagination. New
York, Simon and Schuster, 1940 (pp. 170-180).

M. Kraitchik, Mathematical Recreations. New York, W. W. Norton
and Company, 1942 (pp. 802-308).

H. E. Licks, Recreations in Mathematics. New York, D. Van Nos-
trand Company, 1917 (pp. 20-21).

R. A. Proctor, "Fifteen Puzzle," Knowledge, Vol. 1, pp. 37, 79, 185.
R. A. Proctor, "The Fifteen Puzzle," Gentleman's Magazine, new

series, Vol. 26, p. 30.
J. S. Snowdon, "Fifteen Puzzle," Leisure Hour, Vol. 29, p. 493.
H. Steinhaus, Mathematical Snapshots. New York, G. E. Stechert,

1938 (pp. 15-16).
G. W. Warren, "Clew to Puzzle of 15," Nation, Vol. 30, p. 326 (1880).

27. SQUARING THE CIRCLE.

One of the three "classical geometrical problems of
antiquity" was that of squaring the circle, that is, of con
structing a square having an area equal to that of a given
circle. The Greek mathematicians noted that this problem
was solved if a line can be constructed of length equal to
the circumference of the circle. If the only tools permitted
are the compass and the straight-edge, the problem is im
possible. The proof of this was not completed until 1882
when Lindemann proved that wwas transcendental. If tools
other than the compass and straight-edge are permitted,
the problem is solvable. Regardless of the fact that mathe
maticians have disposed of circle-squaring with finality,
would-be-solvers continue to attempt the impossible.
W. W. R. Ball and H. S. M. Coxeter, Mathematical Recreations and

Essays, eleventh ed. London, Macmillan and Company, 1939.
W. W. R. Ball, A Short Account of the History of Mathematics.

London, Macmillan and Company, 1888.
E. R. Brown, 'V and James Smith," Discovery, Vol. 5, pp. 68-60 (May,

1924).
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Vol. 14, pp. 294-296 (March, 1922).
F. Cajori, History of Elementary Mathematics. New York, The Mac

millan Company, 1896. <
A. Carrick, The Secret of the Circle; its Area Ascertained. London,

Henry Sothern, 1876.
P. E. Chase, "Approximate Quadratures of the Circle," Journal of

the Franklin Institute, VoL 108, pp. 45, 105; Vol. 109, p. 409;
Vol. Ill, p. 379.
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L. W. Colwell, "A Simple Method of Rectifying Small Circles," School
Science and Mathematics, Vol. 42, pp. 419-420 (May, 1942).

H. R. Cooley and others, Introduction to Mathematics, 2nd ed. New
York, Houghton Mifflin Company, 1949 (pp. 164-155).

R. Courant and H. Robbins, What Is Mathematical New York, Ox
ford University Press, 1941 (Chapter 3).

M. Dehn and E. D. Hellinger, "Certain Mathematical Achievements
of James Gregory," AmericanMathematical Monthly,Vol. 50, pp.
149-163 (March, 1943).

A. De Morgan, A Budget of Paradoxes, 2nd ed. Chicago, Open Court
Publishing Company, 1915.

A. Dresden, An Invitation to Mathematics. New York, Henry Holt
and Company, 1986.

Encyclopaedia Britannica, eleventh ed. See "Circle."
D. F. Ferguson, "Value of w," Nature, Vol. 157, p. 342 (March 16,

1946). . '
K. Fink, Brief History of Mathematics, tr. by W. W. Beman and

D. E. Smith. Chicago, Open Court Publishing Company, 1903.
T. Heath, A History of Greek Mathematics, Vol. I. London, Claren

don Press, 1921 (pp. 220-232).
C. T. Heisel, Mathematical and Geometrical Demonstrations. Cleve

land, privately printed, 1931. (Behold! The Grand Problem no
longer unsolved. The circle squared beyond refutation.)

E. W. Hobson, "Squaring the Circle," a History of the Problem.
London, Cambridge University Press, 1918.

L. S. Johnston, "An Approximate Rectification of the Circle." Amer
ican Mathematical Monthly, Vol. 46, p. 226 (April, 1939).

T. P. Jones, "Quadrature of the Circle," Journal of the Franklin
Institute, Vol. 12, p. 1; Chamber's Edinburgh Journal, Vol. 46,
p. 45; Eclectic Magazine, Vol. 72, p. 455.

E. Kasner, "Squaring the Circle," Scientific Monthly, Vol. 37, pp.
67-71 (July, 1988). ™

E. Kasner and J. Newman, Mathematics and the Imagination. New
York, Simon and Schuster, 1940.

F. Klein, Elementary Mathematics from an Advanced Standpoint:
Arithmetic, Algebra, Analysis. New York, The Macmillan Com
pany, 1932.

F. Klein, Famous Problems of Elementary Geometry, tr. by W. W.
Beman and D. E. Smith. Boston, Ginn and Company, 1897. Sec
ond edition revised and enlarged by R. C. Archibald, New York.
G. E. Stechert, 1930.

F. W. Kokomoor, Mathematics in Human Affairs. New York, Pren
tice-Hall, 1943 (Chapter 16).

M. Logsdon, A Mathematician Explains. Chicago, University of
Chicago Press, 1936.

H. B. Nichols, "Round Cubes in Square Circles," Christian Science
Monitor Magazine, pp. 4-6, May 20,1986.
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0. Ore, Number Theory and Its History. New York, McGraw-Hill
Book Company, 1948 (pp. 340-348).

W. W. Rupert, Famous Geometrical Theorems and Problems. Boston,
D. C. Heath and Company, 1900 (pp. 39-58).

V. Sanford, Short History of Mathematics. New York, Houghton
Mifflin Company, 1930.

H. Schubert, Mathematical Essays and Recreations. Chicago, Open
Court Publishing Company, 1898 (pp. 112-143).

H. Schubert, "The Squaring of the Circle," Smithsonian Report to
July, 1890. Washington, Government Printing Office, 1891.

H. Schubert, "The Squaring of the Circle," The Monist, Vol. 1, pp.
197-228 (January, 1891).

D. E. Smith, History of Mathematics, Vol. II. Boston, Ginn and
Company, 1926 (pp. 298, 302-313).

J. A. Smith, The Impossible Problem. Shaw and Sons, 1876.
J. F. Springer, "Squaring the Circle," Scientific American, Vol. 104,

pp. 6-7 (January 7, 1911).
"Squaring the Circle," All the Year Round, Vol. 69, p. 448.
"Squaring the Circle," Temple Bar, Vol. 120, p. 552.
"Squaring the Circle Forever Impossible," Scientific American, Vol.

148, p. 286 (May, 1983).
1. Thomas, Selections Illustrating the History of Greek Mathematics.

Cambridge, Harvard University Press, 1939.
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory. New

York, McGraw-Hill Book Company, 1939.
W. F. White, A Scrap-Book of Elementary Mathematics. Chicago,
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Franklin Institute, Vol. 73, p. 56.
J. W. A. Young, ed., Monographs on Topics of Modern Mathematics.

London, Longmans Green and Company, 1911 (Topics VIII and
IX).

??

"In the pure mathematics we contemplate absolute
truths, which existed in the Divine Mind before the morn
ing stars were together, and which will continue to exist
there, when the last of their radiant host shall have fallen
from Heaven."

—E. T. Bell.



THE PROBLEM CORNER

Edited by Judson W. Foust

Central Michigan College of Education

The Problem Corner invites questions of interest to
undergraduate students. As a rule, the solutions should not
demand any tools beyond the calculus. Although new prob
lems are preferred, old problems of particular interest or
charm are welcome provided the source is given. Solutions
of the following problems should be submitted on separate
sheets before October 1,1950. The best solutions submitted
by students will be published in the Fall 1950 number of
THE PENTAGON. Credit will be given for all correct
solutions received. Address all communications to Dr. Jud
son Foust, Central Michigan College of Education, Mt.
Pleasant, Michigan.

PROBLEMS PROPOSED

A solution to Problem 8 has not been received. The
student submitting the best solution of this problem will be
given a one-year subscription to THE PENTAGON.

25. Proposed by Frank Hawthorne, Hofstra College, Hemp
stead, New York.

Triangle ABC has medians AD and CF meeting at H;
E is the midpoint of AC; ED meets CF in G. Show that the
area of triangle DGH is 1/24 of the area of triangle ABC.

26. Proposed by Stanley Ogilvy, New York, N.Y.

Four mothers, each with one daughter, went out to buy
ribbons. Each mother bought twice as many yards as her
daughter. Each person bought as many yards of ribbon as
the number of cents paid per yard. No stores sold any
ribbon in fractions of cents per yard. Mrs. Jones spent 76c*
more than Mrs. White. Nora bought three yards less than
Mrs. Brown. Gladys bought two yards more than Hilda,
who spent 48# less than Mrs. Smith. What is the name of
Mary's mother?

108
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27. Proposed by Cleon C. Richtmeyer, Central Michigan
College of Education, Mount Pleasant, Michigan.

*" In order to saw a
rectangular block at an
angle, the block is held on
the moving table against a
cylinder as indicated in the
figure. If the block is m
inches long, find a formula
for the diameter of the
cylinder necessary to cut
the block at an angle «.

» >

28. Proposed by Norman Anning, University of Michigan,
Ann Arbor, Michigan.

If 70 per centhave lostan eye, 75 per cent have lost an
ear, 80 per cent an arm, 85 per cent a leg, what per cent, at
least, must have lost all four?

29. Proposed by Cleon C. Richtmeyer, Central Michigan
College of Education, Mount Pleasant, Michigan.

An interesting variation of a familiar problem in the
mathematics of finance may be stated as follows: A father
sets aside $4,000 for his son when he starts to college, to
provide him with a fixed monthly income while he is in
school. He is to receive equal payments at the end of each
of the nine months of each of the four school years. If the
$4,000 is invested at 3% compounded monthly one month
before he is to receive the first payment, how large will the
monthly payment be?

30. Proposed by John K. Osbom, Central Michigan College
of Education, Mount Pleasant, Michigan.

Find the length of the largest runner of carpet two
feet wide that can be placed diagonally in a room 24 feet by
30 feet so that each of the four corners of the runner touch
a wall of the room.
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SOLUTIONS

1. Selected from the second Stanford University Mathe
matics Examination, April 19,1947.

To number the pages ofa bulky volume the printer used
1890 digits. How many pages has the volume?

Solution by Robert E. Doyle, lona College, New
Rochelle, N.Y.

Pages 1-9 inclusive require 9digits, pages 10-99 require
180 digits, and pages 100-999 require 2700 digits. There
fore there must be more than 99 pages and less than 999
pages. Now 1804-9=189, 1890-189= 1701, 1701-5-3=567,
and 5674-99=666. There were 666 pages in the volume.

Also solved by Victor Delisle, lona College, and Otto C.
Juelich, Forest Hills, N.Y.

2. Selected from the second Stanford University Mathe
matics Examination, April 19,1947.

Among grandfather's papers a bill was found: 72
turkeys $-67.9-. The first and last digits of the number that
obviously represented the total price of these fowls are re
placed here by blanks, for they have faded and are now
illegible. What are the two faded digits and what was the
price of one turkey?

Solution ofJohn Messera, Hofstra College, Hempstead,
N.Y.

Since the total number of cents must be divisible by72,
it must also be divisible by 9 and divisible by 8. In order
for the total number of cents be divisible by 8, the number
formed bythe last three digits mustbe divisible by 8. From
this we see that 2 is the last digit because 792-5-8=99. In
order that the number of cents be divisible by 9, the sum of
the digits must be divisible by 9. Upon adding the digits
known we obtain 64-74-94-2=24. Therefore in order to
make the sum of the digits divisible by 9, we see that it is
necessary to add 3 to 24. Thus the total bill in cents is 36792
or in dollars $367.92, and the price of one turkey is $367.92
-5-72=$5.11.
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Also solved by Otto C. Juelich, Forest Hill, N.Y., Victor
Delisle, lona College, and Robert E. Doyle, lona College.

5. Proposed by the Problem Corner Editor.

The following approximate construction of it was pre
sented in 1685 by Kochansky, a Polish mathematician. Let
O be the center of a circle with a radius of one unit. Let A
be the point of tangency of a tangent MN. At O construct
an angle AOT equal to 30°, T being the intersection of the
side of the angle with the tangent. From T, on MN, in the
direction of A, lay off TD equal to 3 units. Then, if B is the
other end of the diameter through A, BD is approximately
equal to w. Find to the fifth significant figure the error in
this approximation.

Solution by Otto C. Juelich, Forest Hill, N.Y.
AT = Tan30° = VV3, DA = 3-V3/3, BA = 2
BD2 = BA2 + DA2 = 22 + (S-y/S/Z)2 = (A0-6y/3)/3.
Error = *-BD = 3.141592653 - 3.141533338

= 0.000059315.

Also solved by Victor Delisle, lona College, and Robert
E. Doyle, lona College.

7. Proposed by the Problem Corner Editor.

Reference is made in There is Fun in Geometry by
Kasper to Huyghen's approximation to the length of an arc.
The Problem Corner Editor has sought without success to
locate more definite reference to this. Show that approxi
mately L = (8c—C) /3 in which L is the length of the arc, c
is the chord of half the arc, and C is the chord of the arc.
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Solution by Otto C. Juelich, Forest Hill, N.Y.
From the figure,
c = 2rsm(iA0),
C = 2rsin(i/20).

Let * = y±0. Then
(1) (8c-C)/3 =

(16r sin *—2r sin 2*) /3.
Substituting * and 2$ for

x in the sine series,

sin a; = x-a;3/3! 4- a?s/5! — »T/7! 4- ...,
which converges for all x, and the results in turn in (1),
we obtain

(8c-C)/3 =4r* - 16r<t>5/5! 4- 80r#77! . . .
= rO - r0*/768O 4- . . .

a convergent series since it is the difference of two series
that converge for all values. Since it is an alternating series,
it follows that (8c—C)/S differs from L=r0 by less than
rflB/7680.

19. Proposed by Dr. C. B. Read, University of Wichita,
Wichita, Kansas.

A problem frequently found in algebra books a genera
tion ago was: At what time after a specified hour will the
hour and minute hands of a clock be together? The modern
electric clock often has an hour, a minute, and a second
hand; at what time after twelve o'clock will the three hands
again be together?

Solution by Earl T. Boone, Wayne University, Detroit,
Michigan.

Obviously if the three hands are to be together it is first
required to have two of the hands together and then to de
termine whether or not the third hand coincides. If all the
times when the hour and minute hands are together are
calculated the criterion for determining whether or not the
second hand is in the same position will be that the number
of minutes and the number of seconds after the given hour
must be the same. The hour and minute hands coincide
every 1-1/11 hours or every 1 hour 5 minutes 27-3/11 sec-
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onds. Therefore the coincidences after 12 o'clock are
1:5:27-3/11, 2:10:54-6/11, 3:16:21-9/11, 4:21:49-1/11,
5:27:16-4/11, 6:32:43-7/11, 7:38:10-10/11, 8:43:38-2/11,
9:49:5-5/11, 10:54:32-8/11, and 12:0:0. Obviously at no
time is the second hand within 5 seconds of coinciding with
the other two. Therefore the time after twelve o'clock when
all three hands are together is the following twelve o'clock.

Also solved by Otto C. Juelich, Forest Hill, N.Y., and
the proposer.

20. Proposed by the Problem Corner Editor. (A problem
of historic interest due to John Bernoulli.)

Find the numerical value of i''.

Solution byErwinDeal, Nebraska Wesleyan University,
Lincoln, Nebraska.

In trigonometric form, i = cost1/**) + * sin (%*•)•
Hence, by DeMoivre's theorem,

t< = costVfci"-) + i&in(y»iv) -- coshP/iw) —sinhO/**)
= 2.5089 - 2.3011 = 0.2078.

Also solved by Roy E. Crane, Morristown, N.J., Charles
Gillilard, Washington, D.C., Hugh Morris, Hofstra College,
Clifford E. Harralson, Southwest Missouri State College,
and Otto C. Juelich, Forest Hill, N.Y. Mr. Deal generalized
the problem to that of finding the numerical value of
(a4-ot)exp(c4-di).

21.Proposed by the Problem Corner Editor. (From Taylor
and Bartoo, Introduction to College Geometry, The Mac
millan Company, 1949. Exercise 2, page 43.)

Through a given point within a given angle to draw a
line which will form with the given angle a triangle having
a given perimeter.

Solution by William Douglas, Courtenay, British Colum
bia.
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Denote the angle by
BAG, the point by P, and
let the given perimeter be
K. On AB and AC lay off
AM = AN = y2K. Describe
a circle tangent to AB and
AC at M and N, respec
tively. Through P draw a
line tangent to the circle at
Q and cutting AB in S and
AC in T. Then STA is the
required triangle for QS =
SM and QT = TN and the
perimeter of triangle AST
=AM+AN=K.

Note. It would appear obvious that the construction is not
possible if P falls within or beyondthe circle, and that there
are two solutions in the figure above since there are two
distinct tangents from P.

23. Proposed by the Problem Corner Editor. (From Christ-
man, Shop Mathematics, The Macmillan Company, 1926,
page 26.)

Find y if x is 0.312 inches.

Solution by Lotta Stallman, Paterson, NJ.
Let r = radius of the small circle and R = the radius

of the large circle. Then x+r=R and x—r=y-R. Solving
simultaneously, y=2x=0.62A inches.
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Also solved by Erwin Deal, Nebraska Wesleyan Uni
versity, William Douglas, Courtenay, British Columbia,
Ralph Nyberg, Normal, Illinois, Robert Reichert, Hofstra
College, Earl T. Boone, Wayne University, and H. P. Thomp
son, North Hollywood, California.

24. Proposed by the Problem Corner Editor. (From Christ-
man, Shop Mathematics. The Macmillan Company, 1926,
page 87.)

Prove that in any right triangle the sum of the two
legs is equal to the sum of the hypotenuse and the diameter
of the inscribed circle.

Solution by Lotta Stallman, Patterson, N.J.
Designate the center of

the inscribed circle as /, the
radius r, and the points of
tangency D, E, and F.
Points A, B, and C are the
intersections of tangents to
the circle so that AE = AD,
CD = FC, and EB =BF.
All the angles in AEID are
right angles, therefore AD
= DI = AE = EI = r. But

AB+AC = (AE+BE) + (AD+DC) = (AE+AD) +
(BE+DC) = 2r+ (BF+FC) = 2r+BC.

Also solved by Earl T. Boone, Wayne University, Wil
liam Douglas, Courtenay, British Columbia, Otto C. Juelich,
Forest Hill, N.Y., and H. P. Thompson, North Hollywood,
California.



THE BOOK SHELF

Edited by Carl V. Fronabarger

Southwest Missouri State College

From time to time there are published books of com
mon interest to all students of mathematics. It is the object
of this department to bring these books to the attention of
readers of THE PENTAGON. In general, textbooks will
not be considered and preference will be given to books
written in English. When space permits, older books of
proven value will be described. Please send books for review
to Professor Carl V. Fronabarger, Southwest Missouri State
College, Springfield, Missouri.

Number Theory and Its History. By Oystein Ore. McGraw-
Hill Book Company (330 West 42nd St., New York 18,
N.Y.), 1948. 10 4- 370 pages. $4.50.

Guided largely by his expei-ience in teaching number
theory to undergraduate students, Professor Ore has writ
ten a book teeming with many thought-provoking topics
which can be understood without much mathematical ex
perience and background. A perusal of its contents will
yield the student an invaluable development of his under
standing of the basic fundamentals related to our number
system and arithmetic operations.

The blending of historical facts into the presentation
is a rich characteristic of this book. It is further charac
terized by clear, concise definitions and very readable proofs
of theorems. Another feature of considerable merit is the
inclusion of bibliographies after most chapters.

The author's organization of topics is very well done.
The inclusion of numerous problems, with an adequate num
ber of illustrative examples preceding the selections, will
offer a definite challenge. The topics—Counting and Re
cording of Numbers, Euclid's Algorism, Prime Numbers,
Aliquot Parts, Indeterminate and Diophantine Problems,
Congruences, Theory of Decimal Expansions, Classical Con
struction Problems, and several portions or whole chapters
dealing with the well-known theorems attributed to Euler,

116
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Fermat, Wilson and other mathematicians of distinction—
can scarcely fail to augment the student's appreciation of
the subject.

This book should provide, along with the standard
undergraduate course in the theory of equations, an ade
quate background in algebra for students entering graduate
school, and it will remain an important source of reference
for number theory topics.

" Harold Skelton.

Mathematics Our Great Heritage. By William L. Schaaf.
Harper and Brothers (49 East 33rd St., New York 16,
N.Y.), 1948. 11 4- 291 pages. $3.50.
This book should be accessible to laymen through public

libraries, and shouldalso be in every high school and college
library. It can be listed as one of the fine books to motivate
interest and study in mathematics. The few gems of mathe
matical thought are well chosen and exemplify the objec
tives selected by the author. The reading of this book should
help the reader realize that mathematics has been most ef
fective in developing cultural and scientific leadership, and
it should inspire one to go to the source material and con
tinue further study in the subject. Professor Schaaf has
given us a notable piece of literature. More books like this
should be written by competent authors.

—C. N. Mills.

How to Solve It. By G. Polya. Princeton University Press
(Princeton, NewJersey), 1948. 15 4- 224 pages. $300.
This is not a mathematics book; it is a book about

mathematics for students and teachers of mathematics. It
does not present lists of exercises and problems to be solved,
but has to do with general methods of solving problems. In
the words of the author, "Mathematics has two faces; it is
the rigorous science of Euclidbut it is alsosomething else."
Textbooks tend to present mathematics as a systematic
deductive science after the Euclidean pattern; this book
deals with the "something else," the experimental, inductive
approach to a problem which leads us to the solution. The
Euclidean pattern is not an effective approach to the solu-
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tion of a problem; rather, it is a vehicle for reporting the
solution. This book is devoted to an exposition of methods
and techniques for discovering solutions.

According to theauthor, solving problems is a practical
skill to be learned by observing and imitating what other
people do when solving problems. But solving the problem
at hand, particularly in a classroom situation, may be a
relatively unimportant outcome of the student's activity.
As theauthor points out, if a student fails to get acquainted
with a particular geometric fact, he may not have missed
much that will be of value to him later on but if he fails to
getacquainted with the idea ofgeometric proof in his study
of geometry, "He lacks a true standard with which to com
pare alleged evidence of all sorts aimed at him in modern
life."

As the author suggests, it is an old philosophical dream
tofindunfailing rules applicable toallsortsof problems, but
it can never be more than a dream. We can, however, study
procedures which are typically useful in solving problems.
This is what the author has attempted to provide. The re
sults of his efforts will be of interest to all teachers and stu
dents of mathematics. His book should be of particular
value to the young, inexperienced teacher. Good students
and successful teachers of mathematics will find that they
are already using many of the procedures described, but
even they will find much of value in this book.

—Claude H. Brown.

The Psychology of Invention in the Mathematical Field. By
Jacques Hadamard. Princeton University Press
(Princeton, New Jersey), 1945. 13 4- 143 pages. $2.50.
Howmany times haveyou askedyourself, "What makes

a mathematician and how does he tick?" The answers to
these and related questions are given by the author in a
clear, logical exposition of his and other's introspections and
studies on the methods of mathematical discovery. This
fascinating little book should beof interest not onlyto those
who will do graduate work in mathematics, but also to
prospective teachers of secondary school mathematics and
students of a philosophical or psychological bent, perhaps
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also to others because of the recent interest in "mechanical
brains."

In sections I-V the author develops the thesis that
mathematical invention is accomplished by repetitions of the
cycleof operations of preparation, incubation, and illumina
tion (inspiration), two consecutive cycles being properly
tied together by "relay-results." Preparation consists of a
period of (conscious) intense and controlled thought, dur
ing which ideas (hooked atoms) are activated and projected
in certain fairly well-defined (but not too narrowly con
fined) directions. These (usually) apparently fruitless
endeavors are followed by a period in which the individual's
attention is elsewhere (i.e., he "sleeps" on it), so that incu
bation occurs. During incubation, some of the above
"atoms" collide (subject, perhaps, to the laws of chance)
with other "atoms" (including stationary ones) and form
"molecules" (combinations of ideas) of various kinds, some
of which are likely to be important because of the "fire con
trol apparatus" used in preparation. The unconscious then
selects those "molecules" which affect most deeply the per
son's emotional sensibility, resulting in illumination. Then
ensues the conscious work of verifying and precising these
inspirations (to obtain a "relay-result"), a process of "shor
ing up" the excavations already made, without which furth
er digging is impossible.

The remainder of the book consists of a discussion of
some items auxiliary to the main thesis. Synthesis of a
whole argument is accomplished by means of a mental
image, usually visual or kinetic in nature, the actual steps in
the proof being somewhere in the "fringe-consciousness,"
the top layer of the unconscious, so that they can be "peeled
off" easily. For most mathematicians, words (in the usual
sense) are not a necessary adjunct to thought. "Common
sense" and space intuition, incidentally, do not necessarily
lead to correct results. Some authorities classify mathe
maticians either as "intuitive" or "logical," but the author
believes all are intuitive (some more than others) in the
sense that an initial intuition (discovery) is followed by
logic (enunciation). The author points out that most re
search leads in the direction of scientific beauty and this
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kind usually proves most fruitful and (eventually) practi
cally useful. One of the appendices contains a letter from
Professor Einstein about his own methods of thought.

—Thomas H. Southard.

A Concise History of Mathematics. By Dirk J. Struik.
Dover Publications, Inc. (1780 Broadway, New York
19, N.Y.), 1948. Vol. I: 18 4- 123 pages. Vol II:
6 4- 175 pages. $1.50 per volume.
Here, as the name indicates, is a concise history of

mathematics. Published in two small, pocket-size volumes,
the work gives a brief account of the development of mathe
matics from early times through the nineteenth century.
No attempt is made to include all that is known about mathe
matics, either ancient or modem, but important trends and
developments are indicated, with a surprising amount of
detail for such a short work. In the first volume the author
mentions the probable state of mathematics in the Stone
Age, traces its development in the ancient Orient, the
Grecian period, and introduces the beginnings in Western
Europe. In the second volume he takes up the contributions
of individuals to the development of the subject in the seven
teenth, eighteenth, and nineteenth centuries. Because the
history is brief, a quantity of material has been reduced to
a small space, but nevertheless the outstanding mathe
maticians and their works are treated in such a way as to
give the account a more human aspect than would have been
the case with a topical approach.

While he holds strictly to his subject, Dr. Struik fre
quently inserts comments on the political situation and gen
eral history of the times which shed much light and give
some interesting sidelights on the mathematics itself. Some
knowledge of the history of ancient, medieval, and early
modern times will help in understanding these comments,
but is not necessary to an understanding of the work itself.
The reader with a general knowledge of high school mathe
matics, or even less, will find no difficulty in following the
mathematics included in the first volume, but for a good
understanding of the second volume he should be acquainted
with the subject matter of mathematics beyond the high
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school level. For those who wish to pursue the history of
mathematics further and in more detail, lists of appropriate
works on the subject are given at the end of each chapter.
This is a commendable feature of both volumes. The work is
illustrated with a number of facsimile pages from old writ
ings, as well as with pictures of a number of men who con
tributed to the development of mathematics.

The author seems not to have written his book with
any particular group in mind. In some places his language
is not simple; he chooses somebig words where more simple
terms might do, and some of his allusions are somewhat
obscure. However, the narrative, brief and direct as it is,
gives a good account of the main trend of mathematics over
the years. Many students who may hesitate to read a fuller
treatment because its size is forbidding may well select this
work to gain a knowledge of what the author calls "a vast
adventure in ideas."

—S. B. Murray.

You Can't Win. By Ernest E. Blanche. Public Affairs Press
(2153 Florida Ave., Washington 8, D.C.), 1949. 155
pages. $2.00.
The contents of this little book are well described by

the subtitle "Facts and Fallacies about Gambling." The
author, who is at present Chief Statistician for the Logistic
Division of the Army General Staff, has spent much time
during the past twenty years studying games of chance and
the "techniques of gambling and the foibles of gamblers."
He here presents many of the results of his investigations,
with special emphasis on the odds against the average
better.

The plan of the book is indicated by the chapter head
ings. A brief introduction lists fourteen reasons why "you
can't win." Then the first two chapters on "The Gambling
Trend" and "Wagers and Wagering" are concerned with
the definition of gambling and a short discussion of systems
for attempting to beat gambling games. The later chapters
take up in turn the various games or gambling devices:
"Dice Games, Playing Cards, Poker and Three-Card Monte,
Betting on the Horses, The Numbers Racket, Lotteries and
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Pools, Pin-Ball and Slot Machines, Roulette, Carnival
Games, Bingo, The Chain-Letter Racket, The Pyramid Club
Scheme, Children's Gambling Games, Confidence Games."
A typical chapter will give a brief history of the game or
device, describe the method of play, discuss and list odds for
and against winning, describe "gimmicks and gadgets" used
by professionals and sharpers to swindle the unwary player,
and finally point out that "you can't win."

The book is very readable, due to simple language and
structure, and contains interesting information. A student
of mathematics will certainly wish that the author had in
cluded a discussion of elementary probability such as that
given in his article on "The Mathematics of Gambling" in
School Science and Mathematics, March 1946, and had in
dicated more clearly how odds are computed. (Others may
think that there is too much mathematics.) It is not clear to
the reviewer just what the author expects of the reader in
the way of mathematical background — probably none.
However, on page 37 he finds the probability of obtaining
6 at least once in n tosses of a die. This involves solving
an exponential equation, the use of logarithms and inequali
ties, and might cause difficulty for some students of college
mathematics.

The author sometimes fails to make his point that "you
can't win." For example, in chapter 5, he tells the anecdote
of the statesman whose "poker was so good that" while he
was in the army "he kept his company continually out of
funds." This story is followed on the next page by the
statement that "it is difficult to understand how anyone
can conclude that poker is a game of skill rather than of
chance."

Anyone interested in gambling for any reason, whether
as a participant, or as a student of psychology, sociology, or
mathematics should get something from this book. How
ever, in most cases, he would probably wish to read farther.
For these readers, a rather long list of references is given,
including a few on mathematics. The date given in the
reference to the author's article on "The Mathematics of
Gambling" is incorrect. —Paul Eberhart.



THE MATHEMATICAL SCRAPBOOK

Come, come, letuscircle the square, and that willdo us good.
—BOSWELL.

= V=
Perpendiculars from the incenter to the sides of the

3-4-5 right triangle divide it into areas whichare numerical
ly 1,2, and 3.

=V=
It is often related that DeMoivre, always interested in

number series, had foretold that each day he should need
15 minutes more sleep than on the preceding day, and that
his death would occur when the total reached 24 hours.

= V =
Kenneth is making the acquaintance of decimals and

has been asked to divide ten by three. He proceeds:
"Three into ten, three decimal point."
"Right. Goon."
"Carry one—three into ten, three—another three, and

another. Why, they are all threes!"
"Yes, indeed."
"Well, how long do they go on?"
"As long as you like."
"What, for a million years?"
"Yes, if you like."
"No, not for a million years."
"Why not?"
"Well, you see, by that time they will know much more

about mathematics than we do and they'll soon put a stop
to that."

—Math. Gazette.

=V=
3.141592653589793238462643383279

See, I have a rhyme assisting
My feeble brain its tasks sometime resisting,
Efforts laborious can by its witchery
Grow easier, so hidden here are
The decimals all of circle's periphery.

—L. R. Stokelbach.
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A goldsmith charged 2% commission when purchasing
some gold from A (meaning that A received only 98% of
the value of the gold), and 2% when he sold the same gold to
B (meaning that B paid 102% of the value of the gold). But
the goldsmith made an extra $25 in the deal by cheating, as
he bought with a "pound" weight which actually weighed
17 oz., and sold with a "pound" weight which only weighed
15 oz. How much did A get for his gold? (Ans. $183.51)

—Sch. Sci. and Math.

=V =
Leibnitz was the last of the universals.

—De Quincy.

= V=
"With a series of equations, [A. Brothman, a mathe

matician who practices as a chemical engineer in New York
City,] showed how the Buna-S process [for making syn
thetic rubber] could be put on a continuous instead of a
batch basis. At a cost of $15,000 for extra piping, the capac
ity of the plant was stepped up forty percent over original
design estimates."

—Gerard Piel.

=V=
To square numbers between 25 and 75 we may use the

identity,
N2 = [25 + (N - 50)]X100 + (N - 50)2.

Thus, we determine iiV —50, add 25, annex two zeros, and
then add (N — 50)2. To illustrate, for 562 we find in order
56-50=6, 64-25=31,31X100=3100, 31004-62=3136.

= V =
The following cryptarithm has a unique solution. The

a;'s indicate missing digits, not necessarily equal,
xxxx)x55xx5x(x5x

xx5xx

xxxxx

xxxxx

xxxx

xxxx

—Math. Gazette.
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A certain youth was asked his age
By one who seemed to be a sage;
To whom the youth made this reply,
Sir, if you wish your skill to try,
Eight times my age increased by four
A perfect square, nor less nor more;
Its triple square plus nine must be
Another square as you will see.
He tried but sure it posed him quite,
His answer being far from right
You skilled in science I implore
This mystic number to explore.

—The Scientific Journal, 1818.

= V =

Here is an easy geo
metrical construction of a
parabolic arch having
given width and height,
Divide the width into 2n
equal parts, the height into
n equal parts, and draw
radial lines as indicated in

the figure. The intersections of the radial and vertical lines
are points on the desired parabola.

= V =
The harmonic series

14-1/2 4- 1/3 4- 1/4 4- 1/5 4- 1/6 4- .. .
is the reciprocal of the continued product

(1-1/2) (1-1/3) (1-1/5) (1-1/7) . ..
in which only the primes enter.

—Euler.

=V =
At the time of the French Revolution, delegates of the

Convention inquired of the illustrious Lagrange what sub
ject he would be willing to profess for the benefit of the
community. Lagrange answered meekly, "I will lecture on
Arithmetic."

—Nature.

^Os^
%i *s
4A %t %
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Why is it that we entertain the belief that for every
purpose odd numbers are the most effectual?

—Pliny the Elder.

=A=

• The radical sign was once an r, but it has become worn
down by constant use.

=V=

The Quiz Kids flunked the following problem. A baker
sent a boy to deliver an order for 9 doughnuts. The baker
placed the doughnuts in a box, and wrote IX on the cover to
indicate the number of doughnuts inside. On the way the
boy ate 3 of the doughnuts, and then decided it might be
good policy to change the number on the box accordingly.
His pencil had no eraser. How did he change the number?

= V=

HORIZONTAL:
1. Insects.
2. Four.
3. Annoy.
4. No teacher has this kind

of life.
VERTICAL:

1. Dogs do this.
2- So do suckers.
3. A large one is a mouthful.
4. A little more than one bit,

but less than two-bits.

=V=

Sir William Rowan Hamilton (1805-1865), the discover
er of quaternions (1852), was an infant prodigy, competing
with Zerah Colburn as a child. He was a linguist of remark
able powers, being able, at thirteen years of age, to boast
that he knew as many languages as he had lived years.
When only sixteen he found an error in Laplace's MScanique
celeste.

-De Morgan.

12 3 4

_

_
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"The advance and perfecting of mathematics are closely
joined to the prosperity of the nation."

—Napoleon.

= V =
The following item appears in Jacques Bernoulli's

Opera (1744): "Titius gave his friend, Sempronius, a
triangular field of which the sides, in perticas, were 50, 50,
and 80 in exchange for a field of which the sides were 50,
50, and 60. I call this a fair exchange." Can you find other
such pairs of Bernoullian triangles?

-=V =

"He was an arithmetician rather than a mathematician.
None of the humor, the music or the mysticism of higher
mathematics ever entered his head. Men might vary in
height or weight or color, just as 6 is different from 8, but
there was little other difference."

—John Steinbeck, The Moon Is Down.

= V =

"It is a perfectly erroneous truism, repeated by all copy
books and by eminent people when they are making speech
es, that we should cultivate the habit of thinking of what we
are doing. The precise opposite is the case. Civilization
advances by extending the number of operations which we
can perform without thinking about them."

—A. N. Whitehead.

= V =

Prime numbers in arithmetical progression. Note that
the difference in each case is a multiple of all the primes
preceding the first term.

3, 5, 7.

3, 11, 19.

5, U, 17, 23, 29,

5, 17, 29, 41, 53,

7, 157, 307, 457, 607, 757, 907.

= V =

Nothing is so difficult but that it may be found by
seeking. —TERENCE.



KAPPA MU EPSILON NEWS
Edited by Cleon C. Richtmeyer, Historian

At their annual banquet on January 13, twenty-three
new members were initiated into California Alpha. Dr.
Aubrey J. Kempner spoke on the subject, "What is True in
Mathematics?"

- + -

Illinois Beta holds its discussion meetings in conjunc
tion with the Mathematics Club, with the KME business
meeting following. The chapter has approved fourteen nom
inations for prospective new members.

- + -
Iowa Alpha held a Homecoming Breakfast on October

22 at the home of Dr. H. Van Engen, national president
of KME.

-+-
Coffee and doughnuts are served after each program

meeting of Kansas Alpha. The annual dinner held in Feb
ruary featured reports of the NCTM meeting at Wichita.

- + -

Jeri Sullivan was the official delegate of Kansas Gamma
at the Wichita NCTM meeting. Mary Alice Weir represent
ed the chapter at the Regional N.F.C.C.S. meeting in
Omaha. Miss Weir, who is vice-president of the Kansas
Gamma chapter, has been awarded a scholarship to the
Institutum Divi Thomae in Cincinnati where she will do
medical research. Plans are being made for a joint meeting
of the four Kansas chapters in connection with the spring
meeting of the Kansas section of the M.A.A. in Pittsburg.

-+-

Miss Laura Greene, Kansas Delta, was in charge of ar
rangements for the KME luncheon held in connection with
the N.C.T.M. meeting in Wichita on December 30. Dr. O. J.
Peterson, Kansas Beta presided, and Kenneth Lake, Kansas
Delta senior, addressed the group on the topic, "An Ele
mentary Discussion of Fundamental Concepts in Modern
Algebra." Twenty-three members and two guests were
present, representing six chapters.

128
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Edward Czarnecki, Treasurer of Michigan Beta, was
nominated by the college student body for listing in Who's
Who in American Colleges and Universities.

- + -

Mississippi Beta is planning a spring initiation ban
quet, with an invited speaker.

- + -

Missouri Alpha has extended an invitation to the
fraternity to hold its next biennial convention on the cam
pus of Southwest Missouri State College, There are at
present twenty-eight active members in the chapter.

. - 4- -
An "Open House" meeting was held in January by

Missouri Beta, to which everyone interested was invited,
whether or not he was a member. The chapter purchased
a $5.00 Christmas Seal Bond from the National Tuberculosis
Association.

- + -
Nebraska Alpha will assist in plans for the meeting of

the Nebraska section of the N.C.T.M. to be held in April.
KME and Lambda Delta Lambda will hold a joint banquet
for which the speaker will be furnished by KME.

- + -
On November 16, New Jersey Beta held a joint meet

ing with New Jersey Alpha on the Montclair campus. Dr.
Howard Fehr of Columbia was the speaker. .The October
12 initiation was held at the home of Dr.- Virgil S. Mallory.

- + -

At the semi-annual initiation and banquet on January
11, eleven new members were initiated into New Mexico
Alpha.

-4--

The national officers of KME met on the campus of
New York Alpha during the Christmas holidays. The
chapter was represented by five faculty and five student
members at the KME luncheon held in New York City at
the time of the M.A.A. meeting. A total of twenty-seven
people attended this luncheon, held in Butler Hall, Colum
bia University. In addition to New York Alpha, Iowa
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Alpha, Michigan Alpha, Michigan Beta, New Jersey Alpha,
and New Jersey Beta were also represented.

-4—

South Carolina Alpha built the programs for the first
semester around the theme, "Modern Higher Plane Geom
etry." It was felt that this procedure accomplished more
than a series of unrelated papers on a variety of subjects.

-+-
Tennessee Alpha has by far the highest scholastic re

quirements of any organization on the campus of T.P.I.

PROGRAM TOPICS, FALL SEMESTER, 1949-50

California Alpha, Pomona College
Method of Casting out Nines, by Don Benson
Sir Isaac Newton, by Carolyn Grove
Linkages, by John Dienes
Baste Problems of Number Theory, by Mr. Ralph Vernon
Conic Sections, Illustrated with Plastic Models, by Dr. C. G. Jaeger

and Mr. Charles Halberg
Navigation, by Gilbert Madden
Continuous Fractions, by Don Benson

Illinois Beta, Eastern Illinois State College
Approximations to Pi, by Donald Fraembs
Problems of Antiquity, by several speakers
Paradoxes and Fallacies, by several speakers
Pythagorean Triples, by Dr. L. A. Ringenberg

Illinois Delta, College of St. Francis
The New Year, by Mary Lou Hodor
We Claim Lewis Carroll Too, by Sister M. Claudia
The Geometry of Life, by Nan Hutchings
Journal Reports, by Lois Gilgen and Bemadine Arseneau
Problem Proposed, by Alice Del Favero
Movie, Years of Progress, by Sister M. Rita Clare
Isaac Newton, by Margaret Ann Dreska

Iowa Alpha, Iowa State Teachers College
Eisenstein's Irreducible Criteria, by Don Edwards
Magic Squares, by Sam Weigert
The Theory and Uses of the Planimeter, by Don Richardson
The Problem of Appolonius, by Eddie Sage

Iowa Beta, Drake University
Highlights of The National Convention, by Lewis Workman
Seven Come Eleven, by Waid Davidson
Euclidean Algorism, by Enid Allbaugh
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Boolean Algebra, by Jack Matsui
Kansas Alpha, State Teachers College, Pittsburg

Contributions of Surveying to Mathematics, by Lawrence Fields
Development of Computing Devices and Machines, by Robert

Green
Curious Numbers, by Ronald Lehman
Lengths of Circular Arcs by Drafting Methods, by Charles Crane
Probability and Its Uses, by Prof. J. A. G. Shirk
Determination of Pi, by Robert Sommerfield
Proof8 of The Pythagorean Theorem, by Robert Thomas
Logarithms of Complex Numbers, by Dr. R. G. Smith

Kansas Beta, State Teachers College, Emporia
Problem Dealing with Simple Harmonic Motion, by Roger Ruth

and Virginia Reed
Program of Thought Problems, by Bill Varvel and Saul Straud

Kansas Gamma, Mount St. Scholastica College
Status of Mathematics with the Greek Philosophers, by Sister

Helen Sullivan
Mathematics in The Patristic Period, by Noreen Hurter
Mathematics in The Scholastic Period, by Mary Alice Weir
Contemporary Mathematical Philosophers, by Jeanne Cullivan

Kansas Delta, Washburn Municipal University
Theory of Numbers, by Dr. S. Chowla
Problems in Algebra, panel discussion by Mr. Hugo Rolfs, How

ard Sperry, William Powell and Kenneth Lake.
The Trisection of an Angle, panel discussion by Mr. Norman

Hoover, Margery Gamble, Edna Metzenthin, and Nancy Martin
Mathematical Needs of The Psychology Major, by Robert S. Hage

Michigan Alpha, Albion College
Carl Friedrich Gauss, by Edwin Kehe
Life of Abel, by Deane Floria
New Methods for Evaluating Determinants, by Prof. Paul Cox
Repeating Decimals, by Philip McKean
Some Uses of Mathematics in Chemistry, by David Harmer

Michigan Beta, Central Michigan College
Some of the Mathematics Used in Music, by Margaret King
Report on The Christmas Luncheon in New York City, by Dr.

C. C. Richtmeyer
Mathematics in Photography, by Roger Ewing

Michigan Gamma, Wayne University
Newton's Method of Solving Equations, by Dr. K. W. Folley
Foundations of Mathematics, by Dr. R. Ackoff
The Differential Analyzer, by Dr. A. W. Jacobson

Mississippi Gamma, Mississippi Southern College
Finding the Bend Points of Quadratic Equations by Inspection of

Roots, by Arthur McCary
Mathematical Probabilities in Various Forms of Gambling, by

Virginia Felder
Beginnings of Modern Algebra, by Harold Leone
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Short Method of Integration for Volumes of Certain Solids, by
E. C. Stanford

Alpha and Beta Functions, by John Jones, Jr.
Missouri Alpha, Southwest Missouri State College

Some Geometric Interpretations of the Binomial Theorem, n-=2,
n = S, and Approximations of Roots by Geometry, by Earl Bilyeu

Diophantine Problems, by J. H. Skelton
Puzzle Problems, by James Jakobsen and Joe Guida
Statistical Research, by Mar J. Robinette
Works of Some Well-Known Greek Mathematicians: Archimedes,

by Jessie Belveal; Appolonius, by Evelyn Ruark; Euclid, by Ernest
Fontheim; Pythagoras, by George Nash; Eudoxus, by Patricia
Maddus; Thales, by Earl Phillips
Missouri Beta, Central Missouri State College

Denumerable and Non-Denumerable Infinities, by Sammy Vaughn
The Euclidean Algorithm, by Wayne Vanderlinden
Types of Discontinuities, by Philip Burford
Nomography, by Rex Wyrick
Complex Numbers and Their Geometric Interpretation, by Kath-

ryn Lou Baker
Puzzles Based on Binary and Ternary Number Systems, by

Martin Rowland

Short Cuts in Multiplication, by Peggy June Taylor
The Fourth Dimension, by Barbara Wurth
An Oblique Coordinate System, by Mrs. Marcia Jackson

Missouri Gamma, William Jewell College
The History of Social Mathematics, by Thomas Henry
The Mathematical Deviation Used in Chemistry, by Donald

Williams

Mathematics and Reality, by Bob Fitzwater
The Calendar, by Peggy Beecher

Missouri Epsilon, Central College
Newton and Leibniz, by Paul Calvert
Hamilton and Quaternions, by Mark Barton
The Kinetic Theory of Gasses, by Merle Cartwright
An Introduction to Modern Geometry, by Dr. Floyd Helton
Cantor's Theory of Infinity, by Niels C. Nielson
A Brief History of the Development of The Engineering Profes

sion, by Clifton Denny
History of Tlie Number System, by David Bouldin
Gauss, Prince of Mathematics, by Norman Drissell

Nebraska Alpha, State Teachers College, Wayne
Sir Isaac Newton, by Howard Prouse
Blaise Pascal, by Neil Sandahl

New Jersey Beta, State Teachers College, Montclair
Trisection of a General Angle by Means of Curves, by Audrey

Jensen

Appreciation of Elementary Mathematics, by Dr. Howard Fehr
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New Mexico Alpha, University of New Mexico
Lagrangian Mechanics, by Norman Riebe
Colds and The Anti-Histamxnes, by Dean Roy Bowers

New York Alpha, Hofstra College
Mathematics in the Schools of England, by Mr. Charlesworth
The Four Color Problem, by Dr. Oilman
Verb Tense Determined Symbolically, by Mr. Beller
Complex Roots of Polynomials Determined Graphically, by Prof.

Howard Fehr
Non-Euclidean Geometry, by Perry Watts

Ohio Alpha, Bowling Green State University
The Color Problem, Mr. Harold Tinnappel
Dimensional Analysis, by Norman Fleck, Ned Krugh, Arthur

Miller, and Harry Ling
Mathematical Physics, by Dr. Donald Bowman

Ohio Bete, College of Wooster
Symbolic Logic, by Prof. Wilford Bower
Centrifugal Force in Industry, by Mr. Walter H. Craig
Science and Philosophy of Mathematics, by Robert Miller and

George Smolensky
Mathematics of Sound, by Dr. E. Unnewehr

Oklahoma Alpha, Northeastern State College
To Prove that "e" is a Real Number and has a Limit, by Harry

Henson and Doyle Sanders
Recovering Oil through Water Pressure, by Doyle Reich

South Carolina Alpha, Coker College
Properties of Cyclic Quadrilaterals, by Shirley Jenkins
The Use of Analysis in Construction Problems, by Frank

Saunders
The Theorems of Ceva and Menelaus, by Betty Reaves
Some Properties of Orthogonal Circles, by Frank Saunders

Tennessee Alpha, Tennessee Polytechnic Institute
History of K.M.E., Miquel Jorge Garcia
The Constitution of K.M.E., by B. A. Limpert and H. Baxter

Norman.
Mathematical Quiz With Prizes, by M. T. Morgan, W. A. Brown,

and F. Joel Witt
Unusual Facts and Figures, by Elbert H. Gilbreath
Chances of Winning, by Charles A. Swallows

Texas Alpha, Texas Technological College
Highlights of Astronomy, by Dr. R. S. Underwood
Probability in Games of Chance, by Prof. E. R. Heineman

Wisconsin Alpha, Mount Mary College
Non-Euclidean Geometry, by Joan Daley
Tlie Fourth Dimension, by Mary Kilkelly
History of The Calculus, by Mary Hunt
Relativity, by Kathleen Hanley
Number Systems, by Wanda Kropp
The Slide Rule, by Janet Haig



THE EIGHTH BIENNIAL CONVENTION OF
KAPPA MU EPSILON

The National Council of Kappa Mu Epsilon has ac
cepted the invitation of the Missouri Alpha chapter to hold
the Eighth Biennial Convention at Springfield, Missouri.
The dates have been set for Friday, April 27, and Saturday,
April 28,1951.

Those members of Kappa Mu Epsilon who attended the
Seventh Biennial Convention held at Topeka, Kansas, will
recall that a profitable time, and a good time, was had by
all who attended. It is the desire of the National Council
that the Eighth Biennial Convention meet the standards of
excellence set by previous conventions of Kappa Mu Epsilon.
There is no reason why it should not be an excellent demon
stration of the kind of work that can be done by our fra
ternity. Such chapters as Kansas Delta and Illinois Alpha
have shown how to organize a convention and the national
officers have now had some recent experience in organizing
a program. These two factors and an outstanding chapter
of Kappa Mu Epsilon as host chapter should insure another
in the series of conventions for which Kappa Mu Epsilon
is famous.

Local chapter officers should give considerable thought
to the type of paper their chapter will offer for the conven
tion program. It is easy to offer papers which lack "under-
standability" at conventions such as those sponsored by
Kappa Mu Epsilon. Papers which are suitable for small
groups, such as more commonly occur in local chapters, are
not always suitable for large groups. In small groups stu
dents will feel at ease to ask questions if the paper is not
understood. In large groups they hesitate to do so, par
ticularly, if they know so few of the members of the group.
Furthermore, papers delivered at local meetings usually
have more time alloted than it is possible to allot at conven
tions. The time handicap is a very severe one when pre
senting a paper which is to be understood by juniors and
seniors.

134
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In all probability there will be many more papers sub
mitted than can be given at the convention. In order to
enable the program committee to make a wise choice, fifty
word abstracts should accompany each title submitted for
a place onthe program. The abstractshould include a state
ment as to the kind of visual aid, if any, that will be used
bythe student in order to clarify the main idea of the paper.
These abstracts should be ready by January or February
of 1951.

The convention is one means of stimulating interest in
your local organization. The possibility of giving a paper
at the convention should create an additional interest in the
local chapter as well as the national organization. It is
hoped that the local officers will give this interest creating
activity much consideration. It usually takes some thought
and effort on the part of local officers to get members of
their chapter to develop an outstanding paper suitable for
presentation at a Kappa Mu Epsilon Convention.

—Henry Van Engen, President.

«
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CHAPTERS OF KAPPA MU EPSILON

ALABAMA ALPHA, Athens College, Athens.
ALABAMA BETA, Alabama State Teachers College, Florence.
ALABAMA GAMMA, Alabama College, Montevallo.
CALIFORNIA ALPHA, Pomona CoUege, Claremont
COLORADO ALPHA, Colorado A & M CoUege, Fort Collins.
ILLINOIS ALPHA, Illinois State Normal University, Normal.
ILLINOIS BETA, Eastern Illinois State CoUege, Charleston.
ILLINOIS GAMMA, Chicago Teachers College, Chicago.
ILLINOIS DELTA, College of St Francis, Joliet
IOWA ALPHA, Iowa State Teachers CoUege, Cedar Falls.
IOWA BETA, Drake University, Des Moines.
KANSAS ALPHA, Kansas State Teachers CoUege, Pittsburg.
KANSAS BETA, Kansas State Teachers College, Emporia.
KANSAS GAMMA, Mount St Scholastica CoUege, Atchison.
KANSAS DELTA, Washburn Municipal University, Topeka.
MICHIGAN ALPHA, Albion CoUege, Albion.
MICHIGAN BETA, Central Michigan College, Mount Pleasant
MICHIGAN GAMMA, Wayne University, Detroit.
MISSISSIPPI ALPHA, State College for Women, Columbus.
MISSISSIPPI BETA, Mississippi State College, State College.
MISSISSIPPI GAMMA, Mississippi Southern CoUege, Hattiesburg.
MISSOURI ALPHA, Southwest Missouri State CoUege, Springfield.
MISSOURI BETA, Central Missouri State College, Warrensburg.
MISSOURI GAMMA, William Jewell College, Liberty.
MISSOURI DELTA, University of Kansas City, Kansas City.
MISSOURI EPSILON, Central College, Fayette.
NEBRASKA ALPHA, Nebraska State Teachers College, Wayne.
NEW JERSEY ALPHA, Upsala CoUege, East Orange.
NEW JERSEY BETA, New Jersey State Teachers CoUege, Montclair.
NEW MEXICO ALPHA, University of New Mexico/Albuquerque.
NEW YORK ALPHA, Hofstra College, Hempstead.
OHIO ALPHA, Bowling Green State University, Bowling Green.
OHIO BETA, College of Wooster, Wooster.
OHIO GAMMA, Baldwin-Wallace CoUege, Berea.
OKLAHOMA ALPHA, Northeastern State College, Tahlequah.
SOUTH CAROLINA ALPHA, Coker CoUege, HartsviUe.
TENNESSEE ALPHA, Tennessee Polytechnic Institute, Cookevffle.
TEXAS ALPHA, Texas Technological CoUege, Lubbock.
TEXAS BETA, Southern Methodist University, Dallas.
TEXAS GAMMA, Texas State CoUege for Women, Denton.
TEXAS DELTA, Texas Christian University, Fort Worth.
WISCONSIN ALPHA, Mount Mary CoUege, MUwaukee.


