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THE HYPATIA OF THE NINETEENTH
CENTURY

MARY LoU MALONEY
Mount St. Scholastica College

Few people understand why women’s achievements in
science, compared with those of men, have been so few and
of so small import, or why it is that we hear so little of her
in times past. They ask why she so very seldom appeared
in the scientific world before the second half of the nine-
teenth century. It is these people who do not realize the
intensity of woman’s age-long struggle for freedom and
justice in things of the mind.

As in all countries, French women too felt the hamper-
ing hand of prejudice. Even up to the age of Louis XIV
women were much retarded in their quest for education by
an environment which was becoming daily more and more
unfavorable to the higher education of women. A young
girl’s education was deemed complete if she was able to
read, write, dance, and play some musical instrument. Any-
thing more was superfluous and deserving of censure and
ridicule rather than praise.

During this period appeared what were perhaps to
become the two greatest factors in deterring the education
of women: the two plays of Moliére, Les Femmes Savonts,
and Les Précteuses Ridicules. They were ample arsenals
which supplied the opponents of education-for-women with
the arms needed to decide, in their favor, the long warfare
against the gentler sex. Replete with great sarcasm, the
plays were merely an expression of prevailing opinion aptly
worded by Moliére:

“Tt is not seemly, and for many reasons,
That a woman should study and know so many things.”?

1. Jean Baptiste Paquelln Molidro, Les Femmes Savants, Act I, Sceno 7.
b
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Few women had the courage to defend their sex against
such condemnations as found in the words of Molidre’s
“aide de campe”, the comic dramatist, Destouches:

“A learned woman ought—so I surmise—conceal
her knowledge or she’ll be unwise.

Must keep the level of the common kind,
To subjects commonplace devote her mind.

That knowledge shall not make her seem unwise,
She must herself in foolishness disguise.”?

However, France did produce a few exceptions like Mme.
du Chalelet, Sophie Germain, and Mme. Lepaut; women
who dared to face the ridicule which was inevitable if they
devoted themselves to science or philosophy.

Sophie Germain is perhaps one of the most interesting
of the French women students. She was a profound scholar
and was called by De Prony “the Hypatia of the nineteenth
century.” The world can acclaim her as one of the founders
of mathematical physics. It has been said that the theory
of elasticity belongs to the nineteenth century and that
the establishment of the broad outlines of this theory was
accomplished almost exclusively by French writers, prin-
cipal among whom was Mademoiselle Sophie Germain. Her
success, however, was the result of a struggle of aspiring
and acquisitive young womanhood in opposition to many
obstacles, the chief among which was the opposition of her
family. ‘

Perhaps we can best realize her determination to con-
tinue the study of this science which had become her passion
if we consider a typical evening in France about the year
1791. A young girl is being fondly put to bed by her
parents, But we note that before leaving the room the
father and mother thoroughly and systematically gather
all the clothing in the room, extinguish the fire, and leaving,
lock the door securely. The girl appears resigned, but
the house is scarcely still before she rises, wraps herself

2. Néricault Destouches, L'Homme Singulier, Act III, Secne 7.
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in quilts and blankets, and applies herself to some books
in the corner. Thus Sophie Germain spent many nights
in spite of the intense cold which we are told often froze
even the ink in her inkwell. Perhaps her parents would
find her in the morning, chilled through, and would say
again, “Of what use is Geometry to a girl?’3

But in 1816, twenty-five years later, we find a pleasant
bustle in a large room filled with the savants of France.
It is a public séance of the Institut de France. The last
memoir of Mlle. Germain on vibrating surfaces is to be
crowned publicly. It is the triumph of eight years of work
by this profound scholar on the mathematical theory of the
vibrations of elastic surfaces, a work which won for Sophie
Germain the “Grand Prix” of the French Academy. It is
from this memoir that we have the often quoted line,
“Algebra is but written geometry and geometry is but
figured algebra.” 4

Mlle. Germain entered the philosophical as well as the
mathematical field. In addition to her Memoire sur la sur-
faces elastiques, she published a philosophical work,
Considerations Generales sur L’Etat des Sctences et des
Lettres aux Différentes Epoques de Leur Culture.

Considering all points of the question she was prob-
ably the most profoundly intellectual woman which France
can boast; and yet, strange to say, even her death certificate
did not give her the distinction of ‘“mathematicienne.”
When the Eiffel Tower was erected and inscribed with the
names of seventy-two savants, the name of France’s daugh-
ter of genius, Sophie Germain, was not included.® Is it
because she was a woman? Past history would seem to
indicate that this is woman’s fate. But if this be the case,
the more ungrateful are those responsible, for this woman
deserved well of science. We of today cannot hesifate to
give her an enviable place in the Hall of Fame. May she
serve as a well-cast model for the “Hypatias of Today”.

8. H. J. Mozans, Woman tn Science, p. 154,
4. Rober t Edounard Morits, Memorabilia Mathamatica. p. 276.
B. H. J. Mozans, Woman ¢n Science, p. 156,
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“These two good friends, and two of Britain’s most
famous scientists, Newton a mathematician and physicist,
and Locke a great philosopher, were walking along the
English country side one day when Newton, as was his fre-
quent custom, began working mentally on a problem which
was interesting him. After carrying out the investigation
he obtained a result, and turning to his friend, Locke, he
said, ‘And that gives us x’. Just to carry on the conversa-
tion, and appear interested, Locke replied, ‘Does it?
Newton, surprised and worried, cried, ‘Doesn’t it? At once
he plunged into the solution again, found that he had made
a mistake, and said to Locke, “‘You were right, it does not
give us x, it gives us y’. Forever after, Sir Isaac Newton
regarded John Locke the most erudite of philosophers,
never dreaming that Locke had no idea of the problem which
Newton had solved.” :

' —NATIONAL MATHEMATICS MAGAZINE.



ON TRISECTING AN ANGLE

BARBARA STEINBERG
Queen’s College

There is a proof, or so I'm told

By scientist respected,

That certain angles stubbornly
Refuse to be trisected

With compass, straight edge, pen and ink.—
And that’s the only ticket,

For Euclid says that other tools
Simply are not cricket.

Yet every year some hardy souls
Will publish refutations

Of scientific treatises

And learnmed dissertations.

They send out methods by the score
And hope that by insistence

They will succeed in lowering

The scientists’ resistance.

Some hint that mathematicians
(Ugly insinuation)

Claim no ‘solution’s possible

Out of sheer desperation.

You think you’ve found a method, eh,
Which cannot be refuted ?—

I tell you, str, I know it’s right!
Aha, but is it Euclid?

1 From The American Mathematical Monthly, Vol. 51, p. 398 (Aug.-Sept., 1944).



MAGIC SQUARES

FRANK LANE
University of New Mexico

A magic square is defined as a square which is divided
into n? sub-squares arranged in n columns and # rows, each
sub-square containing such a number that the sum of the
numbers in each column, each row, and each diagonal is the
same. Each number associated with a sub-square is known
as an element of the square. The number 2 is called the
order of the square; thus, a magic square with four columns
and four rows will be called a magic square of fourth order.

Magic squares were known in China and India before
the Christian era. Like much of the mathematics known to
the ancients, magic squares were associated with mysticism;
some were given the power to expel devils and others the
power to protect the possessor from mishaps. A magic
square of fourth order is engraved on the gate of the fort
of Gwalior, India. Another magic square of fourth order
appears on the painting “Melancholy” by Albert Diirer.

Much of the work on the theory of magic squares was
done by a group of French mathematicians, the most 1mport—
ant contributions being made by De La Hire. In fact, the
method of constructing magic squares which will be dis-
cussed in this paper is attributed to De La Hire.

Probably the most interesting magic squares are those
composed of the first #2 integers arranged in » rows and
n columns. Others, such as those composed of the first
n integers each occurring # times, are so much simpler that
in general they can be constructed at will with little knowl-
edge of the theory of magic squares. The following
discussion will be devoted entirely to finding a means of
constructing some of the nth order squares composed of the
first #? integers, although squares of other types will be
required in the construction. With the suggested restric-

10
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tion, there is one magic square of first order, none of second
order, and only one distinct magic square of third order;
that is, all other squares of third order can be derived from
one basic form by rotation or reflection. Beyond the third
order, the number of possible squares increases rapidly.
There are 880 squares of the fourth order. No enumeration
of possible squares of order higher than the fourth has been
made, but it is known that those of the fifth order number
in the hundreds of thousands.

Before beginning the solution of the problem, it seems
worth while to know whether there is some law that governs
the manner in which the 72 numbers must be distributed
within the columns and rows of the square; that is, is the
sum of the rows and columns already determined when = is
known or can the sum be made any desired number? There
are n* numbers to be placed in # rows in such a way that
the sum of each row shall be the same. The sum of the
first n* integers is given by n2(n? 4+1)/2, which means
that the sum of the numbers in each row must be
n (n? 4 1)/2. The columns and diagonals of a magic
square must also have this same sum, so the sum is com-
pletely determined by the value of n.

Notice, now, that all of the numbers 1, 2, «+ -, 22 which
are to be the elements of the nth order square can be written
in the form nA 4B, where A is one of the numbers
0,1,-+, (n—1) and B is one of the numbers 1,2, -+, n.
As an example, when 7 is three, 1=038 41, 6 =13 + 3,
7=28 41, and so on for all the numbers 1 through 9.

- Now the problem is broken in half. Instead of an nth
order square with #? different integers, two auxiliary
squares of nth order will do provided the first auxiliary
square contains in each row, column, and diagonal numbers
which are possible for 4, and the second auxiliary square
contains numbers which are possible for B. The auxiliary
squares will be constructed in such a way that they are
magic; that is, the sum of the elements of each row, the sum
of the elements of each column, and the sum of the elements
of each diagonal are all equal.
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After two suitable auxiliary squares have been selected,
all that need be done to form the main square is to multi-
ply an element of the first square by =, add to it the
element of the second square which holds a like position,
and place the sum as the corresponding element of the
main square. The main square thus formed will always be
magic for the auxiliary squares are magie, and the sum
of the elements of each row, column, and diagonal will be
n?(n—1)/2 + n(n + 1) /2, which is n(n* 4 1)/2. Care
.must be taken, however, that the auxiliary squares are such
that the #2 numbers which form the elements of the main
square are distinct, for the elements of the auxiliary squares
may be in such a position that the same number will appear
as two or more elements of the main square. An example
of this is given for a third order square. Use for the first
auxiliary square: first row 1, 0, 2; second row, 2, 1, 0;
third row, 0, 2, 1. For the second auxiliary square use:
first row 2, 1, 3; second row 3, 2, 1; third row 1, 8, 2. The
resulting main square will be: first row 5, 1, 9; second row,
9,5,1; thirdrow 1, 9, 5. This is certainly undesirable from
our point of view.

A magic square of nth order is a very complex struc-
ture, so it seems necessary to establish some sort of
reference device as an aid in discussing such a structure.
The scheme used will be similar to the latitude-longitude
system used for position measurements on the surface of the
earth. The numbers 0, 1, -+, (n—1), in order, will be
associgted with the columns from left to right. Similarly,
the same » numbers will be associated with the rows from
top to bottom. The column of the square will be indicated
first; thus, the #jth element will mean the element of the
square which appears in the i¢th column and the jth row.
As further conventions of notation that will be used here, .
the first auxiliary square will be filled with the # distinct
numbers ay, @, *** , &y_3 Where each a;, will be one of the
numbers 0, 1, +++, (n—1) ; similarly, the second auxiliary
square will be filled with the # distinct numbers b,, by, ---,
b,_; where each b, will be taken from the list 1, 2, -+, n.
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Inasmuch as there are only n distinet numbers from which
to select a; or b, a number such as a,; shall mean the same
thing as a;, and b, shall mean b;. Always the a’s and b’s
will have meaning no matter what their subscripts might be.

Magic squares of nth order are usually divided into
three classes. In increasing order of difficulty of construc-
tion these are: class 1, » odd; class 2, » even and divisible by
four; class 8, n even but not divisible by four. Squares of
class 8 are constructed principally by empirical rules and
will not be considered in this paper.

CLASS 1 (n odd).

Fill the first auxiliary square in such a way that the
tjth element will be a;;; The elements of the square will
appear as in Fig. 1. Each row and each column contains all
of the numbers ay, @4, ***, @,—; in some order so that the
rows and columns are magic. The sum of these » numbers
is n(n—1) /2. .

On the descending diagonal ¢ = 7, whence the 7jth ele-
ment is a,;. But the numbers a.,. wherei=—20,1,---, (n—1),
are equal in some order to the numbers a,, a;, «*¢ , @y_y.
Hence, the descending diagonal has the magic sum
n(n—1)/2.

The ascending diagonal is composed entirely of the
element a,_, written # times. In order to have the square
magic, na,_; must be equal to n(n—1)/2, or an_y=—
(n—1)/2.

Now that the first auxiliary square has been constructed,
the second auxiliary square is filled with the elements b;_,,
as shown in Fig. 2. Notice that, as in the first auxiliary
square, the elements in each of the rows and columns are,
in some order, the numbers b, by, *-+, b,_; and thus the

QG @ Gp Qe bo by ba ccc bay
@ Q@ a3 °°* Gy ba_1 bo by c*+ ba_e
a Qa3 QG °°° I ba—e bn1 bo =+ Ba_s
Ay G a4 Ay _2 by be bs --+ b

F1G. 1. Fic. 2.



14 The Pentagon
rows and columns are magic. The sum of these numbers
isn(n 4 1)/2,

Along the ascending diagonal i=n—j—1 so the
elements of this diagonal are b,_s;,, 7 =0,1,:++, (n—1).
These are, in some order, the numbers by, by, *+* , ba_.
Thus, the ascending diagonal contains the magic sum
n(n 4+ 1)/2. On the other hand, the descending diagonal
contains the number b, written » times, so in order for the
square to be magic, nb, must be equal to n(n 4 1) /2, or
bo=(n+1)/2

One problem remains. Is it possible to prove that the
elements na;,,; 4 b,_, of the resulting magic square are dis-
tinct? Let us assume that there are two such ele-
ments which are equal; that is, assume nai,; 4 b;_;—
Mpiq + bp—q. This can be written as b,_;=b,_, 4 nP,
where P, is an integer. Now b,_; and b,_, are among the
integers 1, 2, +++, n so their difference cannot exceed .
Therefore Py =0 and b;_;=b,_,. Also na,,;=na,,,, 50
Qiyj=0@yyo This means that ¢ 4- j=p + ¢ 4 nP, and
i{—j=p—q + nP; where P, and P; are integers.. Solv-
in terms of p and ¢, we find i=p + n(P, 4 P3)/2 and
j=q+ n(P;— P;)/2. But both ¢ and j are less than =,
so that P, 4+ Py =0 and P, — Py =0. Thus, Py=P3; =0,
whence i=2p and j=4gq. We conclude that the numbers
which make up the elements of the main square are distinct.
The magic square so formed must be composed of the first
n? integers.

Perhaps the method will become evident with an
example of a fifth order square formed this way. With

FiG. 3.

411]0]|83|2||314)1[5] 223 9 1]20] 12
1]0]8]2]4(/218[411(5 7] 8119111 25
0|3 |2]4)1]||5]2[8 41 5|17 | 13 | 24 6
3241|0176 28]4 16 | 16 | 22 8| 4
24|10 |8({4j1[b6[2]8|[14[21]10 21|18
"~ First Auxiliary Second Auxiliary Resulting Magic
ngare Square Square
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n==5, a,_, which is a; must be 2, but ay, @,, 2., and a; may
be associated with the numbers 0, 1, 8, 4 in any way desired,
such as @¢y=4, ¢, =1, a.=0, and az=—38. Similarly, b,
must be 8, but the other elements may be picked at will, say
by=4, bo=1, bg= 5, b,=2. With this choice, the ele-
ment in the first column and first row of the main square
will be 16 -4 =9, and so on for all 256 elements. The
auxiliary squares and the resulting magic square appear as
in Fig. 8.

CLASS 2 (n divisible by 4).

Fill the first auxiliary square with the numbers @y am
where m =n/4. With this rule for forming the elements,
each row consists of the numbers ay, a;, ***, a,_, in some
order, and so has the magic sum n(n —1) /2.

Along the descending diagonal { =7, so the elements
are of the form a;(;42s), =0, 1, ++-, (n—1). Since
1 4 2m and » are relatively prime, these # numbers will be
distinct and therefore equal, in some order, to @y, @y, ***, @y _;-
Thus, the descending diagonal has the desired sum.

Along the ascending diagonal ¢=n-—j—1, so the
general element will be a,_;_;.2n; Which is equivalent to
@¢(2m—1)j—1. Now, since 2m — 1 and 7 are relatively prime,
@ (2m—1) ;-1 will have n distinct values as j takes on the values
0,1,-+-, (n—1). It must be true, then, that the ascending
diagonal contains all of the numbers ao, a4, ***, @,—; and so
has the desired magic sum. _

Each column, however, contains the elements a; and
@i 4.2m & total of 2m times each. In order for the columns to
be magic, 2m(a; + @42n) must equal n(n—1)/2, or
& +@ypom=n—1. With this one restriction the first
auxiliary square is magic.

The second auxiliary square is filled with the numbers
bemi4+s This differs from the first auxiliary square only in
that the ¢ and 7 have been interchanged, so the reasoning
used in the discussion of the first auxiliary square will apply
if ¢is read as §, 7 as %, row as column, column as row, descend-
ing diagonal as ascending diagonal, and ascending diagonal
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as descending diagonal. The rows will be magic only if
by + bamys=mn+1.

The remainder of the problem is to prove that the
resulting %#? elements in the main square are distinct.
Assume that the ¢jth element is equal to the pqth element.
Then by an argument similar to that used in the preceding
case, it can be shown that i—p and j =g¢. Hence, if two
elements are equal they must have the same position in the
square and consequently are the same element. Therefore,
the 72 elements of the resulting square are distinct.

This method may now be applied to a fourth order
magic square, When 7 =4 and therefore m =1, we must
have a; 4 @;4.2n =23 so that if ap=38 and ¢, =2, a; must
be 0 and a; must be 1. Also, b; 4 biyom =25, 80 by =2 and
b; == 4 requires that b, =8 and b3=1. These values give
the auxiliary squares and final magic square shown in
Fig. 4. There are, of course, other values that could be

31201 21812138 14 11| 2| 7
01182 4 |114]1 4 51|16 9
31201 3121832 15|10] 8 6
011812 114]1] 4 1 8] 18| 12
First Auxiliary Second Auxiliary  Resulting Magic
Square Square Square
F1G. 4.

assigned to ay, a,, by, and b1: ao can be any of the permitted
values, but a; is then fixed; @, can be either of the two
remaining permitted values, but a; is then fixed. A similar
process. is used in finding combinations of the b’s.

The method outlined above is fairly general and will
permit construction of numerous magic squares, but still
only a fraction of the total number of squares possible. The -
method can be generalized by filling the auxiliary squares
with ey, and b..; or some such general elements, but even
then the totality of squares will not be represented. In fact,
no general formula for constructing all magic squares has
yet been devised.



TOPICS FOR CHAPTER PROGRAMS—II .

The first of a series of articles presenting bibliographies
on subjects which are suitable for chapter programs was
published in the Spring, 1946, number of the PENTAGON.
The subjects covered in the first article were 1) Women
as Mathematicians, 2) The Cattle Problem of Archimedes,
and 3) Paper Folding. In continuing this series, the editor
again urges each person who presents a paper on a chapter
program to submit a bibliography. Any suggestions for
making this series as complete and useful as possible will
be appreciated.

4, MATHEMATICAL PRODIGIES

Appleton’s Cyclopedia of American Biography, vol. 5. New York,
1888. See article on T. H. Safford.

“Arithmetieal Prodigies,” American Mathematical Monthly, vol. 25,
pp. 91-84 (Feb., 1918).

W. W. R. Ball and H. 8. M. Coxeter, Mathematical Recreations and
Essays, 11th ed., chapt. 13. London, MacMillan, 1940.

A, Binet, Psychologic des grands calculateurs et joueurs d’'échecs.
Paris, Hachette, 1894,

H., A, Bruce, “Lightning Calculators—A Study in the Psychology of
Harnessing the Subconscious,” McClure’s Magazine, vol. 389,
pp. 586-698 (Sept., 1912).

Dictionary of American Biography, vol. 16. New York, Charles
Scribner’s Sons. See article on T. H. Safford.

Distionary of National Biography, vol. 2. London, 1908. See article
on George Parker Bidder.

Encyclopasdia Britannica, 11th ed.: Reference to Zacharias Dase is
found in “Table, Mathematical.”

“How Lightning Calculators Calculate,” Literary Digest, vol. 45,
pp. 514-516 (Sept. 28, 1912). -

J. L. Manley, “Where Are They Now? April Fool!” New Yorker,
Aug. 14, 1987, pp. 22-26. (Reference to W. J. Sidis.)

“Mai%gxg)atical Prodigies,” Literary Digest, vol. 107, p. 25 (Dec. 217,

G. A. Miller, “Mathematical Prodigies,” Science NS, vol. 26, pp. 628-
630 (Nov. 8, 1907).

G. A. Miller, “Mathematical Prodigies,” Scientific American Supple-
ment, vol. 66, p. 61 (Jan. 25, 1908).

“A lg(l)ndl 9%:¢):es with Machines,” Literary Digest, vol. 82, p. 20 (Aug.

y .
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F. D. Mitchell, “Mathematical Prodigies,” American Journal of Psy-
chology, vol. 18, pp. 61-148 (1907).

P.J. Miils)ist-z;é Ueber die Anlage zur Mathematik. Leipzig, Barth, 1900,

-« Pp. A

“Negro Mathematical Genius,” Literary Digest, vol. 46, pp. 971-972
(Apr. 26, 1913).

8. Newcomb, The Reminiscences of an Astronomer. Boston, Houghton
Mifflin, 1903. Reference to T. H. Safford is found on pp. 67-69.

“Prodigious Failure,” Time, July 31, 1944, pp. 60-62. (Reference to
W. J. Sidis.)

E. W. Scripture, “Arithmetical Prodigies,” American Journal of Psy-
chology, vol. 4, pp. 1-59 (1891).

W. G. Smith, “Notes on_the Special Development of Calculating
Ability,” pp. 60-68 of Modern Instruments and Methods of Caleu-
lation. A Handbook of the Napier Tercentenary Euxhibition,
edited by E. M. Horsburgh. London, Bell, 1914,

6. CALCULATING MACHINES

Daniel Arthur, “The Ancient and the Modern Abacus,” Scientific
American Supplement, vol. 89, pp. 276-277 (Apr. 80, 1910).

A. Bakst, Mathematics. Its Megic and Mastery. New York, D. Van
Nostrand Company, 1941, pp. 113-124,

D. C. Cheng, “The Use of Computing Rods in China,” American Mathe-
matical Monthly, vol. 32, pp. 492-499 (Dec., 1925).

Encyclopaedia Britannica: See article on caleulating machines.

G. N. Gibson, “Napier’s Bones,” Scientific American Supplement, vol.
78, pp. 128 (Aug. 22, 1914).

H. E. Goldberg, “Arithmetical Machines,” Scientific American Sup-
golemenmlé,) vol. 79, pp. 59-60 (Jan. 23, 1916) and pp. 76-76 (Jan.

Journal of Franklin Institute, vol. 212, pp. 447-488 (1931).

D. H. Leavens, “The Chinese Suan P’an,” American Mathematical
Monthly, vol. 27, pp. 180-184 (April, 1920).

D. N. Lehmer, “Hunting Big Game in the Theory of Numbers,”
Scripta, vol. 1, pp. 229-286 (March, 1933).

D. H. Lehmer, “A Photo-Electric Number Sieve,” American Mathe-
matical Monthly, vol. 40, pp. 401-406 (Aug.-Sept., 1938).

L. L. Locke, “The Contributions of Leibnitz to the Art of Mechanical
f;slgl)ﬂation," Scripta Mathematica, vol. 1, pp. 815-821 (June,

L. L. Locke, “The History of Modern Calculating Machines, an Amer-
ican Contribution,” American Mathematical Monthly, vol. 81,
pp. 422-429 (Nov., 1924).

“The New Electronic Differential Analyzer,” Science, vol. 102, p. 12
(Nov. 9, 1945).

“Number-Splitting Machine,” Literary Digest, June 17, 1988, pp. 18-20.

L. J. Richardson, “Digital Reckoning among the Ancients,” American

- Mathematical Monthly, vol. 28, pp. 7-18 (Jan., 1916).

V. Sanford, Short History of Mathematics. New York, Houghton-

Mifflin Company, 1980, pp. 87-93, 850-352.
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“Above all, adepts find in mathematics delights analo-
gous to those that painting and music give. They admire
the delicate harmony of numbers and of forms; they are
amazed when a new discovery discloses for them an
unlooked-for perspective; and the joy they thus experience,
has it not an esthetic character, although the senses take
no part in it? Only the privileged few are called to enjoy
it fully, it is true; but is it not the same with all the noblest
arts?” —HENRI POINCARE.



A BRIEF HISTORY OF THE
FOURTH DIMENSION

HELENA WEIGAND
College of St. Francis

The geometry of more than three dimensions is a
modern branch of mathematics which had its beginning in
the first part of the nineteenth century. However, before
this time there were some early references to the number
of dimensions of space. In the first book of Heaven, Aris-
totle writes, “The line has magnitude in one way, the plane
in two ways, and the solid in three ways, and beyond these
there is no other magnitude because the three are all.”
[4, p. 1].* Ptolemy pointed out in his book, On Distance,
that three mutually perpendicular lines could be drawn in
space, but a fourth perpendicular to these would be without
measure or definition [8, p. 180]. Thus, for centuries equa-
tions of degree higher than the third were regarded as
unreal. For example, Stefel (1486-1567) in the Algebra
of Rudolph speaks of “going beyond the cube just as if
there were more than three dimensions. Which is,” he adds,
“against nature.” [4, p. 8]. Also, John Wallis in his Algebra
says, “Length, Breadth, and Thickness take up the whole
of Space. Nor can Fansie imagine how there should be a
Fourth Local Dimension beyond these three.” [4, p. 5].
However, Ozanam (1640-1717) does admit the imaginary
existence of more than three dimensions when he says in
his Dictionaire mathematique, “A product of more than
three letters will be a magnitude of as many dimensions as
there are letters, but it will only be imaginary because in
nature we do not know of any quantity which has more
than three dimensions.” [4, p. 6].

In the writings of some philosophers we find refer-
ences to a space of four dimensions. In a book published

® Numbers in brackets refer to the literature cited at the end of this paper.
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in 1671, Henry More says that spirits have four dimensions,
and Kant (1724-1804) has several references in his works
to the dimensions of space [4, p. 7].

After much discussion and disputation, it was sug-
gested by several writers in the latter part of the eighteenth
century that mechanies be considered a geometry of four
dimensions with time as the fourth dimension. Lagrange
advanced this theory in 1797 in his book, Theorie des fonec-
tions analytiques, and he is usually given credit for the
idea. The same idea was also expressed by d’Alembert in
an article on “Dimension” published in 1754. These are
almost the only instances in which we find the subject of
the fourth dimension referred to before 1827 [4, p. 8].

We may distinguish definite contributions to the
subject in the period beginning with 1827. As far as we
know, the first contributions to the geometry of four dimen-
sions was made in 1827 by Mébius who pointed out that
symmetrical figures could be made to coincide if there was
a space of four dimensions. He explained the reason that
two solid figures do not coincide, even though they are equal
and similar, is that beyond the solid space of three dimen-
sions there is none of four dimensions. He explained further
that we could make two solid triangles coincide by letting
one triangle make a half revolution around one of its sides
through a space of four dimensions. However, since such
a space is not present, coincidence is impossible [5, p. 526].

In 1846, Cayley made use of geometry of four dimen-
sions to investigate certain configurations of % points situ-
ated in any manner in space. By passing lines through all
the combinations of two points and planes through all the
combinations of three points, and then cutting these lines
and planes by any plane, Cayley developed the following
theorem. “We can form a system of N points situated
8 at a time on N; lines, to wit, representing the points by
12, 18, 28, etc., and the lines by 123, etc., the points 12, 13, 23
will be situated on the line 123, and so on.” He adds that
the above theorem may be considered as the expression of
an analytical fact which will hold also in considering four
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coordinates instead of three. However, in supposing four
dimensions of space it is necessary to consider lines deter-
mined by two points, half-planes determined by three points,
and planes determined by four points [5, pp. 527-8].

The next contribution to our subject came from James
Joseph Sylvester (1814-1897). He wrote several papers on
the study of geometries. In 1851 in a paper on homogeneous
functions, Sylvester discussed polar and tangent forms in
n-dimensional geometry [4, p. 5]. In 1859 in some lectures
on partitions, he made an application of hyperspace and
showed how to picture the fourth dimension geometrically
[Z, p. 399]. In a memoir written in 1863, “On the Centre
of Gravity of a Truncated Triangular Pyramid,” he con-
sidered the corresponding figures in four and » dimensions
and proved his theorems for all of these figures [4, p. 5].
A contemporary of Sylvester, William Clifford, in 1866
made an application of the higher geometry to a problem
in probability [5, p. 540].

Geometry of the fourth dimension was slow in gaining
recognition even by leading mathematicians. Gradually,
however, mathematicians began to apply the language of
geometry to the processes of algebra and analysis. An
example of this theory is furnished by Cauchy in 1847 in
his “Memoir on Analytic Loci.” He says, “We shall ecall
a set of n variables an analytical point, an equation or
system of equations an analytical locus.” [4, p. 6].

One of the most important contributions of this period
wag made by George Bernard Riemann in his paper, “On
the Hypotheses which Lie at the Foundation of Geometry.”
In this paper Riemann builds up the idea of multiply
extended manifolds and their measure relations [4, p. 6].
Our present conception of the fourth dimension is based
upon Riemann’s theory. A modern condensed definition of
a four-dimensional Euclidean manifold in terms of analyti-
cal geometry, where the word manifold or class is used
instead of space, reads, “A four-dimensional Euclidean
manifold is the class of all number quadruples: (z, ¥, z,u),
(@, v, 2, w), (7, y’, 2, w",), ete., to any two of which
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there may uniquely be assigned a measure, (called the dis-
tance between them) defined by the formula

VE—2)24+ (y—y)2 4 (2—2)2 4 (u—u)2
Certain subclasses of this class are called points, lines,
planes, and hyperplanes. Analytical four-dimensional
Euclidean geometry is the system formed by theorems
derived from these definitions.” [8, p. 124].

Numerous contributions and papers on the fourth
dimension have been written in recent years. Many of the
leading physicists have propounded d’Alembert’s idea of
time as the fourth dimension. Among these are F. Klein,
A. Brill, L. Heffter, and H. Minkowski [2, p. 480]. Another
is Sir William Rowan Hamilton, who in speaking of his
contribution to quaternions, remarked, “Time is said to
have only one dimension, and space to have three dimen-
sions. . . . The mathematical quaternion partakes of both
these elements: in technical language it may be said to be
time plus space; or ‘space plus time,’ and in this sense it
has or at least involves a reference to four dimensions.”
[6, p. 257]. Time as a fourth dimension furnishes the
-simplest statement of the physical principle of relativity.
However, Edward Kasner says, “Physicists may consider
time to be a fourth dimension, but not the mathematician.
The physicist, like other scientists, may find that his latest
machine has just the right place for some new mathematical
gadget; that does not concern the mathematician. The
physicist can borrow new parts for his changing machine
every day for all the mathematician cares.” [3, p. 119].

Geometry of four dimensions is now recognized as an
indispensable part of mathematics. It is of special use in
connection with two complex variables, both in the study of
one variable as a function of the other, and to study func-
tions of hoth variables considered as independent variables.
Four-dimensional geometry is much more extensive than
three-dimensional geometry. It has various applications; it
enables us to prove theorems in geometry of three dimen-
sions. Although all of us are not in agreement as to what
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the fourth dimension is and most of us cannot picture our-
selves living in a space of four dimensions, we can reason
logically about it and proceed to build up a geometry of
four dimensions without a realization of it.
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“Wolfgang Bolyai asked to be buried without a marker
on his grave. An apple tree would do, he said, to remind
him in his long sleep of the three apples of history: the
apple which Eve foisted off on Adam, the apple which Paris
awarded Helen of Troy as the fairest of the fair, and the
apple whose fall inspired Newton to his law of universal
gravitation. The first two, he remarked, made earth a
hell; the third restored the earth to its dignity among the
heavenly bodies.”

—E. T. BELL.



THE MATHEMATICAL ROMANCE OF
POLY —1— AND RAY —2-

Poly was a —8— yet rather —4— girl for her features
were —5— though —6— and her —7— —8— while Ray
was & —9— faced young man of —10— build and —11—
purpose and —12— opinions. They lived in —13— —14—
and their —15— often —16—.

Poly was a —17— young woman of —18— temper, who
trusting her —19— —20— over Ray, kept his hopes —21—
from —22— to —28—. But at last she became so —24—
that he reached the —25— and flew off at a —26—, a very
—27— Ray —2—. Still his love was —28—and the —29—
of their estrangement was of —80— duration.

One day a —31— escaped her lips, and Ray who was far
from —32-—, noticed the —33—and asked, “Will you give
me a —84— of your love by a sweet —85—7?” She was an
—36— girl, but so —87-— were their —38— that she did
not —89— when she was —40— by his arms.

Mr. I. Cosa —1— was a —41— business man —42—
—48— in affairs of the heart, to whom the —44— —45—
of life were —46—. He and Ray held —47— opinions, so
when Ray came to the —48— of the matter he received
a —49— answer and Polly’s father, growing —50—, called
him a —b1— for stealing a girl’s affections before he had
—52— the —53— of the H.C.L. However, Ray inherited a
valuable —54— of land and Mr. I. Cosa ~—1—, who could
—p55— between —56— and —57— wealth, gave his
consent.

A large —58— of —59— attended the wedding. There
was the uncle whose —60—nearly -——61— his —62— and
the cousin who was a —638— favorite and the —64— minded
old maid saying “prunes and —65—." The bride was the
—66— of all attention as she appeared in a gown —67— on
" 1Reprinted from the American Mathematical Monthly, Vol. XLII, Jan. 1938,

p. 41. The Mathematical Romance was first used at a Christmas party of the
Cornell Parabola Cludb in 19189,
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—68— —69 with a veil falling —70—to her —71—. As
Ray slipped the —72— on her third —78—, he whispered,
“The world is —74— for me with you as the —75— of my
existence.” Throwing her bouquet in a —76— —T77—to her
attendants, the happy —78— sped to the land of the —79—
for a honeymoon, far from the icy —80~as they had pre-
viously —81—. They lived happily since they had —82.—
dispogitions and Polly stayed in her proper —83—.

@

“Anyone who looked for a source of power in the trans-
formation of the atoms was talking moonshine.”
—RUTHERFORD (about 1920).

'_=v=

“Then in 1940 the great reservoir of the physicists of
America and England broke loose to bring about in five
years a result, the achievement of which was not expected
for 100,000,000 years—the production of the atomic bomb.”

—GORDON FERRIE HULL.



THE MATHEMATICAL SCRAPBOOK

Have you summoned your wits from woolgathering?
—THOoMAS MIDDLETON.

=v=

If one bird can sing 80 half-notes in one-half minute
and a second bird can sing one-half as many in twice as
much time, how many half-notes could they both sing
together in one-quarter minute?

=v=

Prof: Why are you late, Pat?

Pat: 'Twas like this, professor. When I left my room,
it was so slippery that if I took one step forward, I went
two backward,

Prof: Then how in the world did you get here?

Pat: Sure and I turned the other way.

=V =

Decode the following addition.

AHAHA
TEHE

TEHAW
= v =]

A tramp picked up 86 cigarette butts. If he could
make one whole cigarette from six butts, how many whole
cigarettes did he smoke?

=v=

A says: “I am a skeptic. I am certain of nothing.”
B counters: ‘“There is no such thing as a true skeptic. What
you have just said proves it.”

27
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“Angling may be said to be so like mathematics that it
can never be fully learnt.” ~—JZAAK WALTON.

What is the length of AB
in the figure at the right?

=v=

=v=

3.14159265385897932384
Now, I have a score notations
Of digits large and small,
Teaching diameter’s precise relations,
And we can remember *tall.
—G. E. GUDE.
=V=

To find VN, let N =a X b where a and b are nearly
equal. Then find successively the arithmetic means of ¢ and
b, of (a4 b)/2 and N = (a 4 b)/2, etc. For example,
let us find v/ 20. Since 20 =4 X 5, we compute (4 4 5)/2
and 20/4.5 = 4.444, Then / 20 == (4.5 - 4.444) /2 =4.472
correct to three decimal places.

=v=
871 —3° 4+ 7 4+ 1
=V =

An empty barrel weighs 10 Ib. What can you put in
the barre!l to make it weight 9 1b.?
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Here is wisdom. Let him that hath understanding

count the number of the beast: for it is the number of a

man; and his number is six hundred threescore and siz.
{Revelations 13:18.)

Let A =100, B=101, C =102, ---, Z=125. Then
H+4+I4+T+L+E+R=666.
=v=

Three persons sold eggs at precisely the same rate.
A sold 650 eggs, B sold 30 eggs, and C sold 10 eggs. What
was the selling price if each person received the same
amount from his sale?

=V =
444 566 999
444 565 999
16 26 81
1616 2526 ete - 8181
161616 252525 818181
1616 2525 8181
16 25 81
197136 308025 . 998001
= v ==

Who can mistake great thoughts?
They seize upon the mind—arrest,
and search,
And shake it. —PHILIP JAMES BAILEY.

=v=

From a report on Russia’s state of naval preparedness:
“That Russia was amply prepared in the event of war was
indicated by the announcement her naval forces had in-
creased 1700% since 1933. Admiral Ivan Orloff, chief of
naval forces, listed the following increases: Submarines
715% ; warships 800% ; coast artillery 75% anti-aircraft
guns 100% ; marine aviation 510%.” It adds up correctly
to 1700%.
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“The most distinct and beautiful statement of any truth
must take at last the mathematical form.” —THOREAU.

=v=

“The mathematician’s best work is art, a high and per-
fect art, as daring as the most secret dreams of imagination,
clear and limped. Mathematical genius and artistic genius
touch one another.” —MITTAG-LEFFLER.

=V =

An army L miles long advances M miles while a
despatch rider goes from the rear to the front and returns
to the rear. How far did he travel?

=V =
Lete — b =c¢. Then
(a—b)*=c(a—Db)
a*— 2ab 4 b3=ac — be
a?—ab —ac—=ab —be — b2
e(e—b—ec)="b(a—b—¢)
a=2>.
=v=

Two players sit at solitaire, each with a pack of 52
cards. Each deals himself a hand of 13 cards. A, showing
his hand, remarks, “I have the ace of hearts.” B, doing
likewise, replies, “I also have an ace.” Show that A has
more chance than B of having another ace.

=v=

If 14 dogs with 8 legs each can catch 48 rabbits with
76 legs in 25 minutes, how many legs must 24 rabbits have
to get away from 8,000 dogs with no legs at all?

=v=

The quarrel is a very pretty quarrel as it stands; we
should only spoil it by trying to explain it.
—RICHARD BRINSLEY SHERIDAN.
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‘OHIO ALPHA, Bowling Green State University, Bowling
Green.

OHIO BETA, College of Wooster, Wooster.

OKLAHOMA ALPHA, Northeastern State College, Tahle-
quah.

SOUTH CAROLINA ALPHA, Coker College, Hartsville.

TENNESSEE ALPHA, Tennessee Polytechnic Institute,
Cookeville.

TEXAS ALPHA, Texas Technological College, Lubbock.
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@

Answers for the Mathematical Romance: 1, Hedron; 2,
Show (ratio) ; 8, plane; 4, a-cute; 5, regular; 6, angular; 7,
form; 8, symmetrical; 9, round ; 10, square; 11, set; 12, fixed;
13, adjacent; 14, regions; 15, paths; 16, intersected; 17,
complex; 18, variable; 19, increasing; 20, power; 21, oscil-
lating; 22, zero; 23, infinity; 24, arbitrary; 25, limit; 26,
tangent; 27, cross; 28, constant; 29, period; 80, infinitesi-
mal; 31, loci (low sigh) ; 82, obtuse; 83, sign ; 84, demonstra-
tions; 85, osculation ; 86, independent; 87, similar; 38, incli-
nations; 89, object; 40, encircled; 41, solid; 42, 43, every-
where dense; 44, 46, ideal elements; 46, unknown; 47, oppo-"
site; 48, point; 49, negative; 50, irrational; 51, lo-cus; 52,
solved ; 53, problem ; 54, section ; 55, differentiate; 56, imag-
inary; 57, real; 68, number; 59, relations; 60, perimeter; 61,
equalled ; 62, height; 68, prime; 64, vacuous; 65, prisms; 66,
focus; 67, cut; 68, straight; 69, lines; 70, perpendicularly;
71, feet; 72, circle; 78, digit; 74, pi (e); 75, center; 76, 77,
parabolic arc; 78, pair; 79, pyramids; 80, poles; 81, pro-
jected; 82, complementary; 83, sphere.



